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A B S T R A C T

Unequivocal signatures of Majorana zero energy modes in condensed matter systems and manipulation of the
associated electron parity states are highly sought after for fundamental reasons as well as for the prospect of
topological quantum computing. In this paper, we demonstrate that a ring of Josephson coupled topological
superconducting islands threaded by magnetic flux and attached to a quantum dot acts as an excellent parity-
controlled probe of Majorana mode physics. As a function of flux threading through the ring, standard Joseph-
son coupling yields a Φ0 ¼ h=ð2eÞ periodic features corresponding to 2π phase difference periodicity. In contrast,
Majorana mode assisted tunneling provides additional features with 2Φ0 (4π phase difference) periodicity,
associated with single electron processes. We find that increasing the number of islands in the ring enhances the
visibility of the desired 4π periodic components in the groundstate energy. Moreover as a unique characterization
tool, tuning the occupation energy of the quantum dot allows controlled groundstate parity changes in the ring,
enabling a toggling between Φ0 and 2Φ0 periodicity.
1. Introduction

Majorana zero modes (MZM) have captivated condensed matter
theorists and experimentalists alike of late [1–4] from the fundamental
perspective as well as for their potential application in topological
quantum computation [5–7]. Progress toward the realization of MZM has
been made by several theoretical proposals [8–11] as well as experi-
mental work [12–21]. While most experiments involving topological
superconductors present zero bias conductance peaks as evidence for the
existence of MZM [12–16,18,20], this alone can not serve as proof for
their existence [22–35]. Another manifestation of the existence of MZM
is the presence of 4π periodic components in the Josephson current be-
tween two topological superconductors [5,8,9,36–39]. Despite encour-
aging experimental evidence [19–21], interpreting the presence of 4π
periodic tunneling as an unequivocal sign of MZM remains problematic
for three main reasons. The first is that the 4π periodicity can only be
observed when the time scale over which the phase difference in the
junction changes is smaller than the time scale for quasi-particle
poisoning [37]. The second problem is that the 4π periodic compo-
nents in the Josephson current are generally accompanied by other,
possibly much larger, 2π periodic components. Finally, the presence of 4π
periodic components can be caused by Andreev bound states rather than
dríguez-Mota).
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MZM [36,40,41].
Our proposal to address these problems is to study the signatures of

4π periodic tunneling due to MZM in Josephson junction ring-quantum
dot hybrid architectures. As will be shown, the setup we propose in
this paper controls quasiparticle tunneling by tuning the capacitance of
the superconducting islands and suppresses the 2π periodic Josephson
contribution by connecting a number of junctions in a ring. While single
particle tunneling through bound states in the junctions can only be
eliminated by producing very clean junctions, our setup is able to
distinguish their contribution from Majorana assisted tunneling by con-
necting with a quantum dot.

Here, we combine two promising MZM settings to obtain a powerful
and controlled means of MZM detection-Josephson junction arrays and
quantum dot geometries. Josephson junction arrays provide a rich
playground for studying the interplay between superconductivity and
electrostatic repulsion [42]. These are appealing experimental systems
since the relevant energy scales are relatively easy to tune, especially in
one dimension [43–46]. Understanding such interplay in networks of
multiply-connected 1D topological superconductors is particularly
important, as it is a key ingredient in proposals to detect and manipulate
MZM [47–53]. Another approach to detect and control MZM is by
coupling to quantum dots and enabling single-electron hopping [54–62].
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Fig. 2. Schematic of our results for ‘long’ TJJ rings. In this case, the 2Φ0 pe-
riodic terms become dominant. (a) Without phase fluctuations, the lowest en-
ergy bands of the even parity TJJ ring (P TJJ ¼ 1) consist of parabolas centered
around odd multiples of Φ0, each corresponding to a different winding of the
superconducting phase across the TJJ ring. (b) Phase fluctuations in the TJJ ring
create avoided crossings making the spectrum 2Φ0 periodic. The corresponding
spectrum for the odd parity TJJ ring (P TJJ ¼ � 1) is that of panels (a) and (b)
with a Φ0 shift in the flux. (c) Once the TJJ ring is coupled to the dot, the energy
spectrum includes states with P TJJ ¼ 1 (solid lines) and states with P TJJ ¼ �1
(dashed lines). Due to charging costs, the energies of states with P TJJ ¼ �1 and
P TJJ ¼ 1 are offset by ΔE. (d) Phase fluctuations lead to avoided crossings. The
groundstate energy behavior depends on how ΔE compares to the bandwidth of
the P TJJ ¼ 1 sector W.
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Our setup builds on previous work to integrate 1D Josephson junction
arrays made of topological superonconductors and quantum dots into a
single architecture. Majorana nanowires [8,9] provide the most natural
path to physically assemble the setup studied on this work. Although
more technically challenging, another possible path for physical reali-
zation could be through assembling chains of magnetic atoms on the
surface of superconductors [11,63].

The setup we study is shown in Fig. 1. It consists of a topological
Josephson junction ring (TJJ ring) formed by N topological super-
conducting islands threaded by magnetic flux and coupled to a quantum
dot. Our key results are summarized in Fig. 2. Assuming the absence of
quasiparticle poisoning, the net parity of the ring (odd or even number of
electrons) P TJJ is conserved when it is decoupled from the quantum dot.
Without phase fluctuations its low energy spectrum as a function of flux is
a collection of parabolas centered around integer flux quanta. These
parabolas corresponds to different angular momentum states for which
the winding of the superconducting phase across the TJJ ring is a mul-
tiple of 2π. The contours are essentially the same as those obtained for
non-topological rings with one crucial difference. When P TJJ ¼ 1ð� 1Þ,
only parabolas which are centered around odd(even) integer flux quanta
are possible. This is shown for P TJJ ¼ 1 in Fig. 2(a) Once phase fluctu-
ations, induced by the charging energy, are included, quantum phase
slips occur, creating avoided crossings in the spectrum as shown in
Fig. 2(b). While in the non-topological rings phase slips create a Φ0 pe-
riodic spectrum, the spectrum of the TJJ ring in the presence of phase
slips is 2Φ0 periodic. This is a consequence of parity conservation
forbidding the existence of either the even or the odd parabolas. Upon
coupling to the quantum dot, the TJJ ring can violate parity conservation
by accepting or donating an electron to the dot, thus hybridizing the odd
and even parity sectors and tuning the periodicity of the ring from 2Φ0 to
Φ0. The associated energy spectrum as a function of flux, measurable via
persistent current, then takes on a characteristic form depending on
quantum dot parameters, as shown in Fig. 2(c) and (d).

As we show in what follows, several features of this architecture
together yield distinct advantages in isolating MZM physics. In contrast
to a single topological junction, in the TJJ ring the effects of the 2Φ0

periodic tunneling are amplified by increasing the number of islands, N.
Due to the charging energy of the islands, E0 ¼ e2=ð2C0Þ, and the
occupation energy of the dot, ED, there is an energy shift ΔE between the
even and odd parity spectrum of the ring. The characteristic dependence
of the energy spectrum on ΔE rules out the possibility of this effect being
caused by Andreev boundstates. A large value of the self-charging energy
E0 helps suppress quasi-particle poisoning arising from undesired elec-
tron and hole excitations. The dot's affinity to accept or donate an
Fig. 1. The setup consists of a ring made of N topologically superconducting
islands (blue rectangles) coupled to a quantum dot (red circle) and threaded by
magnetic flux Φ. The islands present Majorana modes (stars) at their edges
leading to single particle tunneling in addition to the usual Josephson tunneling.
Electrostatic effects in the ring are modeled by self and nearest-neighbor ca-
pacitances, C0 and C, respectively. (For interpretation of the references to colour
in this figure legend, the reader is referred to the Web version of this article.)
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electron is easily controlled via applying a gate voltage and altering ED.
Tuning ΔE in this setup allows toggling between the two different TJJ
ring parity sectors and thus pinpointing the effect of MZM via the asso-
ciated tuning of the periodicity of the ring between 2Φ0 and Φ0.

2. Topological Josephson junction (TJJ) ring

To analyze the scenario in detail, let us begin by considering the TJJ
ring in Fig. 1 uncoupled to the quantum dot. Each of the N islands in the
ring is characterized by a superconducting order parameter phase φn and
a charge Qn. The islands' topological nature leads to two Majorana
modes, γln and γrn, localized around the left and the right edge of the nth
island. Neighboring islands interact through tunneling and electrostatic
repulsion. To lowest order in the interaction, only tunneling processes
that keep the superconductors in their ground state contribute. These
correspond to Josephson tunneling of pairs and Majorana assisted single
electron tunneling. The tunneling as well as the capacitance of the islands
make up the TJJ ring Hamiltonian:

HTJJ ¼ HJ þ HM þ HC

HJ ¼ �
X
n

EJcosðφnþ1 � φn þ δΦÞ

HM ¼
X
n

EM

�
cyncn �

1
2

�
cos
�
φnþ1 � φn þ δΦ

2

�

HC ¼ 1
2

X
n;m

QnC�1
nmQm;

(1)

where φnþ1 � φn þ δΦ corresponds to the gauge invariant phase differ-
ence between the islands, with δΦ ¼ 2πΦ=ðNΦ0Þ. HJ describes the
Josephson tunneling, with amplitude EJ . HM describes the tunneling
enabled by MZM with the energy scale EM and fermionic operators cn ¼
ðγrn þ iγlnþ1Þ=2. HC describes the electrostatic repulsion with the capaci-
tance Cnm ¼ ðC0 þ 2CÞδn;m � Cðδnþ1;m þ δn�1;mÞ, where C0 is the self
capacitance and C is the neighboring capacitance. The TJJ ring has four
relevant energy scales: EJ , EM , and the charging energies EC ¼ e2=ð2CÞ
and E0 ¼ e2=ð2C0Þ. We assume that the dominant energy scale is either
EM or EJ , and that EC≪E0 [42]. In this case, the TJJ ring is described by
almost well defined superconducting condensate phases with small
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fluctuations controlled by EC.
For EC ¼ 0, the Hamiltonian of the system becomesHcl

TJJ ¼HJ þHM þ
E0Q

2

N , with Q ¼P
n
Qn. The superconducting phases become well-defined

classical variables [64,65]. Moreover the eigenstates of Hcl
TJJ must have

well defined occupations of the fermionic modes cn. Since the occupation
of the cn fermions is defined modulo 2 [66,67], a given phase configu-
ration corresponds to two distinct eigenstates of Hcl

ring distinguished by

their fermionic parityP TJJ ¼ ð�1ÞQ.1 As shown in Appendix A, this leads
to the following condition on the phases:

X
n

θn ¼ 2πm with
�
m even if P TJJ ¼ �1
m odd if P TJJ ¼ 1

: (2)

where θn ¼ φnþ1 � φn þ 2πcyncnmod4π. The energy of a configuration of
phase differences θ ¼ ðθ1;…; θNÞ can be written as EðθÞ ¼ � P

n
Vðθn þ

δΦÞ, where VðθÞ is the single junction potential VðθÞ ¼ � EJcosθ�
EM
2 cos θ

2.
The TJJ ring has a translational symmetry, i.e. the system is un-

changed by circular shifts of the islands. Because of this, we expect
configurations with uniform phase differences, i.e. θn ¼ θ, to have the
lowest energy. While this is true when EJ ¼ 0, for non zero EJ the
competition between 2π and 4π periodic tunneling may favor non uni-
form phase configurations. Nonetheless, we find that uniform phase
configurations minimize the energy whenever

NEJ

�
1� cos

2π
N

�
þ NEM

2

�
1� cos

π
N

�
< EM : (3)

For N≳6 this condition becomes

NEM

π2
> 2EJ þ EM

4
: (4)

As a result of the presence of 2π periodic tunneling TJJ rings exhibit
local minima at even (odd) Φ0 for P TJJ ¼ 1ð�1Þ if condition (3) is not
met. Increasing N reduces the role of the 2π periodic components in the
lowest energy bands. For the remainder of this work, we refer to the TJJ
ring as ‘long’ if the condition (3) is met and as ‘short’ if it is not.

Since a TJJ ring with all equal junctions is a highly idealized situation,
it is worth discussing how disorder in the couplings may affect the
reduction of the role of 2π periodic components with increasing number
of islands N. For N≳6 and relatively small disorder the condition (3)
becomes

XN
n¼1

1
EJn þ EMn

8

>
2π2

minðEMnÞ ; (5)

where EJn and EMn are the Josephson and Majorana couplings for the nth
junction, respectively. The above condition reduces to (4) for even cou-
plings. If we assume the couplings EJn and EMn to be uniformly distri-
bution on the intervals ðEJ � σJ ;EJ þ σJÞ and ðEM � σM ;EM þ σMÞ, taking
the average of (5) results in

N
π2

�
EM � σM

N � 1
N þ 1

�
> 2EJ þ EM

4
: (6)

We conclude that some disorder in the EJn couplings is not likely to
affect our results. On the other hand, a large spread of EMn couplings
increases the likelihood of finding local minima on the TJJ ground-state
energy. Despite this, the left hand size of (6) grows with N as long as
σM < EM . Thus we conclude that the enhancement of the 4π periodic
effects with increasing N is stable to small disorder in the couplings.
1 To simplify the notation we measure the charge Q in units of the electron
charge e.
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In the following, we focus on long TJJ rings. Taking into account the
constraint, Eq. (2), the possible constant phase configurations are given
by θ ¼ 2πm=N, where m is an odd(even) integer if PTJJ ¼ 1ð� 1Þ. We
label these configurations by jmi and their energy by εm ¼ NVð2πðmþ
Φ=Φ0Þ=NÞ. These different states correspond to different angular mo-
mentum values and can be distinguished by their persistent currents. The
low energy part of the spectrum of the states jmi forP TJJ ¼ 1 is shown in
Fig. 2(a). For N≳6 these states are essentially parabolas centered around
� mΦ0.

For EC > 0, the main types of phase fluctuations for the TJJ ring are
plasmons and phase slips. Plasmons are harmonic fluctuations around the
jmi states. They add a zero point motion energy to εm. We find that
plasmons in the TJJ behave similarly to plasmons in non-topological JJ
rings with the plasma frequency: ℏωp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8EJEC þ EMEC
p

, as opposed to
the non-topological frequency ℏωp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

8EJEC
p

. Phase slips lead to quan-
tum tunneling between the jmi states [64], causing the avoided crossings
in Fig. (b). For instance, the states jmi and jmþ 2i are connected trough
4π phase slips. Since HTJJ conserves P TJJ phase slips occur only in
multiples of 4π, i.e. in long TJJ rings 2π phase slips are suppressed, as in
topological superconducting wires [5,68].

3. TJJ ring-quantum dot architecture

To control the parity of the TJJ ring, we couple the ring to a quantum
dot, enabling electrons to tunnel between the TJJ and dot (together
referred to as TJJ þ D). In the simplest case of a single electronic level

available to the dot, its Hamiltonian takes the form HD ¼ ED

�
dyd� 1

2

�
,

where d and dy annihilate and create an electron in the dot. We consider a
setup where electron tunneling from the quantum dot is into MZMmodes
on TJJ islands 1 and N with amplitudes w1 and wN , respectively. The
Hamiltonian of the system is then H ¼ Hring þ HD þ Hint , with the
interaction between the TJJ ring and the dot given by:

Hint ¼ wNe�
iφN
2

2
iγrNd

y þ w1e�
iφ1
2

2
γl1d

y þ h:c: (7)

Assuming that no magnetic flux is enclosed by the loop formed be-
tween the dot and the two islands, the phase difference between w1 and
wN is δΦ

2 . The total parity is conserved in the TJJþ D system while it is not
in the TJJ ring portion.

To proceed with the TJJþD analysis, we denote by jθ;Q; ndi a state of
the systemwhere 1) the TJJ has well defined phase differences θ and well
defined total charge Q and 2) the charge in the dot is nd. Hint induces a 2π
shift in the Nth junction when moving a particle from the TJJ to the dot.
Thus, it connects the states jθ;Q;0i and jθ� 2π e!N ;Q� 1;1i, where θ�
2π e!N ¼ ðθ1;…; θN�1; θN � 2πÞ. When EC ¼ 0, both jθ;Q;0i and jθ�
2π e!N ;Q � 1;1i are eigenstates of HTJJ þ HD. As shown in Appendix C, H
is then diagonalized by superpositions of the form

α�jθ;Q; 0i þ β�jθ� 2π e!N ;Q� 1; 1i (8)

with the following energies:

E�ðθÞ ¼
XN�1

n¼1

Vðθn þ δΦÞ þ V�ðθN þ δΦÞ; (9a)

with,

V�ðθÞ ¼ �EJcosθ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
EM

2
cos

θ

2
þ ΔE

2

�2

þ wθ

s
;

wθ ¼
��wN j2 þ

��w1j2
4

þ jwN jjw1j
2

cos
θ

2
; and

ΔE ¼ ED � E0ð2Q� 1Þ=N:

(9b)



Fig. 3. The energy and current profile of the TJJ þ D system in different regions
of energy offset ΔE relative to the band width W. The different behavior pro-
vides a signature of the Majorana assisted tunneling. (a) The energy offset ΔE
compares to the bandwidth of the even/odd sector, W. (b) The dependence of
the groundstate energy on the magnetic flux for the TJJ þ D system for the
different regions in (a). (c) The flux dependence of the persistent current (solid
blue) and the average occupation of the quantum dot (dashed red). Figures (b)
and (c) show numerical results.2 (For interpretation of the references to colour
in this figure legend, the reader is referred to the Web version of this article.)
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The offset, ΔE, originates from the charging costs of the dot and the
TJJ ring.

The TJJþ D groundstate energy, ε, is obtained minimizing E�ðθÞ. The
interaction breaks the translational symmetry of the TJJ ring making the
values of θ that minimize E�ðθÞ flux dependent. Fortunately, the TJJ þ D
groundstate is well approximated by flux independent states which we
label jψmi. The states jψmi are obtained when taking Eq. (8) and choosing
the phase configuration of the first term to be uniform with each junction
having a phase difference 2πm=N and the appropriate charge on the dot.
Furthermore, jψmi is dominated by its component with constant phase
differences in the TJJ ring, with the phase difference and occupation of
the dot which match the overall parity and flux threaded. The energies of
the states jψmi, εm, shown in Fig. 2(c), are essentially parabolas centered
around even and oddmultiples ofΦ0, offset byΔE. The greatest deviation
between the energies εm and ε is at half-integer flux values for small
numbers of islands. Comparing the energies εm with ε obtained numeri-
cally for N ¼ 2 and Φ ¼ Φ0=2, we find that ε and the lowest εm differ by
less than 0:05EM for jw1j; jwN j < EM=2. Increasing the number of islands
to N ¼ 3 reduces such difference to less than 0:001EM . The εm are then
good approximations to ε as long as jw1j; jwN j≲EM . Further details are
given in E.

Turning on EC leads to avoided crossings where the energies of the
states jψmi cross. The states jψmi and jψm�1i are now connected by 2π
phase slips enabled by breaking the parity of the TJJ ring through the
interaction with the dot. The behavior of the energy and that of the
persistent current is then determined by where and whether the states
jψmi and jψm�1i cross. This depends on how the energy offset between
the even and the odd jψmi states, ΔE, compares to the bandwidth of the
even (or odd) jψmi states, W. To provide a more accurate analysis, we
perform numerical simulations for small island numbers. These were
done through exact diagonalization of the TJJ þ D Hamiltonian limiting
the charge on each island to some maximum charge Q. Examples of the
2 The results shown in Fig. 3 were obtained through numerical simulations
with the following parameters: N ¼ 2, EJ ¼ 0, EM ¼ 1, Q ¼ 100, E0 ¼ 0:001 ¼
10EC , w1 ¼ wN ¼ 0:1 and (top to bottom) ΔE ¼ 1:1, ΔE ¼ 0:25, ΔE ¼ 0, ΔE ¼
�0:25 and ΔE ¼ � 1:1.
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different types of behavior of the energy and the persistent current ob-
tained numerically are shown in Fig. 3(b) and in Fig. 3(c), respectively.
The corresponding groundstate occupation of the dot (red line in
Fig. 3(c)) is also shown. The rapid changes in the dot groundstate
occupation could be measured as peaks in the conductance as suggested
by Ref. [60] in a similar setting. For jΔEj > W (regions I and IV in Fig. 3),
the first energy crossing occurs between states jψmi and jψm�2i. In this
case, the energy has global minima at either even or odd multiples of Φ0.
On the other hand, for jΔEj < W (regions II and III in Fig. 3), the first
energy crossing occurs between states jψmi and jψm�1i, leading to both
local and global energy minima.

The results shown in Fig. 3 describe the qualitative behavior of the
TJJ þ D architecture when the TJJ ring is long. For short TJJ rings, the
competition between 2π and 4π periodic tunneling leads to local minima
in the energy-flux relation even when P TJJ is conserved. In this case, the
energy of the TJJ þ D system in the regions I and IV of Fig. 3 would still
present local minima, reducing the visibility of the transition between the
two parity sectors.

The ability to tune between 2Φ0 and Φ0 periodicity through con-
trolling the occupation energy of the dot allows our setup to rule out
other explanations of 2Φ0 periodicity. For instance, 2Φ0 periodicity may
arise in small metallic or semi-conducting systems [69–71]. If such were
the case, the 2Φ0 periodicity would be unchanged by the occupation
energy of the dot. If the 2Φ0 periodicity was caused Andreev
bound-states, the contact with a dot having small occupation energy
would aid rather than suppress the 2Φ0 periodicity [41].

4. Conclusions

The proposed Josephson ring-quantum dot hybrid architecture can be
realized in Josephson junction rings with Majorana nanowires [8,9] or
with chains of magnetic atoms deposited on the surface of supercon-
ductors [11,63]. Additionally, the TJJ ring can be understood as a coarse
grained model of a 1D topological superconductor. Since the TJJ ring
accounts for phase fluctuations, it could be used to shed some light into
the effects of phase fluctuations, and number conservation, in topological
superconductors. Crucially, the combination of 4π periodic tunneling and
the ability to manipulate the parity of the TJJ ring using the quantum dot
as a knob cannot be explained through trivial Andreev bound states.
Quasi-particle poisoning and 2π periodic tunneling may obscure the
MZM signature. These effects can be prevented increasing the
self-charging energy of the superconducting islands and increasing the
number of superconducting islands, respectively. Thus, while the
Josephson junction-quantum dot hybrid architecture proposed in this
paper cannot in itself enable the braiding MZMs, it can provide a solid
signature of their existence. Future work would involve connecting the
principles and geometry proposed here with the current scope of device
capabilities in experiment.
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Appendix A. Proof of Eqn. 2

Due to the topological nature of each the island, for any constant phase configuration with 0 � φn < 2π there are two superconducting ground states
that can be distinguished by their fermionic parity. These groundstates will be labeled as jφnP i. The action of the operators γln and γrn on the states jφnP i
is

γljφn�
	 ¼ jφn�

	
iγrjφn�

	 ¼ �jφn�
	
:

(A.1)

The Majorana operators associated with the superconducting island n are given by

γln ¼ ∫
x2n

dx
�
e�

iφ
2 f lnðxÞψ yðxÞ þ e

iφ
2 f lnðxÞ�ψðxÞ

�

γrn ¼ ∫
x2n

dx
�
ie�

iφ
2 f rn ðxÞψ yðxÞ � ie

iφ
2 f rn ðxÞ�ψðxÞ

�
;

(A.2)

with f lðrÞn ðxÞ a function localized around the left (right) edge of the n island and ψðxÞ the field operator. Under the gauge transformation φn→φn þ 2π,3

the operators γlðrÞn pick up a minus sign resulting in cn→� cyn and cn�1→cyn�1. This implies that the occupation of the cn fermions is defined modulo 2 and
care must be taken to avoid over-counting the states in the Hilbert space [66].

Following Ref. [72] we define the following N � 1 independent variables

θn ¼ φnþ1 � φn þ 2πcyncn mod 4π; (A.3)

for n ¼ 1;…;N� 1, which are invariant under φn→φn þ 2π. Writing HJ and HM in terms of the θns results in

HM ¼ �
XN�1

n¼1

EM

2
cos
�
θn þ δΦ

2

�
� EM

2
cos

 �XN�1

n¼1
θn � 2π

XN

n¼1
cyncn þ δΦ

2

!

HJ ¼ �
XN�1

n¼1

EJcosðθn þ δΦÞ � EJcos

 
�
XN�1

n¼1

θn þ δΦ

!
;

(A.4)

The operators θn defined by Eqn. (A.3) are not enough to determine the state of the TJJ since the variables φ1 and the ð�1Þ
PN

n¼1
cyncn are independent of

them. To address this we define the θ0 as

e
iθ0
2 ¼ γl1e

iφ1
2 : (A.5)

Under the above definition θ0 remains invariant when φ1→φ1 þ 2π, and we have ½θn; θk� ¼ 0 for all n;k ¼ 0;…;N� 1. The operator θ0 obeys the
following commutation relation with the total charge Q ¼P

n
Qn:

2
4Q; eiθ02

3
5 ¼ e

iθ0
2 : (A.6)

The fact that θ0 does not appear in HM and HJ indicates that both HM and HJ conserve the total charge Q of the TJJ. Additionally for n ¼ 1;…;N � 1
we also have



θn
2
;Q
�
¼ 0 and



θn
2
;Qk

�
¼ iðδnþ1;k � δn;kÞ; (A.7)

hence it is possible to describe the state of the TJJ using either the states jθ0; θ1;…; θN�1i or the states jQ;θ1;…;θN�1i. In the following we will use the
later since ½HTJJ ;Q� ¼ 0.

To make the TJJ ring translational symmetry evident, it is convenient to rewrite HM and HJ in terms of N constrained phase differences. This results
in

HM ¼ �
XEM

2
cos
�
θn þ δΦ

2

�

HJ ¼ �
X
n

EJcosðθn þ δΦÞ;
(A.8)

with the constraint
3 Note that the gauge transformation φn→φn þ 2π, which is a change in how we are looking at the system, differs from changing the phase φn by 2π adiabatically,
which is a physical change in the system.
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X
θn ¼

8<
4πm if ð�1Þ n

cyncn ¼ 1P y : (A.9)

n

:
P

2πð2mþ 1Þ if ð�1Þ n

cncn ¼ �1

It is also possible to relate ð�1Þ
P
n

cyncn
to Q by noting that ð�1ÞQn ¼ iγrnγ

l
n and ð�1Þcyncn ¼ iγlnþ1γ

r
n. The relation between ð�1Þ

P
n

cyncn
and Q is then

ð�1Þ
P
n

cyncn ¼
Y1
n¼N

iγlnþ1γ
r
n ¼ γl1

 Y2
n¼N

iγrnγ
l
n

!
iγr1 ¼ �

Y1
n¼N

iγrnγ
l
n ¼ �ð�1ÞQ: (A.10)

Combining Eqns. (A.9) and (A.10) leads to Eqn. (2).
We will use

��θiQ to denote the state with charge Q and phase differences given by θ ¼ ðθ1;…;θNÞ.

Appendix B. Quantifying the decrease of the 2π periodic tunneling contribution and its stability against junction disorder

In the main text, we showed that local minima in the ground-state energy vs flux relation of the TJJ can be removed by increasing the number of
islands in the TJJ. Since the local minima arise due to the contribution of 2π periodic tunneling, we used this fact to argue that increasing N reduces the
role of 2π periodic terms. In this appendix, we provide an additional way to quantify such decrease and use it to study the stability of this effect with
respect to disorder.

The energy of the TJJ ring EðΦÞ can be written as a Fourier series:

EðΦÞ ¼
X∞
n¼0

EncosðπnΦÞ: (B.1)

Using such decomposition, we can quantify the role of 2π periodic terms on the energy as

r ¼
P∞

n¼1

��E2nj2P∞
n¼1

��Enj2
: (B.2)

If only Φ0 periodic terms are present in the energy vs flux relation, i.e. EM→0, then r ¼ 1.
Fig. 4(a) shows r as a function of the number of junctions in the ring for different rations of EJ with respect EM . The results where obtained

minimizing the classical energy vs. flux relation of the TJJ ring numerically. As expected, r ¼ 1 when EM ¼ 0. On the contrary,Φ0 periodic components
do not fully disappear when the Cooper pair tunneling is absent, i.e. EJ ¼ 0. This is due to shape of the ground-state energy dependence on the flux for
EC ¼ 0, which is non-sinusoidal (see Fig. 2(a)). Nonetheless, r provides a measure for the effects of the 2π periodicity on the ground-state energy. For
EM ¼ EJ (blue squares) r decreases with N at first, r starts increasing after it goes below the value of rðEJ ¼ 0Þ (gray up triangles) and then it continues to
approach this value. This result agrees with our claim that the groundstate-energy dispersion for ‘long’ TJJ rings resembles that of rings with no 2π
periodic tunneling, i.e. EJ ¼ 0. The r dependence on N for EM ¼ 0:1EJ (down red triangles) and EM ¼ 0:5EJ (yellow diamonds) seem to follow a similar
trend, but the range of N in Fig. 4(a) is not large enough to appreciate the full behavior.

Fig. 4(b) shows the behavior of r with respect to N for EJ ¼ EM ¼ 1 and different values of disorder. To obtain this figure, we calculated the average
of r considering that the Josephson and Majorana couplings of the islands uniformly distributed on ðEJ � σJ ;EJ þ σJÞ and ðEM � σM ; EM þ σMÞ,
respectively. In Fig. 4(b) we see that the qualitative behavior of r is unchanged by disorder in Josephson andMajorana couplings. We also find that forN
up to 10, disorder in the Majorana hybridization energy, increases r. This is in agreement with the effects of disorder stated in the main text: the role of
2π periodic contributions is relatively insensitive to disorder in the Josephson couplings, on the other hand disorder on the Majorana hybridization
energy increases the role of 2π periodic contributions overall. The fact that the role of 2π periodic contributions is decreased by increasing the number of
islands N, is insensitive to relatively small disorder on both types of tunneling.

Fig. B.4. (a) Strength of the 2π periodic contribution to the ground-state energy as a function of N for different rations of EJ=EM . (b) Average strength of the 2π
periodic contribution to the ground-state energy as a function of N for EJ ¼ EM ¼ 1 and different amounts of disorder.

Appendix C. Proof of Eqn. 9

Here we obtain the energies of the TJJþD system for EC ¼ 0, described byHcl
TJJ þHD þHint . We start by writingHint in terms of the operators defined

in the previous section:
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Hint ¼ wNe�
iφN
2

iγr dy þ w1e�
iφ1
2

γl dy þ h:c: ¼
2
4� wNe

i
2

PN�1

n¼1

θn ð�1ÞQ þ w1

3
5e�iθ0

2 dy þ h:c: (C.1)

2 N 2 1 2 2

From the above equation we obtain that Hint connects the states jQ; θ1;…; θN�1i and dyjQ � 1; θ1;…; θN�1i as follows:

HintjQ; θ1;…; θN�1

	 ¼ �tdyjQ� 1; θ1;…; θN�1

	
HintdyjQ� 1; θ1;…; θN�1

	 ¼ �t�jQ; θ1;…; θN�1

	
with t ¼ 1

2

�
wNe

i
2

PN�1

n¼1
θn ð�1ÞQ þ w1

�
:

(C.2)

Alternatively, we can write

Hint jθ
E
Q
¼ �

2
4wN

2
e
�iθN
2 þ w1

2

3
5dyjθ� 2π e!N

E
Q�1

Hintdyjθ� 2π e!N

E
Q�1

¼ �
2
4w�

N

2
e
iθN
2 þ w�

1

2

3
5
������θ
E
Q
:

(C.3)

The states
��θiQ and dy

��θ� 2π e!NiQ�1 are eigenstates of Hring þ Hd with

ðHTJJ þ HDÞjθ
E
Q
¼


EðθÞ þ E0Q2

N
� ED

2

�����θEQ

ðHTJJ þ HDÞdyjθ� 2π e!N

E
Q�1

¼
"
Eðθ� 2π e!NÞ þ ED

2
þ E0ðQ� 1Þ2

N

#
dyjθ� 2π e!N

E
Q�1

(C.4)

where EðθÞ ¼ �P
n
Vðθn þ δΦÞ, VðθÞ ¼ � EJcosθ� EM

2 cos θ
2.

Then H ¼ HTJJ þ HD þ HC is diagonalized by states of the form α�
��θiQ þ β�dy

��θ� 2π e!NiQ�1 with energies E�ðθÞ given by Eqns. (5) and (6) of the
main text.

Appendix D. Numerical Simulations

In order to simulate the system numerically, it is convenient to describe the system in terms of charges rather than phases. For simplicity, we will
focus on the caseN ¼ 2.Wewant to find out the action ofH ¼ HC þ HJ þ HM þ HD þ Hint on a state with well defined charges on the islands and the dot,
i.e., jQ1;Q2;di. States with well defined charge are eigenstates of HC and HD:

ðHC þ HDÞjQ1;Q2; 0

+
¼
 
e2

2

X2
n;m¼1

QnC�1
nmQm � ED

2

!�����Q1;Q2; 0

+

ðHC þ HDÞjQ1;Q2; 1

+
¼
 
e2

2

X2
n;m¼1

QnC�1
nmQm þ ED

2

!�����Q1;Q2; 1

+
:

(D.1)

Now we proceed to find the effect of the HJ , HM and Hint on the constant charge states. In order to do this, we first note that for the nth super-
conducting island the constant charge state jQni can be constructed in terms of the states jφnP i:

������Qn

+
¼ 1

2π
∫ 2π
0 dφeiφn

Qn
2

������φP

+
; with P ¼ ð�1ÞQn : (D.2)

Using Equations A.1 and D.2 we can obtain the effect of the operators e�
iφn
2 γrðlÞn on a state of the island n with well defined charge:

e�
iφn
2 γlnjQn

+
¼ jQn � 1

+

e�
iφn
2 iγrnjQn

+
¼ �ð�1ÞQn jQn � 1

+
:

(D.3)

Hence, we can write the states jQ1;Q2; di as follows:
�������Q1;Q2; d

+
¼
0
@e

iφ1
2 γl1

1
A

Q10
@e

iφ2
2 γl2

1
A

Q2�
dy
d

�������0
+

(D.4)

Using the above definition we find the action of HM , HJ and Hint on the states jQ1;Q2;di:
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HM

����Q1;Q2; d

+
¼ EM �

2
4
0
@ð�1ÞQ1þQ2e�

iδΦ
2 � e

iδΦ
2

1
A
����Q1 � 1;Q2 þ 1; d

+
þ
0
@ð�1ÞQ1þQ2e

iδΦ
2 � e�

iδΦ
2

1
A
����Q1 þ 1;Q2 � 1; d

+35; (D.5)
�� 4 �� ��
HJ jQ1;Q2; di ¼ �EJcosδΦjQ1 � 2;Q2 þ 2; di � EJcosδΦjQ1 þ 2;Q2 � 2; di; (D.6)

and

HintjQ1;Q2; 0

+
¼ �jw2j

2
e
iδΦ
4 jQ1;Q2 � 1; 1

+
þ ð�1ÞQ1þQ2 jw1j

2
e�

iδΦ
4 jQ1 � 1;Q2; 1

+

HintjQ1;Q2; 1

+
¼ �jw2j

2
e
iδΦ
4 jQ1;Q2 þ 1; 0

+
þ ð�1ÞQ1þQ2 jw1j

2
e�

iδΦ
4 jQ1 þ 1;Q2; 0

+
:

(D.7)

Since Q1 þ Q2 þ nd ¼ Q is conserved by the Hamiltonian, we can write the Hamiltonian for a given Q sector:

H ¼
X1
d;d'¼0

XQ�d;Q�d'

Q1 ;Q1 '¼0

HQ1 ';d'
Q1 ;d �

�����Q1;Q1 � Q� d; d

+*
Q1 ';Q1 '� Q� d'; d'

����� (D.8)

whereHQ1 ';d'
Q1 ;d is the matrix element between the states jQ1;Q1 � Q � d; di and jQ1';Q1'� Q � d'; d'i and can be obtained from Eqns. (D.1), (D.5) and (D.7).

The numeric results shown in the main text were obtained from the above Hamiltonian using exact diagonalization.
The above description can be readily extended to an arbitrary number of islands N, as the action of H on a state jQ1;…;QN ; di can be found by

considering
�������Q1;…;QN ; d

+
¼
0
@e

iφ1
2 γl1

1
A

Q1 0
@e

iφN
2 γlN

1
A

QN

� �dy
d
�������0
+
: (D.9)

Appendix E. TJJ þ D ground-state energy approximation

In the main text it was argued that the TJJþ D groundstate energy εwas well approximated by the energies εm of flux independent states jψmi. It was
also argued that such approximation works best a) close to integer flux quantum and b) when we increase the number of islands. Here we provide some
details to support such arguments. First, we note that the reason the approximation of ε 	 minðεmÞ works best close to integer flux quantum is that the
state jψmi corresponds to the ground-state of the system when Φ ¼ � mΦ0.

On the other hand, the approximation improves when N increases since when the flux can be distributed in more junctions the ground-state
configurations for different flux values are separated by smaller phase differences. Fig. 5 shows how the considerable improvement in the approxi-
mation obtain by increasing N from N ¼ 2 to N ¼ 3. The ground-state energy ε in Fig. 5 was obtained minimizing E�ðθÞ with respect the phase dif-
ferences vector θ numerically.

Fig. E.5. The ground-state energy of the TJJ þ D, ε (solid lines), and εm with m ¼ �1 (dashed lines) at Φ ¼ Φ0=2 are shown for EJ ; EC ¼ 0 and N ¼ 2 in panel (a), and
N ¼ 3 in panel (b).
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