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ARTICLE INFO ABSTRACT

Unequivocal signatures of Majorana zero energy modes in condensed matter systems and manipulation of the
associated electron parity states are highly sought after for fundamental reasons as well as for the prospect of
topological quantum computing. In this paper, we demonstrate that a ring of Josephson coupled topological
superconducting islands threaded by magnetic flux and attached to a quantum dot acts as an excellent parity-
controlled probe of Majorana mode physics. As a function of flux threading through the ring, standard Joseph-
son coupling yields a ®; = h/(2e) periodic features corresponding to 27z phase difference periodicity. In contrast,
Majorana mode assisted tunneling provides additional features with 2®, (4z phase difference) periodicity,
associated with single electron processes. We find that increasing the number of islands in the ring enhances the
visibility of the desired 47 periodic components in the groundstate energy. Moreover as a unique characterization
tool, tuning the occupation energy of the quantum dot allows controlled groundstate parity changes in the ring,
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enabling a toggling between ®, and 2®, periodicity.

1. Introduction

Majorana zero modes (MZM) have captivated condensed matter
theorists and experimentalists alike of late [1-4] from the fundamental
perspective as well as for their potential application in topological
quantum computation [5-7]. Progress toward the realization of MZM has
been made by several theoretical proposals [8-11] as well as experi-
mental work [12-21]. While most experiments involving topological
superconductors present zero bias conductance peaks as evidence for the
existence of MZM [12-16,18,20], this alone can not serve as proof for
their existence [22-35]. Another manifestation of the existence of MZM
is the presence of 4x periodic components in the Josephson current be-
tween two topological superconductors [5,8,9,36-39]. Despite encour-
aging experimental evidence [19-21], interpreting the presence of 4z
periodic tunneling as an unequivocal sign of MZM remains problematic
for three main reasons. The first is that the 4x periodicity can only be
observed when the time scale over which the phase difference in the
junction changes is smaller than the time scale for quasi-particle
poisoning [37]. The second problem is that the 4z periodic compo-
nents in the Josephson current are generally accompanied by other,
possibly much larger, 27 periodic components. Finally, the presence of 47
periodic components can be caused by Andreev bound states rather than
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MZM [36,40,41].

Our proposal to address these problems is to study the signatures of
4r periodic tunneling due to MZM in Josephson junction ring-quantum
dot hybrid architectures. As will be shown, the setup we propose in
this paper controls quasiparticle tunneling by tuning the capacitance of
the superconducting islands and suppresses the 2z periodic Josephson
contribution by connecting a number of junctions in a ring. While single
particle tunneling through bound states in the junctions can only be
eliminated by producing very clean junctions, our setup is able to
distinguish their contribution from Majorana assisted tunneling by con-
necting with a quantum dot.

Here, we combine two promising MZM settings to obtain a powerful
and controlled means of MZM detection-Josephson junction arrays and
quantum dot geometries. Josephson junction arrays provide a rich
playground for studying the interplay between superconductivity and
electrostatic repulsion [42]. These are appealing experimental systems
since the relevant energy scales are relatively easy to tune, especially in
one dimension [43-46]. Understanding such interplay in networks of
multiply-connected 1D topological superconductors is particularly
important, as it is a key ingredient in proposals to detect and manipulate
MZM [47-53]. Another approach to detect and control MZM is by
coupling to quantum dots and enabling single-electron hopping [54-62].
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Our setup builds on previous work to integrate 1D Josephson junction
arrays made of topological superonconductors and quantum dots into a
single architecture. Majorana nanowires [8,9] provide the most natural
path to physically assemble the setup studied on this work. Although
more technically challenging, another possible path for physical reali-
zation could be through assembling chains of magnetic atoms on the
surface of superconductors [11,63].

The setup we study is shown in Fig. 1. It consists of a topological
Josephson junction ring (TJJ ring) formed by N topological super-
conducting islands threaded by magnetic flux and coupled to a quantum
dot. Our key results are summarized in Fig. 2. Assuming the absence of
quasiparticle poisoning, the net parity of the ring (odd or even number of
electrons) .#ry; is conserved when it is decoupled from the quantum dot.
Without phase fluctuations its low energy spectrum as a function of flux is
a collection of parabolas centered around integer flux quanta. These
parabolas corresponds to different angular momentum states for which
the winding of the superconducting phase across the TJJ ring is a mul-
tiple of 2z. The contours are essentially the same as those obtained for
non-topological rings with one crucial difference. When #7;; =1(— 1),
only parabolas which are centered around odd(even) integer flux quanta
are possible. This is shown for .#r;; = 1 in Fig. 2(a) Once phase fluctu-
ations, induced by the charging energy, are included, quantum phase
slips occur, creating avoided crossings in the spectrum as shown in
Fig. 2(b). While in the non-topological rings phase slips create a @ pe-
riodic spectrum, the spectrum of the TJJ ring in the presence of phase
slips is 2@, periodic. This is a consequence of parity conservation
forbidding the existence of either the even or the odd parabolas. Upon
coupling to the quantum dot, the TJJ ring can violate parity conservation
by accepting or donating an electron to the dot, thus hybridizing the odd
and even parity sectors and tuning the periodicity of the ring from 2®, to
®,. The associated energy spectrum as a function of flux, measurable via
persistent current, then takes on a characteristic form depending on
quantum dot parameters, as shown in Fig. 2(c) and (d).

As we show in what follows, several features of this architecture
together yield distinct advantages in isolating MZM physics. In contrast
to a single topological junction, in the TJJ ring the effects of the 2d,
periodic tunneling are amplified by increasing the number of islands, N.
Due to the charging energy of the islands, Ep = €%/(2Cp), and the
occupation energy of the dot, Ep, there is an energy shift AE between the
even and odd parity spectrum of the ring. The characteristic dependence
of the energy spectrum on AE rules out the possibility of this effect being
caused by Andreev boundstates. A large value of the self-charging energy
Ey helps suppress quasi-particle poisoning arising from undesired elec-
tron and hole excitations. The dot's affinity to accept or donate an

.IED

Fig. 1. The setup consists of a ring made of N topologically superconducting
islands (blue rectangles) coupled to a quantum dot (red circle) and threaded by
magnetic flux ®. The islands present Majorana modes (stars) at their edges
leading to single particle tunneling in addition to the usual Josephson tunneling.
Electrostatic effects in the ring are modeled by self and nearest-neighbor ca-
pacitances, Cp and C, respectively. (For interpretation of the references to colour
in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 2. Schematic of our results for ‘long’ TJJ rings. In this case, the 2®, pe-
riodic terms become dominant. (a) Without phase fluctuations, the lowest en-
ergy bands of the even parity TJJ ring (Z1y; = 1) consist of parabolas centered
around odd multiples of ®¢, each corresponding to a different winding of the
superconducting phase across the TJJ ring. (b) Phase fluctuations in the TJJ ring
create avoided crossings making the spectrum 2®, periodic. The corresponding
spectrum for the odd parity TJJ ring (%’r;; = — 1) is that of panels (a) and (b)
with a @ shift in the flux. (c) Once the TJJ ring is coupled to the dot, the energy
spectrum includes states with .#r;; = 1 (solid lines) and states with #7;; = —1
(dashed lines). Due to charging costs, the energies of states with #r;; = —1 and
P15 =1 are offset by AE. (d) Phase fluctuations lead to avoided crossings. The
groundstate energy behavior depends on how AE compares to the bandwidth of
the Sr;; =1 sector W.

electron is easily controlled via applying a gate voltage and altering Ep.
Tuning AE in this setup allows toggling between the two different TJJ
ring parity sectors and thus pinpointing the effect of MZM via the asso-
ciated tuning of the periodicity of the ring between 2®, and ®j.

2. Topological Josephson junction (TJJ) ring

To analyze the scenario in detail, let us begin by considering the TJJ
ring in Fig. 1 uncoupled to the quantum dot. Each of the N islands in the
ring is characterized by a superconducting order parameter phase ¢,, and
a charge Q,. The islands' topological nature leads to two Majorana
modes, 7, and 7%, localized around the left and the right edge of the nth
island. Neighboring islands interact through tunneling and electrostatic
repulsion. To lowest order in the interaction, only tunneling processes
that keep the superconductors in their ground state contribute. These
correspond to Josephson tunneling of pairs and Majorana assisted single
electron tunneling. The tunneling as well as the capacitance of the islands
make up the TJJ ring Hamiltonian:

Hryy = H; + Hy + He
Hy = =Y E;cos(¢,.1 — ¢, + 6a)

1 - [
Hy = ZEM (C‘Lcn - E) cos (7%“ ;’0" + ®>

He =33°0,C,1 0.,

n,m

(€Y

where ¢,,1 — ¢, + 6o corresponds to the gauge invariant phase differ-
ence between the islands, with ¢ 27®/(N®y). H; describes the
Josephson tunneling, with amplitude E;. Hy describes the tunneling
enabled by MZM with the energy scale Ej and fermionic operators ¢, =

(v%,+ iy4,1)/2. Hc describes the electrostatic repulsion with the capaci-
tance Cym = (Co+ 2C)Spm — C(Snt1m + Sn-1m), Where Cy is the self
capacitance and C is the neighboring capacitance. The TJJ ring has four
relevant energy scales: Ej, Ey, and the charging energies E¢ = e2/(2C)
and E; = €?/(2Cy). We assume that the dominant energy scale is either
Ey or Ej, and that Ec<E, [42]. In this case, the TJJ ring is described by
almost well defined superconducting condensate phases with small
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fluctuations controlled by Ec.
For Ec =0, the Hamiltonian of the system becomes H%’J y =Hy+Hy +

EO%Z, with Q = > Qu. The superconducting phases become well-defined
n

classical variables [64,65]. Moreover the eigenstates of HZ,, must have
well defined occupations of the fermionic modes c,. Since the occupation
of the ¢, fermions is defined modulo 2 [66,67], a given phase configu-
ration corresponds to two distinct eigenstates of H,E}ng distinguished by
their fermionic parity #r;; = (-1 )Q.l As shown in Appendix A, this leads
to the following condition on the phases:

> 6, = 2am with {

n

it Pry=—1
if Pry=1"

m even

m odd @

where 0, = ¢, 1 — ¢, + 27¢}camod4r. The energy of a configuration of
phase differences 6 = (61, ...,0y) can be written as E(@) = — > V(0 +
n

— Ejcosf —

dp), where V(0) is the single junction potential V(6)
Eu cos?
2 COS3

The TJJ ring has a translational symmetry, i.e. the system is un-
changed by circular shifts of the islands. Because of this, we expect
configurations with uniform phase differences, i.e. 6, = 6, to have the
lowest energy. While this is true when E; = 0, for non zero E; the
competition between 27 and 4 periodic tunneling may favor non uni-
form phase configurations. Nonetheless, we find that uniform phase
configurations minimize the energy whenever

2n NE, b4
NE,(] —cosﬁ> +TM<1 —cosﬁ) < Ey. 3)
For N>6 this condition becomes
NE, E,
—M 0B, + 1. “
b5 4

As a result of the presence of 27z periodic tunneling TJJ rings exhibit
local minima at even (odd) ®, for .#r;; = 1(—1) if condition (3) is not
met. Increasing N reduces the role of the 27 periodic components in the
lowest energy bands. For the remainder of this work, we refer to the TJJ
ring as ‘long’ if the condition (3) is met and as ‘short’ if it is not.

Since a TJJ ring with all equal junctions is a highly idealized situation,
it is worth discussing how disorder in the couplings may affect the
reduction of the role of 27 periodic components with increasing number
of islands N. For N>6 and relatively small disorder the condition (3)
becomes

N
n=1

where Ej, and Eyp, are the Josephson and Majorana couplings for the nth
junction, respectively. The above condition reduces to (4) for even cou-
plings. If we assume the couplings Ej, and Epp, to be uniformly distri-
bution on the intervals (Ey — 65, E; + 05) and (Ey — 6m,Em + om), taking
the average of (5) results in

1 N 27°
min(Ey,)’

5
E./n + Eg,,, ( )

N Ey

N—1
;(EM*UMW> > 2E, +T.

(6)

We conclude that some disorder in the Ej, couplings is not likely to
affect our results. On the other hand, a large spread of E, couplings
increases the likelihood of finding local minima on the TJJ ground-state
energy. Despite this, the left hand size of (6) grows with N as long as
oy < Ey. Thus we conclude that the enhancement of the 4z periodic
effects with increasing N is stable to small disorder in the couplings.

! To simplify the notation we measure the charge Q in units of the electron
charge e.
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In the following, we focus on long TJJ rings. Taking into account the
constraint, Eq. (2), the possible constant phase configurations are given
by & = 2am/N, where m is an odd(even) integer if Pr;; = 1(— 1). We
label these configurations by |m) and their energy by &, = NV(2z(m+
®/®)/N). These different states correspond to different angular mo-
mentum values and can be distinguished by their persistent currents. The
low energy part of the spectrum of the states |m) for #;; = 1 is shown in
Fig. 2(a). For N26 these states are essentially parabolas centered around
— mCDo.

For E¢ > 0, the main types of phase fluctuations for the TJJ ring are
plasmons and phase slips. Plasmons are harmonic fluctuations around the
|m) states. They add a zero point motion energy to &,. We find that
plasmons in the TJJ behave similarly to plasmons in non-topological JJ
rings with the plasma frequency: 7w, = \/8E;E¢ + EmEc, as opposed to
the non-topological frequency #w, = \/8E;Ec. Phase slips lead to quan-
tum tunneling between the |m) states [64], causing the avoided crossings
in Fig. (b). For instance, the states |m) and |m + 2) are connected trough
4n phase slips. Since Hry; conserves .#py; phase slips occur only in
multiples of 4z, i.e. in long TJJ rings 2z phase slips are suppressed, as in
topological superconducting wires [5,68].

3. TJJ ring-quantum dot architecture

To control the parity of the TJJ ring, we couple the ring to a quantum
dot, enabling electrons to tunnel between the TJJ and dot (together
referred to as TJJ + D). In the simplest case of a single electronic level

available to the dot, its Hamiltonian takes the form Hp = Ep (de - %) )

where d and d' annihilate and create an electron in the dot. We consider a
setup where electron tunneling from the quantum dot is into MZM modes
on TJJ islands 1 and N with amplitudes w; and wy, respectively. The
Hamiltonian of the system is then H = Hyyg+ Hp+ Hin, with the
interaction between the TJJ ring and the dot given by:

i)

=

i)

wie 7
iyh,d + 12 yid" +h.c.

wye
2

Hiy = @

Assuming that no magnetic flux is enclosed by the loop formed be-
tween the dot and the two islands, the phase difference between w; and
wy is %. The total parity is conserved in the TJJ + D system while it is not
in the TJJ ring portion.

To proceed with the TJJ + D analysis, we denote by |0, Q; ng) a state of
the system where 1) the TJJ has well defined phase differences § and well
defined total charge Q and 2) the charge in the dot is ng4. H,, induces a 2z
shift in the Nth junction when moving a particle from the TJJ to the dot.
Thus, it connects the states |0, Q; 0) and |§ — 27¢'x,Q — 1;1), where § —
21€n = (61, ...,6n_1,0n — 27). When Ec = 0, both |6,Q;0) and |6 —
27°€n,Q — 1;1) are eigenstates of Hyyy + Hp. As shown in Appendix C, H
is then diagonalized by superpositions of the form

01‘07Q§0>+ﬂi‘0_2”?N»Q—1§1> (8)
with the following energies:
N—1
E.(0) = V(0. + 80) + Vi(Ox + Sa), (9a)
n=1
with,
V() = —Eycost+ 1| (P cos? AEN?
(0) = —E;cos TCOSE-‘FT + we,
(9b)

2 2
_ [wy[* + |wi] |WNHW]‘COS€
4 2 2’

AE = Ep — Ey(20 — 1)/N.

and
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Fig. 3. The energy and current profile of the TJJ 4 D system in different regions
of energy offset AE relative to the band width W. The different behavior pro-
vides a signature of the Majorana assisted tunneling. (a) The energy offset AE
compares to the bandwidth of the even/odd sector, W. (b) The dependence of
the groundstate energy on the magnetic flux for the TJJ + D system for the
different regions in (a). (c) The flux dependence of the persistent current (solid
blue) and the average occupation of the quantum dot (dashed red). Figures (b)
and (¢) show numerical results.” (For interpretation of the references to colour
in this figure legend, the reader is referred to the Web version of this article.)

The offset, AE, originates from the charging costs of the dot and the
TJJ ring.

The TJJ + D groundstate energy, €, is obtained minimizing E_(@). The
interaction breaks the translational symmetry of the TJJ ring making the
values of 0 that minimize E_ (@) flux dependent. Fortunately, the TJJ + D
groundstate is well approximated by flux independent states which we
label |y,,). The states |y,,) are obtained when taking Eq. (8) and choosing
the phase configuration of the first term to be uniform with each junction
having a phase difference 2zm/N and the appropriate charge on the dot.
Furthermore, |y,,) is dominated by its component with constant phase
differences in the TJJ ring, with the phase difference and occupation of
the dot which match the overall parity and flux threaded. The energies of
the states |y,,), €m, shown in Fig. 2(c), are essentially parabolas centered
around even and odd multiples of @y, offset by AE. The greatest deviation
between the energies ¢, and ¢ is at half-integer flux values for small
numbers of islands. Comparing the energies ¢, with € obtained numeri-
cally for N = 2 and ® = ®/2, we find that € and the lowest ¢, differ by
less than 0.05Ey for |w1 |, [wy| < Eym/2. Increasing the number of islands
to N = 3 reduces such difference to less than 0.001Ey,. The ¢,, are then
good approximations to ¢ as long as |w;|, [wy|SEm. Further details are
given in E.

Turning on E¢ leads to avoided crossings where the energies of the
states |y,,) cross. The states |y,,) and |y,,,;) are now connected by 27
phase slips enabled by breaking the parity of the TJJ ring through the
interaction with the dot. The behavior of the energy and that of the
persistent current is then determined by where and whether the states
W) and |y,,.q1) cross. This depends on how the energy offset between
the even and the odd |y,,) states, AE, compares to the bandwidth of the
even (or odd) |y,,) states, W. To provide a more accurate analysis, we
perform numerical simulations for small island numbers. These were
done through exact diagonalization of the TJJ + D Hamiltonian limiting
the charge on each island to some maximum charge Q. Examples of the

2 The results shown in Fig. 3 were obtained through numerical simulations
with the following parameters: N = 2, E; =0, Ey =1, Q =100, E, = 0.001
10E¢, w; = wy = 0.1 and (top to bottom) AE = 1.1, AE = 0.25, AE =0, AE =
—0.25 and AE = — 1.1.
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different types of behavior of the energy and the persistent current ob-
tained numerically are shown in Fig. 3(b) and in Fig. 3(c), respectively.
The corresponding groundstate occupation of the dot (red line in
Fig. 3(c)) is also shown. The rapid changes in the dot groundstate
occupation could be measured as peaks in the conductance as suggested
by Ref. [60] in a similar setting. For |AE| > W (regions I and IV in Fig. 3),
the first energy crossing occurs between states |y,,) and |y,,,,). In this
case, the energy has global minima at either even or odd multiples of ®.
On the other hand, for |AE| < W (regions II and III in Fig. 3), the first
energy crossing occurs between states |y,,) and |y,,.;), leading to both
local and global energy minima.

The results shown in Fig. 3 describe the qualitative behavior of the
TJJ + D architecture when the TJJ ring is long. For short TJJ rings, the
competition between 27 and 4z periodic tunneling leads to local minima
in the energy-flux relation even when Zry; is conserved. In this case, the
energy of the TJJ + D system in the regions I and IV of Fig. 3 would still
present local minima, reducing the visibility of the transition between the
two parity sectors.

The ability to tune between 2®; and ®, periodicity through con-
trolling the occupation energy of the dot allows our setup to rule out
other explanations of 2®, periodicity. For instance, 2®, periodicity may
arise in small metallic or semi-conducting systems [69-71]. If such were
the case, the 2, periodicity would be unchanged by the occupation
energy of the dot. If the 2®, periodicity was caused Andreev
bound-states, the contact with a dot having small occupation energy
would aid rather than suppress the 2, periodicity [41].

4. Conclusions

The proposed Josephson ring-quantum dot hybrid architecture can be
realized in Josephson junction rings with Majorana nanowires [8,9] or
with chains of magnetic atoms deposited on the surface of supercon-
ductors [11,63]. Additionally, the TJJ ring can be understood as a coarse
grained model of a 1D topological superconductor. Since the TJJ ring
accounts for phase fluctuations, it could be used to shed some light into
the effects of phase fluctuations, and number conservation, in topological
superconductors. Crucially, the combination of 4z periodic tunneling and
the ability to manipulate the parity of the TJJ ring using the quantum dot
as a knob cannot be explained through trivial Andreev bound states.
Quasi-particle poisoning and 27z periodic tunneling may obscure the
MZM signature. These effects can be prevented increasing the
self-charging energy of the superconducting islands and increasing the
number of superconducting islands, respectively. Thus, while the
Josephson junction-quantum dot hybrid architecture proposed in this
paper cannot in itself enable the braiding MZMs, it can provide a solid
signature of their existence. Future work would involve connecting the
principles and geometry proposed here with the current scope of device
capabilities in experiment.
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Appendix A. Proof of Eqn. 2

Due to the topological nature of each the island, for any constant phase configuration with 0 < ¢,, < 2z there are two superconducting ground states
that can be distinguished by their fermionic parity. These groundstates will be labeled as |¢,,,). The action of the operators y., and y., on the states |¢,,,)
is

1il0ns) = |02z) (A1)
i1 |us) = Flonz)-
The Majorana operators associated with the superconducting island n are given by

7= [ dx(e Hw )+ v )

xen

7o = [ ax(ie 50w () — et (0" w() ),

xen

(A.2)

with f,ll(') (x) a function localized around the left (right) edge of the n island and y(x) the field operator. Under the gauge transformation ¢, —g, + 27,

the operators yﬁr) pick up a minus sign resulting in ¢,— — chand ¢,y —>ch1. This implies that the occupation of the ¢, fermions is defined modulo 2 and
care must be taken to avoid over-counting the states in the Hilbert space [66].
Following Ref. [72] we define the following N — 1 independent variables

00 = @y — @, +21clc, mod 4r, (A.3)

forn =1,...,N — 1, which are invariant under ¢,—¢, + 27. Writing H; and Hy in terms of the 6,s results in

2 2 2 2

N_1 N—-1 N i
E 4, + o E - 0, — 21 chcn + 6
Hy = — Z Mcos( + m) B Mcos( Zn:l anl @

n=1

(A4

N-1 N—1
Hy =~ Ecos(0, + 6) — E.mos( =D Ot &p) )
n=1 n=1

i
Cpln

N
The operators 6, defined by Eqn. (A.3) are not enough to determine the state of the TJJ since the variables ¢, and the (—1 )ZH
them. To address this we define the 4, as

are independent of

eE = ;/’1 et (A.5)
Under the above definition §, remains invariant when ¢, »>¢, + 2z, and we have [0,,6,] = 0 for all n,k = 0,...,N — 1. The operator 6, obeys the
following commutation relation with the total charge Q = > Qu:
n

iy

£27eif =e

iy
2

(A.6)

The fact that 6, does not appear in Hy, and H; indicates that both Hy, and H; conserve the total charge Q of the TJJ. Additionally forn=1,....N—1
we also have

0, 0, .
[77 Q} =0 and {7 Qk:| = i(8p14k — Oni)s (A7)

hence it is possible to describe the state of the TJJ using either the states |6y, 61, ...,0y_1) or the states |Q,61,...,0n_1). In the following we will use the
later since [Hryy,Q] = 0.

To make the TJJ ring translational symmetry evident, it is convenient to rewrite Hy; and H; in terms of N constrained phase differences. This results
in

Ey 0, + ¢
Hy, = —2700s< 2 >

Hy = = "Ejcos(0, + ds),

(A.8)

with the constraint

3 Note that the gauge transformation ¢,—¢, + 27, which is a change in how we are looking at the system, differs from changing the phase ¢, by 2z adiabatically,
which is a physical change in the system.
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Sela
4zm if (-7 =1
E 0, = . . (A.9)
2 chen

" m@2m+1) if (-7 =-1

cllc,, t C:,Cn
It is also possible to relate (71); to Q by noting that (—1)% = iy’y! and (71)*" = iy}, 17, The relation between (71); and Q is then

Sehen L . 2 . . L )

(07" =[lwhar =n| L |iri == irrh = = (=% (A.10)
n=N n=N n=N

Combining Eqns. (A.9) and (A.10) leads to Eqn. (2).

We will use |0>Q to denote the state with charge Q and phase differences given by § = (61, ...,0y).

Appendix B. Quantifying the decrease of the 27 periodic tunneling contribution and its stability against junction disorder

In the main text, we showed that local minima in the ground-state energy vs flux relation of the TJJ can be removed by increasing the number of
islands in the TJJ. Since the local minima arise due to the contribution of 2z periodic tunneling, we used this fact to argue that increasing N reduces the
role of 27z periodic terms. In this appendix, we provide an additional way to quantify such decrease and use it to study the stability of this effect with
respect to disorder.

The energy of the TJJ ring E(®) can be written as a Fourier series:

E(®) = i E,cos(nn®). (B.1)

n=0

Using such decomposition, we can quantify the role of 2z periodic terms on the energy as

) 2
o Za|Eal ®.2)

Sl

If only @, periodic terms are present in the energy vs flux relation, i.e. Ey—0, thenr = 1.

Fig. 4(a) shows r as a function of the number of junctions in the ring for different rations of E; with respect Ey;. The results where obtained
minimizing the classical energy vs. flux relation of the TJJ ring numerically. As expected, r = 1 when Ep; = 0. On the contrary, @, periodic components
do not fully disappear when the Cooper pair tunneling is absent, i.e. E; = 0. This is due to shape of the ground-state energy dependence on the flux for
E¢c = 0, which is non-sinusoidal (see Fig. 2(a)). Nonetheless, r provides a measure for the effects of the 27 periodicity on the ground-state energy. For
Ej = E; (blue squares) r decreases with N at first, r starts increasing after it goes below the value of r(E; = 0) (gray up triangles) and then it continues to
approach this value. This result agrees with our claim that the groundstate-energy dispersion for ‘long” TJJ rings resembles that of rings with no 2z
periodic tunneling, i.e. E; = 0. The r dependence on N for Ey; = 0.1E; (down red triangles) and Ej; = 0.5E; (yellow diamonds) seem to follow a similar
trend, but the range of N in Fig. 4(a) is not large enough to appreciate the full behavior.

Fig. 4(b) shows the behavior of r with respect to N for E; = Ep; = 1 and different values of disorder. To obtain this figure, we calculated the average
of r considering that the Josephson and Majorana couplings of the islands uniformly distributed on (E; — 6;,E; + 0;) and (Ey — om, Em + om),
respectively. In Fig. 4(b) we see that the qualitative behavior of r is unchanged by disorder in Josephson and Majorana couplings. We also find that for N
up to 10, disorder in the Majorana hybridization energy, increases r. This is in agreement with the effects of disorder stated in the main text: the role of
27 periodic contributions is relatively insensitive to disorder in the Josephson couplings, on the other hand disorder on the Majorana hybridization
energy increases the role of 2z periodic contributions overall. The fact that the role of 27 periodic contributions is decreased by increasing the number of
islands N, is insensitive to relatively small disorder on both types of tunneling.
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Fig. B.4. (a) Strength of the 2z periodic contribution to the ground-state energy as a function of N for different rations of E;/Ey. (b) Average strength of the 2z
periodic contribution to the ground-state energy as a function of N for E; = Ey = 1 and different amounts of disorder.

Appendix C. Proof of Eqn. 9

Here we obtain the energies of the TJJ + D system for Ec = 0, described by H%lj s + Hp + Hipe. We start by writing H;y, in terms of the operators defined
in the previous section:
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N-1

4 ) —5 5> 0n —i0,
Hu =2 " iyt + WI‘; Y the = | - %ez > (—1)2 + % ¢d' +he. (C.1)

From the above equation we obtain that H;,, connects the states |Q, 6, ...,0y ;1) and d'|Q — 1,6, ...,0y_1) as follows:

HwlQ, 01,....0y1)=—1d'|Q—1, 01,....0v 1)
H[md”Q*l, 91,---,9N71>:*f*‘Q, 91a---ﬂN—1> (C.2)

1/
with =5 (WNeiz”"H"(_l)Q + Wl).
Alternatively, we can write
Him|0> = | d'e — 277?,\,>
0 2 2 0-1
(C.3)
Hud'|0 — 2ﬂ7N> S L ,9> _
0-1 2 2 0
The states |6), and d'|0 — 27°€'y),_, are eigenstates of Hy, + Hy with
EyQ* Ep
Hyy + H, 0> = |E@® ) 0>
(Hru + Hp)| o [()Jr N 2} 0
B E(O 1) €4
(Hru + Hp)d'|0 — Zﬂ?N>Q = {E(o —27¢€y) + 7” + % dile— zﬂ?N>

where E(0) = — S V(0 + o), V(0) = — Ejcosf — B cos$.

n
Then H = Hyyy + Hp + Hc is diagonalized by states of the form a. |0>Q +p.dt |0 - 27[?N)Q_1 with energies E. (@) given by Eqns. (5) and (6) of the
main text.

Appendix D. Numerical Simulations
In order to simulate the system numerically, it is convenient to describe the system in terms of charges rather than phases. For simplicity, we will

focus on the case N = 2. We want to find out the action of H = H¢ + H; + Hyy + Hp + Hipe on a state with well defined charges on the islands and the dot,
i.e., |Q1,Q2,d). States with well defined charge are eigenstates of H¢ and Hp:

2 2 E
(Hc +HD)Q1,Q2,0> = <% > 0.CnOn —7") ‘QJ,Q2,0>

nm=1
Q1¢Q271>-

Now we proceed to find the effect of the H;, Hy and H;,, on the constant charge states. In order to do this, we first note that for the nth super-
conducting island the constant charge state |Q,) can be constructed in terms of the states |¢,,):

, (D.1)
E
(Hc + Hp)|Q1, 0>, 1> = <% > 0.6, 00 +7")

nm=1

1

Qn> =3 /f)”dgae"%% w>-, with 2 = (—1)%". (D.2)

ipn

Using Equations A.1 and D.2 we can obtain the effect of the operators %y’ on a state of the island n with well defined charge:

e*%f,Qn> =0, + 1>

ei%iy;Qn> = (-1

(D.3)

Qnil>.

[} (¢33

Ql,Qz,d>— ety Ty, (df)d0> (D.4)

Hence, we can write the states |Q;, Q2, d) as follows:

Using the above definition we find the action of Hy, H; and H;, on the states |Q;, Q2,d):

185
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Hy QI,Q27d> :%M < [ (=12 2 — e )0, ~ 1,0, + 1,d> + [ 22t — e )0+ 1,0, - 1,d> : (D.5)
H,;|Q1,0,,d) = —E;c0860|Q1 — 2,05 +2,d) — E;c0860|0) + 2,0, — 2,d), (D.6)
and
Wy | i w 5
H;|O1, Q270> = —|722|€T¢|Q17 O — 1, 1> + (—1)Q'+Q2%€_T¢|Ql —1,0,, 1>
(D.7)
Wh| s w is
HurlQ1. Qs 1> = 2leti0, 0,4 1,0> Fneetile g, 1,Q2,0>.
Since Q; + Q2 + ng = Q is conserved by the Hamiltonian, we can write the Hamiltonian for a given Q sector:
1 0—d,0—d' o
H=>" > Hx|0,0-0 d,d><Q1',Q1' -0-d.d (D.8)
dd=0 01.01'=0

where H&l:f is the matrix element between the states |Q;,Q1 — Q — d,d) and |Q:', Q' — Q — d', d') and can be obtained from Eqns. (D.1), (D.5) and (D.7).
The numeric results shown in the main text were obtained from the above Hamiltonian using exact diagonalization.

The above description can be readily extended to an arbitrary number of islands N, as the action of H on a state |Qq, ..., Qn,d) can be found by
considering

Q1

oLl
ey,

Q17~~~7QN7d> = (D.9)

Appendix E. TJJ + D ground-state energy approximation

In the main text it was argued that the TJJ + D groundstate energy ¢ was well approximated by the energies ¢, of flux independent states |y,,). It was
also argued that such approximation works best a) close to integer flux quantum and b) when we increase the number of islands. Here we provide some
details to support such arguments. First, we note that the reason the approximation of ¢ ~ min(e,) works best close to integer flux quantum is that the
state |y,,,) corresponds to the ground-state of the system when ® = — m®,.

On the other hand, the approximation improves when N increases since when the flux can be distributed in more junctions the ground-state
configurations for different flux values are separated by smaller phase differences. Fig. 5 shows how the considerable improvement in the approxi-
mation obtain by increasing N from N = 2 to N = 3. The ground-state energy ¢ in Fig. 5 was obtained minimizing E_ (@) with respect the phase dif-
ferences vector 6 numerically.

“5B/4

3Ey /4 )

-3Ey/2}

5Ey/4

3Ey/4 Ey

(a)
Fig. E.5. The ground-state energy of the TJJ + D, ¢ (solid lines), and ¢,, with m = —1 (dashed lines) at ® = ®,/2 are shown for E;, Ec = 0 and N = 2 in panel (a), and
N = 3 in panel (b).

(b)

References [9] Y. Oreg, G. Refael, F. von Oppen, Phys. Rev. Lett. 105 (2010), 177002.
[10] F. Pientka, Y. Peng, L. Glazman, F. von Oppen, Phys. Scripta 2015 (2015), 014008.
8 y!
[1] J. Alicea, Rep. Prog. Phys. 75 (2012), 076501 [11] S. Nadj-Perge, LK. Drozdov, B.A. Bernevig, A. Yazdani, Phys. Rev. B 88 (2013),

020407.

[2] C.W.J. Beenakker, Rev. Mod. Phys. 87 (2015) 1037.

. Nadj-P LK. D . Li, H. Ch . . A.H. MacD 1
[3] M. Leijnse, K. Flensberg, Semicond. Sci. Technol. 27 (2012), 124003. [12] 8. Nadj eree, rOZd?V’ J i, H. Chen, . Jeon, J. Seo, acDonald,
A . B.A. Bernevig, A. Yazdani, Science 346 (2014) 602.
[4] C. Beenakker, Annual Review of Condensed Matter Physics 4 (2013) 113. X .
[5] A.Y. Kit Phys. Usp. 44 (2001) 131 [13] H.O.H. Churchill, V. Fatemi, K. Grove-Rasmussen, M.T. Deng, P. Caroff, H.Q. Xu,
el N ! ie‘g H g?' SD'A Storn. M. Freedman. S, Das S Rev. Mod. Phve. 80 C.M. Marcus, Phys. Rev. B 87 (2013), 241401.
(z'ooi;y)al(’)sé - Simon, A. Stern, M. Freedman, 5. Das sarma, Kev. Yod. Fhys. [14] A.D.K. Finck, D.J. Van Harlingen, P.K. Mohseni, K. Jung, X. Li, Phys. Rev. Lett. 110

. 201 12 .
[71 J. Alicea, Y. Oreg, G. Refael, F. von Oppen, M.P.A. Fisher, Nat. Phys. 7 (2011) 412. (2013), 126406
[8] R.M. Lutchyn, J.D. Sau, S. Das Sarma, Phys. Rev. Lett. 105 (2010), 077001.

186


http://refhub.elsevier.com/S0022-3697(17)31830-9/sref1
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref2
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref3
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref4
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref5
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref6
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref6
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref7
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref8
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref9
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref10
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref11
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref11
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref12
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref12
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref13
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref13
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref14
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref14

R. Rodriguez-Mota et al.

[15]
[16]

[17]
[18]
[19]

[20]

[21]

[22]
[23]
[24]
[25]
[26]
[27]

[28]
[29]
[30]
[31]
[32]
[33]

[34]

[35]
[36]

[37]
[38]
[39]

[40]
[41]
[42]
[43]

V. Mourik, K. Zuo, S.M. Frolov, S.R. Plissard, E.P.A.M. Bakkers, L.P. Kouwenhoven,
Science 336 (2012) 1003.

M.T. Deng, C.L. Yu, G.Y. Huang, M. Larsson, P. Caroff, H.Q. Xu, Nano Lett. 12
(2012) 6414 pMID: 23181691.

L.P. Rokhinson, X. Liu, J.K. Furdyna, Nat. Phys. 8 (2012) 795.

M.T. Deng, C.L. Yu, G.Y. Huang, M. Larsson, P. Caroff, H.Q. Xu, Sci. Rep. 4 (2014).
J. Wiedenmann, E. Bocquillon, R.S. Deacon, S. Hartinger, O. Herrmann,

T.M. Klapwijk, L. Maier, C. Ames, C. Bruene, C. Gould, et al., Nat. Commun. 7
(2016).

A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, H. Shtrikman, Nat. Phys. 8 (2012)
887.

R.S. Deacon, J. Wiedenmann, E. Bocquillon, F. Dominguez, T.M. Klapwijk,

P. Leubner, C. Briine, E.M. Hankiewicz, S. Tarucha, K. Ishibashi, et al., ArXiv e-
prints (2016) 1603, 09611.

H.-Y. Hui, J.D. Sau, S. Das Sarma, Phys. Rev. B 90 (2014), 174206.

J.D. Sau, S. Das Sarma, Phys. Rev. B 88 (2013), 064506.

A.M. Lobos, R.M. Lutchyn, S. Das Sarma, Phys. Rev. Lett. 109 (2012), 146403.

P. Neven, D. Bagrets, A. Altland, N. J. Phys. 15 (2013), 055019.

D. Rainis, L. Trifunovic, J. Klinovaja, D. Loss, Phys. Rev. B 87 (2013), 024515.
D.L Pikulin, J.P. Dahlhaus, M. Wimmer, H. Schomerus, C.W.J. Beenakker, N. J.
Phys. 14 (2012), 125011.

J. Liu, A.C. Potter, K.T. Law, P.A. Lee, Phys. Rev. Lett. 109 (2012), 267002.

D. Bagrets, A. Altland, Phys. Rev. Lett. 109 (2012), 227005.

D. Roy, N. Bondyopadhaya, S. Tewari, Phys. Rev. B 88 (2013), 020502.

T.D. Stanescu, S. Tewari, Phys. Rev. B 89 (2014), 220507.

G. Kells, D. Meidan, P.W. Brouwer, Phys. Rev. B 86 (2012), 100503.

E.J.H. Lee, X. Jiang, R. Aguado, G. Katsaros, C.M. Lieber, S. De Franceschi, Phys.
Rev. Lett. 109 (2012), 186802.

E.J.H. Lee, X. Jiang, M. Houzet, R. Aguado, C.M. Lieber, S. De Franceschi, Nat.
Nanotechnol. 9 (2014) 79. ISSN 1748-3387.

C. Moore, T.D. Stanescu, S. Tewari, ArXiv e-prints (2017), 1711.06256.

H.-J. Kwon, K. Sengupta, V.M. Yakovenko, Eur. Phys. J. B Condensed Matter
Complex Syst. 37 (2004a) 349.

L. Fu, C.L. Kane, Phys. Rev. B 79 (2009), 161408.

H.-J. Kwon, V.M. Yakovenko, K. Sengupta, Low Temp. Phys. 30 (2004b) 613.
D.M. Badiane, L.I. Glazman, M. Houzet, J.S. Meyer, Compt. Rendus Phys. 14 (2013)
840.

J.D. Sau, E. Berg, B.I. Halperin, ArXiv e-prints (2012), 1206.4596.

J.D. Sau, F. Setiawan, Phys. Rev. B 95 (2017), 060501.

R. Fazio, H. van der Zant, Phys. Rep. 355 (2001) 235.

L.M. Pop, 1. Protopopov, F. Lecocq, Z. Peng, B. Pannetier, O. Buisson, W. Guichard,
Nat. Phys. 6 (2010) 589.

187

[44]
[45]
[46]
[47]
[48]

[49]
[50]
[51]

[52]

[53]

[54]
[55]
[56]

[57]

[58]
[59]
[60]
[61]
[62]
[63]

[64]
[65]
[66]
671

[68]

[69]
[70]

[71]
[72]

Journal of Physics and Chemistry of Solids 128 (2019) 179-187

D.B. Haviland, P. Delsing, Phys. Rev. B 54 (1996), R6857.

E. Chow, P. Delsing, D.B. Haviland, Phys. Rev. Lett. 81 (1998) 204.

D.B. Haviland, K. Andersson, P. f\gren, J. Low Temp. Phys. 118 (2000) 733.

S. Rubbert, A.R. Akhmerov, Phys. Rev. B 94 (2016), 115430.

T. Hyart, B. van Heck, I.C. Fulga, M. Burrello, A.R. Akhmerov, C.W.J. Beenakker,
Phys. Rev. B 88 (2013), 035121.

K. Flensberg, Phys. Rev. Lett. 106 (2011), 090503.

P. Bonderson, R.M. Lutchyn, Phys. Rev. Lett. 106 (2011), 130505.

B. van Heck, A.R. Akhmerov, F. Hassler, M. Burrello, C.W.J. Beenakker, N. J. Phys.
14 (2012), 035019.

D. Aasen, M. Hell, R.V. Mishmash, A. Higginbotham, J. Danon, M. Leijnse,

T.S. Jespersen, J.A. Folk, C.M. Marcus, K. Flensberg, et al., Phys. Rev. X 6 (2016),
031016.

T. Karzig, C. Knapp, R.M. Lutchyn, P. Bonderson, M.B. Hastings, C. Nayak, J. Alicea,
K. Flensberg, S. Plugge, Y. Oreg, et al., Phys. Rev. B 95 (2017), 235305.

K. Gharavi, D. Hoving, J. Baugh, Phys. Rev. B 94 (2016), 155417.

S. Hoffman, C. Schrade, J. Klinovaja, D. Loss, Phys. Rev. B 94 (2016), 045316.

E. Vernek, P.H. Penteado, A.C. Seridonio, J.C. Egues, Phys. Rev. B 89 (2014),
165314.

M.T. Deng, S. Vaitiekenas, E.B. Hansen, J. Danon, M. Leijnse, K. Flensberg,

J. Nygérd, P. Krogstrup, C.M. Marcus, Science 354 (2016) 1557. ISSN 0036-8075.
J. Li, T. Yu, H.-Q. Lin, J.Q. You, Sci. Rep. 4 (2014). ISSN 2045-2322.

S. Plugge, A. Rasmussen, R. Egger, K. Flensberg, N. J. Phys. 19 (2017), 012001.
D.E. Liu, H.U. Baranger, Phys. Rev. B 84 (2011), 201308.

D.J. Clarke, ArXiv e-prints (2017), 1702.01740.

E. Prada, R. Aguado, P. San-Jose, Phys. Rev. B 96 (2017), 085418.

B.E. Feldman, M.T. Randeria, J. Li, S. Jeon, Y. Xie, Z. Wang, L.K. Drozdov,

B.A. Bernevig, A. Yazdani, Nat. Phys. 13 (2016).

K.A. Matveev, A.L Larkin, L.I. Glazman, Phys. Rev. Lett. 89 (2002), 096802.

G. Rastelli, LM. Pop, F.W.J. Hekking, Phys. Rev. B 87 (2013), 174513.

L. Fu, Phys. Rev. Lett. 104 (2010), 056402.

B. van Heck, F. Hassler, A.R. Akhmerov, C.W.J. Beenakker, Phys. Rev. B 84 (2011),
180502.

D. Pekker, C.-Y. Hou, D.L. Bergman, S. Goldberg, i. d. I. m. c. Adagideli, F. Hassler,
Phys. Rev. B 87 (2013), 064506.

L.P. Lévy, G. Dolan, J. Dunsmuir, H. Bouchiat, Phys. Rev. Lett. 64 (1990) 2074.
A.C. Bleszynski-Jayich, W.E. Shanks, B. Peaudecerf, E. Ginossar, F. von Oppen,

L. Glazman, J.G.E. Harris, Science 326 (2009) 272. ISSN 0036-8075.

H. Bary-Soroker, O. Entin-Wohlman, Y. Imry, Phys. Rev. B 82 (2010), 144202.

C. Xu, L. Fu, Phys. Rev. B 81 (2010), 134435.


http://refhub.elsevier.com/S0022-3697(17)31830-9/sref15
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref15
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref16
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref16
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref17
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref18
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref19
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref19
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref19
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref20
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref20
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref21
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref21
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref21
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref22
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref23
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref24
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref25
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref26
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref27
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref27
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref28
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref29
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref30
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref31
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref32
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref33
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref33
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref34
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref34
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref34
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref35
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref36
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref36
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref37
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref38
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref39
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref39
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref40
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref41
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref42
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref43
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref43
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref44
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref45
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref46
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref47
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref48
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref48
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref49
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref50
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref51
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref51
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref52
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref52
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref52
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref53
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref53
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref54
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref55
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref56
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref56
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref57
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref57
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref57
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref58
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref58
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref59
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref60
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref61
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref62
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref63
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref63
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref64
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref65
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref66
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref67
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref67
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref68
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref68
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref69
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref69
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref70
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref70
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref70
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref71
http://refhub.elsevier.com/S0022-3697(17)31830-9/sref72

	Detecting Majorana modes through Josephson junction ring-quantum dot hybrid architectures
	1. Introduction
	2. Topological Josephson junction (TJJ) ring
	3. TJJ ring-quantum dot architecture
	4. Conclusions
	Acknowledgments
	Appendix A. Proof of Eqn. 2
	Appendix B. Quantifying the decrease of the 2π periodic tunneling contribution and its stability against junction disorder
	Appendix C. Proof of Eqn. 9
	Appendix D. Numerical Simulations
	Appendix E. TJJ + D ground-state energy approximation
	References


