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A major challenge of analyzing the compositional structure of microbiome data is identifying its potential origins. Here, we
introduce fast expectation-maximization microbial source tracking (FEAST), a ready-to-use scalable framework that can
simultaneously estimate the contribution of thousands of potential source environments in a timely manner, thereby helping
unravel the origins of complex microbial communities (https://github.com/cozygene/FEAST). The information gained from
FEAST may provide insight into quantifying contamination, tracking the formation of developing microbial communities, as well

as distinguishing and characterizing bacteria-related health conditions.

bial life and their effect on human health has rapidly increased

due to the unprecedented expansion of microbiome data
repositories such as the ‘Earth Microbiome Project’~. Such rich
datasets provide the opportunity to study the relationships between
the abundance profiles of taxa in different habitats. Nonetheless,
one critical challenge in analyzing microbiome communities is
due to their composition; each of them is typically comprised of
several source environments, including different contaminants as
well as other microbial communities that interacted with the sam-
pled habitat. To account for this structure, methods for ‘microbial
source tracking’ have been proposed’''. These methods quantify
the fraction, or proportion, of different microbial samples (sources)
in a target microbial community (sink).

While traditionally framed in the context of quantifying con-
tamination'’, microbial source tracking has been used in a variety
of other contexts (for example, characterizing patients in intensive
care units (ICUs), gauging partial restoration of the microbiota of
cesarean-born infants via vaginal microbial transfer and quantify-
ing the contribution of certain sources to disease outbreaks)'*~'*.
Microbial source tracking may also serve to quantify source con-
tributions to ecological patches. In this use case, microbial source
tracking could help unveil compositional patterns of microbial
communities in habitats ranging from the human gut to soil. These
examples demonstrate that learning the origins of microbial com-
munities may not only significantly improve our current under-
standing of how microbial communities are formed, but could also
inform disease prevention, agricultural practices and care-taking
for newborns.

Current methods for microbial source tracking, however, are
not without limitations. Some earlier methods®” typically limited
their context to contamination, focusing on detecting only spe-
cific, predetermined contaminating species. More recent methods
that leverage the entire community structure often lack a proper
probabilistic framework or depend on the identification of indi-
cator species, whose abundance reflects a specific environmental
condition*’. One notable exception is SourceTracker, the most

|<nowledge of the diverse functions and distributions of micro-

widely used method for microbial source tracking thus far. Unlike
previous methods, SourceTracker uses a Bayesian approach to
estimate proportions of contaminants in a given community by
leveraging its structure and measuring the respective similarities
between a sink community and potential source environments. By
directly modeling the sink as a mixture of potential source envi-
ronments, SourceTracker made a seminal contribution to the field.
Nevertheless, this method is based on Markov chain Monte Carlo
(MCMC), a computationally expensive procedure, and is there-
fore only applicable to small- to medium-size datasets with a small
number of sources.

To address these limitations, we developed fast expectation-
maximization microbial source tracking (FEAST). FEAST parti-
tions microbial samples into their source components 30-300-fold
faster than state-of-the-art methods, where, in some cases, it reduces
running time from days or weeks to hours. The computational effi-
ciency of FEAST allows it to simultaneously estimate thousands
of potential source environments in a timely manner, and thus
help unravel the origins of complex microbial communities.
Moreover, we found that FEAST is more accurate than previous
methods, particularly when the target microbial community con-
tains taxa from an unknown, uncharacterized source.

Results

A brief description of FEAST. FEAST is a highly efficient expec-
tation-maximization-based method that takes as input a microbial
community, the sink, as well as a separate group of potential source
environments and estimates the fraction of the sink community
that was contributed by each of the source environments. By virtue
of these mixing proportions often summing to less than the entire
sink, FEAST also reports the potential fraction of the sink attributed
to other origins, collectively referred to as the unknown source. The
statistical model used by FEAST assumes each sink is a convex
combination of known and unknown sources. FEAST is agnostic
to the sequencing data type (that is, 16S ribosomal RNA or shotgun
sequencing) and can efficiently estimate up to thousands of source
contributions to a sample.
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Fig. 1| Methods comparison. a, The accuracy of FEAST, the random forest classifier and SourceTracker on simulated data. Each simulation was performed
using 20 real source environments and simulated sinks. The x axis is average Jensen-Shannon divergence value across known sources (that is, the degree
of overlap between the sources from completely identical to completely non-overlapping). The y axis represents correlation across all source environments
between true and estimated mixing proportions; error bars show the standard error of the mean (n=30). b, Evaluation of FEAST and SourceTracker

through varying levels of unknown source proportions.

Model evaluation using data-driven synthetic mixtures. We
compared the accuracy of FEAST to both SourceTracker', and the
random forest classifier used in previous source-tracking work’.
We simulated source communities based on distributions in real
source environments from the Earth Microbiome Project’, while
varying the level of divergence between sources (see Methods).
In each of our simulations, FEAST exhibited higher accuracy
than SourceTracker and the random forest classifier across all
levels of divergence (Fig. la and Supplementary Fig. 1). Since both
SourceTracker and FEAST substantially improve accuracy over
the random forest approach, we focused on these two methods
for all subsequent benchmarks shown. Next, we examined the
robustness of FEAST and SourceTracker through varying levels
of sequencing depth, when disambiguation between sources is
trivial (high divergence). As expected, the accuracy of both algo-
rithms increased as sequencing depth increased. Nonetheless, we
observed that FEAST still compared favorably across all levels of
sequencing depth (Supplementary Fig. 2). Finally, as it may be
nearly impossible to obtain sequencing data for all potential sources
in a study, we sought to evaluate FEAST’s ability to estimate the con-
tribution of the unknown source. To this end, we used real source
environments from Lax et al."”, while varying the unknown source
contribution from absent to exclusive. Across these experiments,
FEAST was significantly more accurate in estimating the unknown
source proportion (two-sided ¢-test P<107'*). Notably, by properly
adjusting its estimates for the unknown source, FEAST also pro-
duces more accurate mixing proportions for the observed sources
as well as low variance (Fig. 1b and Supplementary Figs. 3 and 4).

Running time. One of FEAST’s distinct advantages over other
methods is its speed (Fig. 2 and Supplementary Table 1). Specifically,
across all experiments, FEAST reduced running time by a factor
of 30-300 compared to SourceTracker, while maintaining and
even improving the accuracy. Consequently, FEAST can simul-
taneously estimate thousands of potential source environments
on the order of minutes to hours, where SourceTracker may take
anything upward of days (Supplementary Table 1). We note that
SourceTracker’s accuracy may potentially be improved by increas-
ing the number of burn-in iterations or otherwise increasing
the number of iterations of the Markov chain, however, this
comes at the expense of additional running time (see Methods
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Fig. 2 | Running time comparison to current state-of-the-art. Running
time (log scale, seconds) comparison across all simulation studies, using a
sequencing depth of 10,000 reads per source.

for a comprehensive discussion of the tradeoff between time and
accuracy in MCMC).

Real data applications. We applied FEAST to five real datasets
to demonstrate the utility of microbial source tracking methods
across different contexts. We first use FEAST as it was originally
intended—to quantify the contribution of sources to specific sink
environments.

Succession and initial colonization in infants. Using FEAST for
time-series analysis offers a quantitative way to characterize devel-
opmental microbial populations, such as the infant gut. In this con-
text, we can leverage previous time points and external sources to
understand the origins of a specific, temporal community state. For
instance, we can estimate if taxa in the infant gut originate from the
birth canal, or if they are derived from some other external source
at a later time point. To demonstrate this capability, we used longi-
tudinal data from Backhed et al.'%, which contains gut microbiome
samples from infants as well as from their corresponding mothers.
In this analysis, we treated samples taken from the infants at age
12 months as sinks, considering respective earlier time points and
maternal samples as sources. In these settings, FEAST revealed

NATURE METHODS | VOL 16 | JULY 2019 | 627-632 | www.nature.com/naturemethods


http://www.nature.com/naturemethods

NATURE METHODS ARTICLES

Cesarean section

L]
0.75 |
c
9
S
S 0.50 *
s
(o]
e
=)
3 .
0.25
L]
L]
0.00 ===
| | | |
Mother 4 Months Birth Unknown

Vaginal delivery

1.00
L]
L]
0.75 4
L]
(]
[} .
0.50
s
.
[
[]
3
0.25
0.00 + 1
I I I I
Mother 4 Months Birth Unknown

Fig. 3 | FEAST estimations of source contribution to the sink; that is, gut microbiome of focal infant at 12-months of age. Box plots indicate the median
(central lines), IQR (hinges) and the 5th and 95th percentiles (whiskers). Sources: gut microbiome of mother, focal infant at 4 months and focal infant at

birth. (n=98 sinks).

a significantly larger maternal contribution (two-sided t-test,
P=0.03161) in vaginally delivered infants over cesarean-delivered
infants (Fig. 3), where other methods did not (Supplementary Fig.
5). These results are consistent with the results of Backhed et al.'°.
We further explored whether biological mothers were more likely
to be identified as sources of their infant’s microbiome than other
potential source communities. We considered all maternal and early
infant samples as potential sources, and found that for over 83% of
the sink samples, the top contributing sources were from the same
family (Supplementary Material).

Detecting contamination. To validate FEAST’s utility in detect-
ing contamination, we first replicated the analysis of Knights et al."’
who investigated contamination in settings such as office build-
ings, hospitals and research laboratories. In these settings, where
disambiguation between sources was relatively easy, FEAST esti-
mated source contributions consistent with those reported by
Knights et al.'%, despite minor discrepancies (Supplementary Fig. 6).
Next, we analyzed longitudinal data collected by Lax et al.”. In
this analysis, we investigated one household, where the inhabit-
ants were genetically related. We used skin samples of inhabit-
ants from several body parts as sources and indoor house surfaces
as sinks. Our analysis using FEAST shows that surfaces in home-
settings are more diverse than their human sources and might not
be entirely composed of bacteria originated from humans (Fig. 4).
Our results stand in qualitative contrast to those of Lax et al.'*, where
they found that an overwhelming majority of microbial communi-
ties on these surfaces originated from humans. We believe that the
difference stems from an underestimation of the unknown source
by SourceTracker, which was used in the original analysis of Lax
et al. Such underestimation is exacerbated in cases like this, when
disambiguation of sources is challenging, that is, due to all indi-
viduals living in the same house. We further investigated whether
we could explain the composition of these unknown sources, at the
first time point, by including additional source environments from
the Earth Microbiome Project. In addition to the contribution of
the four inhabitants, we find potential evidence for contributions
from avian egg product (8%), freshwater fish (8%) and soil (1%). As
a consequence, the unknown source contribution was reduced to
5.8% (from approximately 25%, see Fig. 4).

Microbial source tracking as a metric of similarity. In the follow-
ing experiments we used FEAST in a different context—as a metric
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of similarity. To the best of our knowledge this is a novel application
of microbial source tracking. In these experiments, we focused on
the human gut microbiome, but rather than seeking among sources
the contributors to a sink sample, we seek to represent each sink as a
mixture of ‘characteristic environments'—source environments that
are similar in composition to the sink and therefore capture its char-
acteristics. We then quantify the similarities between the sink and
its characteristic environments using mixing proportions reported
by FEAST.

FEAST distinguishes patients in ICU from healthy adults. To
demonstrate FEAST’s utility in distinguishing and characterizing
bacteria-related health conditions, we first replicated the analysis of
McDonald et al.”* (Supplementary Fig. 7) in which they character-
ized a cohort of patients from an ICU. We found that our results
using FEAST were consistent with the analysis of McDonald et al.'
that is, gut samples from patients in ICU are markedly different
from those of healthy individuals. Next, we performed an additional
analysis that was not included in the original study of McDonald
et al."”: we used a bidirectional approach, randomly assigning gut
samples from the American Gut Project (healthy controls) as either
sources or sinks, in addition to assigning the gut microbiome of
ICU patients as sinks (see Methods for a complete description).
In doing so, we aimed to quantify the similarity between the gut
microbiome of patients in ICU and healthy controls by compar-
ing their source composition. Using FEAST, we found significant
differences in the source composition between the two sink types
(two-sided t-test, P=0.02551; Supplementary Fig. 8). To verify
our findings, we used UniFrac distance, Jensen-Shannon diver-
gence and the Bray—Curtis dissimilarity (Fig. 5 and Supplementary
Fig. 8), which also captured the differences between the patients
in ICU and healthy controls (that is, healthy sources are more
similar to healthy sinks). However, we note that there is a large
variance in the microbiome similarities among healthy controls,
whether they are sources or sinks. We hypothesize that this variance
stems from differences between individuals’ microbiomes unrelated
to their health (for example, diet). We also note that these results
should be interpreted with caution, since the healthy controls
and patients in ICU are not matched and therefore batch effects
or other confounders may affect the results. Nevertheless, if indeed
the prediction accuracy is driven by confounders, these results
demonstrate that FEAST can capture such confounder information
better than existing methods.
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Fig. 4 | The proportion of the unknown sources in kitchen counter samples using FEAST and SourceTracker. a, Source estimates considering 12 known

human sources (hand, foot and nose across four inhabitants) using data from Lax et al.””

b, FEAST estimations of source contribution in one house kitchen

counter, at the first time point, using additional sources from the Earth Microbiome Project.

1.00
0.75
c
8
8
£ FEAST
2 050 - — JsD
g —— UniFrac
[
=
=
0.25
0.00

T T T T T
0.00 0.25 0.50 0.75 1.00
False positive fraction

Fig. 5 | The receiver operating characteristic curve using FEAST, weighted
UniFrac and Jensen-Shannon divergence to classify healthy individuals
and patients in ICU with dysbiosis. FEAST area under curve (AUC),

0.917; weighted UniFrac AUC, 0.78 and Jensen-Shannon divergence (JSD)
AUC, 0.87.

FEAST implicates time-related compositional shifts in a cancer
longitudinal study. Considering the utility of FEAST as a
method for classifying phenotypes, we sought to also character-
ize a cohort of patients with cancer undergoing allogeneic hema-
topoietic stem cell transplantation (allo-HSCT). In a study by
Taur et al."¥, it was suggested that assessing the gut microbiome
of patients undergoing allo-HSCT may identify those at high
risk for bloodstream infection (that is, bacteremia). Many of the
patients were found to have intestinal domination, a condition in
which at least 30% of the microbiome consists of a single bacterial
taxon. As the exact nature of the association between compo-
sitional shifts in the microbiome and bacteremia is unclear, it is
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(whiskers).

crucial to explain the dynamics of microbial community compo-
sition in patients undergoing allo-HSCT. This led us to examine
whether FEAST can be used as a tool for such an assessment. To
this end, we labeled the two consecutive samples from before
and during the first event of intestinal domination as sinks, and
all corresponding samples from earlier time points as sources
(per patient). FEAST revealed a significantly larger proportion of
the unknown source in the sink samples with intestinal domina-
tion in comparison to the sink samples before intestinal domina-
tion (two-sided t-test P<0.001; Fig. 6 and Supplementary Fig. 9).
This is expected, as bacterial domination is defined in terms of
abundance fractions, so by definition would be reflected in mix-
ture proportions. Nonetheless, this result was not significant using
other methods (two-sided t-test P=0.09). We therefore demon-
strated FEAST’s ability to capture shifts in microbial community
composition that may underlie differences between pathogenic and
neutral phenotypes.
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Discussion

FEAST was designed to address an important need in the rap-
idly evolving field of microbiome research—namely, to quantify
the fraction of each source environment in a target microbial
community (sink), through a natural, scalable statistical model.
As a result, it provides a computationally efficient tool that can
simultaneously evaluate hundreds to thousands of potential
source environments, as well as the contribution of an unknown,
uncharacterized source, outperforming state-of-the-art methods in
terms of both speed and accuracy.

The utility of FEAST is established in two different contexts.
First, we used FEAST as it was originally intended—to quantify
the contribution of different source environments to a target
microbial community. In this context, we were able to address ques-
tions surrounding succession and initial colonization of microbial
species. Specifically, using FEAST we quantitatively reaffirmed
the findings of Backhed et al.', who demonstrated that gut micro-
biota of infants delivered by cesarean section showed significantly
less resemblance to their mothers’ compared to vaginally delivered
infants. Second, we used FEAST as a metric of similarity. In this
context, FEAST can help researchers better understand the com-
positional characteristics of the human microbiome—an important
task given that it has been linked to many aspects of human physi-
ology and health including obesity, inflammatory diseases, cancer,
metabolic diseases and aging**""->.

We showed the ability of FEAST to differentiate between the
gut microbiome of ICU patients experiencing dysbiosis and that
of healthy controls. The results from FEAST show that patients
with dysbiosis and controls without dysbiosis have differences
between their microbial source composition, namely that the gut
microbiome of healthy adults demonstrates a greater resemblance
to other healthy gut communities than to those of patients expe-
riencing dysbiosis. Additionally, we investigated the characteriza-
tion of patients with intestinal domination. Source contribution
estimates produced by FEAST show increased contribution and
reduced variability of the unknown source in patients experienc-
ing intestinal domination compared to patients who are not. These
results suggest that FEAST may be useful in distinguishing and
characterizing phenotypes or conditions related to microbial injury.
Furthermore, by highlighting novel differences among source com-
position, FEAST may contribute insight to downstream analyses
aiming to implicate differences between healthy and diseased phe-
notypes at the taxa level.

We note that in some contexts, for example, patients with can-
cer undergoing allo-HSCT, the underlying assumption of FEAST is
violated. In these situations, the sink is not a convex combination
of its (known and unknown) sources due to significant differences
between some of the source environments. The gut microbiome of
patients with cancer, for example, can considerably change over-
time due to antibiotics and immune system shutdown or restart.
Additionally, we note that the ability to differentiate between the gut
microbiome of patients in ICU experiencing dysbiosis and healthy
controls may be attributed to technical confounders separating
these two distinct datasets (healthy control from the American Gut
Project” and patients in ICU"?), which, if true, are better detected
using FEAST.

Online content

Any methods, additional references, Nature Research reporting
summaries, source data, statements of code and data availability and
associated accession codes are available at https://doi.org/10.1038/
$41592-019-0431-x.
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Methods

The FEAST probabilistic model. Consider a single sink sample represented by

a vector x, where x; corresponds to the abundance of taxa, j, 1 <j<N. Let K be
the number of known sources. Each known source is represented by a vector y,,
where y; is the observed abundance of taxa, j, in source i (1 <i<K). Addmonally,
we assume there is an unobserved source (K+1). Let C,= E Jy and C= Z

be the total taxa counts of the known sources and sink, respectlvely With this
notation, the generative model is as follows: we assume that there are mixture
proportions ¢—a vector of length K+ 1—where o; corresponds to the fraction of
source i in the sink, hence Z o "o = 1. We also assume that there is an unknown
relative abundance for each of the sources. For each source, 1 <i <K+ 1, we have a
vector y, where E = 1. Each y; represents the true relative abundance of taxa
jin source i.

K+1
/31: 21:1 %
yi~Multin0mial(Ci, (Yil’ e iN))

x~Multinomial (C, (8, ..., 5))

o and y are not observed and are parameters of the model.
Fast inference via expectation-maximization. FEAST uses an expectation-
maximization approach’ to infer the model parameters. The likelihood is given by

N

I14

j=1

C
PEY Yy oV [ Y) = [XP Xy

o T[S 1], % 10

j=1 li=1 i=1

E step: The log likelihood is given by

N
’YK | (X,Y) = Zj:l

K+1
logp (%, ¥, ¥, --- x;log Z oy,
i=1

M=
M=

+ yijlog (Yij) + const

Il
.
]

The expected complete log likelihood (Q) is given by

K+1 N

K N
Q= 2 2 xp(ilj) -log(a; yij) + Z 2 yx_]log(ylj) + const

i=1 j=1 i=1 j=1

where

(t)y(t)
o;
P = e omw
(1), (1)
Z,‘:l o; Y,-]-

A more detailed derivation can be found in the Supplementary Material.
M step: Since the y; are required to sum to 1, we use Lagrange multipliers &; to
constrain the y; values. The Lagrangian is given by

K+1

N
= 2 xp(il))-logle v)
i=1 j=1

N

N K
2. 2 vos(r)~ 26 Z

j= J

™M=

+

Taking partial derivatives of L and solving gives the optimal update
(t+1) _ X)'I’(i‘j)+3’xy
iR+

The update for the mixing proportions is given by

(£),, (1)

) = 2 le(l 1) % X %y
; A K+ (1)
Jj=1 j=1 C 1 1 umy(t

FEAST has two hyperparameters: the convergence threshold and the maximum
number of iterations. In all our experiments we set these to default values of 10-¢
and 1,000, respectively. We used the multinomial distribution to model the data
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generating process since it is particularly relevant when analyzing microbiome
datasets. Specifically, it addresses count uncertainty rather than directly
transforming counts to relative abundances, and also models the competition
to be counted (between taxa) instead of treating the counts of each taxon as
independent®.

Simulation studies. Parameters and settings. To construct realistic simulation
scenarios, we used real microbiome data as sources and simulated sinks as

convex combinations thereof. Therefore, our simulations are representative of the
abundance, over-dispersion of zeros and technical noise mostly observed in real
microbiome data. We designed our simulation parameters to reflect the wide range
of Jensen-Shannon divergences and potential sources observed across the real
datasets we investigated. For a detailed description of the parameters and settings
in each simulation study, see Supplementary Material.

Main simulation study. To examine the accuracy of FEAST, we used multiple source
environments with varying degrees of overlap in their distribution by randomly
sampling from the Earth Microbiome Project. Each source environment was sub-
sampled to contain 10,000 reads. In each iteration of the simulation we sampled
K+ 1 known environments and used them to build a synthetic sink with different
mixing proportions. To simulate an unknown source, only K source environments
are designated as known sources. We used 30 mixing proportions (corresponding
to 30 simulated sinks) and K=20 known sources in each iteration. For a detailed
description of the simulation, see Supplementary Material.

Sequencing depth simulations. To examine the robustness of FEAST to varying
levels of sequencing depth, we used multiple source environments from the Earth
Microbiome Project while varying their sequencing depth. In each iteration of our
simulation we sampled environments (with median Jensen-Shannon divergence
of 0.95) and used them to build a synthetic sink, with different mixing proportions
and a set sequencing depth ranging from 100 through 10,000. Notably, by choosing
a median Jensen-Shannon divergence of 0.95 we wanted to emphasize that even
under the scenario in which the sources are non-overlapping and thus trivial to
disambiguate, the sequencing depth will have an effect. Additionally, in these
simulations, we only varied the sequencing depth of the sources. However, since
the sink samples are a linear combination of the sources, these samples are also,
indirectly, affected. To simulate an unknown source, only K source environments
are designated as known sources. We used 30 mixing proportions (corresponding
to 30 simulated sinks) and K= 20 known sources in each iteration. For a detailed
description of the simulation, see Supplementary Material.

Unknown source simulations. To evaluate FEAST’s ability to estimate the
contribution of the unknown source, we used real source environments from Lax
etal.”” and created synthetic sink communities. Given that any source not sampled
should, theoretically, be accounted for in the unknown source, realistic values of
the unknown source can therefore span the range of percentages occupied by the
observed sources. Specifically, there are scenarios in which the known sources
comprise the entirety of the sink (unknown source contribution, 0), or on the other
hand, scenarios in which the known sources did not contribute any taxa to the sink
(unknown source contribution, 1). Therefore, the unknown source contribution
values in our simulation ranges from 0 to 1. As a measure of accuracy, we used the
squared Pearson correlation between the estimated mixing proportions and the
true mixing proportions for the unknown source across repeated simulation runs.
We used 30 mixing proportions (corresponding to 30 simulated sinks) and five
sources (four known sources) in each iteration. For a detailed description of the
simulation, see Supplementary Material.

Noisy samples among sources. As source assignment is discretionary (that is,
multiple samples can be pooled to a single source or considered as individual
sources), we sought to examine the robustness of FEAST in the case where we
have noisy realizations of the sources and their effect on prediction accuracy. We
used K+ 1 distinct source environments by randomly sampling from the Earth
Microbiome Project (that is, soil, fresh water, feces, sebum and so on), where

each source was represented by ten different samples (for example, soil,, soil, and
5o on.). We then amalgamated these ten samples (per source environment) and
used the amalgamation of each source to build simulated sinks, with 30 different
mixing proportions (corresponding to 30 simulated sinks). In each iteration of our
simulation, we aggregated s €{1,...,10} samples from the representative samples of
each source environment to estimate the different mixing proportions.

Prediction accuracy. To measure accuracy, we used the squared Pearson
correlation coefficient between the estimated and true mixing proportions for
each individual source across repeated simulation runs (that is, different mixing
proportions) for the same Jensen-Shannon divergence value. In each iteration, we
varied the degree of similarity of the source environments.

Running time measurements. In each iteration, we used K randomly
selected source environments from the Earth Microbiome Project, where
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K€ {5,10,50,100,500,100}. Each source environment was down-sampled to contain
10,000 reads. We recorded the running-time of each method, for each number of
source environments, each iteration. The running time of hundreds of samples
using the random forest classifier is relatively short. However, given that both
SourceTracker and FEAST substantially improve accuracy over the random forest
approach, we focused on these two methods for all subsequent benchmarks shown.

Comparing model performance. We evaluated the performance of our model
against common approaches widely used for microbial source tracking—namely,
SourceTracker"” and the random forest classifier’. Both methods use community
structure to measure the similarity between sink samples and potential source
environments. The statistical model used by FEAST shares many similarities with
the model proposed by SourceTracker', namely that both models assume each
sink is a convex combination of the known and unknown sources. Additionally,

in both methods, source assignment is discretionary (that is, multiple samples can
be pooled to a single source or considered as individual sources). Thus, the main
difference between the methods lies in their optimization procedure. FEAST uses
an expectation-maximization algorithm to evaluate the proportions of source
contribution, whereas SourceTracker uses a Gibbs Sampler (MCMC). In other
fields in genomics it has been demonstrated that such optimization can be critical
in terms of the reduction of running time. For example, in statistical genetics, the
original method for the inference of population structure, STRUCTURE®, uses
MCMC for the parameter estimation, while other methods such as FRAPPE* and
ADMIXTURE” use expectation-maximization and quasi-Newton optimization
techniques respectively to reach similar accuracy, but considerably more efficiently.
This improvement in running time eventually may translate to improvement in
accuracy. Particularly, the accuracy achieved by SourceTracker may be improved by
increasing the number of burn-in iterations; however, this comes at the expense of
additional running time.

Distinguishing patients in ICU from healthy adults. The objective of this set of
experiments is to classify each sink (patient in ICU or a healthy adult) using its
overall dissimilarity to all sources (healthy adults). The dependent variable (y) is
a binary vector of cases (patients in ICU) and controls (healthy adults) y,€ {0,1},i
={1,...,N} where N is the number of sink samples. When classifying using FEAST
or SourceTracker, we designate the proportion of the unknown source as a
predictor for each sink’s class label. When classifying using Jensen—-Shannon and
UniFrac, we designate the average of the dissimilarity measurements between the
sink and all the other sources as the predictor.

FEAST. We applied FEAST to every sink sample (ICU or healthy), where the
known sources are 100 distinct healthy individuals from the American Gut Project.
We next used the estimated proportions of the unknown source as the input to the
classifier.

SourceTracker. We applied SourceTracker to every sink sample (ICU or healthy),
where the known sources are 100 distinct healthy individuals from the American
Gut Project. We next used the estimated proportions of the unknown source as the
input to the classifier.

Jensen-Shannon divergence. We calculated the Jensen—Shannon divergence value
between each sink sample (ICU or healthy) and the known source samples used
in FEAST and SourceTracker (for example, 100 distinct healthy individuals from
the American Gut Project). We next used the average Jensen-Shannon divergence
value (across known sources) as the input to the classifier.

UniFrac. We calculated the Weighted UniFrac distance between each sink sample
(ICU or healthy) and the known source samples used in FEAST and SourceTracker
(for example, 100 distinct healthy individuals from the American Gut Project). We
next used the average Weighted UniFrac distance (across known sources) as the
input to the classifier.

Data distribution. Throughout the paper, the box-plot elements are: center line,
median; box limits, upper and lower quartiles; whiskers, 1.5X interquartile range
(IQR); points and outliers.

Datasets. We evaluated the performance of FEAST using five datasets collected
using both 16S rRNA gene and whole metagenome shotgun sequencing.

The first dataset was collected and studied by Backhed et al.'® (accession
number ERP005989), which characterizes the temporal gut microbiome of 98
Swedish infants, each sampled at birth, 4 months after birth and 12 months after
birth. This dataset also contains gut microbiome samples collected from the
infants’ corresponding mothers during the first few days after delivery. Eighty-
three infants were delivered vaginally and the remaining 15 by cesarean section.
In this dataset, shotgun sequencing reads were assembled into contigs using
SOAPdenovo2 (ref. *°). The contigs were binned according to their abundance

variations across samples and GC-depth pattern for further assembly into draft
genomes. The draft genomes were then clustered into MetaOTUs based on
MUMi"” and the Spearman distance™ and their taxa were determined in relation to
the NCBI genomes.

The second dataset was collected and studied by Lax et al.”” (accession number
ERP005806). This study used the V4 region of the 16S rRNA gene to evaluate
the microbial contamination from seven groups of individuals in their respective
residences over the course of 6 weeks. In our analysis, we investigated one house,
where the inhabitants were genetically related. We used skin samples of inhabitants
from several body parts (hand, foot and nose) as sources and indoor house surfaces
(for example, kitchen floor, kitchen counter) as sinks.

The third dataset was collected and studied by Knights et al.'’ (data from
this study are stored in https://github.com/danknights/sourcetracker). This
study used datasets of bacterial 16S rRNA*** (V2 region of the 16S rRNA gene)
to investigate contamination in settings such as office buildings, hospitals and
research laboratories. As potential contaminants, human skin, oral cavities, feces
and temperate soils were considered.

The fourth dataset was collected and studied by McDonald et al.”* (accession
number ERP012810), the American Gut Project” (EBI project number
PRJEB11419). Using the V4 region of the 16S rRNA gene, McDonald et al.
characterized a cohort of patients from an ICU. The study collected samples from
the skin, mouth and feces (gut) of 115 US and Canadian patients in ICU at time of
admission (within 48 h) to the ICU as well as at time of discharge from the ICU.

The fifth dataset was collected and studied by Taur et al."* (data from this study
are stored in http://www.ncbi.nlm.nih.gov/sra). In this study by Taur et al."%, fecal
specimens were collected longitudinally from 94 patients undergoing allo-HSCT
from before treatment up to 35d after treatment. This study used the V1-V3
region of bacterial 16S rRNA genes.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

All of the datasets analyzed in this paper are public and can be referenced at

the following accession numbers: The first dataset was collected and studied by
Backhed et al."* (accession number ERP005989). The second dataset was collected
and studied by Lax et al.”” (accession number ERP005806). The third dataset

was collected and studied by Knights et al."’ (data from this study are stored in
https://github.com/danknights/sourcetracker). The fourth dataset was collected
and studied by McDonald et al."? (accession number ERP012810) and the
American Gut Project” (EBI project number PRJEB11419). The fifth dataset was
collected and studied by Taur et al."* (data from this study are stored in http://www.
ncbi.nlm.nih.gov/sra). In our simulations we used the Earth microbiome project
(ftp://ftp.microbio.me/emp/releasel/otu_tables/closed_ref_greengenes/).

Code availability
Code is available at https://github.com/cozygene/FEAST
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