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Knowledge of the diverse functions and distributions of micro-
bial life and their effect on human health has rapidly increased 
due to the unprecedented expansion of microbiome data 

repositories such as the ‘Earth Microbiome Project’1–4. Such rich 
datasets provide the opportunity to study the relationships between 
the abundance profiles of taxa in different habitats. Nonetheless, 
one critical challenge in analyzing microbiome communities is  
due to their composition; each of them is typically comprised of  
several source environments, including different contaminants as 
well as other microbial communities that interacted with the sam-
pled habitat. To account for this structure, methods for ‘microbial 
source tracking’ have been proposed5–11. These methods quantify 
the fraction, or proportion, of different microbial samples (sources) 
in a target microbial community (sink).

While traditionally framed in the context of quantifying con-
tamination10, microbial source tracking has been used in a variety 
of other contexts (for example, characterizing patients in intensive  
care units (ICUs), gauging partial restoration of the microbiota of 
cesarean-born infants via vaginal microbial transfer and quantify-
ing the contribution of certain sources to disease outbreaks)12–14. 
Microbial source tracking may also serve to quantify source con-
tributions to ecological patches. In this use case, microbial source 
tracking could help unveil compositional patterns of microbial 
communities in habitats ranging from the human gut to soil. These 
examples demonstrate that learning the origins of microbial com-
munities may not only significantly improve our current under-
standing of how microbial communities are formed, but could also 
inform disease prevention, agricultural practices and care-taking 
for newborns.

Current methods for microbial source tracking, however, are  
not without limitations. Some earlier methods5–7 typically limited 
their context to contamination, focusing on detecting only spe-
cific, predetermined contaminating species. More recent methods 
that leverage the entire community structure often lack a proper 
probabilistic framework or depend on the identification of indi-
cator species, whose abundance reflects a specific environmental 
condition8,9. One notable exception is SourceTracker10, the most 

widely used method for microbial source tracking thus far. Unlike 
previous methods, SourceTracker uses a Bayesian approach to 
estimate proportions of contaminants in a given community by 
leveraging its structure and measuring the respective similarities 
between a sink community and potential source environments. By 
directly modeling the sink as a mixture of potential source envi-
ronments, SourceTracker made a seminal contribution to the field. 
Nevertheless, this method is based on Markov chain Monte Carlo 
(MCMC), a computationally expensive procedure, and is there-
fore only applicable to small- to medium-size datasets with a small  
number of sources.

To address these limitations, we developed fast expectation-
maximization microbial source tracking (FEAST). FEAST parti-
tions microbial samples into their source components 30–300-fold 
faster than state-of-the-art methods, where, in some cases, it reduces 
running time from days or weeks to hours. The computational effi-
ciency of FEAST allows it to simultaneously estimate thousands  
of potential source environments in a timely manner, and thus  
help unravel the origins of complex microbial communities. 
Moreover, we found that FEAST is more accurate than previous 
methods, particularly when the target microbial community con-
tains taxa from an unknown, uncharacterized source.

Results
A brief description of FEAST. FEAST is a highly efficient expec-
tation-maximization-based method that takes as input a microbial 
community, the sink, as well as a separate group of potential source 
environments and estimates the fraction of the sink community 
that was contributed by each of the source environments. By virtue 
of these mixing proportions often summing to less than the entire 
sink, FEAST also reports the potential fraction of the sink attributed 
to other origins, collectively referred to as the unknown source. The 
statistical model used by FEAST assumes each sink is a convex 
combination of known and unknown sources. FEAST is agnostic 
to the sequencing data type (that is, 16S ribosomal RNA or shotgun 
sequencing) and can efficiently estimate up to thousands of source 
contributions to a sample.
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Model evaluation using data-driven synthetic mixtures. We 
compared the accuracy of FEAST to both SourceTracker10, and the 
random forest classifier used in previous source-tracking work9. 
We simulated source communities based on distributions in real 
source environments from the Earth Microbiome Project1, while 
varying the level of divergence between sources (see Methods). 
In each of our simulations, FEAST exhibited higher accuracy 
than SourceTracker and the random forest classifier across all  
levels of divergence (Fig. 1a and Supplementary Fig. 1). Since both  
SourceTracker and FEAST substantially improve accuracy over 
the random forest approach, we focused on these two methods 
for all subsequent benchmarks shown. Next, we examined the 
robustness of FEAST and SourceTracker through varying levels  
of sequencing depth, when disambiguation between sources is  
trivial (high divergence). As expected, the accuracy of both algo-
rithms increased as sequencing depth increased. Nonetheless, we 
observed that FEAST still compared favorably across all levels of 
sequencing depth (Supplementary Fig. 2). Finally, as it may be 
nearly impossible to obtain sequencing data for all potential sources 
in a study, we sought to evaluate FEAST’s ability to estimate the con-
tribution of the unknown source. To this end, we used real source 
environments from Lax et al.15, while varying the unknown source 
contribution from absent to exclusive. Across these experiments, 
FEAST was significantly more accurate in estimating the unknown 
source proportion (two-sided t-test P < 10−14). Notably, by properly 
adjusting its estimates for the unknown source, FEAST also pro-
duces more accurate mixing proportions for the observed sources 
as well as low variance (Fig. 1b and Supplementary Figs. 3 and 4).

Running time. One of FEAST’s distinct advantages over other 
methods is its speed (Fig. 2 and Supplementary Table 1). Specifically, 
across all experiments, FEAST reduced running time by a factor  
of 30–300 compared to SourceTracker, while maintaining and  
even improving the accuracy. Consequently, FEAST can simul-
taneously estimate thousands of potential source environments 
on the order of minutes to hours, where SourceTracker may take 
anything upward of days (Supplementary Table 1). We note that 
SourceTracker’s accuracy may potentially be improved by increas-
ing the number of burn-in iterations or otherwise increasing  
the number of iterations of the Markov chain, however, this  
comes at the expense of additional running time (see Methods 

for a comprehensive discussion of the tradeoff between time and  
accuracy in MCMC).

Real data applications. We applied FEAST to five real datasets 
to demonstrate the utility of microbial source tracking methods 
across different contexts. We first use FEAST as it was originally 
intended—to quantify the contribution of sources to specific sink 
environments.

Succession and initial colonization in infants. Using FEAST for 
time-series analysis offers a quantitative way to characterize devel-
opmental microbial populations, such as the infant gut. In this con-
text, we can leverage previous time points and external sources to 
understand the origins of a specific, temporal community state. For 
instance, we can estimate if taxa in the infant gut originate from the 
birth canal, or if they are derived from some other external source 
at a later time point. To demonstrate this capability, we used longi-
tudinal data from Backhed et al.16, which contains gut microbiome 
samples from infants as well as from their corresponding mothers. 
In this analysis, we treated samples taken from the infants at age 
12 months as sinks, considering respective earlier time points and 
maternal samples as sources. In these settings, FEAST revealed 
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Fig. 1 | Methods comparison. a, The accuracy of FEAST, the random forest classifier and SourceTracker on simulated data. Each simulation was performed 
using 20 real source environments and simulated sinks. The x axis is average Jensen–Shannon divergence value across known sources (that is, the degree 
of overlap between the sources from completely identical to completely non-overlapping). The y axis represents correlation across all source environments 
between true and estimated mixing proportions; error bars show the standard error of the mean (n = 30). b, Evaluation of FEAST and SourceTracker 
through varying levels of unknown source proportions.
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Fig. 2 | Running time comparison to current state-of-the-art. Running 
time (log scale, seconds) comparison across all simulation studies, using a 
sequencing depth of 10,000 reads per source.
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a significantly larger maternal contribution (two-sided t-test, 
P = 0.03161) in vaginally delivered infants over cesarean-delivered 
infants (Fig. 3), where other methods did not (Supplementary Fig. 
5). These results are consistent with the results of Backhed et al.16. 
We further explored whether biological mothers were more likely 
to be identified as sources of their infant’s microbiome than other 
potential source communities. We considered all maternal and early 
infant samples as potential sources, and found that for over 83% of 
the sink samples, the top contributing sources were from the same 
family (Supplementary Material).

Detecting contamination. To validate FEAST’s utility in detect-
ing contamination, we first replicated the analysis of Knights et al.10 
who investigated contamination in settings such as office build-
ings, hospitals and research laboratories. In these settings, where 
disambiguation between sources was relatively easy, FEAST esti-
mated source contributions consistent with those reported by 
Knights et al.10, despite minor discrepancies (Supplementary Fig. 6).  
Next, we analyzed longitudinal data collected by Lax et  al.15. In 
this analysis, we investigated one household, where the inhabit-
ants were genetically related. We used skin samples of inhabit-
ants from several body parts as sources and indoor house surfaces  
as sinks. Our analysis using FEAST shows that surfaces in home-
settings are more diverse than their human sources and might not 
be entirely composed of bacteria originated from humans (Fig. 4). 
Our results stand in qualitative contrast to those of Lax et al.15, where 
they found that an overwhelming majority of microbial communi-
ties on these surfaces originated from humans. We believe that the  
difference stems from an underestimation of the unknown source 
by SourceTracker, which was used in the original analysis of Lax 
et al. Such underestimation is exacerbated in cases like this, when 
disambiguation of sources is challenging, that is, due to all indi-
viduals living in the same house. We further investigated whether 
we could explain the composition of these unknown sources, at the 
first time point, by including additional source environments from 
the Earth Microbiome Project. In addition to the contribution of 
the four inhabitants, we find potential evidence for contributions 
from avian egg product (8%), freshwater fish (8%) and soil (1%). As 
a consequence, the unknown source contribution was reduced to 
5.8% (from approximately 25%, see Fig. 4).

Microbial source tracking as a metric of similarity. In the follow-
ing experiments we used FEAST in a different context—as a metric 

of similarity. To the best of our knowledge this is a novel application 
of microbial source tracking. In these experiments, we focused on 
the human gut microbiome, but rather than seeking among sources 
the contributors to a sink sample, we seek to represent each sink as a 
mixture of ‘characteristic environments’—source environments that 
are similar in composition to the sink and therefore capture its char-
acteristics. We then quantify the similarities between the sink and 
its characteristic environments using mixing proportions reported 
by FEAST.

FEAST distinguishes patients in ICU from healthy adults. To 
demonstrate FEAST’s utility in distinguishing and characterizing 
bacteria-related health conditions, we first replicated the analysis of 
McDonald et al.12 (Supplementary Fig. 7) in which they character-
ized a cohort of patients from an ICU. We found that our results 
using FEAST were consistent with the analysis of McDonald et al.12; 
that is, gut samples from patients in ICU are markedly different 
from those of healthy individuals. Next, we performed an additional 
analysis that was not included in the original study of McDonald 
et al.12: we used a bidirectional approach, randomly assigning gut 
samples from the American Gut Project (healthy controls) as either 
sources or sinks, in addition to assigning the gut microbiome of 
ICU patients as sinks (see Methods for a complete description). 
In doing so, we aimed to quantify the similarity between the gut 
microbiome of patients in ICU and healthy controls by compar-
ing their source composition. Using FEAST, we found significant 
differences in the source composition between the two sink types 
(two-sided t-test, P = 0.02551; Supplementary Fig. 8). To verify 
our findings, we used UniFrac distance17, Jensen–Shannon diver-
gence and the Bray–Curtis dissimilarity (Fig. 5 and Supplementary  
Fig. 8), which also captured the differences between the patients  
in ICU and healthy controls (that is, healthy sources are more  
similar to healthy sinks). However, we note that there is a large 
variance in the microbiome similarities among healthy controls, 
whether they are sources or sinks. We hypothesize that this variance 
stems from differences between individuals’ microbiomes unrelated 
to their health (for example, diet). We also note that these results 
should be interpreted with caution, since the healthy controls  
and patients in ICU are not matched and therefore batch effects  
or other confounders may affect the results. Nevertheless, if indeed 
the prediction accuracy is driven by confounders, these results  
demonstrate that FEAST can capture such confounder information 
better than existing methods.
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FEAST implicates time-related compositional shifts in a cancer  
longitudinal study. Considering the utility of FEAST as a  
method for classifying phenotypes, we sought to also character-
ize a cohort of patients with cancer undergoing allogeneic hema-
topoietic stem cell transplantation (allo-HSCT). In a study by 
Taur et  al.18, it was suggested that assessing the gut microbiome  
of patients undergoing allo-HSCT may identify those at high  
risk for bloodstream infection (that is, bacteremia). Many of the 
patients were found to have intestinal domination, a condition in 
which at least 30% of the microbiome consists of a single bacterial  
taxon. As the exact nature of the association between compo-
sitional shifts in the microbiome and bacteremia is unclear, it is 

crucial to explain the dynamics of microbial community compo-
sition in patients undergoing allo-HSCT. This led us to examine 
whether FEAST can be used as a tool for such an assessment. To 
this end, we labeled the two consecutive samples from before 
and during the first event of intestinal domination as sinks, and 
all corresponding samples from earlier time points as sources 
(per patient). FEAST revealed a significantly larger proportion of 
the unknown source in the sink samples with intestinal domina-
tion in comparison to the sink samples before intestinal domina-
tion (two-sided t-test P < 0.001; Fig. 6 and Supplementary Fig. 9). 
This is expected, as bacterial domination is defined in terms of  
abundance fractions, so by definition would be reflected in mix-
ture proportions. Nonetheless, this result was not significant using 
other methods (two-sided t-test P = 0.09). We therefore demon-
strated FEAST’s ability to capture shifts in microbial community 
composition that may underlie differences between pathogenic and 
neutral phenotypes.
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Discussion
FEAST was designed to address an important need in the rap-
idly evolving field of microbiome research—namely, to quantify  
the fraction of each source environment in a target microbial  
community (sink), through a natural, scalable statistical model. 
As a result, it provides a computationally efficient tool that can 
simultaneously evaluate hundreds to thousands of potential  
source environments, as well as the contribution of an unknown, 
uncharacterized source, outperforming state-of-the-art methods in 
terms of both speed and accuracy.

The utility of FEAST is established in two different contexts. 
First, we used FEAST as it was originally intended—to quantify  
the contribution of different source environments to a target  
microbial community. In this context, we were able to address ques-
tions surrounding succession and initial colonization of microbial 
species. Specifically, using FEAST we quantitatively reaffirmed 
the findings of Backhed et al.16, who demonstrated that gut micro-
biota of infants delivered by cesarean section showed significantly 
less resemblance to their mothers’ compared to vaginally delivered 
infants. Second, we used FEAST as a metric of similarity. In this 
context, FEAST can help researchers better understand the com-
positional characteristics of the human microbiome—an important 
task given that it has been linked to many aspects of human physi-
ology and health including obesity, inflammatory diseases, cancer, 
metabolic diseases and aging2–4,19–29.

We showed the ability of FEAST to differentiate between the 
gut microbiome of ICU patients experiencing dysbiosis and that  
of healthy controls. The results from FEAST show that patients  
with dysbiosis and controls without dysbiosis have differences 
between their microbial source composition, namely that the gut 
microbiome of healthy adults demonstrates a greater resemblance  
to other healthy gut communities than to those of patients expe-
riencing dysbiosis. Additionally, we investigated the characteriza-
tion of patients with intestinal domination. Source contribution 
estimates produced by FEAST show increased contribution and 
reduced variability of the unknown source in patients experienc-
ing intestinal domination compared to patients who are not. These 
results suggest that FEAST may be useful in distinguishing and 
characterizing phenotypes or conditions related to microbial injury. 
Furthermore, by highlighting novel differences among source com-
position, FEAST may contribute insight to downstream analyses 
aiming to implicate differences between healthy and diseased phe-
notypes at the taxa level.

We note that in some contexts, for example, patients with can-
cer undergoing allo-HSCT, the underlying assumption of FEAST is 
violated. In these situations, the sink is not a convex combination 
of its (known and unknown) sources due to significant differences 
between some of the source environments. The gut microbiome of 
patients with cancer, for example, can considerably change over-
time due to antibiotics and immune system shutdown or restart. 
Additionally, we note that the ability to differentiate between the gut 
microbiome of patients in ICU experiencing dysbiosis and healthy 
controls may be attributed to technical confounders separating 
these two distinct datasets (healthy control from the American Gut 
Project30 and patients in ICU12), which, if true, are better detected 
using FEAST.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41592-019-0431-x.

Received: 6 August 2018; Accepted: 23 April 2019;  
Published online: 10 June 2019

References
	1.	 Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale 

microbial diversity. Nature 551, 457–463 (2017).
	2.	 Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. & Gordon, J. I. 

Human nutrition, the gut microbiome and the immune system. Nature 474, 
327–336 (2011).

	3.	 Turnbaugh, P. J. & Gordon, J. I. The core gut microbiome, energy balance and 
obesity. J. Physiol. 587, 4153–4158 (2009).

	4.	 Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity 
modulate metabolism in mice. Science 341, 1241214 (2013).

	5.	 Simpson, J. M., Santo Domingo, J. W. & Reasoner, D. J. Microbial source 
tracking: state of the science. Environ. Sci. Technol. 36, 5279–5288 (2002).

	6.	 Wu, C. H. et al. Characterization of coastal urban watershed bacterial 
communities leads to alternative community-based indicators. PLoS ONE 5, 
e11285 (2010).

	7.	 Greenberg, J., Price, B. & Ware, A. Alternative estimate of source distribution 
in microbial source tracking using posterior probabilities. Water Res. 44, 
2629–2637 (2010).

	8.	 Dufrêne, M. & Legendre, P. Species assemblages and indicator species: the 
need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).

	9.	 Smith, A., Sterba-Boatwright, B. & Mott, J. Novel application of a statistical 
technique, Random Forests, in a bacterial source tracking study. Water Res. 
44, 4067–4076 (2010).

	10.	Knights, D. et al. Bayesian community-wide culture-independent microbial 
source tracking. Nat. Methods 8, 761–763 (2011).

	11.	Devane, M. L., Weaver, L., Singh, S. K. & Gilpin, B. J. Fecal source tracking 
methods to elucidate critical sources of pathogens and contaminant microbial 
transport through New Zealand agricultural watersheds—a review. J. Environ. 
Manag. 222, 293–303 (2018).

	12.	McDonald, D. et al. Extreme dysbiosis of the microbiome in critical illness. 
mSphere 1, pii: e00199-16 (2016).

	13.	Dominguez-Bello, M. G. et al. Partial restoration of the microbiota of 
cesarean-born infants via vaginal microbial transfer. Nat. Med. 22,  
250–253 (2016).

	14.	Teaf, C. M., Flores, D., Garber, M. & Harwood, V. J. Toward forensic uses  
of microbial source tracking. Microbiol. Spectr. 6, https://doi.org/10.1128/
microbiolspec.EMF-0014-2017 (2018).

	15.	Lax, S. et al. Longitudinal analysis of microbial interaction between humans 
and the indoor environment. Science 345, 1048–1052 (2014).

	16.	Backhed, F. et al. Dynamics and stabilization of the human gut microbiome 
during the first year of life. Cell Host Microbe 17, 690–703 (2015).

	17.	Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing 
microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).

	18.	Taur, Y. et al. Intestinal domination and the risk of bacteremia in patients 
undergoing allogeneic hematopoietic stem cell transplantation. Clin. Infect. 
Dis. 55, 905–914 (2012).

	19.	Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased 
capacity for energy harvest. Nature 444, 1027–1031 (2006).

	20.	Ley, R. E. Obesity and the human microbiome. Curr. Opin. Gastroenterol. 26, 
5–11 (2010).

	21.	Turnbaugh, P. J., Bäckhed, F., Fulton, L. & Gordon, J. I. Diet-induced obesity 
is linked to marked but reversible alterations in the mouse distal gut 
microbiome. Cell Host Microbe 3, 213–223 (2008).

	22.	Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. 
USA 102, 11070–11075 (2005).

	23.	Koren, O. et al. Human oral, gut, and plaque microbiota in patients with 
atherosclerosis. Proc. Natl Acad. Sci. USA 108, 4592–4598 (2011).

	24.	Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut 
microbiota on human health: an integrative view. Cell 148, 1258–1270 (2012).

	25.	Le Chatelier, E. et al. Richness of human gut microbiome correlates with 
metabolic markers. Nature 500, 541–546 (2013).

	26.	Clarke, S. F. et al. The gut microbiota and its relationship to diet and obesity: 
new insights. Gut Microbes 3, 186–202 (2012).

	27.	Jeffery, I. B., Quigley, E. M. M., Öhman, L., Simrén, M. & O’Toole, P. W. The 
microbiota link to irritable bowel syndrome: an emerging story. Gut Microbes 
3, 572–576 (2012).

	28.	Marchesi, J. R. et al. Towards the human colorectal cancer microbiome.  
PLoS ONE 6, e20447 (2011).

	29.	Qin, J. et al. A metagenome-wide association study of gut microbiota in type 
2 diabetes. Nature 490, 55–60 (2012).

	30.	McDonald, D. et al. American Gut: an open platform for citizen science 
microbiome research. mSystems 3, e00031-18 (2018).

Acknowledgements
We thank S. Mukherjee for insightful comments on the manuscript. This research was 
partially supported by European Research Council under the European Union’s Horizon 
2020 research and innovation program, project number 640384. This work was partially 
supported by the National Science Foundation (grant number 1705197). T.A.J. was 
supported by National Science Foundation (grant no. DGE-1644869).

Nature Methods | VOL 16 | JULY 2019 | 627–632 | www.nature.com/naturemethods 631

https://doi.org/10.1038/s41592-019-0431-x
https://doi.org/10.1038/s41592-019-0431-x
https://doi.org/10.1128/microbiolspec.EMF-0014-2017
https://doi.org/10.1128/microbiolspec.EMF-0014-2017
http://www.nature.com/naturemethods


Articles NATurE METHodS

Author contributions
L.S. and E.H. conceived the statistical model. L.S. designed the algorithm and software, 
and performed computational experiments. L.S., M.T., T.A.J. and L.B. wrote the 
manuscript. O.F. and D.B. contributed to writing the manuscript. T.A.J. and M.T. 
contributed to algorithm design. M.T. and L.B contributed to the computational 
experiments. I.M., I.P. and E.H. supervised the project.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41592-019-0431-x.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to E.H.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019

Nature Methods | VOL 16 | JULY 2019 | 627–632 | www.nature.com/naturemethods632

https://doi.org/10.1038/s41592-019-0431-x
https://doi.org/10.1038/s41592-019-0431-x
http://www.nature.com/reprints
http://www.nature.com/naturemethods


ArticlesNATurE METHodS

Methods
The FEAST probabilistic model. Consider a single sink sample represented by 
a vector x, where xj corresponds to the abundance of taxa, j, 1 ≤ j ≤ N. Let K be 
the number of known sources. Each known source is represented by a vector yi, 
where yij is the observed abundance of taxa, j, in source i (1 ≤ i ≤ K). Additionally, 
we assume there is an unobserved source (K + 1). Let = ∑ =C yi j

N
ij1  and = ∑ =C xj

N
j1  

be the total taxa counts of the known sources and sink, respectively. With this 
notation, the generative model is as follows: we assume that there are mixture 
proportions α—a vector of length K + 1—where αi corresponds to the fraction of 
source i in the sink, hence α∑ ==

+ 1i
K

i1
1 . We also assume that there is an unknown 

relative abundance for each of the sources. For each source, 1 ≤ i ≤ K + 1, we have a 
vector γ, where γ∑ == 1j

N
ij1 . Each γij represents the true relative abundance of taxa 

j in source i.
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α and γ are not observed and are parameters of the model.

Fast inference via expectation-maximization. FEAST uses an expectation-
maximization approach31 to infer the model parameters. The likelihood is given by
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E step: The log likelihood is given by
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The expected complete log likelihood (Q) is given by
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A more detailed derivation can be found in the Supplementary Material.
M step: Since the γij are required to sum to 1, we use Lagrange multipliers δi to 

constrain the γij values. The Lagrangian is given by
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Taking partial derivatives of L and solving gives the optimal update
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FEAST has two hyperparameters: the convergence threshold and the maximum 
number of iterations. In all our experiments we set these to default values of 10−6 
and 1,000, respectively. We used the multinomial distribution to model the data 

generating process since it is particularly relevant when analyzing microbiome 
datasets. Specifically, it addresses count uncertainty rather than directly 
transforming counts to relative abundances, and also models the competition 
to be counted (between taxa) instead of treating the counts of each taxon as 
independent32.

Simulation studies. Parameters and settings. To construct realistic simulation 
scenarios, we used real microbiome data as sources and simulated sinks as 
convex combinations thereof. Therefore, our simulations are representative of the 
abundance, over-dispersion of zeros and technical noise mostly observed in real 
microbiome data. We designed our simulation parameters to reflect the wide range 
of Jensen–Shannon divergences and potential sources observed across the real 
datasets we investigated. For a detailed description of the parameters and settings 
in each simulation study, see Supplementary Material.

Main simulation study. To examine the accuracy of FEAST, we used multiple source 
environments with varying degrees of overlap in their distribution by randomly 
sampling from the Earth Microbiome Project. Each source environment was sub-
sampled to contain 10,000 reads. In each iteration of the simulation we sampled 
K + 1 known environments and used them to build a synthetic sink with different 
mixing proportions. To simulate an unknown source, only K source environments 
are designated as known sources. We used 30 mixing proportions (corresponding 
to 30 simulated sinks) and K = 20 known sources in each iteration. For a detailed 
description of the simulation, see Supplementary Material.

Sequencing depth simulations. To examine the robustness of FEAST to varying 
levels of sequencing depth, we used multiple source environments from the Earth 
Microbiome Project while varying their sequencing depth. In each iteration of our 
simulation we sampled environments (with median Jensen–Shannon divergence 
of 0.95) and used them to build a synthetic sink, with different mixing proportions 
and a set sequencing depth ranging from 100 through 10,000. Notably, by choosing 
a median Jensen–Shannon divergence of 0.95 we wanted to emphasize that even 
under the scenario in which the sources are non-overlapping and thus trivial to 
disambiguate, the sequencing depth will have an effect. Additionally, in these 
simulations, we only varied the sequencing depth of the sources. However, since 
the sink samples are a linear combination of the sources, these samples are also, 
indirectly, affected. To simulate an unknown source, only K source environments 
are designated as known sources. We used 30 mixing proportions (corresponding 
to 30 simulated sinks) and K = 20 known sources in each iteration. For a detailed 
description of the simulation, see Supplementary Material.

Unknown source simulations. To evaluate FEAST’s ability to estimate the 
contribution of the unknown source, we used real source environments from Lax 
et al.15 and created synthetic sink communities. Given that any source not sampled 
should, theoretically, be accounted for in the unknown source, realistic values of 
the unknown source can therefore span the range of percentages occupied by the 
observed sources. Specifically, there are scenarios in which the known sources 
comprise the entirety of the sink (unknown source contribution, 0), or on the other 
hand, scenarios in which the known sources did not contribute any taxa to the sink 
(unknown source contribution, 1). Therefore, the unknown source contribution 
values in our simulation ranges from 0 to 1. As a measure of accuracy, we used the 
squared Pearson correlation between the estimated mixing proportions and the 
true mixing proportions for the unknown source across repeated simulation runs. 
We used 30 mixing proportions (corresponding to 30 simulated sinks) and five 
sources (four known sources) in each iteration. For a detailed description of the 
simulation, see Supplementary Material.

Noisy samples among sources. As source assignment is discretionary (that is, 
multiple samples can be pooled to a single source or considered as individual 
sources), we sought to examine the robustness of FEAST in the case where we 
have noisy realizations of the sources and their effect on prediction accuracy. We 
used K + 1 distinct source environments by randomly sampling from the Earth 
Microbiome Project (that is, soil, fresh water, feces, sebum and so on), where 
each source was represented by ten different samples (for example, soil1, soil2 and 
so on.). We then amalgamated these ten samples (per source environment) and 
used the amalgamation of each source to build simulated sinks, with 30 different 
mixing proportions (corresponding to 30 simulated sinks). In each iteration of our 
simulation, we aggregated s ∈ {1,…,10} samples from the representative samples of 
each source environment to estimate the different mixing proportions.

Prediction accuracy. To measure accuracy, we used the squared Pearson 
correlation coefficient between the estimated and true mixing proportions for 
each individual source across repeated simulation runs (that is, different mixing 
proportions) for the same Jensen–Shannon divergence value. In each iteration, we 
varied the degree of similarity of the source environments.

Running time measurements. In each iteration, we used K randomly 
selected source environments from the Earth Microbiome Project, where 
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K ∈ {5,10,50,100,500,100}. Each source environment was down-sampled to contain 
10,000 reads. We recorded the running-time of each method, for each number of 
source environments, each iteration. The running time of hundreds of samples 
using the random forest classifier is relatively short. However, given that both 
SourceTracker and FEAST substantially improve accuracy over the random forest 
approach, we focused on these two methods for all subsequent benchmarks shown.

Comparing model performance. We evaluated the performance of our model 
against common approaches widely used for microbial source tracking—namely, 
SourceTracker10 and the random forest classifier9. Both methods use community 
structure to measure the similarity between sink samples and potential source 
environments. The statistical model used by FEAST shares many similarities with 
the model proposed by SourceTracker10, namely that both models assume each 
sink is a convex combination of the known and unknown sources. Additionally, 
in both methods, source assignment is discretionary (that is, multiple samples can 
be pooled to a single source or considered as individual sources). Thus, the main 
difference between the methods lies in their optimization procedure. FEAST uses 
an expectation-maximization algorithm to evaluate the proportions of source 
contribution, whereas SourceTracker uses a Gibbs Sampler (MCMC). In other 
fields in genomics it has been demonstrated that such optimization can be critical 
in terms of the reduction of running time. For example, in statistical genetics, the 
original method for the inference of population structure, STRUCTURE33, uses 
MCMC for the parameter estimation, while other methods such as FRAPPE34 and 
ADMIXTURE35 use expectation-maximization and quasi-Newton optimization 
techniques respectively to reach similar accuracy, but considerably more efficiently. 
This improvement in running time eventually may translate to improvement in 
accuracy. Particularly, the accuracy achieved by SourceTracker may be improved by 
increasing the number of burn-in iterations; however, this comes at the expense of 
additional running time.

Distinguishing patients in ICU from healthy adults. The objective of this set of 
experiments is to classify each sink (patient in ICU or a healthy adult) using its 
overall dissimilarity to all sources (healthy adults). The dependent variable (y) is 
a binary vector of cases (patients in ICU) and controls (healthy adults) yi ∈ {0,1},i 
= {1,…,N} where N is the number of sink samples. When classifying using FEAST 
or SourceTracker, we designate the proportion of the unknown source as a 
predictor for each sink’s class label. When classifying using Jensen–Shannon and 
UniFrac, we designate the average of the dissimilarity measurements between the 
sink and all the other sources as the predictor.

FEAST. We applied FEAST to every sink sample (ICU or healthy), where the 
known sources are 100 distinct healthy individuals from the American Gut Project. 
We next used the estimated proportions of the unknown source as the input to the 
classifier.

SourceTracker. We applied SourceTracker to every sink sample (ICU or healthy), 
where the known sources are 100 distinct healthy individuals from the American 
Gut Project. We next used the estimated proportions of the unknown source as the 
input to the classifier.

Jensen–Shannon divergence. We calculated the Jensen–Shannon divergence value 
between each sink sample (ICU or healthy) and the known source samples used 
in FEAST and SourceTracker (for example, 100 distinct healthy individuals from 
the American Gut Project). We next used the average Jensen–Shannon divergence 
value (across known sources) as the input to the classifier.

UniFrac. We calculated the Weighted UniFrac distance between each sink sample 
(ICU or healthy) and the known source samples used in FEAST and SourceTracker 
(for example, 100 distinct healthy individuals from the American Gut Project). We 
next used the average Weighted UniFrac distance (across known sources) as the 
input to the classifier.

Data distribution. Throughout the paper, the box-plot elements are: center line, 
median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range 
(IQR); points and outliers.

Datasets. We evaluated the performance of FEAST using five datasets collected 
using both 16S rRNA gene and whole metagenome shotgun sequencing.

The first dataset was collected and studied by Backhed et al.16 (accession 
number ERP005989), which characterizes the temporal gut microbiome of 98 
Swedish infants, each sampled at birth, 4 months after birth and 12 months after 
birth. This dataset also contains gut microbiome samples collected from the 
infants’ corresponding mothers during the first few days after delivery. Eighty-
three infants were delivered vaginally and the remaining 15 by cesarean section. 
In this dataset, shotgun sequencing reads were assembled into contigs using 
SOAPdenovo2 (ref. 36). The contigs were binned according to their abundance 

variations across samples and GC-depth pattern for further assembly into draft 
genomes. The draft genomes were then clustered into MetaOTUs based on 
MUMi37 and the Spearman distance38 and their taxa were determined in relation to 
the NCBI genomes.

The second dataset was collected and studied by Lax et al.15 (accession number 
ERP005806). This study used the V4 region of the 16S rRNA gene to evaluate 
the microbial contamination from seven groups of individuals in their respective 
residences over the course of 6 weeks. In our analysis, we investigated one house, 
where the inhabitants were genetically related. We used skin samples of inhabitants 
from several body parts (hand, foot and nose) as sources and indoor house surfaces 
(for example, kitchen floor, kitchen counter) as sinks.

The third dataset was collected and studied by Knights et al.10 (data from 
this study are stored in https://github.com/danknights/sourcetracker). This 
study used datasets of bacterial 16S rRNA39,40 (V2 region of the 16S rRNA gene) 
to investigate contamination in settings such as office buildings, hospitals and 
research laboratories. As potential contaminants, human skin, oral cavities, feces 
and temperate soils were considered.

The fourth dataset was collected and studied by McDonald et al.12 (accession 
number ERP012810), the American Gut Project30 (EBI project number 
PRJEB11419). Using the V4 region of the 16S rRNA gene, McDonald et al. 
characterized a cohort of patients from an ICU. The study collected samples from 
the skin, mouth and feces (gut) of 115 US and Canadian patients in ICU at time of 
admission (within 48 h) to the ICU as well as at time of discharge from the ICU.

The fifth dataset was collected and studied by Taur et al.18 (data from this study 
are stored in http://www.ncbi.nlm.nih.gov/sra). In this study by Taur et al.18, fecal 
specimens were collected longitudinally from 94 patients undergoing allo-HSCT 
from before treatment up to 35 d after treatment. This study used the V1–V3 
region of bacterial 16S rRNA genes.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All of the datasets analyzed in this paper are public and can be referenced at 
the following accession numbers: The first dataset was collected and studied by 
Backhed et al.16 (accession number ERP005989). The second dataset was collected 
and studied by Lax et al.15 (accession number ERP005806). The third dataset  
was collected and studied by Knights et al.10 (data from this study are stored in 
https://github.com/danknights/sourcetracker). The fourth dataset was collected 
and studied by McDonald et al.12 (accession number ERP012810) and the 
American Gut Project30 (EBI project number PRJEB11419). The fifth dataset was 
collected and studied by Taur et al.18 (data from this study are stored in http://www.
ncbi.nlm.nih.gov/sra). In our simulations we used the Earth microbiome project 
(ftp://ftp.microbio.me/emp/release1/otu_tables/closed_ref_greengenes/).

Code availability
Code is available at https://github.com/cozygene/FEAST
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