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ABSTRACT
Tuning parameter selection is of critical importance for kernel ridge regression. To this date, data driven
tuning method for divide-and-conquer kernel ridge regression (d-KRR) has been lacking in the literature,
which limits the applicability of d-KRR for large datasets. In this article, by modifying the generalized cross-
validation (GCV) score, we propose a distributed generalized cross-validation (dGCV) as a data-driven tool
for selecting the tuning parameters in d-KRR. Not only the proposed dGCV is computationally scalable for
massive datasets, it is also shown, under mild conditions, to be asymptotically optimal in the sense that
minimizing the dGCV score is equivalent to minimizing the true global conditional empirical loss of the
averaged function estimator, extending the existing optimality results of GCV to the divide-and-conquer
framework. Supplemental materials for this article are available online.
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1. Introduction

Massive data made available in various research areas have
imposed new challenges for data scientists. With a large to
massive sample size, many sophisticated statistical tools are no
longer applicable simply due to formidable computational costs
and/or memory requirements. Even when the computation is
possible on more advanced machines, it is still appealing to
develop accurate statistical procedures at much lower compu-
tational costs. The divide-and-conquer strategy has become
a popular tool for regression models. With carefully designed
algorithms, such a strategy has proven to be effective in linear
models (Chen and Xie 2014; Lu, Cheng, and Liu 2016), partially
linear models (Zhao, Cheng, and Liu 2016), and nonparametric
regression models (Zhang, Duchi, and Wainwright 2015; Lin,
Guo, and Zhou 2017; Shang and Cheng 2017; Guo, Shi, and
Wu 2017). In this article, we shall focus on the divide-and-
conquer kernel ridge regression (d-KRR) where the selection
of the penalty parameter is of vital importance but still remains
unsettled.

Suppose we have iid samples {(xi, yi) ∈ X × R}i=1,...,N
from a joint probability measure PY ,X . The goal is to study the
association between the covariate vector xi and the response yi
through the following model

yi = f0(xi) + εi, i = 1, . . . , N, (1)
where f0(·) : X → R is the function of interest and εi is a
random error term with mean zero and a common variance
σ 2. One popular method to estimate f0(·) is the kernel ridge
regression (Shawe-Taylor and Cristianini 2004) which essentially
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aims at finding a projection of f0(·) into a reproducing kernel
Hilbert space (RKHS), denoted as H, equipped with a norm
‖ · ‖H. Specifically, the KRR estimator is then defined as

f̂ = arg min
f ∈H

{
1
N

N∑
i=1

(yi − f (xi))
2 + λ‖f ‖2

H

}
, (2)

where λ ≥ 0 controls trade-off between goodness of fit and
smoothness of f .

It is well known that computing f̂ requires O(N3) floating
operations and O(N2) memory; see (5) for more details. When
N is large, such requirements can be prohibitive. To overcome
this, Zhang, Duchi, and Wainwright (2015) proposed the fol-
lowing “divide-and-conquer” algorithm: (i) randomly divide the
entire sample {(x1, y1), . . . , (xN , yN)} to m disjoint “smaller”
subsets, denoted by S1, . . . , Sm; (ii) for each subset Sk, find f̂k =
arg minf ∈H

{
1

nk

∑
i∈Sk

(yi − f (xi))2 + λ‖f ‖2
H

}
, where nk is the

size of Sk; (iii) the final nonparametric estimator is given by

f̄ (x) = 1
m

m∑
k=1

f̂k(x). (3)

Such a “divide-and-conquer” strategy reduces computing time
from O(N3) to O(N3/m2) and memory usage from O(N2) to
O(N2/m2). Both savings may be substantial as m grows. Fur-
thermore, Zhang, Duchi, and Wainwright (2015) showed that
as long as m does not grow too fast, the averaged estimator f̄
achieves the same minimax optimal estimation rate as the oracle
estimate f̂ , that is, (2), that utilizes all data points at once. In this
sense, the divide-and-conquer algorithm is quite appealing as it
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achieves an ideal balance between the computational cost and
the statistical efficiency.

However, the aforementioned statistical efficiency depends
critically on a careful choice of tuning parameter λ in all
subsamples. The optimal choice of tuning parameter λ has
been well studied for KRR when the entire dataset can be
fitted at once. Examples include Mallow’s CP (Mallows 2000),
generalized cross-validation (GCV, Craven and Wahba 1978),
and generalized approximated cross-validation (Xiang and
Wahba 1996). However, if we naively apply these traditional
tuning methods in each subsample to pick an optimal λk in the
above step (ii), the averaged function estimator f̄ subsequently
obtained using (3) will be suboptimal. As pointed out by
existing literature (e.g., Zhang, Duchi, and Wainwright 2015;
Blanchard and Mücke 2016; Chang, Lin, and Zhou 2017), the
optimal tuning parameter should be chosen in accordance
with the order of the entire sample size, that is, N, such that
we intentionally allow the resulting subestimator f̂k to over-
fit the subsample Sk for each k = 1, . . . , m. Based on the
order of the optimal choice of λ, Zhang, Duchi, and Wainwright
(2015) proposed a heuristic data-driven approach to empirically
choose an optimal λ. However, the theoretical properties of
this approach remain unclear. In this paper, we define a new
data-driven criterion named “distributed generalized cross-
validation” (dGCV) to choose tuning parameters for KRR under
the divide-and-conquer framework. The computational cost of
the proposed criterion remains the same as O(N3/m2). More
importantly, we show that the proposed method enjoys similar
theoretical optimality as the well-known GCV criterion (Craven
and Wahba 1978) in the sense that the resulting divide-and-
conquer estimate minimizes the true empirical loss function
asymptotically.

The rest of paper is organized as follows. Section 2 introduces
background on kernel ridge regression. Section 3 presents the
main result of this paper on the dGCV, while Section 4 gives
statistical guarantee for this new tuning procedure. Our method
and theory are backed up by extensive simulation studies in
Section 5 and are applied to the Million Song Dataset in Sec-
tion 6, demonstrating significant advantages over Zhang, Duchi,
and Wainwright (2015). All technical proofs are postponed to
the Appendix.

2. Kernel Ridge Regression Estimation

In this section, we briefly review kernel ridge regression (Shawe-
Taylor and Cristianini 2004). The RKHS, denoted as H, is
a Hilbert space induced by a symmetric nonnegative definite
kernel function K(·, ·) : X × X → R and an inner product
〈·, ·〉H satisfying

〈g(·), K(x, ·)〉H = g(x) for any g ∈ H.

The kernel function K(·, ·) is called the reproducing kernel
of the Hilbert space H equipped with the norm ‖g‖H =√〈g(·), g(·)〉H. Using the Mercer’s theorem, under some regu-
larity conditions, the kernel function K(·, ·) possesses the expan-
sion K(x, z) = ∑∞

j=1 μjψj(x)ψj(z), where μ1 ≥ μ2 ≥ · · · is a
sequence of decreasing eigenvalues and {ψ1(·), ψ2(·), . . .} is a
family of orthonormal basis functions of L2(PX). The smooth-
ness of g ∈ H is characterized by the decaying rate of the

eigenvalues {μj}∞j=1. There are three types of estimation consid-
ered in this paper, including smoothing spline (Wahba 1990) as
a special case.

Finite rank: There exists some integer r such that μj = 0
for j > r. For example, with vectors x, z, the polynomial kernel
K(x, z) = (1 + xTz)r has a finite rank r + 1, and induces a space
of polynomial functions with degree at most r. This corresponds
to the parametric ridge regression.

Exponentially decaying: There exist some α, r > 0 such that
μj 	 exp(−αjr). Exponentially decaying kernels include the
multivariate Gaussian kernel K(x, z) = exp(−‖x − z‖2

2/φ
2),

where φ > 0 is the scale parameter and ‖ · ‖2 is the Euclidean
norm.

Polynomially decaying: There exists some r > 0 such that
μj 	 j−2r . The polynomially decaying class includes many
smoothing spline kernels of the Sobolev space (Wahba 1990).
For example, kernel function K(x, z) = 1 + min(x, z) induces
the Sobolev space of Lipschitz functions with smoothness ν = 1
and has polynomially decaying eigenvalues.

2.1. The Representer Theorem

With observed data, using the representer theorem (Wahba
1990), it can be shown that the solution to the minimization
problem (2) takes the following form

f̂ (x) =
N∑

i=1
βiK(xi, x), (4)

where β1, . . . , βN ∈ R. Furthermore, based on the observed
sample, the parameter vector β = (β1, . . . , βN)T can be esti-
mated by minimizing the following criterion

1
N

(Y − βTK)T(Y − βTK) + λβTKβ , (5)

where Y = (y1, . . . , yN)T and K = [K(xi, xj)]i,j=1,...,N . The
solution to (5) takes the form of β̂ = (K + NλIN)−1Y, which
requires O(N3) operations.

We next apply the above idea to subestimation. Denote
(y1, x1), . . . , (ym, xm) as a random partition of the entire data
with yk = (yk,1, . . . , yk,nk)

T and xk = (xk,1, . . . , xk,nk)
T . Define

vectors fk = (f0(xk,1), . . . , f0(xk,nk))
T and εk = yk − fk. Define

the subkernel matrices Kkl = [
K(xi, xj)

]
i∈Sk,j∈Sl

for l, k =
1, . . . , m. It is straightforward to show that the minimizer of (5)
with K replaced by Kkk is of the form β̂k = (Kkk + nkλIk)

−1yk,
and the individual function estimator f̂k(x) can be written as

f̂k(x) =
∑
i∈Sk

β̂k,iK(xi, x), (6)

where β̂k,i is the entry of β̂k corresponding to xk,i, k = 1, . . . , m.

2.2. Kernel Ridge Regression for Multivariate Functions

In principle, any multivariate function f0(x) in (1), that is, x ∈
R

p, can be well approximated if a sufficiently good reproducing
kernel K(·, ·) can be identified. However, for a large p, the
excessive risk of the KRR estimator may grow exponentially
fast as the dimension p increases (Györfi et al. 2006), which is
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often referred to as the “curse of dimensionality.” One common
strategy is to impose some special structures on the reproducing
kernel. For example, the polynomial kernel K(x, z) = (1 +
xTz)r assumes that K(·, ·) depends only on the inner product
of x and z and the multivariate Gaussian kernel K(x, z) =
exp(−‖x − z‖2

2/φ
2) assumes that K(·, ·) is determined by the

Euclidean distance between vectors x and z. More sophisti-
cated applications of Gaussian kernels may also allow the scale
parameter φ to vary for different dimensions. Another popular
approach to circumvent the “curse of dimensionality” is to use
additive approximation (Hastie 2017; Kandasamy and Yu 2016)
to multivariate functions. Let x = (x1, x2, ·, xp)T , and define the
first-order additive approximation of f (x) as

f ∗(x) = f ∗
1 (x1) + · · · + f ∗

p (xp), (7)

where each f ∗
j (·) is a univariate function residing in an RKHSHk

with a reproducing kernel Kj(·, ·), j = 1, . . . , p. The correspond-
ing additive kernel can be defined as K(x, z) = ∑p

j=1 Kj(xj, zj),
and the associated RKHS is H = H1

⊕
H2

⊕ · · ·⊕Hp. For
some applications where the first-order approximation (7) is not
adequate, higher order additive approximations to the multi-
variate function f (x) can be used to achieve better estimation
accuracies at similar computational costs, see Kandasamy and
Yu (2016) for more detailed discussions.

3. Tuning Parameter Selection

3.1. Sub-GCV Score: Local Optimality

In this section, we define the GCV score for each subestimation,
named as sub-GCV score, and discuss its theoretical property.
Define the empirical loss function for f̂k as follows

Lk(λ|xk) = 1
nk

∑
i∈Sk

wi
{̂

fk(xi) − f0(xi)
}2

, (8)

where wi ≥ 0 is some weight assigned to each observation
(yi, xi) and satisfies

∑
i∈Sk

wi = nk. The introduction of weights
in (8) helps reducing computational cost; see Section 3.4. The
tuning parameter λ is referred to as “locally optimal” if it only
minimizes local empirical loss Lk(λ|xk). When only focused
on a single subdataset, such a “locally optimal” choice of tun-
ing parameter λ has been well studied in (Craven and Wahba
1978; Li 1986; Gu 2013; Wood 2004; Gu and Ma 2005; Xu and
Huang 2012), among which the GCP (Craven and Wahba 1978)
remains to be one of the most popular approaches.

Using the function estimator f̂k(x), the predicted values for
the vector yk can be written as ŷk = Akk(λ)yk, where Akk(λ) =
Kkk(Kkk + nkλIk)

−1. Here the matrix Akk(λ) is often known as
the hat matrix. Using the above notations, the sub-GCV score is
defined as

GCVk(λ) = n−1
k (̂yk − yk)

TWk(̂yk − yk)

{1 + n−1
k tr{Akk(λ)Wk}}2

, (9)

where Wk = diag{wi, i ∈ Sk}, k = 1, . . . , m. It is well known that
GCVk(λ) enjoys appealing asymptotic properties. For example,
under mild conditions, Gu (2013) showed that, as nk → ∞,

GCVk(λ) − Lk(λ|xk) − 1
nk

εT
k Wkεk = oPε

{Lk(λ|xk)},

k = 1, . . . , m. This property essentially asserts that, minimizing
GCVk(λ) with respect to λ is asymptotically equivalently to
minimizing the local “golden criterion” Lk(λ|xk).

3.2. Local-Optimality Versus Global-Optimality

In this section, we explain why the use of GCVk(λ) in each
subsample does not lead to an optimal averaged estimate f̄ . We
first derive conditional risks for both f̂k and f̄ . For the former,
some basic algebra yields that the conditional risk Rk(λ|xk) =
Eε {Lk(λ|xk)} is of the form

Rk(λ|xk) = 1
nk

∑
i∈Sk

wivarε
{̂

fk(xi)
}

+ 1
nk

∑
i∈Sk

wi
{
Eε̂fk(xi) − f0(xi)

}2
, (10)

where the expectation is taken with respect to the probability
measure Pε . As for the latter, we first define the empirical loss
function of f̄ as

L̄(λ|X) = 1
N

N∑
i=1

wi{f̄ (xi) − f0(xi)}2, (11)

where X = (x1, . . . , xm) denotes the collection of all covariates
and wi ≥ 0 are the associated weights with observation i such
that

∑N
i=1 wi = N. Similarly, the corresponding conditional risk

R̄(λ|X) = Eε{L̄(λ|X)} has the following form

R̄(λ|X) = 1
N

N∑
i=1

wi

[
1
m

m∑
k=1

{
Eε̂fk(xi) − f0(xi)

}]2

+ 1
m2N

m∑
k=1

N∑
i=1

wivarε
{̂

fk(xi)
}

. (12)

The form of (10) illustrates that, roughly speaking, a “locally
optimal” choice of λ (that minimizes (8)) tries to strike a good
balance of variance and bias for each subestimate f̂k. On the
contrary, a “globally optimal” λ, which is defined to minimize
(11), puts much less emphasis on the variance of f̂k (by a fac-
tor of 1/m) than on the bias of f̂k; see (12). Consequently, to
obtain a “globally optimal” f̄ , one needs to intentionally choose a
“smaller” λ such that each individual function estimator f̂k over-
fits dataset Sk, which leads to reduced bias Eε̂fk(xi) − f0(xi) and
inflated variance varε

{̂
fk(xi)

}
. Then by taking f̄ = 1

m
∑m

j=1 f̂j,
the variance of f̄ can be effectively reduced by a factor of 1/m
while keeping its bias at the same level as those of individual f̂j’s.
The above risk analysis confirms the heuristics in Zhang, Duchi,
and Wainwright (2015).

3.3. Distributed Generalized Cross-Validation

The discussions in Section 3.2 motivate the main result of this
paper: distributed GCV score, denoted by dGCV. This data-
driven tool in selecting λ is computationally efficient for massive
data as analyzed in Section 3.4.

Using the solution (6), it is straightforward to show that the
predicted values of all data points yl in the subset Sl using f̂k take
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the form ŷkl = Aklyk, where Akl(λ) = KT
kl(Kkk + nkλIk)

−1.
Define the pooled vector of responses Y = (yT

1 , . . . , yT
m)T . Then

the predicted value of Y using the averaged estimator f̄ is of the
form

Ŷ =
(

1
m

m∑
k=1

ŷT
k1, . . . ,

1
m

m∑
k=1

ŷT
km

)T

= Ām(λ)Y,

where the averaged hat matrix Ām(λ) is defined as follows

Ām(λ) = 1
m

⎛⎜⎜⎜⎝
A11(λ) A12(λ) · · · A1m(λ)

A21(λ) A22(λ) · · · A2m(λ)
...

...
. . .

...
Am1(λ) Am2(λ) · · · Amm(λ)

⎞⎟⎟⎟⎠ . (13)

Furthermore, the global conditional risk function (12) can be
conveniently rewritten as

R̄(λ|X) = 1
N

FT{I − Ām(λ)}TW{I − Ām(λ)}F

+σ 2

N
tr
{

ĀT
m(λ)WĀm(λ)

}
, (14)

where vector of true values F = (fT
1 , . . . , fT

m)T and W =
diag{w1, . . . , wN}. Obviously the risk function above cannot be
used to select λ in practice since the vector F is unknown.
Following Gu (2013), we can define an unbiased estimator of
R̄(λ|X) + σ 2 as follows

Ū(λ|X) = 1
N

YT{I − Ām(λ)}TW{I − Ām(λ)}Y

+2σ 2

N
tr
{

Ām(λ)W
}

. (15)

It is straightforward to show that Eε{Ū(λ|X)} = R̄(λ|X) + σ 2.
The above Ū(λ|X) can be viewed as an extension of the Mallow’s
CP (Mallows 2000) to the divide-and-conquer scenario.

Similar to Gu (2013) and Xu and Huang (2012), the Lemma 1
in Section 4 states that under some mild conditions, mini-
mizing Ū(λ|X) and L̄(λ|X) with respect to λ is asymptotically
equivalent. In this sense, the λ chosen by minimizing Ū(λ|X)

is therefore “globally optimal.” However, a major drawback of
Ū(λ|X) is that it utilizes the knowledge of σ 2, which in practice
often needs to be estimated. To overcome this, we propose the
following modification of the GCV score

dGCV(λ|X) =
1
N
∑N

i=1 wi
{

yi − f̄ (xi)
}2[

1 − 1
Nm

∑m
k=1 tr{Akk(λ)Wk}

]2 , (16)

where Wk = diag{wi, i ∈ Sk}. Intuitively, consider σ̃ 2 =
N−1 ∑N

i=1 wi
{

yi − f̄ (xi)
}2 as an estimator of σ 2 and use the fact

that (1 − x)−2 ≈ 1 + 2x as x → 0, the Ū(λ|X) defined in (15)
essentially can be viewed as the first-order Taylor expansion of
the dGCV(λ|X). However, in the definition of dGCV(λ|X), it
does not require any information of σ 2. Note that dGCV incor-
porates information across all subsamples, which explains its
superior empirical performance. In fact, Theorem 1 in Section 4
shows that under some conditions, minimizing dGCV(λ|X)

and the “golden criterion” L̄(λ|X) with respect to λ are also
asymptotically equivalent.

3.4. Computational Complexity of dGCV

The computation of dGCV(λ|X) in (16) for a given λ consists
of two parts: the first part involves computing the trace of
individual hat matrices, tr{Akk(λ)Wk}, k = 1, . . . , m, which
requires O(N3/m2) floating operations and a memory usage
of O(N2/m2); the second part is to evaluate the predicted
value of f̄ (xi) for which wi �= 0, which costs O(NNw) floating
operations and a memory usage of O(N), where Nw denotes
the number of nonzero wi’s. Hence, the total computation cost
of dGCV(λ|X) is of the order O(N3/m2 + NNw). In cases
when m/

√
N = O(1), one can simply use w1 = · · · =

wN = 1, which results in the computational cost of the
order O(N3/m2) for one evaluation of dGCV(λ|X). This is the
same as that of the divide-and-conquer algorithm proposed in
Zhang, Duchi, and Wainwright (2015).

In some applications where m is much larger than
√

N, the
computational cost of dGCV(λ|X) becomes O(NNw). In this
case, we may want to only choose m∗ out of m subdatasets
for saving computational costs. To achieve that, we need to
choose weights wi’s properly. For example, we can set wi =
N/(

∑m∗
k=1 nk) if i ∈ ∪m∗

k=1Sk and wi = 0 otherwise. Under this
setting, the dGCV(λ|X) in (16) becomes

dGCV∗(λ|X) =
1

Nm∗
∑

i∈∪m∗
k=1Sk

{
yi − f̄ (xi)

}2[
1 − 1

mNm∗
∑m∗

k=1 tr{Akk(λ)}
]2 , (17)

where Nm∗ = n1 + · · · + nm∗ . Using (17) instead of (16),
we only need to evaluate f̄ (xi) for xi’s in m∗ subsets and the
computation time is reduced to O(N2m∗/m + N3/m2). We
applied (17) to the Million Song Dataset considered in Section 6,
which yields good results in both prediction and computation
time.

Optimization of dGCV(λ|X) or dGCV∗(λ|X) can be carried
out using a simple one-dimensional grid search. Since the first
and second derivatives of dGCV(λ|X) or dGCV∗(λ|X) can
be easily computed using similar arguments in Wood (2004)
and Xu and Huang (2012), it can also be optimized using
the Newton–Raphson algorithm with the same computational
costs.

3.5. The Newton–Raphson Implementation

In some applications, not only the penalty parameter λ in (2)
needs to be carefully selected, it is also important to choose
other tuning parameters in the kernel function. For example,
the bandwidth parameter φ in the Gaussian kernel K(x, z) =
exp(−‖x − z‖2

2/φ) also plays an important role in the perfor-
mance of the KRR, as we will illustrate in the Million Song
Dataset in Section 6. In such cases, dGCV can serve as a tool to
choose the optimal tuning parameters θ in the kernel function,
as long as conditions C1–C4 in Section 4.1 are satisfied. One
remaining practical issue is that when the dimension of θ is high,
the grid search method for the optimal combination of λ and θ

using dGCV is no longer feasible. Therefore, it is necessary to
develop more efficient algorithms such as the Newton–Raphson
type algorithm.
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Following Wood (2004), denote η = log λ and dGCV(η, θ)

= α(η, θ)/γ (η, θ), where

α(η, θ) = 1
N

YT{I − Ām(η, θ)}TW{I − Ām(λ, θ)}Y,

γ (η, θ) =
[

1 − 1
Nm

m∑
k=1

tr{Akk(η, θ)Wk}
]2

,

with Ām(η, θ) and Akk(η, θ)’s defined in (13). Then the first and
second partial derivatives of log [dGCV(η, θ)] can be straight-
forwardly obtained as

∂ log [dGCV(η, θ)]
∂ϑ

= 1
α(η, θ)

∂α(η, θ)

∂ϑ
− 1

γ (η, θ)

∂γ (η, θ)

∂ϑ
,

ϑ = η or θ .

∂2 log [dGCV(η, θ)]
∂ϑ∂�T = − 1

α2(η, θ)

[
∂α(η, θ)

∂ϑ

] [
∂α(η, θ)

∂�

]T

+ 1
α(η, θ)

∂2α(η, θ)

∂ϑ∂�T

+ 1
γ 2(η, θ)

[
∂γ (η, θ)

∂ϑ

] [
∂γ (η, θ)

∂�

]T

− 1
γ (η, θ)

∂2γ (η, θ)

∂ϑ∂�T , ϑ , � = η or θ .

By definitions of α(η, θ) and γ (η, θ), straightforward matrix
calculus yields that it remains to compute partial derivatives
of Akl(η, θ) = KT

kl(θ) [Kkk(θ) + nkeηIk]−1 with Kkl =[
K(xi, xj; θ)

]
i∈Sk,j∈Sl

for l, k = 1, . . . , m. It is straightforward
to show that

∂Akl(η, θ)

∂η
= −nkeηKT

kl(θ)K‡2
kk ,

∂Akl(η, θ)

∂θc
= ∂KT

kl(θ)

∂θc
K‡

kk

−KT
kl(θ)K‡

kk
∂Kkk(θ)

∂θc
K‡

kk,

∂2Akl(η, θ)

∂η2 = −nkeηKT
kl(θ)K‡2

kk + 2n2
ke2ηKT

kl(θ)K‡3
kk ,

∂2Akl(η, θ)

∂η∂θc
= −nkeη

{
∂KT

kl(θ)

∂θc
− KT

kl(θ)K‡
kk

∂Kkk(θ)

∂θc

}
K‡2

kk

+nkeηKT
kl(θ)K‡2

kk
∂Kkk(θ)

∂θc
K‡

kk,

∂2Akl(η, θ)

∂θc1∂θc2
= ∂2KT

kl(θ)

∂θc1∂θc2
K‡

kk − ∂KT
kl(θ)

∂θc1
K‡

kk
∂KT

kk(θ)

∂θc2
K‡

kk

−∂KT
kl

∂θc2
(θ)K‡

kk
∂Kkk(θ)

∂θc1
K‡

kk

+KT
kl(θ)K‡

kk
∂Kkk(θ)

∂θc2
K‡

kk
∂Kkk(θ)

∂θc1
K‡

kk

−KT
kl(θ)K‡

kk
∂2Kkk(θ)

∂θc1∂θc2
K‡

kk

+KT
kl(θ)K‡

kk
∂Kkk(θ)

∂θc1
K‡

kk
∂Kkk(θ)

∂θc2
K‡

kk,

for θ = (θ1, . . . , θD), c, c1, c2 = 1, . . . , D,

where K‡
kk = [Kkk(θ) + nkeηIk]−1, k, l = 1, . . . , m and all

matrix derivatives are taken element-wise.

It is straightforward to show that the computational com-
plexity of first and second derivatives of log [dGCV(η, θ)] are
the same as that of dGCV, which makes the Newton–Raphson
type algorithm feasible. However, it is worth pointing out that
log [dGCV(η, θ)] is not a convex function of η and θ , hence
there is no guarantee that a Newton–Raphson type algorithm
will converge to the global minimizer. Numerical suggestions
such as those in Wood (2004) may be useful for developing
more efficient algorithms, which will be an interesting further
research topic.

4. Asymptotic Properties

In this section, we will show that the proposed dGCV criterion
in (16) is “globally optimal” under some conditions. We first
introduce some notation. Denote PX , Pε , Pε,X as the probability
measures of covariate X, error process ε and their joint prob-
ability measure. Similarly, Eε and varε denote the expectation
and variance under the probability measure Pε . Let λmax(A)

and σmax(A) and tr(A) be the largest eigenvalue and the largest
singular value of the matrix A, respectively. We use P−→ to denote
the convergence in probability measure P and OP(·), oP(·) as
defined in the conventional way. For any function f (x) : X →
R, let ‖f ‖sup = supx∈X |f (x)| and Pf = ∫

X f (x) dP. Finally,
let Pn denote the empirical probability measure based on iid
samples of size n from the probability measure P.

4.1. Asymptotic Optimality of dGCV

The following regularity conditions are needed to show the
optimality of dGCV.

[C1] 1
m
∑m

l=1 λmax
{
(Kll + nlλIl)

−2 ( 1
m
∑m

k=1 KT
klKkl

)}
= OPX (1);

[C2] NR̄(λ|X)
PX−→ ∞ as N → ∞;

[C3] (a) The weights wi’s are nonnegative such that
∑N

i=1 wi =
N and that max1≤i≤N wi ≤ W for some constant W > 0; (b)

1
Nm

∑m
k=1 tr{Akk(λ)} = oPX (1) as N → ∞.

[C4] [N−1tr{Ām(λ)W}]2

[N−1tr{ĀT
m(λ)WĀm(λ)}] = oPX (1) as N → ∞.

Intuitively, condition C1 requires that some similarities
among subdatasets. If all Kkl’s are similar to Kll, we can expect
λmax

{
(Kll + nlλIl)

−2 ( 1
m
∑m

k=1 KT
klKkl

)} ≤ 1, in which case C1
holds. In Section 4.2, we shall show that one sufficient condition
for C1 to hold is to ensure that the “maximal marginal degrees
of freedom” (Bach 2013) dλ defined in (20) is sufficiently small
compared to N/m. Condition C2 is a widely used condition
to ensure the optimality of the GCV to hold (see, e.g., Craven
and Wahba 1978; Li 1986; Gu and Ma 2005; Xu and Huang
2012). It is a mild condition for nonparametric regression
problems, where the parametric rate O(N−1) is unattainable
for the estimation risk. For example, for kernel ridge regression
models with polynomially or exponentially decaying kernel
functions, condition C2 holds (Zhang, Duchi, and Wainwright
2015). However, it does raise a flag for the application of the
dGCV when a finite rank kernel is used, in which case the
optimal rate of R̄(λ|X) is of the order O(N−1) (Zhang, Duchi,
and Wainwright 2015). Nevertheless, without condition C2, it



585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643

644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702

6 G. XU, Z. SHANG, AND G. CHENG

is questionable whether there exists an asymptotically optimal
selection procedure for the tuning parameter λ (Li 1986).

Remark 1. Condition C3(a) has an important implication for
the dGCV∗(λ) defined in Section 3.4. When leaving out a por-
tion of data as suggested in Section 3.4, the resulting weights
become wi = N/(

∑m∗
k=1 nk) if i ∈ ∪m∗

k=1Sk and wi = 0
otherwise. Condition C3(a) requires that the number of data
points remained (i.e.,

∑m∗
k=1 nk) must be of the same order

as N. Therefore, more data points need to be retained as the
sample size N grows. Furthermore, when all subdatasets under
the divide-and-conquer procedure are roughly of the same size,
condition C3(a) essentially requires that m∗/m = c for some
absolute constant 0 < c ≤ 1. From the computational point of
view, it is worth to use a m∗ < m only when N � m2. Therefore,
a general rule of thumb for the choice of m∗ is that it should
only be used when N � m2 and if used it cannot be too small
compared to m.

It turns out that, under conditions C1–C2 and C3(a), Ū(λ|X)

defined in (15) is “globally optimal.”

Lemma 1. Under conditions C1–C2 and C3(a), for a fixed λ, we
have that

Ū(λ|X) − L̄(λ|X) − 1
N

εTWε = oPε,X {L̄(λ|X)}. (18)

The proof is given in the Appendix.
Lemma 1 states that when σ 2 is known, minimizing Ū(λ|X)

with respect to λ is asymptotically equivalent to minimizing the
empirical true loss function L̄(λ|X). However, it is rarely the
case that one has complete knowledge of σ 2. In this sense, the
proposed dGCV is more practical and it can be shown to be
“globally optimal” as well, under some additional conditions.

Theorem 1. Under conditions C1–C4, for a fixed λ, we have that

dGCV(λ|X) − L̄(λ|X) − 1
N

εTWε = oPε,X {(L̄(λ|x)}. (19)

The proof is given in the Appendix.
Similar to Lemma 1, Theorem 1 shows that minimizing

dGCV(λ|X) amounts to minimizing the true conditional loss
function L̄(λ|X), although additional conditions C3(b)*–C4 are
needed. Condition C3(b) is rather mild in that it essentially
requires that the effective degrees of freedom to be negligible
compared to the sample size, which is typically true for nonpara-
metric function estimators in most settings of interest. In addi-
tion, C3(b) becomes trivial when m → ∞ because by definition
we have that tr{Akk(λ)} ≤ nk, k = 1, . . . , m. When the entire
dataset is used at once (m = 1), condition C4 reduces to the
well-known condition [N−1tr{A(λ)}]2/[N−1tr{A2(λ)}] = o(1)

in the literature (Craven and Wahba 1978; Li 1986; Gu and
Ma 2005; Xu and Huang 2012). For example, for smoothing
splines, we typically have tr{A(λ)} = O(λ−1/s) and tr{A2(λ)} 	
O(λ−1/s) for some s > 1. Then as long as λ−1/s/N → 0,
which covers the most region of practical interest for λ, we
have that [N−1tr{A(λ)}]2/[N−1tr{A2(λ)}] → 0 as N → ∞.
Condition C4 can be viewed as an extension of this commonly
used condition to the divide-and-conquer regime.

4.2. Low-Level Sufficient Conditions for C1 and C4

In this subsection, for simplicity, we only consider uniform
weights with w1 = · · · = wN = 1 and equal sample sizes
n1 = · · · = nm = n in this subsection. We first establish a low-
level sufficient condition for C1. Following Bach (2013), define
the “maximal marginal degrees of freedom” as

dλ = N‖diag{K(K + NλIN)−1}‖∞, (20)

where ‖ · ‖∞ stands for the matrix infinity norm. Note that
A(λ) = K(K+NλIN)−1} is the hat matrix (13) with m = 1 and
dfλ = tr [A(λ)] = ‖diag{K(K+NλIN)−1}‖1 defines the “effec-
tive degrees of freedom” (Gu 2013) for the KRR using the entire
dataset at once. In this sense, the “maximal marginal degrees of
freedom” dλ provides an upper bound for the “effective degree
of freedom” dfλ due to the inequality dfλ ≤ dλ, and hence gives
another measure for the model complexity.

[C1′]Let r = rank(K) and dλ be the “maximal marginal degrees
of freedom” defined in (20), we assume that

mdλ

(
log r + log m

)
N

= oPX (1), (21)

as N → ∞ for either a finite m or m → ∞.

Condition C1′ ensures that the number of partitions m cannot
be too large compared to the total sample size N, depending
on the magnitude of dλ, which is consistent with findings in
the literature (Zhang, Duchi, and Wainwright 2015; Shang and
Cheng 2017). With a large m, condition C1′ maybe violated if
there is a significant number of outliers, leading to a potentially
large dλ.

Lemma 2. Condition C1′ is sufficient for condition C1.

The proof is given in the Appendix.
Next we proceed to derive sufficient conditions for condition

C4. When the entire dataset is used at once (m = 1) and
conditional on observed covariate X, condition C4 reduces to
the well-known condition [N−1tr{A(λ)}]2/[N−1tr{A2(λ)}] =
o(1) in the literature (Craven and Wahba 1978; Li 1986; Gu and
Ma 2005; Xu and Huang 2012). For example, for smoothing
splines, we typically have tr{A(λ)} = O(λ−1/s) and tr{A2(λ)} 	
O(λ−1/s) for some s > 1. In this case, as long as λ−1/s/N → 0,
which covers the most region of practical interest for λ, we
have that [N−1tr{A(λ)}]2/[N−1tr{A2(λ)}] → 0 as N → ∞.
Condition C4 can be viewed as an extension of this commonly
used condition to the divide-and-conquer regime, whose justi-
fication, however, is much less straightforward.

We first provide some heuristic insights behind our proof.
Define

Q(λ|X) =
∫
X

varε{f̄ (x)}2 dPX(x)

= 1
m2

m∑
k=1

∫
X

varε {̂fk(x)} dPX(x). (22)

Let PX,N be the empirical measure based on sample {X1, . . . ,
XN}, and PX,nk be the empirical measure based on the kth
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subsample {Xi}i∈Sk . It is straightforward to show that

Q1(λ|X) = σ 2 tr{ĀT
m(λ)Ām(λ)}

N

=
∫
X

varε
{

f̄ (x)
}2 dPX,N(x), (23)

Q2(λ|X) = σ 2 1
Nm

m∑
k=1

tr{A2
kk(λ)}

= 1
m2

m∑
k=1

∫
X

varε {̂fk(x)} dPX,nk(x). (24)

Intuitively, Q1(λ|X) and Q2(λ|X) are two empirical versions of
Q(λ|X) and should be close to each other. The formal proof
utilizes the uniform ratio limit theorems for empirical processes
(Pollard 1995) to show Q1(λ|X)/Q(λ|X) = 1 + oPX (1) and
Q2(λ|X)/Q(λ|X) = 1 + oPX (1), then with the help of condition
C4′(a), we can show condition C4 holds.

Let N (ε, ‖ · ‖PX,n ,F) be the ε-covering number (Pollard
1986) of a function class F with the empirical norm ‖f ‖PX,n =√

n−1 ∑n
i=1 f 2(Xi). Following conditions are sufficient to ensure

condition C4.

[C4′] (a) 1
m
∑m

k=1
[ 1

N tr{Akk(λ)}]2
/
[ 1

N tr{A2
kk(λ)}] = oPX

(1);
[C4′] (b) There exists a positive sequence {Vn} such that

as Vn → 0, it holds that Vn
[ 1

m
∑m

k=1
∫
X varε {̂fk(x)}

dPX(x)
]−1 = OPX (1), max1≤k≤m ‖varε {̂fk(x)}‖sup =

OPX (Vn) and nVn → ∞ as n → ∞;
[C4′] (c) There exists a sequence {Hn} such that Hn

[ n
m∑m

k=1
∫
X varε {̂fk(x)} dPX(x)

]−1 = OPX (1), max1≤k≤m[ ∫
X varε {̂f ′

k(x)} dPX(x)/
∫
X varε {̂fk(x)} dPX(x)

] =
OPX (H2

n), and nHnVn − (log m)2 → ∞ as n → ∞.
Here, f̂ ′

k(x) denotes the derivative of f̂k(x);
[C4′] (d) For the function classF0 = {f : ‖f ‖sup ≤ 1, J1(f ) =∫

X
{

f ′(x)
}2 dPX(x) ≤ 1}, we have that N (ε, ‖ ·

‖PX,n ,F0) ≤ exp(C0/ε) for some constant C0 > 0
with probability approaching one as n → ∞.

Lemma 3. For a tuning parameter λ satisfying conditions
C4′(a)–(d), one has that{

1
N

tr(Ām)

}2
/

{
1
N

tr(ĀT
mĀm)

}
= oPX (1).

The proof is given in the Appendix.
Condition C4′(a) is a mild condition as we have discussed at

the beginning of this subsection. Condition C4′(b) essentially
states that the supremum norm and the L1 norm of the variance
function varε {̂fk(x)} are of the same order, which is reasonable
when all varε {̂fk(x)}’s similarly well-behaved within the support
of covariate X. In addition, we should restrict our attention to
the range of λ such that nvarε {̂fk(x)} → ∞, k = 1, . . . , m.
Recall the discussion in Section 3.2, the optimal f̄ can only be
obtained when the risk (10) is dominated by the variance term
varε {̂fk(x)} for each individual f̂k(x). Hence, letting nVn →
∞ is reasonable based on the condition C2. Condition C4′(c)

essentially asserts that Hn and nVn are of the same order. For
the smoothing spline case, the derivative f̂ ′

k is typically more
variable than f̂k such that one can expect Hn → ∞. For example,
Rice and Rosenblatt (1983) gives the exact rates of convergence
for cubic smoothing spline, that is

∫
X varε {̂fk(x)} dPX(x) 	

n−1λ−1/4,
∫
X varε {̂f ′

k(x)} dPX(x) 	 n−1λ−3/4. In this case, we
have that Hn 	 λ−1/4 and nVn 	 λ−1/4. A thorough theoretical
investigation of Hn and Vn is difficult in general, though our
simulation study (unreported) suggests condition C4′(c) to be
reasonable for many reproducing kernels.

Finally, condition C4′(d) holds when the empirical measure
PX,n is replaced by PX (see, e.g., van de Geer and van de Geer
2000). One can generally expect it to hold when the sample size
n is large. The upper bound of the random covering number
N (ε, ‖ · ‖PX,n ,F0) determines the rate of convergence of the
empirical processes Q1(λ|X) and Q2(λ|X) to Q(λ|X). And it can
be relaxed similarly as given in Theorem 2.1 of Pollard (1986).

Remark 2. One benefit of using high level conditions such
as C1, C2, and C4 is that they do not involve the response
variable and can be computed efficiently using sample data.
To deal with the randomness in covariate X, one can boot-
strap/resample/subsample from the observed data, which is
especially suitable when the sample size under consideration
is extremely large. Through this resampling strategy, one
can empirically verify C1, C2, and C4, although rigorous
justification of such strategy has not been established and will
be an interesting topic for future research.

5. Simulation Studies

In this section, we conduct simulation studies to illustrate the
effectiveness of dGCV(λ) in choosing the optimal λ for the d-
KRR. The data were simulated from the model

y = 2.4 × beta(x, 30, 17) + 1.6 × beta(x, 3, 11) + ε,
x ∈ [0, 1],

(25)
where beta(x, a, b) is the density function of the Beta(a, b) distri-
bution and ε ∼ N(0, 32). The covariate xi’s were independently
generated from the uniform distribution over the interval [0, 1].
For each simulation run, we first generated a dataset of the size
N = mn and then randomly partition the datasets into m
subdatasets of equal sizes. The divide-and-conquer estimator f̄
was obtained as given in (3).

Let f (ν)(·) be the νth derivative of a smooth function f (·). The
true function in model (25) belongs to the Sobolev Hilbert space
of νth order differentiable functions on [0, 1] satisfying the peri-
odic boundary conditions f (ν)(0) = f (ν)(1) for ν = 1, . . . , 10,
denoted as Wν(per) (Wahba 1990). If Wν(per) is endowed with
the norm ‖f ‖2

Wν
=

{∫ 1
0 f (x) dx

}2 + ∫ 1
0 {f (ν)(x)}2 dx, then it has

a reproducing kernel

K(x, z) = (−1)ν−1

(2ν)! B2ν([x − z]), x, z ∈ [0, 1], (26)

where B2ν(·) is the 2νth Bernoulli polynomials (Abramowitz
and Stegun 1972) and [x] is the fractional part of x. In all simula-
tion runs, the tuning parameter λ was selected by a grid search
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for log(λ) over 30 equally spaced grid points over the interval
[−10ν, −5ν]. Three approaches were used for the selection of
λ: (i) the distributed GCV (dGCV) approach proposed in (16);
(ii) the naive GCV (nGCV) approach where a λ̂k is selected for
each individual f̂k by minimizing the sub-GCV score GCVk(λ)

defined in (9) for k = 1, . . . , m and then the final estimator is
obtained by averaging all f̂k’s; and (iii) the true empirical loss
function (TrueLoss) L̄(λ|X) defined in (11). The last approach
is not practically feasible since it requires the knowledge of the
truth f0. It merely serves as the “golden criterion” to show the
effectiveness of other two approaches. For all approaches, we set
the weights wi = 1 for all i = 1, . . . , N and used ν = 2 for the
kernel (26) unless otherwise stated.

5.1. Performances With Moderate Sample Sizes

In this subsection, we evaluated performances of the pro-
posed approach with moderate sample sizes N = 2i, i =
8, 9, 10, 11, 12. In this setting, it is still possible to obtain the
KRR estimator with the entire dataset, that is, m = 1, and
enables us to evaluate potential loss using the divided-and-
conquer approach as opposed to using all data at once.

5.1.1. Computational Complexity and Estimation
Accuracies

We first simulate data from model (25) for various sample
sizes N = 2i, i = 8, 9, 10, 11, 12 and fit the data with divide-
and-conquer regression with m = 1, 2, 4, 8, 16, 32. Summary
statistics based on 100 simulation runs were illustrated in
Figure 1(a–f). Figure 1(a) illustrates the computational com-
plexity of one evaluation of dGCV(λ) . All simulation runs
were carried out in the software R (R Core Team 2018) on
a cluster of 100 Linux machines with a total of 100 CPU
cores, with each core running at approximately 2 GFLOPS. We
can clearly see that by using the divide-and-conquer strategy,
the computational time of the dGCV can be greatly reduced
compared to the case when all data were used at once (i.e.,
m = 1).

In Figure 1(b, c), we give some comparisons of the dGCV
method and the nGCV method. Figure 1(b) shows the scatter-
plot of true empirical losses, as defined in (11), of the function
estimators obtained by minimizing dGCV(λ) versus minimiz-
ing the unattainable “golden criterion” (11) over 100 simulation
runs. As we can see, majority of points are concentrated around
the 45◦ straight line, which supports our theoretical findings
in Theorem 1. On the contrary, Figure 1(c) shows that true
empirical losses of the function estimator based on the nGCV
approach are generally larger than the minimum possible true
losses, indicating that such function estimators are indeed only
“locally” optimal but not “globally optimal.”

In Figure 1(d)–(f), we used N = 2i and m = 2j for j =
0, 1, . . . , i−2 and i = 8, 10, 12 so that there were at least four data
points in each subdataset. To better understand the differences
between the dGCV and the nGCV approaches, Figure 1(d)
shows how the logarithm of the averages of selected tuning
parameters (over 100 simulation runs), denoted as log(̂λopt), for
each method changes as m increases. As we can see, when m = 1
they are identical. However, as m increases, the λ selected by the

nGCV approach consistently increases whereas the λ selected
by the dGCV method stays about the same until m gets really
large and is always smaller than the λ selected by the nGCV
method. This is consistent with findings in Zhang, Duchi, and
Wainwright (2015) where they argue that the locally optimal
rate of λ for each individual f̂k is of the order O(n−4/5) with
n = N/m whereas the globally optimal rate for λ is of the order
O(N−4/5).

The y-axis of Figure 1(e, f) is the logarithm of estimation
errors log L(̂λopt), where L(̂λopt) stands for the averaged true
conditional loss defined in (11) over 100 simulation runs using
different selection approaches for λ. We can see from Figure 1(e,
f) that as long as m is not too large compare to N, the proposed
dGCV(λ) is quite robust in terms of controlling the estimation
error as m grows and is almost identical to that of using the true
loss function, which is considered as a “golden criterion.” This
is consistent with our Theorem 1. In contrast, estimation errors
of the nGCV approach quickly inflates as m increases, which is
expected according to our discussion in Section 3.2. Finally, it
is interesting to point out that as the λ selected by the dGCV
method starts to drop in Figure 1(d), the estimation errors in
Figure 1(e, f) start to inflate as well.

5.1.2. Is It Worth Minimizing dGCV(λ)?
In this subsection, we investigate the issue that whether the extra
computational costs in minimizing dGCV(λ) is worthwhile.
The optimal rates of λ for various reproducing kernels have
been well established (see, e.g., Zhang, Duchi, and Wainwright
2015). In the case of the reproducing kernel (26) used in this
simulation, the optimal rate for λ is of the order O

(
N− 2ν

2ν+1
)

,

or in other words, λopt = CN− 2ν
2ν+1 for some constant C.

One misconception is that the choice of C does not matter
much because asymptotically any value of C leads to the same
convergence rate for f . However, for a given sample size, this is
far from being true. To illustrate, we fitted the data generated
from model (25) using reproducing kernel (26) with ν = 1
and 2, respectively. Resulting function estimators based on 100
simulation runs with N = 212 = 4096 and m = 4 were
presented in Figure 2(a, b), where it is apparent that by setting
C = 1, both KRR estimators based on reproducing kernel
with ν = 1 or 2 yield much worse estimation accuracies than
those of corresponding KRR estimators using λ selected by
minimizing the proposed dGCV(λ) criterion. A closer look at
the minimization problem (2), or equivalently (5), suggests that
the optimal choice of the constant C in λopt should depend on (a)
the magnitude of the kernel function K(·, ·); (b) the magnitude
of response Y; (c) the sample size N, and therefore can be
difficult to obtain in practice. As we have illustrated in Figure 2,
for a fixed sample size, a carefully chosen constant C (through
dGCV in this case) may have significant impacts on the quality
of resulting KRR estimator, for which reason we believe that
additional computational costs in minimizing dGCV is indeed
worthwhile.

5.1.3. The Choice of Number of Partitions m
One remaining issue that we have not addressed theoretically is
that how many partitions of data (m) should be used in practice



939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997

998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 9

Figure 1. (a) The logarithm of computational time (in seconds) versus log(N); (b, c) scatterplots of true empirical losses of function estimators; (d) the logarithm of averages
of selected λ versus log(m)/ log(N); (e, f ) the logarithm of averaged true empirical losses versus log(m)/ log(N). Note that in (d)–(f ), λ̂opt in the y-axis denotes one of λ̂dGCV,
λ̂nGCV, and λ̂TrueLoss for each curve.

Figure 2. Estimated functions using divide-and-conquer KRR with a sample size N = 212 and m = 4. Kernel defined in (26) was used with (a) ν = 1 and (b) ν = 2.

for a given sample size N. The general guideline for the choice
of m is clear: as long as m is not too large compared to N,
the d-KRR estimator can achieve the optimal convergence rate
(Zhang, Duchi, and Wainwright 2015; Shang and Cheng 2017).
However, a practical tool to determine whether m is too large is
still lacking. In this subsection, we conducted a simulation study
to show that the proposed dGCV may serve such a purpose.

By its definition (16), dGCV(λ) can also be viewed as a
function of m, denoted as dGCV(λ, m). Then we can define a
profiled version of dGCV as follows

dGCVp(m) = dGCV(̂λ, m), (27)

where λ̂ = arg minλ>0 dGCV(λ, m) for a fixed m. We simulated
data from model (25) with N = 212 for 100 times and then
fitted each dataset using d-KRR with m = 2j for j = 1, . . . , 9.
Figure 3(b) presents patterns of 100 centralized version of
dGCVp(m), defined as dGCVp(m) − 1

9
∑9

j=1 dGCVp(j), as
a function of m. As comparison, Figure 3(a) gives the true
empirical loss (11) of each d-KRR estimator using λ̂ =
arg minλ>0 dGCV(λ, m) for each m, where it appears that
as long as m ≤ 27, the estimation accuracy of the fitted
function remain roughly the same as using the optimal λ

picked by minimizing dGCV(λ, m). This coincides with existing
theoretical findings in the literature such as Zhang, Duchi,
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Figure 3. (a) Empirical true loss defined in (11) using λ picked by dGCV for each m; (b) centered optimal dGCV score for each m; based on 100 simulation runs (N = 4096).

and Wainwright (2015) and Shang and Cheng (2017). More
importantly, the similarity between Figure 3(a) and (b) suggests
that the profiled dGCV score defined in (27) can capture the
sudden drop in the trajectory of empirical loss as a function
of m and therefore determine which m might be too large.
We have tried many other settings and the message remains
the same. This implies that, in practical applications, one can
start with a relatively large m and gradually decrease m until
dGCVp(m) defined in (27) stabilizes. Rigorous justifications of
such an approach will be an interesting future research topic.

5.1.4. Performances of dGCV on Multivariate Functions
In this subsection, we investigated the impacts of model dimen-
sionality and correlation among predictors on the performance
of dGCV. Let x = (x1, . . . , xp)T , the data was simulated from
the following model

y = f (x) = 20
(

1 − ‖x‖2√p

)7

+

(
16

‖x‖2
2

p
+ 7

‖x‖2√p
+ 1

)
+ ε,

ε ∼ N(0, 32), x ∈ [0, 1]p,

where ‖ · ‖2 is the Euclidean norm in R
p, function (r)+ =

max(r, 0) and xj’s are uniformly distributed between [0, 1] for
j = 1, . . . , p. To induce correlations among xj’s, let xj = �(zj)

where (z1, z2, . . . , zp)T was generated from a p-dimensional
multivariate normal distribution with mean 0, variance 1 and
pairwise correlation coefficient ρ = 0 or 0.8. f (x) is a variate
of Wendland’s function (Schaback and Wendland 2006). For
p ≤ 5, we performed the KRR with the reproducing Hilbert
kernel space equipped with the kernel

K(x, z) =
(

1 − ‖x − z‖2√p

)5

+

(
5
‖x − z‖2

2
p

+ 1
)

,

x, z ∈ [0, 1]p,

which is a radial basis function with bounded support for p ≤
5, see Schaback and Wendland (2006) for more details. The
averaged true empirical losses based on 100 simulation runs are
summarized in Figure 4. On one hand, when the dimensionality
of x increases from p = 1 to 5, the averaged empirical losses
gradually increase as expected. However, the averaged empirical
losses of d-KRR estimators with λ chosen by dGCV is almost
indistinguishable from those of corresponding estimators with λ

picked by the true empirical loss, regardless of the dimension p.

This echoes with our theoretical findings in Theorem 1. On the
other hand, as ρ increases from 0 to 0.8, the correlations among
xj’s seem to have little impact on the estimation accuracies for
the estimated overall mean function f (x). In fact, when ρ = 0.8,
the performance of dGCV is relatively more stable than the case
with ρ = 0 as the dimension p increases. This can be explained
by the fact that f (x) only depends on ‖x‖2, which is less variable
when p increases for the case ρ = 0.8. For this reason the
estimation of f (x) is less affected by the dimensionality when
ρ = 0.8.

5.2. Performances With a Large Sample Size

In this subsection, we investigated two issues when the sample
size N is so large that a single machine can no longer handle at
once: (a) whether the computational/estimation performance in
Section 5.1.1 still persists; (b) what is the impact of the choice of
m∗ in (17) on the performance of dGCV∗.

5.2.1. Computational Complexity and Estimation
Accuracies

To investigate the first issue, we simulated data from model (25)
with a sample size N = 216 = 65,536 and the d-KRR was carried
out using m = 2j for j = 5, . . . , 11. Summary statistics based
on 100 simulation runs are summarized in Figure 5, where the
message is consistent with findings presented in Section 5.1.1: at
a much smaller computational cost, the d-KRR with a λ chosen
by minimizing dGCV is as good as using the λ that minimizes
the true empirical loss (11), provided that the m is not too large.

5.2.2. The Impact of the Choice of m∗
When the sample size N is large or even massive, it is inevitable
to use a relative large m, in which case further computational
savings can be achieved by choosing a subset of data for valida-
tion as suggested in (17) of Section 3.4. The question remains
that how small m∗ can be so that Theorem 1 still holds? As we
have discussed in Remark 1, a general rule of thumb for the
choice of m∗ is that it cannot be too small compared to m. To
shed some more lights on this issue, for each m, we simulate
data from model (25) and then fitted the d-KRR with the λ

that minimizes (17) using m∗ = 1, . . . , m. Averaged empirical
losses based on 100 simulation runs are plotted in Figure 6,
where it indicates that if m∗ is too small relative to m, the
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Figure 4. The logarithm of averaged true empirical losses versus log(m)/ log(N) with a sample size N = 212 and (a) ρ = 0, (b) ρ = 0.8.

Figure 5. (a) The logarithm of computational time (in seconds) versus log2(m); (b) the logarithm of averaged true empirical losses versus log2(m); (c) scatterplots of true
empirical losses of function estimators. Note that in (b), λ̂opt in the y-axis denotes one of λ̂dGCV, λ̂nGCV and λ̂TrueLoss for each curve.

Figure 6. The logarithm of averaged true empirical losses versus m∗/m.

estimation accuracies indeed deteriorate significantly compared
to the optimal performance. However, as long as m∗ is greater
than 0.2m, the choice of m∗ has little impact on the estimation
accuracies. Therefore, by setting m∗ as a reasonable percentage
of m (such as 20% or 30%), one may indeed achieve a large
reduction in computational cost without sacrificing too much

Figure 7. Computing times versus number of CPU cores.

on estimation accuracies. We want to emphasize again that it
is worth to use a m∗ < m only when N � m2. And if used,
whenever the computational cost is affordable, a larger m∗ is a
safer choice to achieve better performances.
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6. The Million Song Dataset

In this section, we applied the dGCV∗ tuning method to the
Million Song Dataset, which consists of 463,715 training exam-
ples and 51,630 testing examples. Each observation is a song
track released between the year 1922 and 2011. The response
variable yi is the year when the song is released and the covariate
xi is a 90-dimensional vector, consists of timbre information
of the song. We refer to Bertin-Mahieux et al. (2011) for more
details on this dataset. Timbre is the quality of a musical note or
sound that distinguishes different types of musical instruments,
or voices (Jehan and DesRoches 2011). The goal is to use the
timbre information of the song to predict the year when the
song was released using the KRR. The same dataset has been
analyzed by Zhang, Duchi, and Wainwright (2015), but without
addressing the issue of selecting an optimal tuning parameter.
Our dGCV∗ method demonstrated significant empirical advan-
tages over theirs.

Following Zhang, Duchi, and Wainwright (2015), the
feature vectors were normalized so that they have mean
0 and SD 1 and the Gaussian kernel function K(x, z) =
exp(−‖x − z‖2

2/φ) was used for the KRR. Seven partitions
m ∈ {32, 38, 48, 64, 96, 128, 256} were used for the d-KRR.
Aside from the penalty parameter λ in (2), the bandwidth
φ is also known to have important impact on the prediction
accuracy. To find the best combination of (λ, φ) for each
partition m, we perform a 2-dimensional search with λ ∈
{0.25, 0.5, 0.75, 1.0, 1.25, 1.5}/N and φ ∈ {2, 3, 4, 5, 6, 7} by
minimizing (17) with m∗ = �m/10�, where �a� is the smallest
integer that is greater than a. See Remark 3 for more details on
the choice of m∗. Note that in this case, dGCV∗(λ|X) is also a
function of φ. The experiment was conducted in Matlab using
a Windows desktop computer with 32GB of memory and a 2.6
GHz CPU with 4 CPU cores. To illustrate that the computation
of the proposed dGCV∗(λ|X) can be easily paralleled, Figure 7
gives how averaged computation time changes as the number
of CPU cores (in a single machine) increases. The computation
time reduces most when the number of CPU cores increases
from 1 to 2, and the reductions in computation times slow down
as the number of CPU cores continues to increase. Such a trend
is probably due to the memory constraints, communication
costs and energy consumption limits on the computer and is
not uncommon for parallel computing conducted in a single

machine. Nevertheless, these computation times are reasonable
for a dataset with almost half-million observations and can be
further reduced if a computing cluster is available.

The grid search gave the optimal choice of λ = 0.5/N and
φ = 3 for most of case scenarios. From Figure 8(a, b), we can see
that the choice of the bandwidth parameter φ has a great impacts
on the dGCV∗ score as well as the penalty parameter λ. It seems
that the latter provides some additional small adjustments after
a good value of φ is chosen.

In Zhang, Duchi, and Wainwright (2015), the authors used
a fixed value λ = 1/N and a φ = 6 chosen by the cross-
validation for their kernel ridge regression model. In Figure 8(c),
we can see that such a choice leads to a much worse pre-
diction mean squared error (PMSE) on the testing samples.
Using the proposed dGCV criterion, our choice of λ and φ

yields almost identical prediction accuracy as the minimum
possible PMSE on the testing samples obtained over all 36 grid
points.

Remark 3. Note that for any given combination of (λ, φ), the
estimated function f̄λ,φ used in dGCV∗ is the same for different
values of m∗, which is defined in (3). The agreement between
the test PMSE of the dGCV∗ method and the minimum test
PMSE in Figure 8(c) suggests that there is no room to improve
over the predictive performance of f̄λ,φ using tuning parameters
selected by dGCV∗, as long as the same multivariate Gaussian
reproducing kernel function is used. This is a strong indication
that m∗ = �m/10� is a good choice for this example, considering
that dGCV∗ did not use any information of the 51,630 testing
examples.

7. Discussion

In this paper, we proposed a data-driven criterion named dGCV
that can be used to empirically selecting the critical tuning
parameter λ for d-KRR. Not only the proposed approach is
computationally scalable even for massive datasets, we have
also theoretically shown that it is asymptotically optimal in
the sense that minimizing dGCV is equivalent to minimiz-
ing the true global conditional empirical loss, extending the
existing optimality results of GCV to the divide-and-conquer
framework.

Figure 8. (a) dGCV score versus Nλ with m = 32 (the bottommost) to m = 128 (the uppermost); (b) dGCV score versus φ with m = 32 (the bottommost) to m = 256 (the
uppermost); (c) the prediction mean squared errors on the testing samples versus log(m).
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There are a few ways to extend the current work. For example,
we have so far presumed a fixed m. One important direction
is to investigate the growth rate of m for some specific kernels
under which Theorem 1 still holds, following the framework
proposed in Shang and Cheng (2017). It is also of practical
interest to develop a justifiable data-driven approach to detect
the breaking point for m. Another interesting research direction
is to develop a tuning criterion similar to the dGCV for more
general panelized Kernel regression such as Zhang, Liu, and
Wu (2016) and Chen et al. (2017). The definition of dGCV
in (16) relies heavily on the closed form solution to the Kernel
ridge regression, which is not available if the loss function or
the penalty in (2) are replaced by the quantile loss or the lasso
penalty, respectively. The major difficulty lies in how to replace
the effective degrees of freedom tr {Akk(λ)}’s in the denominator
of (16) when the hat matrices Akk’s do not exist. Although there
has been some research on this issue such as Yuan (2006), much
more thorough investigations are needed.

Appendix

From now on, we suppress the dependence of Akl(λ)’s and Ā(λ) on λ

for ease of presentation and simply use Akl’s and Ā whenever there is
no ambiguity.

Lemma A.1. Under the condition C1, we have that
λmax(ĀmĀT

m) = OPX (1).

Proof. Define the following matrix

K̄m = 1
m

⎛⎜⎜⎜⎝
K11 K12 · · · K1m
K21 K22 · · · K2m

...
...

. . .
...

Km1 Km2 · · · Kmm

⎞⎟⎟⎟⎠ .

Then it is straightforward to see that

ĀmĀT
m = K̄D1K̄T ,

where D1 = diag{B11, . . . , Bmm} with Bll = (Kll + nlλIl)
−2, for l =

1, . . . , m. Then

K̄D1K̄T = 1
m2

⎛⎜⎜⎜⎝
K11
K21

...
Km1

⎞⎟⎟⎟⎠B11(KT
11, . . . , KT

m1)

+ · · · + 1
m2

⎛⎜⎜⎜⎝
K1m
K2m

...
Kmm

⎞⎟⎟⎟⎠Bmm(KT
1m, . . . , KT

mm),

which implies that

λmax(ĀmĀT
m) ≤ 1

m2

m∑
l=1

λmax

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝

K1l
K2l

...
Kml

⎞⎟⎟⎟⎠Bll(KT
1l, . . . , KT

ml)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= 1

m2

m∑
l=1

λmax

⎛⎝Bll

m∑
k=1

KT
klKkl

⎞⎠
= 1

m

m∑
l=1

λmax

⎧⎨⎩(Kll + nlλIl)
−2

⎛⎝1
m

m∑
k=1

KT
klKkl

⎞⎠⎫⎬⎭
= OPX (1).

The last inequality follows from condition C1.

Lemma A.2. Under the conditions C1–C2 and C3(a), for a fixed λ, we
have that

L̄(λ|X) − R̄(λ|X) = oPε,X {R̄(λ|X)}. (A.1)

Proof. Using similar notations in Equation (14), it is straightforward to
show that

L̄(λ|X) = 1
N

(
ĀmY − F

)T W
(
ĀmY − F

)
, with Y = F + ε.

(A.2)

Using (14), we have that

L̄(λ|X) − R̄(λ|X) = − 2
N

FT(I − Ām)TWĀmε

+ 1
N

εTĀT
mWĀmε − σ 2

N
tr(ĀT

mWĀm).

Since the random error ε and the covariate X are independent in
model (1), to show (A.1), it suffices to show the following two equations

varε
{

1
N

FT(I − Ām)TWĀmε

}
= oPX {R̄2(λ|X)}, (A.3)

varε

{
1
N

εTĀT
mWĀmε − σ 2

N
tr(ĀT

mWĀm)

}
= oPX {R̄2(λ|X)}. (A.4)

We first show (A.3). Straightforward algebra yields that

varε
{

1
N

FT(I − Ām)TWĀmε

}
= σ 2

N2 FT(I − Ām)TW
(

ĀmĀT
m
)

W(I − Ām)F

≤
σ 2λmax

(
ĀmĀT

mW
)

N
1
N

FT(I − Ām)TW(I − Ām)F

≤
σ 2λmax

(
ĀmĀT

m
)

λmax(W)

NR̄(λ|X)
R̄2(λ|X)

= oPX (1)R̄2(λ|X) = oPX {R̄2(λ|X)},

where the second last equation follows from conditions C2 and C3(a)
and Lemma (A.1).
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Now we show (A.4). Straightforward algebra yields that

varε

{
1
N

εTĀT
mWĀmε − σ 2

N
tr(ĀT

mWĀm)

}

= Eεε
4 − σ 4

N2

N∑
i=1

b̄2
ii + 2σ 4 ∑

i

i �=j∑
j

b2
ij

≤ K1
N2 tr{(ĀT

mWĀm)2}

≤ K1λmax(ĀT
mWĀm)

N2 tr(ĀT
mWĀm)

≤ K1λmax(ĀT
mWĀm)

Nσ 2 R̄(λ|X)

≤ K1λmax(ĀT
mĀm)λmax(W)

σ 2NR̄(λ|X)
R̄2(λ|X)

= oPX (1)R̄2(λ|X), (A.5)

where b̄ij is the (i, j)th element of matrix ĀT
mWĀm and K1 =

Eεε
4 + σ 4. The last equality follows from conditions C2 and C3(a)

and Lemma A.1. Using (A.3)–(A.4), Equation (A.1) follows from a
simple application of the Cauchy–Schwartz inequality and the Markov’s
inequality. The proof is complete.

Proof of Lemma 1. Using (A.2) and (15), we have that

Ū(λ|X) − L̄(λ|X) − 1
N

εTWε

= 2
N

FT(I − Ām)TWε

− 2
N

{
εTĀmWε − σ 2tr(ĀmW)

}
. (A.6)

Notice that the random error ε and the covariate X are independent in
model (1). We will show (18) using Equation (A.1) in Lemma A.2, for
which it suffices to show the following two equations

varε
{

1
N

FT(I − Ām)TWε

}
= oPX {R̄2(λ|X)}, (A.7)

varε

{
1
N

εTĀmWε − σ 2

N
tr(ĀmW)

}
= oPX {R̄2(λ|X)}. (A.8)

We first show (A.7). Straightforward algebra yields that

varε
{

1
N

FT(I − Ām)TWε

}
= σ 2

N2 FT(I − Ām)TW2(I − Ām)F

≤ σ 2λmax(W)

NR̄(λ|X)
R̄2(λ|X)

= oPX (1)R̄2(λ|X)

= oPX {R̄2(λ|X)},

where the second last equation follows from conditions C2–C3. Next,
we show (A.8). Using condition C2, similar to the inequality (A.5), it is
straightforward to show that

varε
{

1
N

εTĀmWε

}
≤ K1

N2 tr(ĀT
mW2Ām)

≤ K1λmax(W)

Nσ 2 R̄(λ|X)

= K1λmax(W)

σ 2NR̄(λ|X)
R̄2(λ|X)

= oPX (1)R̄2(λ|X),

where K1 = Eεε
4+σ 4 is bounded. Hence, (A.8) is proved using, again,

condition C2–C3. Using (A.7)–(A.8) and (A.1), Equation (18) follows
from a simple application of the Cauchy–Schwartz inequality and the
Markov’s inequality. The proof is complete.

Proof of Theorem 1. Using Lemmas 1 and A.2, it suffices to show that

dGCVDC(λ|X) − Ū(λ|X) = oPε,X {R̄(λ|X)}. (A.9)

Using the first-order Taylor expansion of (1 − x)−2 around x = 0, we
have that (1 − x)−2 = 1 + 2x + 3(1 − x∗)−4x2 for some x∗ ∈ (0, x).
Under condition C3, we have that tr(Ām)

N = oPX (1) and thus we can
consider the following decomposition

dGCV(λ|X) − Ū(λ|X)

=
{

1
N

YT{I − Ām(λ)}TW{I − Ām(λ)}Y − σ 2
}

2tr(ĀmW)

N︸ ︷︷ ︸
I

+ 1
N

YT{I − Ām(λ)}TW{I − Ām(λ)}YOPX

(
{tr(ĀmW)}2

N2

)
︸ ︷︷ ︸

II

Using condition C4, we have that

tr(ĀmW)

N
= oPX {R̄1/2(λ|X)}, (A.10)

which implies that II = oPX (R̄(λ|X)) since 1
N YT{I − Ām(λ)}TW{I −

Ām(λ)}Y is bounded. For part I, we can write

I =
{

1
N

YT{I − Ām(λ)}TW{I − Ām(λ)}Y − σ 2
}

×2tr(ĀmW)

N

=
{

Ū(λ|X) − 1
N

εTWε

}
2tr(ĀmW)

N

+
(

1
N

εTWε − σ 2
)

2tr(ĀmW)

N
− 4{tr(ĀmW)}2σ 2

N2 .

By Lemma 1, we have that Ū(λ|X) − 1
N εTWε = R̄(λ|X) +

oPε,X {R̄(λ|X)}. Under condition C3, one has that tr(ĀmW)
N = oPX (1),

and thus{
Ū(λ|X) − 1

N
εTWε

}
2tr(ĀmW)

N
= oPε,X {R̄(λ|X)}.

Furthermore, since 1
N εTWε − σ 2 = OPε

(N−1/2) (condition C3(a))

and NR̄(λ|X)
PX−−→∞ (condition C2), we have that 1

N εTWε − σ 2 =
oPε,X {R̄1/2(λ|X)}. Using this and Equation (A.10), we have that

(
1
N

εTWε − σ 2
)

2tr(ĀmW)

N
= oPε,X {R̄(λ|X)}.

The third part of I is oPX {R̄(λ|X)} due to Equation (A.10). Therefore,
we have shown that

dGCV(λ|X) − Ū(λ|X) = oPε,X {R̄(λ|X)},

which completes the proof.
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Lemma A.3. Define the following class of nonnegative functions

F = {f ∈ L2(P) : f ≥ 0, ‖f ‖sup ≤ V , J1(f ) ≤ V2H2}, (A.11)

where V > 0 and H > 0 are constants. If condition C4′(d) holds and
(εn, γn) satisfy

ε3
nγ 2

n ≥ c0(1 + H)V
n

, (A.12)

where c0 > 0 is a constant, then there exists a constant C > 0 such that
for all n,

P

(
sup
f ∈F

|Pnf − Pf |
Pnf + Pf + γn(Pnf + Pf + 1)

> Cεn

)
≤ exp(−nε2

nγn/2).

Proof. Recall the definition ofF0 in condition C4′(d). It can be checked
that

F ⊆ V(1 + H)F0.

Hence under condition C4′(d), we have that with probability approach-
ing one,

N(εnγn, ‖ · ‖Pn ,F) ≤ N(εnγn, ‖ · ‖Pn , V(1 + H)F0)

= N
(

εnγn
V(1 + H)

, ‖ · ‖Pn ,F0

)
≤ exp

{
C0(1 + H)V

εnγn

}
.

By the theorem given in Pollard (1995) and the Theorem 2.1 of
Pollard (1986), there exists constants C and c0 such that

P

(
sup
f ∈F

|Pnf − Pf |
Pnf + Pf + γn(Pnf + Pf + 1)

> Cεn

)

≤ exp
(

c0
(1 + H)V

2εnγn
− nε2

nγn

)
≤ exp(−nε2

nγn/2).

Proof of Lemma 2. Define the kernel matrix

K =

⎛⎜⎜⎜⎝
K11 K12 · · · K1m
K21 K22 · · · K2m

...
...

. . .
...

Km1 Km2 · · · Kmm

⎞⎟⎟⎟⎠ = ��T ,

where � is a N × r matrix with r being the rank of K. By this notation,
we have that

Kll = �l�
T
l , l = 1, . . . , m,

where �l is a nl × r submatrix of � consists of rows corresponding to
a subdataset Sl. Then it is straightforward to show that

λmax

⎧⎨⎩(Kll + nlλIl)
−2

⎛⎝ 1
m

m∑
k=1

KT
klKkl

⎞⎠⎫⎬⎭
= 1

m
λmax

{
��T

l (�l�
T
l + nlλIl)

−2�l�
T
}

.

Using the Sherman–Morrison formula, we can show that

�T
l (�l�

T
l + nlλIl)

−1

= �T
l

[
n−1λ−1I − n−2λ−2�l(I + n−1λ−1�T

l �l)
−1�T

l

]
= n−1λ−1

[
I − n−1λ−1�T

l �l(I + n−1λ−1�T
l �l)

−1
]
�T

l

= n−1λ−1
[
(I + n−1λ−1�T

l �l)
−1

]
�T

l ,

which gives that

λmax

⎧⎨⎩(Kll + nlλIl)
−2

⎛⎝ 1
m

m∑
k=1

KT
klKkl

⎞⎠⎫⎬⎭
= n−2λ−2

m
λmax{�[(I + n−1λ−1�T

l �l)
−1]

�T
l �l[(I + n−1λ−1�T

l �l)
−1]�T}

= n−1λ−1

m
λmax{�(I + n−1λ−1�T

l �l)
−1�T

−�(I + n−1λ−1�T
l �l)

−2�T}
≤ 1

N
λmax{�(λI + n−1�T

l �l)
−1�T}

= λmax

{
(λI + n−1�T

l �l)
−1

[
1
N

�T�

]}
.

Using the following identity from the Appendix B of Bach (2013)

(λI + n−1�T
l �l)

−1

=
(

λI + 1
N

�T� − 1
N

�T� + n−1�T
l �l

)−1

=
(

λI + 1
N

�T�

)−1/2 [
I − 1

N
�T� + 1

n
�T

l �l

]−1

×
(

λI + 1
N

�T�

)−1/2
,

where � = �
(
λI + 1

N �T�
)−1/2

and �l is the submatrix of � , we
have that

λmax

⎧⎨⎩(Kll + nlλIl)
−2

⎛⎝ 1
m

m∑
k=1

KT
klKkl

⎞⎠⎫⎬⎭
≤ λmax

{
(λI + n−1�T

l �l)
−1

[
1
N

�T�

]}
= λmax

{(
λI + 1

N
�T�

)−1/2 [
I − 1

N
�T� + 1

n
�T

l �l

]−1

×
(

λI + 1
N

�T�

)−1/2 [ 1
N

�T�

]}

≤ σmax

{[
I − 1

N
�T� + 1

n
�T

l �l

]−1
}

λmax

{(
λI + 1

N
�T�

)−1/2 [ 1
N

�T�

]

×
(

λI + 1
N

�T�

)−1/2
}

≤ σmax

{[
I − 1

N
�T� + 1

n
�T

l �l

]−1
}

,

where σmax(A) is the spectral norm of the matrix A.
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Therefore, to show condition C1, it suffices to show that

max
l=1,...,m

λmax

[
1
N

�T� − 1
n
�T

l �l

]
= oPX (1). (A.13)

Using Lemma 2 of Bach (2013), we have that

PI

(
λmax

[
1
N

�T� − 1
n
�T

l �l

]
> t

)

≤ r exp

⎛⎝ −nt2/2

λmax
[

1
N �T�

]
(R2 + t/3)

⎞⎠ , (A.14)

where PI is the probability measure corresponding to the partition of
the data, r = rank(�) = rank(K) and R is the upperbound of L2-norm
of all rows of � . In our case, L2-norm of all rows of � the diagonal
elements of matrix

��T = �

(
λI + 1

N
�T�

)−1
�T = NK(K + NλI)−1,

where the last equality follows from the Sherman–Morrison formula.
Then, by the definition of dλ in (20), we have that R2 ≤ dλ. In addition,
note that

λmax

(
1
N

�T�

)
= λmax

(
1
N

�

(
λI + 1

N
�T�

)−1
�T

)
≤ 1,

which implies that inequality (A.14) can be further simplified as

PI

(
λmax

[
1
N

�T� − 1
n
�T

l �l

]
> t

)
≤ r exp

(
−nt2/2

dλ + t/3

)
,

which further leads to that

PI

(
max

l=1,...,m
λmax

[
1
N

�T� − 1
n
�T

l �l

]
> t

)
≤ mr exp

(
−nt2/2

dλ + t/3

)
→PX 0,

for any 0 < t < 3dλ under condition C1′, which completes the proof
of (A.13).

Proof of Lemma 3. We first consider Q2(λ|X) in (24). Define the func-
tion class

Fn =
{

f (x) : ‖f ‖sup ≤ C1Vn, J1(f ) ≤ C2V2
nH2

n
}

,

where Vn and Hn are as defined in conditions C4′(b)–(c) and C1, C2
are some constants. Applying Lemma A.3 to the function class Fn with

εn = ε and γn =
√

c0(1+Hn)Vn
n , which satisfy (A.12) under conditions

C4′(b)–(c), we have that

P

(
sup

f ∈Vn

|Pnf − Pf |
Pnf + Pf + γn

> Cε

)
≤ exp(−nε2γn/2). (A.15)

Let vk(x) = varε
{̂

fk(x)
}

, k = 1, . . . , m. It is straightforward to
show that the first derivative of vk(x) are bounded as follows

|v′
k(x)| = 2

∣∣∣covε

{̂
fk(x), f̂ ′

k(x)
}∣∣∣ ≤ 2

√
vk(x)

√
varε {̂f ′

k(x)},

which further implies that

J1(vk) =
∫
X

{v′
k(x)}2 dPX(x) ≤ 4‖vk‖sup

∫
X

varε {̂f ′
k(x)} dPX(x)

≤ 4‖vk‖2
sup

∫
X varε {̂f ′

k(x)} dPX(x)∫
X vk(x) dPX(x)

= OPX (V2
nH2

n).

Therefore, under conditions C4′(a)–(b), we have that

v1(x), . . . , vm(x) ∈ Fn in probability measure PX .

For simplicity, from now on, we use Q for Q(λ|X) in (22) and Qj for
Qj(λ|X), j = 1, 2, in (23) and (24) whenever there is no ambiguity.
Using the facts that Q = 1

m2
∑m

k=1 Pvk and Q2 = 1
m2

∑m
k=1 Pnk vk, a

direct application of (A.15) gives that

P

(
|Q2 − Q|

Q2 + Q + 1
m γn

> Cε

)

≤ P

( 1
m
∑m

k=1 |Pnk vk − Pnk vk|
1
m
∑m

k=1(Pnk vk + Pnk vk) + γn
> Cε

)

≤ P
(

max
1≤k≤m

( |Pnk vk − Pnk vk|
Pnk vk + Pnk vk + γn

)
> Cε

)
≤ m exp(−nε2γn/2) → 0,

where the last step follows from condition C4′(c). In addition, by
conditions C4′(b)–(c), we have that γn

mQ =
√

c0(1+Hn)Vn
mNQ2 = OPX (1).

Hence, we conclude that

Q2(λ|X) = Q(λ|X) + oPX Q{(λ|X)}. (A.16)

Now we turn to the quantity Q1(λ|X). Define another function class

F̄n =
{

f (x) : ‖f ‖sup ≤ C1
Vn
m

, J1(f ) ≤ C2
V2

nH2
n

m2

}
,

where Vn and Hn are as defined in conditions C4′(b)–(c) and C1, C2 are
some constants. By applying Lemma A.3 to the function class F̄n with

εn = ε and γN =
√

c0(1+Hn)Vn
mN , which satisfy (A.12) under conditions

C4′(b)–(c), we have that

P

(
sup

f ∈VN

|PN f − Pf |
PN f + Pf + γN

> Cε

)
≤ exp(−Nε2γN/2).

(A.17)

Define another function

v̄(x) = varε{f̄ (x)} = 1
m2

m∑
k=1

vk(x),

whose derivative is bounded as

|v̄′(x)| = 2
∣∣covε

{
f̄ (x), f̄ ′(x)

}∣∣ ≤ 2
m

√
varε{f̄ (x)}

√
varε{f̄ ′(x)}

≤ 2
m

√√√√ 1
m

m∑
k=1

vk(x)

√√√√ 1
m

m∑
k=1

varε {̂f ′
k(x)}.

From the above two equations/inequalities, under conditions C4′(b)–
(c), one has that

‖v̄‖sup ≤ 1
m2

m∑
k=1

‖vk‖sup
1
m

OPX (Vn),

and that

J1(v̄) =
∫
X

{v̄′
k(x)}2 dPX(x)v̄

≤ 4
m2

∫
X

⎧⎨⎩ 1
m

m∑
k=1

vk(x)

⎫⎬⎭
2 1

m
∑m

k=1 varε {̂f ′
k(x)}

1
m
∑m

k=1 vk(x)
dPX(x)

≤ 4
m2

{
max

1≤k≤m
‖vk‖sup

}2 ∫
X

max
1≤k≤m

varε {̂f ′
k(x)}

vk(x)
dPX(x)

= 1
m2 OPX (V2

nH2
n)
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Therefore, under conditions C4′(a)–(b), we have that

v̄(x) ∈ F̄n in probability measure PX .

Using the facts that Q = Pv̄ and Q1 = PN v̄, a direct application
of (A.17) gives that

P
( |Q1 − Q|

Q1 + Q + γN
> Cε

)
= P

(
sup

v̄∈V̄N

|PN v̄ − Pv̄|
PN v̄ + Pv̄ + γN

> Cε

)
≤ exp(−Nε2γN/2) → 0,

where the last step follows from condition C4′(c). Furthermore, by
conditions C4′(b)–(c), we have that γN

Q =
√

c0(1+Hn)Vn
mNQ2 = OPX (1).

Hence, we conclude that

Q1(λ|X) = Q(λ|X) + oPX {Q(λ|X)}. (A.18)

Combining Equations (A.16)–(A.18), we have that

1
Nm

∑m
k=1 tr(A2

kk)

tr(ĀT
mĀm)
N

= Q1(λ|X)

Q2(λ|X)
= OPX (1). (A.19)

By the definition of Ām, it is straightforward to show that

{ 1
N tr(Ām)}2

1
Nm

∑m
k=1 tr(A2

kk)
= 1

N
{ 1

m
∑m

k=1 tr(Akk)}2

1
m
∑m

k=1 tr(A2
kk)

≤ 1
N

1
m

m∑
k=1

{tr(Akk)}2

tr(A2
kk)

= 1
m

m∑
k=1

{N−1tr(Akk)}2

N−1tr(A2
kk)

,

where the second last inequality follows from Cauchy–Schwartz
inequality. Combining the above inequality and (A.19), under
condition C4′(a), we finally have that

{ 1
N tr(Ām)}2

{ 1
N tr(ĀT

mĀm)} = { 1
N tr(Ām)}2

1
Nm

∑m
k=1 tr(A2

kk)

1
Nm

∑m
k=1 tr(A2

kk)

{ 1
N tr(ĀT

mĀm)}
= oPX (1),

which completes the proof.
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