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ABSTRACT

The inevitable increase in real-world robot applications will,
consequently, lead to more opportunities for robots to have
observable failures. Although previous work has explored
interaction during robot failure and discussed hypothetical
danger, little is known about human reactions to actual robot
behaviors involving property damage or bodily harm. An
additional, largely unexplored complication is the possible
influence of social characteristics in robot design. In this work,
we sought to explore these issues through an in-person study
with a real robot capable of inducing perceived property dam-
age and personal harm. Participants observed a robot packing
groceries and had opportunities to react to and assist the robot
in multiple failure cases. Prior exposure to damage and threat
failures decreased assistance rates from approximately 81%
to 60%, with variations due to robot facial expressions and
other factors. Qualitative data was then analyzed to identify
interaction design needs and opportunities for failing robots.
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INTRODUCTION

Human interaction with robots will likely become a daily
occurrence as affordable, commercially available robots prolif-
erate into society. Robots will be coworkers in factory settings,
autonomous vehicles will drive on public roads, service robots
will interact with customers and employees in retail settings,
and home assistants will perform tasks that extend beyond au-
tomated floor cleaning. As these interactions become increas-
ingly common, people will be more likely to encounter system
failures that can damage their trust in their interaction partners.
Of particular concern are severe failures, which will be at the
margins of the interactive experience because they, hopefully,
will be rare. However, these points of friction are memorable
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Figure 1. A participant reacting to an erratic arm movement.

and activate the imaginations and concerns of end users [31].
Therefore, we seek to deepen the community’s knowledge and
inform new design efforts at this under-researched boundary
of human-robot interaction.

Failures by autonomous systems, including robots, have raised
many questions for designers and system developers in recent
decades (e.g., [31, 21, 3, 15]). Ideally, robots will correct
themselves after a performance failure, but they will still need
to salvage their relationship with their human partner in order
to proceed with the interaction and leave a positive impression
[21]. In scenarios where the robot cannot self-correct, it is
possible to leverage the relationship with the human partner to
obtain help. This is more robust than engineering appropriate
self-recovery methods for all potential failures. However, it
raises the question of whether and under what circumstances
a robot can rely on human assistance, and if a robot’s appear-
ance and behavior can affect this process. These issues are
inextricably intertwined with people’s trust in a system.

It is also unclear how severe failures influence human will-
ingness to support robots during minor failures. Currently,
minor failures are inevitable; robots are not yet perfect despite
constant updates and improvements. For example, a robot
may fail to pick up an object because of miscalibrated cam-
eras. This type of failure is very different from failures where
personal risk or property damage are possible.

As such, the degree and type of prior failure are also likely to
affect a person’s willingness to assist a failing robot. As robots
have become safer and interact more with humans, research
has begun to expand into behavioral and social mechanisms


https://doi.org/10.1145/3322276.3322345
https://978-1-4503-5850-7/19/06...15
mailto:permissions@acm.org
mailto:as7s]@andrew.cmu.edu
mailto:ceci@morales.com
https://doi.org/10.1145/3322276.3322345
https://978-1-4503-5850-7/19/06...15
mailto:permissions@acm.org
mailto:as7s]@andrew.cmu.edu
mailto:ceci@morales.com

that can impact people’s feelings and opinions about robot
failure (e.g., [31, 3, 6, 27]). While it is already known that
people’s trust in and willingness to work with a robot can be
lowered by failure, less is known about how people respond
to or behave after different types of failure, especially when
their safety is compromised. Previous work where participants
experienced autonomous systems in ways that could be inter-
preted as severe risk have focused on specific interactions (e.g.,
[27, 30]). Additionally, it is not clear how responses may be
attenuated by different interaction features of the robot, such
as the presence of social signals like a face, that can affect
transparency and human sense-making of its behaviors.

Because different perspectives help shape eventual user experi-
ences in practice, designing to effectively manage interactions
during failure requires an intersection of disciplines. Our inter-
disciplinary team explored this area of research by examining
human reactions and willingness to help an autonomous robot
during failures that presented different levels of personal and
property threat. We examined how the timing of these failures
and the presence of a face as a social signal during the failures
affected these reactions. Additionally, we analyzed interview
responses from the research participants to explore why they
did or did not assist the robot as well as what design choices
and experiences might induce them to help a failing robot.

This paper describes our effort to provide new interaction
design insights on the following questions:

e How does previous exposure to robot failures impact a
person’s willingness to help when the robot cannot complete
a task?

e How does adding an expressive face to the robot influence
people’s perceptions of it and willingness to help it?

e How do different types of failure influence a person’s trust
in the robot?

e Does the timing of a failure influence people’s ratings of
performance, safety, or trust after an interaction?

e How can we convey when help is wanted?

Based on our exploration of these questions, we present a set
of initial interaction needs and opportunities for encouraging
preferable human behaviors during robot failure scenarios.

RELATED WORK

Because it is hard to simulate risk scenarios convincingly, little
is known about the relationship among robot-inflicted personal
physical risk, property harm, and robotic failure. However,
previous work focused on human willingness to help robots,
how robot social expressiveness influences human perceptions
and preferences, and robot communication of status and errors.
Our work is situated at the intersection of these topic areas.

Q1: Previous exposure/willingness to help

There is extensive previous research addressing how robots
fail and how humans respond to those failures (for review,
see [14]). However, little of this research addresses how robot
failures affect whether humans assist them in future tasks. In

general, people are willing to help robots when they are specif-
ically asked to do so in the course of robot task completion.
For example, Rosenthal and Veloso [28] examined scenarios
where a robot would need a human’s assistance to complete a
task, such as pushing an elevator button or making coffee for
an armless robot, and found that people were willing to help,
particularly if they were already in the appropriate location
to do so. Likewise, Knepper and colleagues [17] designed
a system that asked for help and found that it was particu-
larly effective when it used specific verbal instructions. Also,
Brooks [3] reported that people were more effective at helping
a robot using a phone app than using an on-robot interface
of lights and buttons. However, the aforementioned research
does not examine what happens when assistance is requested
after previous robot failures with significant potential risk.

Q2: Expressive face/perceptions and willingness to help
Many robots have screens or other displays that can be lever-
aged to indicate status or provide social input to human inter-
action partners. A commonly used display is some form of
face, which is included in many commercially available home
and research robots, such SoftBank’s Pepper and NAO and
ANKTI’s Cozmo and Vector. There has been a great deal of
inquiry into how to design robot faces to communicate desired
social characteristics and elicit desired social responses from
humans. Complex eyes and multiple features have long been
linked to the perceived human-likeness of robots [10], and the
presence of expressive features impacts people’s perceptions
of robots as intelligent, friendly, and suitable or unsuitable for
certain types of work [16]. While this previous work high-
lights the importance of robot expressivity in working and
communicating with humans, there exists limited research on
designing robot expressions that facilitates receiving help from
humans when help is necessary.

Q3: Differences in failures vs. trust

‘Within the context of automation, trust has been defined as “the
attitude that an agent will help achieve an individual’s goals in
a situation characterized by uncertainty and vulnerability” [20].
Human-robot trust is believed to differ from human-human
trust in part because of a lack of mental states and intentions
on behalf of the robot. Muir argues the human-robot trust is
developed based on faith, dependability, and predictability,
in that order, whereas person-person trust follows the reverse
order [23]. When a human is unfamiliar with a robot, they
need to learn about and observe the robot in order to determine
an appropriate degree of trust; failure behaviors are a key
component of this assessment [33].

A few studies have examined the relationship between hu-
man trust in robots and failures or actions implying personal
risk. Using questionnaires accompanied by staged video clips,
Adubor and colleagues [1] found that the perceived severity
of a failure was tightly coupled with perceived risk to hu-
mans (personal risk) rather than risk to the robot’s task and
object (property risk). Robinette and colleagues [27] induced
a sense of personal risk by simulating an emergency situation
in which participants were encouraged to follow the directions
of a guide robot that had previously demonstrated erroneous
direction-giving behavior. Participants uniformly followed



the robot’s instructions, which suggests that people may place
too much trust in robots; however, it is difficult to determine
whether participants truly believed there was an emergency
that impacted their personal safety. In a study by Rothen-
biicher and colleagues [30] that utilized a costumed driver to
understand interactions between pedestrians and autonomous
vehicles, some participants exhibited clear signs of perceived
personal risk, implying a need for better communication be-
tween autonomous systems and bystanders.

Property risk has also been explored at a limited scale. For
example, Salem and colleagues [31] evaluated whether hav-
ing a robot make mistakes resulting in property risk affected
people’s compliance with its instructions. Participants rated
the robot as less trustworthy and reliable when exposed to
the errors, but still followed its instructions. The researchers
also determined that participants were more likely to follow
instructions in cases where the damage could easily be undone.
Correia and colleagues [5] found that when a robot justified a
failure during a collaborative task where the only risk was to
game success, the recovery strategy only impacted ratings of
the robot’s trustworthiness when failures were not very severe.

People do not want robots to fail—especially when personal
risk is involved—yet when exposed to robot failures, they do
not always understand or respond. This conflict surfaces a
need to better understand how designers may create robots
that are able to fail safely and legibly and calibrate trust with
their users during and after exhibiting failures.

Q4: Timing of failure

Desai and colleagues [9] created a sense of material risk in a
task by tying robot performance to the ability of the partici-
pants to achieve a financial payment. They determined that the
timing of errors influenced trust in the robot such that an error
occurring at the end of a session more negatively affected post-
session participant ratings of trust than errors that occurred
at the beginning of a session. Further investigation observed
real-time changes in trust and found that low reliability earlier
in the interaction had more detrimental impact on overall trust
than periods of low reliability later in the interaction [8]. Con-
tinuous trust measures that can capture evolving opinions over
time have also been championed by other research [36].

Likewise, Sarkar and colleagues [32] reported that participants
who rated a robot before and after an interaction where it
displayed faulty behaviors reduced their ratings of the robot’s
trustworthiness and safety. It also seems possible to prime
trust before task initiation. Preliminary research suggests that
giving participants some control over a robot’s execution of a
planned task—specifically, pushing a button to start the task—
may result in greater trust in the robot [35].

Another study found different effects of error timing and per-
ceived levels of risk on robot trust. Rossi and colleagues [29]
used hypothetical scenarios to examine how the magnitude of
a robot’s errors affected whether participants trusted the robot
to help in an emergency described later in the experiment. Peo-
ple’s reported trust in the robot was inversely correlated with
error severity, and this was particularly true when severe errors
occurred early in the storyline. However, the experiment was

performed online using storyboards, so it is difficult to know
if this same pattern of effects would replicate in a real-world
scenario with genuine risk.

However, other work saw different timing influences. Lucas
and colleagues [22] examined how social dialogue affected
conversation errors at various points during two ranking tasks.
If an error occurred early in the experiment, the robot could
recover its influence, particularly if social dialogue occurred
later in the experiment. However, errors late in the experiment
had more detrimental effects on the robot’s ability to influ-
ence participants, particularly if they had previously engaged
in successful social dialogue with the robot. Desai and col-
leagues used a non-social robot [9, 8], so it is possible social
characteristics alter the influence of timing.

Q5: Conveying when help is appropriate

Multiple methods have been developed as means for conveying
robot status to human bystanders. People are able to interpret
light signals on unfamiliar robots based on previous heuristics
about signal patterns and meaning [2]. Similar success has
been found for icons to indicate whether the robot is okay,
needs help, is safe or dangerous, or has shut off and also for
audio signals [3]. Sound is particularly useful for signalling
problems, and lighting cues can convey levels of urgency [4].

However, the absence of such indicators could be confusing
when observing only the robot’s actions. Humans, with rea-
sonable accuracy, can often tell when another person needs
help through observation alone. There is some evidence that
humans can do this with robots too. Kwon and colleagues [18]
designed a system for generating expressive motions for a
robot that indicated both the desired action and why the robot
could not complete the action. According to questionnaire
data, these movements helped participants identify the robot’s
goal and the cause of its failure. The movements also encour-
aged participants to help the robot and increased willingness
to collaborate with the robot in the future.

METHOD

Participants

We recruited 64 participants (age M = 27, SD = 10.0; 35
female, 27 male, 2 other/undisclosed) using a local participant
pool and word of mouth. The participants were required to
be at least 18 years of age, speak fluent English, and have
normal or corrected-to-normal hearing and vision. We also
asked that participants be able to stand for at least 30 minutes
and move their arms and hands freely. All participants were
ignorant of the true nature of the study and were told that they
would interact with a robot in a grocery store setting. This
research was approved by our Institutional Review Board, and
participants underwent an informed consent process where
they were notified that they could discontinue the experiment
at any time if desired. They were compensated for their time.

Upon arrival, each participant was randomly assigned to one
of the 16 condition combinations, resulting in four participants
completing each combination. Before the interaction, the
participants indicated their familiarity with computers and
robots on a 7-point Likert Scale (7 being the highest). They



also indicated their willingness to work with the robot on a
scale from 1 to 5 (5 being Strongly Agree). Most participants
indicated significant familiarity with computers (M = 5.75,
SD = 1.07) and moderate familiarity with robots (M = 3.38,
SD = 1.50). In general, participants reported being willing to
work with robots (M = 4.27, SD = 0.65).

Conditions

We designed a between-subjects experiment to examine differ-
ent types of failures and their effects on participant willingness
to assist the robot. While this reduces the ability to run com-
parative statistics, it supports exploration of the design space
in order to inform future work. Each participant was exposed
to one of the sixteen combinations of conditions, as shown in
Figure 2. In our scenario, an autonomous Rethink Robotics
Baxter robot bagged groceries for the participant. It bagged 11
items, with 3 failures occurring at items 6, 9, and 11. The fail-
ures varied in type, whether they caused risk to the person or
property, and whether they increased or decreased in severity
over time. Additionally, we varied whether participants saw
the robot with a working face display.

Risk Conditions

While we were interested in how humans responded to prop-
erty and personal risk, we were concerned that the specific
stimuli may matter. Therefore, we utilized two types of stimuli
within each of these factors. There were four ways in which
the robot caused personal or property risk of varying degrees:

e Personal Risk, Throwing (T) - The robot grabbed a 6 cm
x 10 cm foam potato and, while swinging the arm towards
the bag, open its gripper and threw it in the direction of the
participant. This was designed to fly over the participant’s
left shoulder.

e Personal Risk, Erratic Movements (E) - The robot picked
up a small box of cereal and moved its right arm in a series
of four rapid movements: (1) towards the grocery bag, (2)
changing directions towards the opposite side of the table,
(3) above its head, and (4) swinging down to drop the box
in the middle of the table. During this path, the box was
waved very close to the participant.

e Property Risk, Floor (F) - The robot picked up a plastic
can of tomato sauce and appeared to move along a trajectory
to place it in the bag. Instead, the robot pushed the bag and
its contents off of the table.

e Property Risk, Crunch (C) - The robot picked up a small
bag of potato chips and, in doing so, noticeably crunched it.

In addition to these failures, each participant also saw a failure
case that caused no risk to person or property. For this As-
sistance (A) stimulus, the robot attempted to pick up a small
cereal box. In the first attempt, the robot closed its gripper just
above the box; in the second attempt, the robot grabbed the
box and lifted it 10 cm above the table and then dropped it;
and in the third attempt, the robot completed the trajectory of
putting the item inside the bag if the participant had assisted
in placing the cereal box under or in the gripper. Although
this occurrence happened at different points in the procedure
for different participants, it occurred in exactly the same way

every time and was used to measure whether the participants
were willing to enter the robot’s workspace to help.

Because ordering has been shown to impact human perception
of trust [9], we manipulated whether the risks escalated or de-
escalated to examine timing effects in participant reporting. In
the ascending order of severity, the first failure the participant
observed was the Assistance opportunity, and the last failure
they observed was a Personal Risk case. In the descending or-
der of severity, the first failure observed was from the Personal
Risk condition and the last was the Assistance opportunity.
Figure 2 illustrates the study design, with the first lines of the
Display and No Display conditions in the descending order
and the second lines in the ascending order.

Display Conditions

To examine if participants’ opinions and interactions would
be affected by social signals that acknowledged the robot’s
performance, half of the participants saw the robot’s face dis-
play turned on and showing custom facial expressions. These
expressions included happiness, anger, surprise, and sadness,
and were designed in previous research with Baxter robots
[11]. The happy, surprised, and sad faces were blue, and the
angry face was red. The robot displayed a happy face during
successful trials. During personal risk (T and E) failures, it
displayed an angry face. When it needed help as its gripper
failed to retrieve an object, its display transitioned from happy
to surprised to sad. The other participants saw a dark display.

Apparatus

Baxter is an industrial robot designed for settings where hu-
mans and robots work in close proximity. While not widely
known by the general public, it is safe due to the mechanical
design of the arms. To the uninformed, Baxter can be intimi-
dating because it is larger than most humans, red, and typically
assumes an unnatural posture (elbows up, hands down).

In our study, the Baxter robot autonomously found and acted
on the items to be bagged. We used visual markers [25]
on each item to simplify the task of identifying each item,
which was assigned to either successful bagging or specific
failure actions. Four sensors were used for the study, shown
in Figure 4: a Microsoft Kinect Sensor, a Stereolabs ZED
camera, a GoPro HERO3+ Silver Edition, and Baxter’s right
hand infra-red (IR) sensor. The Microsoft Kinect was aimed
downward to detect the objects on the table and Baxter’s right-
hand IR sensor was used to detect the distance from the gripper
to the object. A neck-mounted ZED camera was used to detect
each participant’s torso position and distance from the robot.
We captured the participant’s responses with a GoPro HERO3+
mounted on the robot’s chest. Finally, a pair of Creative Inspire
T12 speakers played recordings of Baxter’s voice greeting the
participants and telling them each item’s name and price.

Environment

The study was conducted in a 3.7 x 2.7 meter (12 x 9 feet) area
within a larger room. Black curtains isolated the space from
the rest of the room. The robot was located on one side of a
table while the participant stood on the opposite side facing the
robot, as represented by the ‘X’ in the Figure 5. The speakers
were positioned on both sides of the table to simulate the voice
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Figure 3. Happy, angry, surprised, and sad expressions [11].

coming from the robot. Before the experiment began, the first
six grocery items were placed on the table. The grocery bag
was located in the closest left corner of the table (from the par-
ticipant’s perspective). The experimenter started the robot and
moved to the other side of the curtain to leave the participant
alone with the robot during the stimulus presentation.

Procedure

The experimenter first obtained informed consent and adminis-
tered a preliminary survey for the participant. The participant
was then escorted to stand in front of the robot while instruc-
tions were given. The experimenter introduced the study as an
investigation of how robots should perform in a grocery store
setting and the interactions they would have with humans there.
Participants were asked to be patient with the robot because
the study was a simulation and the robot was slower than nor-
mal. Participants were told that the grocery bag should remain
along the left side of the table because the robot recognized

2L ZED
|:|"/—‘camera

GoPro |

o HERO3#
=

Kinect

7,

3
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T12 Speaker
System
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Figure 4. Additional sensors used in the study.

the location of the bag to be in that general area. This explana-
tion was provided to deter participants from moving the bag
around when the robot was placing the groceries. They were
also told that the robot would say the grocery item’s name
and price prior to picking up the item and that they could feel
free to help the robot if it needed assistance with the item. As
the experiment began, the experimenter would leave the task
area and explain that they would not talk until the study was
complete in order to make the experience more realistic.

Once the robot and the participant were alone in the task area,
the robot welcomed the participant and asked if they had found
everything they were looking for. Then, the robot began by
saying an item’s name and price and started its trajectory to
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Figure 5. Experimental setup, with the participant at ‘X’.

pick up the first item. The robot performed five successful bag-
ging cases before failing on the sixth. Depending on whether
the participant was in an Ascending or Descending condition,
the participant would experience the Assistance or Personal
Risk stimulus first, respectively. Once the failure occurred,
the experimenter returned and placed three more items on the
table; the first two were successes and the last was a Property
Risk failure. Depending on the condition, this second failure
entailed either crunching a bag of chips (C) or throwing the
grocery bag and its contents to the floor (F). After this, the
experimenter returned and placed two more objects on the
table, where the first was a success case and the second was
a failure case. Once again, depending on the Ascending or
Descending conditions, the participant would experience the
Personal Risk or Assistance stimulus, respectively. By the end
of the experiment, all participants experienced the robot inter-
acting with 11 total items, where three were failures and eight
were successes. After the Personal Risk case, the experimenter
would look at the computer with a perplexed expression to
simulate not knowing the source of the problem. This was
done because participants during study piloting were confused
by the experimenter’s lack of response to these events.

Finally, the experimenter administered a post-test question-
naire, paid the participant, and debriefed them about the real
intent of the study. During the debriefing, the experimenter
explained that the study was not about assessing the perfor-
mance of a robot in a grocery store setting, but rather about
trying to understand people’s responses to robot failure. The
experimenter discussed the three main types of failures expe-
rienced and the rationale for the ordering of the failures with
the participants to see if there were any relevant comments.
Participants were also told about the Baxter screen to see if
this variable also impacted people’s perception of the robot.
The study lasted up to one hour.

Measures

In addition to our measure of documenting helping behavior
during the Assistance opportunity, participants provided infor-
mation about themselves and their perceptions of the robot
via two surveys. Before the experiment, they provided their
demographics, familiarity levels with robots and computers,
their general impressions of robots, and their willingness to
work with them. Upon completion of the interaction, they

Percentage of Participants

Descending
Assistance Last Failure Seen

Ascending
Assistance First Failure Seen

Figure 6. Helped the Robot in the Assistance Trial

responded to four questions that were modified from the Muir
trust questionnaire [23] and 22 questions about their impres-
sions of the robot and feelings about the interaction. (Further
details are provided at [12]). An experimenter interviewed the
participants after completion of the questionnaire to follow up
on their responses and ask more open-ended questions.

RESULTS

Quantitative Results

We conducted an exploratory statistical data analysis on the
quantitative survey data to understand trends and key factors.
These quantitative analyses should be viewed as informative,
rather than statistically conclusive, due to the design of our
study. Unless otherwise mentioned, we ran four-way ANOVAs
to evaluate our quantitative data. All post hoc analysis was
done with honestly significant difference (HSD) Tukey tests.

Previous exposure to failures and willingness to help

We performed directional Fisher’s Exact Tests to explore
whether exposure to prior failures would result in decreases
in participants’ willingness to assist the robot. Out of the 32
participants who had the Assistance opportunity before see-
ing failures (the Ascending condition), 26 helped the robot
(81.3%). For the 32 participants in the Descending conditions
who saw failures before the Assistance opportunity, only 19
helped (59.4%). Thus, there was a significant main effect of
these order conditions, p = 0.0497, confirming that exposure
to failure decreased willingness to help. This is represented in
Figure 6. Within the Descending condition, participants were
divided such that half of them saw each property harm condi-
tion. Twelve of 16 who saw the contained Crunch condition
(which only affected a single object) assisted, whereas only
seven of the 16 in the more severe Floor condition (which
affected many objects) did. This finding was not statistically
significant. There was also no significant main effect for the
personal risk condition. When directly asked in the survey,
“I was willing to help the robot during the experiment,” there
were no significant differences across conditions.

Role of an expressive face

We hypothesized that giving the robot a face to signal its status
would improve participants’ willingness to assist. When we
examined the videos during the Assistance opportunity, 24
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Figure 7. Self-Reported Assistance vs. Display conditions

of the 32 participants assisted the robot in the Display condi-
tion relative to 21 of 32 in the Blank condition, a difference
that was not significant. However, a one-way Fisher’s Exact
Test for the survey responses, where we asked participants
if they intervened during the experiment to help the robot,
did find a significant main effect of Baxter’s Face Display,
p = 0.011, where more people in the Display condition re-
ported intervening (32/32) compared to the Blank condition
(25/32) (see Figure 7). The differences in these two measures
likely arise from some participants answering the survey to
indicate whether they assisted the robot at any point in the
study as opposed to during the Assistance opportunity.

Size and scope of failures and trust

We used the Muir trust questionnaire [23] and one additional
question to assess trust in the robot. For the first Muir question-
naire prompt, “To what extent can the system’s behavior be pre-
dicted from moment to moment?”, we found a significant main
effect of the Property Risk type using a Wilcoxon rank sum test
to account for non-normality, Z = —2.55, p = 0.011. Partici-
pants in the more contained Crunch condition (M = 6.44 out
of 10, STD = 1.88) rated the robot as more predictable than
those who saw the Floor condition (M = 5.41, STD = 2.12).
We found a similar pattern of effects for the question, “To what
extent can you count on the system to do its job?”, Z = —2.55,
p = 0.039; Crunch M = 6.52, SE = 0.38; Floor M = 5.31,
SE = 0.38. An ANOVA indicated similar results for the ques-
tion, “What degree of faith do you have that the system will
be able to cope with all system states in the future? In other
words, how much faith do you have in the system being able to
do its intended job with a variety of items and environments?”,
F(15,48) = 4.58, p = 0.037; Crunch M = 5.41, SE = 0.42;
Floor M = 4.12, SE = 0.42. For these questions, there were
no significant main effects of Personal Risk type.

Although the type of property harm affected these specific
components of trust (predictability, dependability, and coping
with future states), asking participants about trust directly did
not yield clear results. The last Muir questionnaire prompt,
“Overall, how much do you trust the system?”, and the prompt,
“I think the robot is trustworthy,” did not show any significant
main effects across failure conditions.

Impact of timing on perceived performance, safety, and trust
We examined whether having extreme failures towards the
end of the experiment lowered overall participant ratings of
performance, safety, and trust due to recency effects in mem-
ory. Interestingly, there were few effects of Ascending ver-
sus Descending on responses. Participants in the Ascending
condition provided higher ratings than those in the Descend-
ing condition for the statement, “I expected the robot to fail,”
F(5,48) =5.23, p=0.027; Ascending M = 2.78, SE = 0.18;
Descending M = 2.19, SE = 0.18. However, there were no
effects of order on ratings for the statements: “Rate the robot’s
performance”; “Despite the failure, the robot was helpful in
bagging the groceries”; “The failure the robot had seemed pre-
ventable”; “The failure of the robot was severe”’; “Rate your
level of confidence in the robot before the failure occurred”;
or “Rate your level of confidence in the robot after the failure
occurred”. There were also no order effects on questions about
perceptions of robots in general, including “I think robots are
trustworthy” and “I do not trust robots like I did before.”

Other notable findings

We were also interested in the perceived safety of the system
under various levels of risk, hypothesizing that more severe
failures would cause users to feel less safe. Four survey state-
ments assessed participants’ feelings of safety around Baxter
across different conditions: “During the experiment, I felt
unsafe near the robot”, “The robot’s behavior has harmful or
injurious actions”, “I felt physically threatened by the robot”,
and “I think robots are dangerous”. We found no significant
main effects of conditions on these measures. However, we
noted that our Personal Risk condition failures did cause 53 of
the 64 participants to visibly move away from the robot.

Qualitative Results

We examined and analyzed responses to four open-ended ques-
tions in the questionnaire and interview data with an eye to-
wards our research questions and other interesting findings.

Role of an expressive face

When we interviewed the participants after completion of the
experiment, we found that a number of the participants who
saw a face displayed on the robot’s screen believed that the
face display was a useful signal. Fifteen of those 32 partic-
ipants mentioned that the face was a positive and/or helpful
feature, and only five reported that they did not notice the
facial expressions. A few noted that the faces helped them
humanize or empathize with the robot. Eleven people reported
that having the robot display emotional expressions that fore-
casted its failures changed their views of the robot, specifically
noting that they interpreted it as the robot getting angry at
them or sad that it was struggling to complete a task. Three
participants suggested that the face design that they saw was
not optimal for reasons including not knowing why it was an-
gry (P12), sending an ambiguous signal (P13), and not actively
calling attention to the status in the absence of audio (P16).

Of the 32 participants who saw a blank screen in lieu of the
face display, 10 believed a face would be a positive addition.

P33: “I was scared that it didn’t have a face; it looks weird.
A face would be better.”



P60: “Faces help make people feel more comfortable and
be able to approach the robot more.”

However, another 8 participants disagreed about the use of a
face and thought it was unhelpful and even creepy.

P56: “Faces would make me wary because it is trying to
be something it is not, it is trying to be a human. I am fine
with it being a machine doing its job.”

How can robots convey when help is wanted?

Although we specifically researched the use of changing facial
expressions during failures, we acknowledged that it may not
be the most effective or only effective method of signalling
issues to people interacting with robots. When all of the
participants were asked how the robot could effectively let
them know if something was wrong, 14 of the 64 participants
recommended using the facial expressions and 10 participants
recommended using the screen for an error message. The
participants also suggested additional methods of signalling:
29 suggested audio messages, 10 flashing lights, 6 an alarm,
and 4 a system shutdown. The most popular method, audio
messages, would address the issue of not noticing the face
display that was mentioned by multiple participants.

Notable findings: Open-ended question responses
Open-ended prompts at the end of the written questionnaire
provided additional information about the participants’ experi-
ences. The majority of the participants helped the robot during
the Assistance trial (45 out of 64, 70.3%). Only 17 participants
responded with a yes to the question, “Did the failure of the
robot discourage you from helping it?”, and 11 of them still
helped at that time point. Participants who said they were not
discouraged from helping had multiple motivations:

P7: “I felt that the task was the important thing, and that if
the robot was unable to accomplish a specific aspect of the
task that I could help complete the task.”

P37: “I understood that because the robot was in the testing
stage, it was likely to make mistakes and I felt that if I did
not assist the robot my lack of assistance would hinder the
robot in completing its task.”

P54: “I wanted it to succeed in its task.”

The participants who said they were discouraged provided a
variety of reasons, such as:

P25: “It seemed on purpose like it was purposely doing
wrong.”

P21: “I was curious to observe. My reaction was not to
treat it as though it wanted help.”

P10: “I was wary of getting within its arms’ reach and was
ready to dodge any more projectiles. I was wary of getting
hit by it.”

Three participants cited wariness and safety concerns.

By asking the participants if they believed the failure was

an accident, we uncovered a number of issues that might

change people’s interpretations of their interactions with a
robot based on the contexts of those interactions. First, 31 of

the participants did not believe that the failures were accidental.
In fact, many noted that they believed the failure was part of
the experiment, with a few specifically commenting that they
believed we were measuring their reactions. For example,

P20: “It was not. The test cases were scenarios to see the
person’s reaction to the failure.”

An additional 16 participants were unsure whether the failure
was accidental, and only 17 fully believed it was an accident.
Of the participants who were unsure about the purposefulness
of the failure, a few mentioned that some failures seemed more
accidental than others, including:

P29: “I think the first failure when the robot dropped the
cereal box was an accident since the robot looked sad, but
near the end when the robot looked angry and failed to bag
the item, it did not seem like an accident.”

P24: “For some of the mistakes in the beginning yes to
some degree. The mistakes towards the end I felt were
programmed tests.”

Some of these results about discouragement and accident sta-
tus might have been skewed by prior questionnaire items, and
it is still obvious to research participants that there is an ex-
periment of some sort occurring. There is also a presumption
of safety for IRB-approved research in a university context,
which was specifically noted by one of the participants, and
an experimenter remained nearby during the protocol.

When asked if they would want a robot to assist in everyday
life, 40 participants agreed, 9 were unsure, and 15 disagreed.
Those willing to have a robot help with tasks cited a variety of
reasons, including robots taking over repetitive tasks, reducing
human error, helping people with disabilities, and completing
household chores. Those who did not want a robot primarily
cited malfunctions, inefficiency, and taking human jobs.

Participant Recommendations

Participants offered a number of suggestions for how the robot
could recover from an error. Eleven proposed that the robot
offer an apology and two others recommended any acknowl-
edgement of the mistake. One person noted that the robot
would have to correct the error to regain their trust, and an-
other wanted a means to give feedback to reduce future errors.

Participants were asked how to improve the interaction. Sev-
eral suggested that they would be more comfortable interacting
with robots in their daily lives if they were educated about how
the robot worked, how to help the robot, and what the risks
were during the interactions. One participant specifically men-
tioned that people have expectations entering the interaction
and suggested positioning the robot as needing help.

Interestingly, the participants were divided in whether the
robot should be more humanlike or machinelike. Some be-
lieved familiar, humanlike features would help interactions:

P45: “Making it more human would make me more com-
fortable.”

P43: “To bridge humans with technology, you make tech-
nology more humanlike.”



P35: “A face... would be a good connection with humans.”

Two participants also noted that human body language is a
useful cue that the robot could not leverage. However, others
disagreed that humanlike features would be desirable:

P52: “Humanizing it would make it less comfortable.”
P66: “Robots doing human things is weird to me.”

These findings paralleled those about whether the face was
a useful and positive signal. Also, they are similar to other
contradictory findings with robotic pets [19].

DISCUSSION

Overall, the majority of our participants were willing to assist a
struggling robot, although this willingness was modulated by a
number of factors. Additionally, they provided useful feedback
on how robots can be designed to recover from failures during
an interaction. Specific design needs were identified during
examination of the research questions.

Our first research goal was to examine how previous exposure
to a robot’s failures influenced a person’s willingness to help
when the robot could complete a task. To address this ques-
tion, we compared participants’ responses to an opportunity
to assist the robot either before or after they witnessed notable
failures: throwing an item towards the participant, moving
its arm erratically near the participant, knocking the contents
of the packed grocery bag to the floor, or crunching a single
item. If the robot needed help before a participant saw any of
these failures, 81.3% of those participants assisted the robot.
However, when participants had already seen two of these ma-
jor failures, only 59.4% were willing to assist the robot. The
type of failures seen did not significantly affect willingness to
assist; however, research with greater numbers of participants
may be needed to explore this issue in greater depth.

Our second goal was to explore whether adding a social fea-
ture, an expressive face, to the robot influenced people’s per-
ceptions of it and willingness to help it. The presence or
absence of the face did not affect whether the participants
assisted the robot during the planned assistance trial. How-
ever, all of the participants who saw the face reported helping
the robot when answering the questionnaire, whereas only 25
of 32 participants who did not see the face reported helping.
These differences likely arise from participants helping the
robot during other parts of the study than only the planned
assistance test. Open-ended questions and interview data sug-
gested that participants were not in full agreement over the
usefulness of the face: Although participants overwhelmingly
believed that some signal by the robot was necessary to denote
task failure, some did not notice or like the face, and it was
sometimes seen as an ambiguous signal.

Third, we examined whether the different types and degrees
of failure affected human trust in the robot. For participants
who saw an item being crunched (a contained risk) relative to
those who saw the entire bag of groceries knocked on the floor
(a broader risk), ratings were higher for system predictability,
the ability to count on the system to do its job, and the belief
that the system can cope with all future states. There were no

significant effects for personal risk type. Additionally, there
were no significant differences in the ratings of overall trust in
the system for the property risk or personal risk conditions.

Our fourth research question addressed whether the timing of
a failure would affect participant ratings of robot performance,
safety, and trust in the system. Participants who saw failures
towards the end of the experiment reported higher expectations
that the robot would fail, but there were no differences in rat-
ings of performance, the robot’s helpfulness, the preventability
of the failure, confidence in the robot, or the robot’s trustwor-
thiness. Overall, the order of failures did not affect perceived
safety, trust, or most measures of performance.

Finally, we wanted to explore how the robot could convey
when help is wanted. In addition to previous findings about
the usefulness of the face, participants were asked how the
robot could signal a problem. Other proposed signals included
audio messages, flashing lights, alarms, and system shutdowns.
These suggestions are similar to those made by participants
in previous research [26], who were asked about how au-
tonomous vehicles should signal their status to pedestrians and
how they should behave in the event of an imminent failure.

In addition to our original research questions, we made some
interesting discoveries about how participants interpreted and
responded to the robot’s behavior. Participants provided some
design recommendations for improving the interaction with
the robot. Specifically, they suggested that the robot should
apologize for any mistakes it made and ideally correct its own
behavior. They also believed it would be beneficial to provide
more information about how the robot works, what its safety
features include, and how and when to help it. These findings
are in line with previous research by Lee and colleagues [21]
that found positive effects of recovery strategies such as apolo-
gies, compensation, and options for the user after robot service
breakdowns. Similarly, Hamacher and colleagues [13] found
that these tactics could restore trust in a robot that had failed.

As noted previously, a majority of participants in all conditions
assisted the robot when it failed to pick up an item. To do so,
they moved close to the robot—within its reach—and shared
its workspace. Most participants did not report being discour-
aged from helping the robot by its previous failures. Moreover,
their ratings of safety did not differ across the failure con-
ditions. Although one participant noted that IRB-approved
research has implicit safety standards and others did not be-
lieve the behaviors were accidental and uncontrolled, it is
unclear to what degree the context of this study influenced
participant behavior overall. The Baxter robot is larger than
most humans and has thick arms. Unlike an inflatable or a
small robot, the Baxter appears capable of injuring a person
and damaging property. Outside of a laboratory context, it
would probably be wise to avoid entering the workspace of an
unfamiliar robot of its size and apparent strength. For future
interactions between humans and robots in less constrained
environments, it will be important to find a way to convey the
level of danger inherent in these exchanges. These findings
parallel the participants’ suggestions about educating the pub-
lic on how and when to safely interact with the robot. This
information could prevent overtrust in the robot.



Even though this particular interaction with a robot was not
flawless, a majority of participants reported that they would be
willing to use a robot in their daily lives. In line with previous
research [7, 34], they felt that robots could help with repetitive
or boring tasks, assist people with disabilities, and perform
household chores. No participant specifically mentioned social
interactions as a potential component of a helpful robot.

Limitations

Although our robot’s behaviors successfully led to participant
perception of risk and loss of trust for different types of failure,
this study has limitations. Given that this research was ex-
ploratory, the limitations were a trade-off for broad inquiries.
Many of these limitations could be addressed in future work
that targets specific aspects of the current findings.

Some participants acknowledged having been in earlier
robotics studies, which could have affected their behavior
due to different levels of alertness and suspicion. Because the
study was performed in a laboratory setting, the realism of the
situation was also reduced. An experimenter was also present
to ensure that the study adhered to the plan. Both of these
factors may have impacted participants’ perceptions of the
scenario as truly dangerous or accidental. However, it is still
worth noting that our participants often reacted to the robot’s
behavior as though it was threatening and physically moved
away from the robot during failures.

Another limitation was the relatively low participant count per
combination of conditions; adding more participants could
resolve the question of whether significant trends were due
to mild but meaningful effects in our quantitative analyses.
Because of the exploratory nature of this research, our experi-
ment did not include a full factorial design in order to sample
a much broader research space. Future research can build
upon our work by leveraging our findings to identify impor-
tant follow-up questions and conduct more detailed analyses.
Moreover, it is unclear whether the incidents that were meant
to convey physical harm and property damage did exactly what
was intended. Manipulation checks and design changes could
clarify this issue.

The slowness of the robot arm could also be considered a
limitation; increasing the speed could have made some of the
failures even more threatening. However, tests with a slower
system appeared to lead participants to become distracted and
get comfortable with the robot’s actions. Thus, when the robot
failed, it was usually when the participants were not expecting
it, similar to how failures often occur in a real-life scenario.

Additionally, we only tested one set of faces for the robot,
and participants noted discomfort with the angry face and
ambiguity in how they interpreted the facial expressions. More
research on this design element is needed.

Finally, we believe that using visual markers on the grocery
items reduced the expected capabilities of the robot. However,
participants were told that the study focused on the manipula-
tion aspect, as opposed to perception, so this effect may not
be as pronounced as other limitations.

Design Research Opportunities and Future Work

Based on participant feedback and our own observations, we
think it would be interesting to investigate mitigation strate-
gies after exposure to robot-induced risk, such as apologizing
or compensating the participant. Previous work by Lee and
colleagues [21] found that graceful mitigation strategies for
service issues may affect how participants perceive robots.
Also worth exploring is how people respond to higher risk
failures if the robot forewarns people that the task is difficult
for them or that they are just learning. People might be less
inclined to enter the robot’s workspace or more forgiving of
the robot’s shortcomings. This modification could allow re-
searchers to explore the influence of expectations. Similarly,
educating people about how the robot works and when or how
to help the robot might influence assistance behaviors. Many
robots lack analogies in everyday life, leading to interesting
design challenges when trying to communicate mental models,
common ground, and capabilities. Finally, robots of the future
will conduct self-assessment to detect and respond to their
own failures. This new communication capability will enable
an interesting interaction space that should be explored. All of
these topics would be served well by targeted co-design and
critical design research to determine potential best practices in
robot behavior design in tandem with quantitative studies.

BROADER IMPACT

As mentioned, society is on the cusp of widespread robot use
in daily work, service, and home settings. Some of these robots
will have the ability to damage property and people, even if
programmed to behave safely. This work reveals a pressing
need within the interaction design community to develop new
interaction models and strategies for robot failure.

A concern going forward is how to properly calibrate bystander
trust in robots that are capable of harming humans and to
examine how this trust corresponds to a willingness to help
the robots. It is somewhat alarming that approximately 60%
of the participants previously exposed to personal risk then
entered the robot’s workspace to help the robot. Fatalities with
industrial robots can and do occur as a direct result of human
error and the decision to enter robot workspaces [24]. It is
important to create systems that can signal to users whether
safety has been compromised during a failure.

Also, research and design work on providing robot operators
with suitable interfaces for managing failing robots is under-
way (e.g., [8, 3]), but most future interactions with robots will
likely be bystanders who lack the ability or opportunity to
access dials, displays, and controls. While robots are increas-
ingly being designed to be human-safe and are gaining capa-
bility in complex, flexible environments, society’s increased
exposure to robots has the potential for dire consequences.
This is especially true in cases where human bystanders lack
an interface describing the robot’s goals and planned motion.
This exploratory effort is an attempt to motivate and help guide
principled design research on this topic.
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