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Abstract. We conjecture the existence of four independent gradings in colored HOM-
FLYPT homology, and make qualitative predictions of various interesting structures and
symmetries in the colored homology of arbitrary knots. We propose an explicit conjectural
description for the rectangular colored homology of torus knots, and identify the new grad-
ings in this context. While some of these structures have a natural interpretation in the
physical realization of knot homologies based on counting supersymmetric configurations
(BPS states, instantons, and vortices), others are completely new. They suggest new ge-
ometric and physical realizations of colored HOMFLYPT homology as the Hochschild
homology of the category of branes in a Landau—Ginzburg B-model or, equivalently, in
the mirror A-model. Supergroups and supermanifolds are surprisingly ubiquitous in all
aspects of this work.
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1. Introduction. The categorification of quantum knot invariants start-
ed with Khovanov’s seminal paper [56], where he defined a doubly-graded
homology theory whose homotopy type is an invariant of a knot, and such
that its graded Euler characteristic is equal to the Jones polynomial. This
opened a fast-growing field in low-dimensional topology and started work
on categorification of other quantum knot invariants. Khovanov, Rozan-
sky, Cautis, Kamnitzer and others [57, 58, 12, 13, 11| categorified all sl(V)
Reshetikhin—Turaev invariants colored by arbitrary representations.



Quadruply-graded colored homology of knots 3

We will denote by P%*(K)(q) the Reshetikhin-Turaev invariants of a
knot K colored by a representation A of a Lie algebra g. For a fixed Young
diagram A and a knot K, the sl(N) quantum polynomials P¥V)A(K)(q)
can be organized in a single two-variable A-colored HOMFLYPT polynomial
PA(K)(a, q):

(1.1) PINAK) (q) = P(K)(a = q", q).

Throughout the paper, we are mainly focusing on the reduced polynomials,
i.e. normalized so that the value of the unknot is equal to 1, and unless
otherwise stated, the (colored) HOMFLYPT polynomial means the reduced
(colored) HOMFLYPT polynomial (1).

A remarkable property of the quantum knot invariants and their cate-
gorifications is that they are related to many different areas of mathematics
and physics, all of them bringing new viewpoints to this topic. The rela-
tionship between quantum field theory, in particular Chern—Simons theory,
and the quantum knot invariants was discovered in the celebrated paper by
Witten [94], and the physics insights have been extremely fruitful ever since.
In the case of the categorifications, the realization of knot homologies as the
space of certain BPS states gave rise to various predictions on the structure
of (colored) HOMFLYPT homologies; see e.g. [42] for a friendly introduc-
tion and a review. Thus, Dunfield, the second author and Rasmussen [20]
predicted the existence of a triply-graded knot homology theory which was
later constructed by Khovanov and Rozansky:

THEOREM 1.1 (|58, 78|). There exists a triply-graded homology theory
HE(K) whose Euler characteristic is given by the HOMFLYPT polynomial
of K. For each N > 0 there exists a spectral sequence which starts at HP (K)
and converges to the sI(N) homology H*'V)0(K).

It was shown in |78] that this spectral sequence is induced by a differential
dy on the chain complex corresponding to HP(K). By this reason, and
motivated by the terminology of [20], from now on we will refer to the first
differential in this spectral sequence as to dy or “sl(/V) differential”, while
implicitly assuming the possible existence of higher differentials.

CONJECTURE 1.2 ([20]). There is an involution ¢ on HWN)O(K) ex-
tending the symmetry of the HOMFLYPT polynomial:

(1.2) PP(K)(a,q) = PP(K)(a,q ).

(*) Notation conventions: The reduced versions of the colored HOMFLYPT poly-
nomial, colored HOMFLYPT homology, and the corresponding Poincaré polynomial are
denoted by P*(K), H*(K), and P*(K), respectively. The unreduced versions are denoted

by fA(K), 7 (K), and 2l (K), respectively.
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Furthermore, there are negative differentials dy, N < 0, such that ¢pdy =
d_no¢, and an additional differential dy such that ¢dy = dyo.

A rigid structure predicted by Theorem 1.1 and Conjecture 1.2 enabled
the explicit conjectural description of triply-graded homology of various
knots |20, 35, 39, 40|. Although these conjectures mostly remain open, in
some cases they are confirmed by the recent computations of Hogancamp et
al. [50, 22].

In [44] the second and the third authors extended this picture and con-
jectured various structures in the colored HOMFLYPT homology in the case
of the symmetric (S™) and antisymmetric (A”) representations. With such a
representation A and a knot K one can associate an (a,q,t)-graded vector
space H*(K) such that its Euler characteristic with respect to the t-grading
equals the A-colored HOMFLYPT polynomial P*(K)(a,q) of K. As in the
uncolored case, these homology theories are expected to come with the col-
lection of differentials corresponding to the sl(/V) specializations. The main
new feature is the existence of another collection of the so-called colored dif-
ferentials which give “dynamics” in the sequence of the homology theories
H5"(K), for various r. For every pair of nonnegative integers r and k with
r > k, [44] conjectured the existence of two different differentials d’sﬂﬁ Sk

and dg, o on H°" (K) such that the homology of %" (K) with respect to
d?_}sk is isomorphic to H5" (K) ().

The involution ¢ becomes the so-called mirror symmetry in colored ho-
mology: [44] conjectured an isomorphism between HS" (K) and HA" (K) pre-
serving the a-grading and reversing the ¢-grading. Furthermore, [44] conjec-
tured that the exponential growth property holds for certain classes of knots,
i.e. the size of S"-colored homology grows exponentially in r:

(1.3) dim H" (K) = (dim HP(K))".

Moreover, the refined exponential growth is valid for the two-variable (¢ = 1)-
specializations of the Poincaré polynomials of the corresponding homology
theories. The consistency of all the conjectured properties was demonstrated
in [44] by the explicit computation of homology groups for various knots
and colors satisfying all of them (and conjecturally matching colored HOM-
FLYPT homology). Very recently, Wedrich partially proved the exponential
growth conjecture:

THEOREM 1.3 ([93]). There is a spectral sequence starting at H (K)
and converging to (dim HP (K))" which preserves the homological grading.

(?) As above, these differentials are expected to be defined on the level of chain
complexes and induce the spectral sequences in homology.
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As a corollary, (1.3) would follow from the collapse of this spectral se-
quence given the mirror symmetry between S” and A".

1.1. Fourth grading. In the present article we give a more quantita-
tive description of the conjectures of [44] and extend them to rectangular
diagrams A. This allows us to give a more unified treatment of A"- and
S"-colored homology. The major novelty is endowing the space H*(K) with
the fourth grading. We conjecture that the colored HOMFLYPT homology
HA(K) of a knot K carries four independent gradings: apart from the a- and
g-gradings from the polynomial invariants, there are two homological grad-
ings, denoted t, and t.. If PA(K) and P}(K) are three-variable Poincaré
polynomials of H*(K) with respect to t,- and t.-gradings, respectively, then

(14)  PME)(a,q.t, = —1) = PX(K)(a,q,tc = 1) = PN(K)(a, ).

The appearance of the fourth grading is yet mysterious for us from the
geometric point of view, but it seems to be inevitable. Let us list some
evidence for this.

First of all, in such a way we managed to reconcile the two different
conventions for the homological grading in the case of symmetric represen-
tations: ¢, is the t-grading assigned to a generator of H*(K) in the grading
conventions of [44], whereas one can interpret t. as the ¢-grading assigned to a
generator of H*(K) in the grading conventions of [2, 21, 20, 45]. The “mirror
symmetry” exchanges the two grading conventions. The quadruply-graded
theory H*(K) gives precise re-gradings of all colored isomorphisms, enables
explicit expression in all gradings for the mirror symmetry, and makes the
exponential growth property manifest as a fully refined exponential growth
property of three-variable polynomials. In addition, we found a new self-
symmetry of HN(K). All of this becomes particularly elegant when expressed
in terms of an auxiliary grading, called the Q-grading, defined in the following
simple way when A is a rectangular Young diagram with R rows:

q + tr B tc
(1.5) Q= — R
This new grading, which can be considered as a certain “corrected” ¢g-grading,
cannot be seen at the decategorified, polynomial level, and as the formula
indicates, both {-gradings are needed for its definition. To indicate the re-
grading from (a, ¢, t,,t.) to (a, @, t,t.), we will use the notation #*(K) and
refer to it as the tilde-version of colored HOMFLYPT homology. It is given
by
(1.6) H 11 (K) =M iy s (K.
We note that only in the uncolored case the t,- and ¢.-gradings coincide (as

do the @- and ¢-gradings), and the resulting homology is triply-graded in
agreement with [20].
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1.2. Differentials and supergroups. The second major novelty is that
we extend the differentials dy to a two-dimensional family of differentials
dpjm labeled by Lie superalgebras gl(n|m). This gives a much more natu-
ral treatment of the differentials dy for nonpositive N, together with their
gradings. We expect that these new differentials are nontrivial even in the
uncolored homology (for sufficiently large knots) and bring an interesting
structure both to colored and uncolored knot homology. We also explicitly
describe the interaction between the differentials d,,,,, and the colored dif-
ferentials for the rectangle-colored homology.

While it still deserves a much deeper understanding, the appearance of
gl(n|m) is natural for a number of reasons. Primarily, the representation
theory of gl(n|m) at least partially explains the behavior of the colored dif-
ferentials. For each rectangular Young diagram A we define colored differen-
tials removing any number of columns or rows from A. These differentials
naturally appear from the identification of the representations of the super-
algebra gl(n|m) labeled by two different rectangles A and . It turns out that
these are such that u is obtained from A by erasing some of its rows or some
of its columns. Then the corresponding colored differential, dy_,, closes the
following commutative diagram:

HNK) —D22 (k)
(1.7) dnml ldnlm
HEIM)A () = qyelnim)p i)

In addition, supergroups and the corresponding Lie superalgebras are fa-
miliar in the study of brane/antibrane systems |91, 95]: much like a collection
of N coincident D-branes carries a gauge bundle with the structure group
U(N), a similar system of n branes and m antibranes carries U(n|m) gauge
symmetry. Therefore, since many physical realizations of knot homologies
that we encounter in Sections 4.1, 2.4, 2.6, and 6.4 are based on branes, it
is not inconceivable that the appearance of supergroups and superalgebras
is rooted there (although we will not try to pursue this interpretation in the
present paper).

After the first version of this paper was posted on arXiv, a lot of work on
polynomial invariants and homologies for gl(n|m) was done in mathematics
and physics. We refer the reader to [90, 75, 76, 66, 81| and references therein.

1.3. Main conjectures. All these structural properties are collected in
the conjectures in Section 2. The homology theories H* categorifying the
(reduced) HOMFLYPT polynomials P* are quadruply (a, g, t,,t.)-graded.
We focus on the rectangular R x C' Young diagram A, and the auxiliary
Q-grading is given by (1.5).
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The conjectures include the mirror symmetry between H(K) and HA(K),
that preserves the a-grading and reverses the ¢-grading. Furthermore, there
is a new self-symmetry on H*(K) that reverses the Q-grading.

We also predict the existence of color-changing differentials: for every
rectangular diagram p that is obtained from A\ by erasing either some of its
rows or some of its columns, there exist two different differentials, denoted
d—;—m and dy_, ,, on H*(K) such that the homology of H*(K) with respect to
any of those two differentials is isomorphic to #*(K). And finally, on H*(K)
we predict the existence of a collection {d,|,,} of mutually anticommuting
differentials, labeled by pairs of nonnegative integers (n,m), with n > R or
m > C, such that:

H*(HNK), dppm) = HECIA(E).

Here, H&(")A(K) stands for the (gl(n|m), \) homology that should cate-
gorify the quantum polynomial invariant of K that corresponds to the repre-
sentation A of gl(n|m). Moreover, the colored differentials dy_,,, are related
to the specialization differentials d,,,, for suitable n and m, so that they
form the commutative diagram (1.7).

All four gradings are essential for making the isomorphisms and symme-
tries from above completely explicit. In addition, all these explicit expressions
have a particularly nice and simple form, as we shall describe in detail in
Section 2.

Among many interesting additional structures, we emphasize the refined
exponential growth in the case of the 2-bridge knots and torus knots:

CONJECTURE 1.4. Let K be a 2-bridge knot or a torus knot. Then the
dimension of the r-symmetric homology H°>" (K) grows exponentially with r.
More explicitly, the corresponding (a, Q,t,)-graded Poincaré polynomials sat-
isfy

P (K)(a,Q,t,) = (PP (K)(a, Q, t))".

1.4. Structure of the paper. In Section 2 we describe the general
structures on colored HOMFLYPT homology, together with the gl(n|m) and
colored differentials. We describe explicitly the degrees of all colored differ-
entials and re-gradings in the corresponding colored isomorphisms. We end
the section with the two particular features in the case of the symmetric
representations: the d-grading and the existence of the HFK-like differential
on the S"-colored homology.

Section 3 contains models of the quadruply-graded homologies for various
knots and representations. Due to a large number of predicted properties,
such computations present a highly nontrivial consistency check for the con-
jectures.
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In Section 4 we describe a model for the unreduced colored homology of
the unknot. It is a free supercommutative algebra A with one even and one
odd generator per each box of the diagram A. For the representation S,
this algebra can be naturally identified with the algebra of .S,,-invariant dif-
ferential forms on C™. Using the physics of BPS states, we describe some of
these even and odd generators geometrically. We also check that the Poincaré
polynomial for this algebra agrees with the evaluation formulas for the Mac-
donald polynomial, which various authors [2, 14, 21] recently assign to the
unknot in the refined Chern—Simons theory.

Both d,,},, and the colored differentials can be interpreted as the Koszul
differentials on this algebra, sending odd generators to certain polynomials
in even generators. We show that the approach of [45], where the homology
of the unknot is interpreted as the Jacobi ring of a certain potential W,
fits into this framework if the Koszul complex is associated with the partial

derivatives of W:

ow
d(fz) = (971'1', d(.%'z) =0.

Using this model, we also derive the equations for the colored differentials:
if the representations of gl(m|n) labeled by A and p give rise to isomorphic
knot homologies, we show that in some examples the isomorphism between
the corresponding Jacobi rings follows from the equation

Wg\m‘n(xb s 7x|)\|) = W;:Lm([ljl, v 71.‘/14‘) + W/\%}L(m‘u‘+l7 v 7'1.‘)\|)7

where W)_,,, is a nondegenerate quadratic function. We conjecture that the
colored differential dy_,,, is a Koszul differential associated with the partial
derivatives of W)_,,. We end in Section 4.7 with the Hilbert scheme inter-
pretation of colored HOMFLYPT homology.

Section 5 is devoted to torus knots. In Section 5.2 we recall the statement
about the stabilization of the HOMFLYPT polynomials of (p, ¢)-torus knots
in the limit ¢ — co. We relate such a stable A-colored invariant of a (p, 00)-
torus knot to the invariant of the pA-colored unknot. Then, we conjecture
a similar relation between the corresponding colored homology theories of
stable torus knots and that of the unknot. The A-colored homology of the
finite (p,q)-torus knot is expected to be a certain quotient of this stable
homology. This allows us to use the algebraic description of the homology of
the unknot, and in Section 5.3 we give a precise description of the generators
in the rectangular homology of a torus knot and their quadruple gradings.
We describe and check the structural properties of colored homology using
this algebraic model. We show the existence of a symmetry between A- and
A-colored homology, exchanging t,- and t.-gradings and preserving the Q-
grading. We check the refined exponential growth conjecture for the stable
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homology of torus knots. We also describe the self-duality involution and the
action of differentials in the rectangular homology of torus knots.

Generalizing the results of [23] and conjectures of [40], we identify the
colored homology of torus knots with the certain representations of the ra-
tional Cherednik algebra. For A\ = S”, we make this description explicit and
describe the space H>" (T(p, q)) as a space of differential forms on a certain
nonreduced scheme

Mpo(r) == {(tUrs1, - Upr; Vpg1s - 0gr) | U(2)? =V (2)P},
where the polynomials U(z) and V (z) are defined by
U(z) =1+ 2" uppg + oo+ 2Py, V() =14+ 2"y oo 4 270,

This description is ideally suited for a realization of colored HOMFLYPT
homology via a Landau—Ginzburg B-model, which is the subject of Section 6.
Using mirror symmetry we also reformulate it in terms of the A-model and
Lagrangian Floer homology. We also provide some explicit formulas for the
differentials acting on HOMFLYPT homology and describe H*" (T'(p, q)) as
a Jacobi ring of a certain potential on a supermanifold.

Finally, Section 6.4 is devoted to the “bottom row” of HOMFLYPT ho-
mology, i.e. the a = 0 limit. We compare it to certain combinatorial models
of Haglund et al., generalizing the models for ¢, ¢-Catalan numbers which
played an important role in [40], and to the geometric models for coupled
instanton-vortex systems proposed in [19].

2. Gradings, differentials, mirror symmetry

2.1. Introduction. Let H*(K) denote the reduced A-colored HOM-
FLYPT homology of a knot K. We focus on rectangular Young diagrams A,
i.e. Young diagrams which have the form of a rectangle with R rows and
C columns, briefly an R x C rectangle. This is a large class of representations,
which includes as particular cases all symmetric representations (R = 1) and
antisymmetric ones (C' = 1). Our main results for #*(K) can be split into
two groups, which match together perfectly. First, we conjecture that certain
grading-independent structures exist:

CONJECTURE 2.1. For every knot K, there exists a homology H(K)
with the following properties:

o HNK) is finite-dimensional.
e There are two symmetries on HM(K):

— mirror symmetry that switches between \ and its transpose partition \t:
(2.1) HNK) = 1Y (K);
— self-symmetry on HMK).
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o For every pair of nonnegative integers (n,m) such thatn>R orm>C (3),
there exists a collection of differentials d,,, on HNK) that pairwise anti-

commute, and are such that the homology of H (K) with respect to dnjm

is isomorphic to the homology Hgl("‘m)”\(K) that categorifies the quantum
invariant of a knot K labeled by a representation X of gl(n|m):

(2.2) H*(HNK), dyjy) = HE ™A (K.

o For certain rectangular Young diagrams p with y C X, there exist colored
differentials d_,,, such that

(2.3) H*(HNK), dop) = HM(K).

e For large classes of knots, including torus knots and two-bridge knots, the
size of the homology HM(K) is equal to the |\|th power of the dimension
of HE(K). For an arbitrary knot K, such relation holds asymptotically as
|A| tends to infinity.

A couple of remarks are in order regarding numerous structures on the
colored HOMFLYPT homology predicted by Conjecture 2.1.

REMARK 2.2. While mirror symmetry that switches between A and its
transpose partition A\’ categorifies the known relation for the colored HOM-
FLYPT polynomials,

PNK)(a,q) = PV (K)(a,q7Y),

self-symmetry is a completely new symmetry, which does not categorify any
polynomial relation. It uses homological grading in a nontrivial way, and
exists only at the homological level.

REMARK 2.3. Another novelty of this paper is the introduction of the
two-parameter collection of differentials dy,,, and the relevance of the su-
peralgebras gl(n|m) (*). The main group of colored differentials, namely the
group of 2(R+C —1) differentials, is directly related to the differentials d,, y,,.
More precisely, for every Young diagram p that is obtained from A by re-
moving either some of its rows or some of its columns, there should be two
different differentials of the form d)_,, such that

(2.4) H*(HNK), dxyp) = HH(K).

They “lift” the relation H&(™)A(K) = 3elnm).L(K) coming from the par-
ticular relationship between A and p as gl(n|m)-representations for appro-
priate values of n and m, and we also denote that differential by dszqln In

(3) For other values of m and n the differentials may exist in the unreduced theory,
which we do not cover in detail here.

(*) Although some of these operators were implicitly discussed in [35] for uncolored
homology, their relation to supergroups was not understood there.
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other words, we have the following commutative diagram:

da_s, (ie. d;jlm)

HAK) HH(K)
HEMIm)A () = Elnim)n i)

Here the arrow going from H; to Hso labeled by d means that the differen-
tial d on H; is such that H*(H,d) = Hy. Note that the two differentials
denoted d,,, are essentially different since they are defined on different ho-
mology theories. On H*(K) the differentials dp|m and dfﬁ}n share many prop-
erties. In particular, frequently the differential d,,,, on H*(K) acts trivially,
and then on H*(K) dpjm and d! coincide.

|m
Our second major conjecture is that the colored HOMFLYPT homol-
ogy HMK) of a knot K is quadruply-graded. We denote these four grad-
ings by a,q,tr, t.. Thus, apart from the a- and ¢-gradings associated to
each generator, we also have two homological t-gradings. Any of the two
t-gradings gives a categorification of PA(K), i.e. forgetting one of them gives
a triply-graded categorification of the colored HOMFLYPT polynomial. In
other words, if we denote the (four-variable) Poincaré polynomial of H*(K)

by PAK)(a,q,t,t.), then we have

(2.5) PMNK)(a,q,t, = —1,t. = 1) = PXK)(a,q, t, = 1,t. = —1)
= PA(K)(a,q)-
We also introduce another auxiliary grading, called the Q-grading, defined

by
q + tr - tc
(2.6) Q= 7 .

This new grading, which can be considered as a “corrected” g-grading, cannot
be seen on the decategorified, polynomial level, and as the formula indicates,
both t-gradings are needed for its definition. Finally, the symmetries get the
nicest form when the homology is written in (a, @, ¢, t.)-gradings. Because
of a linear relation between the gradings (2.6), this is just a simple re-grading
of H*(K). However, due to its importance, we give it a special name, H*(K),
and refer to it as the tilde-version of colored HOMFLYPT homology. Explic-
itly, it is given by

) A
(2.7) %i,j,k,l(K) = Hi,Rj—k+l,k,l(K)'
The only case when the two t-gradings coincide is the uncolored case, A = o,
and the resulting homology is triply-graded in agreement with [20]. In this
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case the ¢- and @Q-gradings also coincide, and mirror symmetry and self-
symmetry are in fact the same symmetry.

In the following subsections we list more precise and explicit conjectures
on the properties of the homologies H* and differentials.

2.2. Self-symmetry

CONJECTURE 2.4. The homology ﬁ’\(K) enjoys the following self-sym-
metry:

(2.8) ﬁz‘):j,k,l(K) = Hz‘):—j,k—Rj,l—Cj(K)'

More precisely, we conjecture the existence of an involution @, : H*(K)
— HMK) such that for every generator 2 of H*(K),

(a,Q,tr,tc)[@a(7)] = (a(z), —Q(2), t,(z) — RQ(z), te(x) — CQ(x)).
Also, by (2.6) one has ¢(@x(x)) = q(z) — (R + C)Q(z). For A = o, the
involution @), agrees with the involution ¢ described in Conjecture 1.2.

For some knots, including torus knots (see below), we also conjecture that

this involution comes from some version of the hard Lefschetz isomorphism.
Namely, there exists an operator Ly : H*(K) — H*(K) such that (°)

(29) (4,0, Q. trt)[La] = (0,R+C,2,R,C), ®x(x) =L,

2.3. Mirror symmetry. Based on results for symmetric and antisym-
metric representations, it was conjectured [44] that colored HOMFLYPT
homology enjoys mirror symmetry:

CONJECTURE 2.5 (|44]). For any knot, there exists an isomorphism (called
mirror symmetry) between \- and \'-colored HOMFLYPT homologies pre-
serving the a-grading and reversing the q-grading.

However, to obtain the behavior of the t-gradings under this symmetry,
one needs to introduce the fourth grading. We are able to write an explicit
formula for the t-degrees change in the case of rectangular A. We start with
a different conjectural symmetry between A- and Af-colored homology.

CONJECTURE 2.6. In (a,Q,t,,t.)-gradings one has

(2.10) Hija (K = H ) 1(K).

To obtain an explicit quadruply-graded version of the mirror symmetry
from (2.5), we combine self-symmetry (2.8) and mirror symmetry (2.10):

(%) Note that according to the “dictionary” (4.4) this operator is a bound state of
R + C DO-branes.
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COROLLARY 2.7. In (a,Q,t,,t.)-gradings one has

. ~
(2.11) Hwa(K) 2 HY 50 o ryi (K.

The last equation enables one to write the explicit change of gradings
in the mirror symmetry. Denote by My : H* — HA the mirror symmetry
isomorphism. Consider the gradings of a generator x in H* theory and the
gradings of the generator My (x) of HN' | denoted by (a,q, @,tAT,tAC), where A
is an R x C rectangular Young diagram and A\ is a C' x R rectangular Young
diagram. They are related by the following transformation:

ZL\:(L, Z]\:_Q> Q:_Qv

~ C C o
tr—tc—CQ—<1+R>tc_Rtr_Rq7

te=1t, — RQ =t.—q.

Since mirror symmetry from Conjecture 2.5 inverts the ¢g-grading, it “cat-
egorifies” the following relation between colored HOMFLYPT polynomials:

(2.12) PMNE)(a,q) = PN (K)(a,q 7).

We refer the reader to [90] for a representation-theoretic explanation and a
diagrammatic version of (2.12).

2.4. gl(n|m) differentials. The homology H*(K) comes with a large
structure of pairwise anticommuting differentials on it. We conjecture that
there exists a differential for every pair of nonnegative integers (n,m) such
that n > R or m > C. These differentials should be related to the homolo-
gies corresponding to Lie superalgebras gl(n|m) and representations labeled
by Young diagram A. The condition that n > R or m > C gives precisely
those pairs (n,m) for which the Lie superalgebra gl(n|m) has an irreducible
representation labeled by a A (see Section 2.6). This generalizes the struc-
ture from [20] and [44], where the analogous differentials are labeled by a
single integer N and were related to the sl(N) representations, i.e. sl(XV)
specializations of the A-colored HOMFLYPT polynomial when N > 0. As
we shall argue in this paper (see Section 4.1.1), the structure corresponding
to Lie superalgebras is more natural, and the single parameter N from [20]
and [44] is just the superrank of the corresponding Lie superalgebra:

(2.13) N=n—m.

CONJECTURE 2.8. For every pair (n,m) of nonnegative integers such
that n > R or m > C there exists a differential d,,,, on the homology

HMNK) satisfying the following properties:
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e Specialization:
(2.14) (HMK), dnjn)|amgn-m = HEIMA(K).
o Anticommutativity: All dy,,, pairwise anticommute.

The homology theories HE (™A (K) for arbitrary n and m are still
not rigorously defined. Nevertheless, they should categorify the (n — m)-
specialization of the A-colored HOMFLYPT polynomial. In other words, the
Poincaré polynomial of He("™)A(K) satisfies

(2.15) PECIMA(K) (gt = =1) = PX(K)(a = ¢""™, q).

Although the right-hand side equals the quantum polynomial invariant as-
sociated with gl(n|m) representations labeled by A, it only depends on the
superrank of the Lie superalgebra |75, 76]. However, we expect that the ho-
mologies H&(™M)A(K) for various pairs (n, m) with fixed n—m can in general
be nonisomorphic. That is one of the reasons why we expect to have differ-
entials parametrized by two integers instead of just one, as was predicted
for the fundamental representation [20] and for the symmetric representa-
tions [44]. We will say more on this in Section 5.4

The main reason for the existence of such structures comes from the
representation theory of the Lie superalgebras gl(n|m). The condition that
n > R or m > C gives precisely those pairs (n,m) for which the Lie super-
algebra gl(n|m) has an irreducible representation labeled by A\. We denote
by 2 the subset of the (z,y)-plane satisfying x > 0, y > 0 and x > R or
y > C. Then the set of all admissible pairs (n,m) for which we have a dif-
ferential d,,|,, consists exactly of the points from {2 whose both coordinates
are integers.

The degrees of the differentials d,,,,, satisfy

(216) (aa Q) [dn|m] = (_27 2(” - TTL)),
in agreement with the specialization a = ¢"~™. The t.-degree is equal to
(2.17) tc[dn‘m] = —2m — 1.

The t,.-degree is more subtle, and is given in the next section; in particular,
it depends on R and C.

In the case of the fundamental [20] and the symmetric representations [44],
the conjectured differentials dy were parametrized by a single integer N. It
was argued that they correspond to sl(INV) representations for N > 0, while
for other values of N there was no clear representation-theoretic motivation.
However, when observed from the gl(n|m) point of view, they become much
more natural: dy becomes in fact precisely the differential d,,,,,, where n and
m are uniquely determined by requiring that N = n —m and that (n,m)
lies on the boundary of 2 (see Figure 1).
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Fig. 1. The domain {2 can be visualized as the complement of A’ in the positive quadrant
of the (n,m)-plane. Integer points on its boundary correspond to the differentials d, |,
or equivalently dy with N = n — m, among which three are special. They correspond to
the three corners of the domain (2 and are marked by bullets. The differentials for this
example are shown in Figure 2.

In the case of the fundamental representation, the t-degrees of the differ-
entials dy were defined in a rather artificial way. By using the conventions
above, we directly get the desired degrees. (Note that in the fundamental
representations the two t-gradings coincide: ¢, = t. = t.) Indeed, for N > 0
we have dy = dy|p, and therefore according to (2.17) their t-degrees are
equal to —1. For N = 0 we have dy = dy|1, so the t-degree of dy equals —3,
while for N > 0 we have d_y = dyn, and so the t-degree of d_y equals
—2N — 1, exactly as predicted in [20].

Although there are infinitely many integer pairs in 2, for a given knot K
only finitely many of the differentials d,,,,, can act nontrivially. Indeed, since
HA(K) is finite-dimensional and since q(dpjm) = 2(n —m) and te(dp)y,) =
—2m — 1, the differential d,,,,, becomes void on HMK) for sufficiently large
values of n or m. Thus we have:

CONJECTURE 2.9. For a knot K and a rectangular Young diagram A,
(218)  PEOIMIAK) (gt t) = PAE)(a = " g, tr, L)

when either n or m is sufficiently large.

2.5. Colored differentials. For every knot K, the homology theory
HMK) comes with a remarkable structure of the so-called colored differen-
tials that allow passage to homology theories H*(K') for various partitions
©wCA

(2.19) H(HA(K), d ) = HO ().
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In particular, they are closely related to the differentials d,,,, for suitable n
and m, as described in Remark 2.3.

We conjecture that for each rectangular diagram p that is obtained from
A by removing either some rows or some columns, there exist two different
differentials on H* realizing the isomorphism (2.19). As described in Re-
mark 2.3, all these colored differentials are of the form d;ovlﬂ. However, in
order to clearly indicate the color-changing property of the differentials, we
also label them by a superscript “+” as in df\[ o One of them will be denoted
as d;\;#: it has positive @-degree (equal to +2), and will be referred to as
the positive differential. The second differential has negative Q-degree (equal
to —2) and will be denoted by d_, .

We will show that d;\r o and d,_, ., are exchanged by the involution @j.
When g = 0, the homology H* is one-dimensional and the corresponding
colored differentials are called canceling. All these differentials are deep gen-
eralizations of the differentials d; and d_; in the uncolored theory [20], which
can be considered as colored differentials for the trivial representation (.
Positive-colored differentials can be seen as analogs of dy, and negative-
colored differentials can be seen as analogs of d_;.

Now, let us give a more precise definition of colored differentials, together
with the explicit change of gradings in the isomorphism (2.19). We note that
the introduction of the fourth grading is again crucial: the @Q-grading is
indispensable for the explicit re-gradings.

Let X' denote the even integer such that the homology of the uncolored
homology H"(K') with respect to the canceling differential d;, which is one-
dimensional has (a, g, t,, t.)-degree (X, —X,0,0) (see [20, 77]).

Positive row-removing differentials. For any 0 < k& < R there exists
a “row-removing differential” d},. - ;. (Which is in fact d%’ikm) such that

the homology of H*C(K) with respect to it is isomorphic to H**¢(K). In
particular, for £ = 0 the differential d;x c_sp 18 canceling. These differentials
have the following degrees:

(2.20) (a,q,tr,te)[dh o] = (—2,2R + 2k, —2k — 1, —1).

Since Q = %, we have Q[d;X okxc) = 2. The explicit grading change
in the corresponding isomorphism (2.19) is as follows: let « be a generator of
H**C(K) with degree (a, @, t,,te, q). Then the degrees of the corresponding
generator ¢(z) of H*(H®*CY(K),d}, o ,1xc), denoted by (@, Q, b, e, Q), are
given by
i=a+CR-kKX, Q=Q-C[R-kX,
tr=t,+(R—k)Q+Ck(R—k)Y, t.=t,,
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Positive column-removing differentials. For any 0 < [ < C there

exists a “column-removing differential” dExC _ Ry (which is in fact d%f"ll) such

that the homology of H*¢(K) with respect to it is isomorphic to H*!(K).

In particular, for [ = 0 the differential d;x o 18 canceling and coincides

with the canceling differential above. These differentials have the following
degrees:

(a,q,tr te)dh oo pg] = (—2,2R — 21, —1, 21 — 1).

One can check that Q[d;X c—prxy) = 2. The grading change formulas have
the form

i=a+RC-1)Y, Q=Q-R(C-1)X,
tr=tr, te=t.+(C—-1)Q+RI(C—1)X,
g=q+(C-D)Q+R(C—-1)(I-R)X.
Negative row-removing differentials. For any 0 < k£ < R there ex-
ists a “row-removing differential” dj, ;.. (Which is in fact di‘rlc) such that

the homology of H*Y(K) with respect to it is isomorphic to H**¢(K). In
particular, for k = 0 the differential dj .. _,, is canceling. These differentials
have the following degrees:

(@, Gy ey t) [ dpy e pec) = (—2,2k — 20, —2k — 2R —1,-2C — 1).

One can check that Q[dg, o] = —2. The grading change formulas have
the form

i=a+C(R-K)Y, Q=Q+C(R-k)ZX,
th=t,+C(R—k)(R+k)Y, f.=t.+C*(R-k)ZX,
T=q+kQ+C(R—k)(C—k)X.

Negative column-removing differentials. For any 0 < [ < C there
exists a “column-removing differential” dp. .~ , 5., (Which is in fact d5%, )

0|0+
such that the homology of H*C(K) with respect to it is isomorphic to
HEXUK). In particular, for [ = 0 the differential dpcsp 18 canceling and

coincides with the canceling negative differential above. These differentials
have the following degrees:

(@, ¢yt te) A oy pot] = (=2, =20 — 20, —2R — 1, -2 — 2C — 1).

One can check that Q[dy, ~_, gy;] = —2. The grading change formulas have
the form

i=a+R(C-1)X, Q=Q+R(C-1x,
ty=t,+R*(C—-1X%, t.=t.+RC—-1)(C+1)X,
§=q+R(C—-1)(C+)X.
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To better explain such a large structure of differentials, we present them
in Figure 2. This diagram represents the case of the representation labeled by
the Young diagram with R = 4 rows and C' = 5 columns. An arrow labeled
by dpjm going from a Young diagram D; to D2 means that there exists a

differential dsz:n on HP1(K) and HP2(K) such that

(2.21) H*(HPY(K),d9! ) = HP?(K).

nlm
There are three “special” differentials which are represented by thick lines:
two of them (dS)) and d°%) are canceling, i.e. the homology with respect

4/0 05
to them is one-dimensional, and the third one (the middle one) is trivial:
| -
di% =0.
ﬁ dojo
drjo
dojs FEEEH
E dg)g
doj7
]
do\ﬁ /d50
. P o,
CANCELING [ |
d15/
oo
dys
HHH

FHHH %
[ |
I 1

Fig. 2. Colored differentials for the 4 x 5 rectangle

In the general case of an arbitrary R x C' rectangular Young diagram A,
the picture would be of the same form with 2R+ 2C — 1 differentials: written
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in clockwise direction, they will be dp ;o with i = R —1,...,0, dg); with
i=0,...,0, dyc withi = R—1,...,0, and dgcy; with ¢ =0,...,C — 1.
The canceling differentials will be dgjy and dgc, while the middle one would
be dgic (%).

In the upper half of the diagram are the positive row-removing and nega-
tive column-removing differentials, with the row-removing ones (dg.jo With
0 <i < R) in the upper right part, and the column-removing ones (doc.4;
with 0 < ¢ < C) in the upper left part. The negative row-removing and
the positive column-removing differentials are in the lower half of the pic-
ture (below the canceling differentials). The row-removing ones (d;c with
0 < i < R) are in the lower left part, and the column-removing ones (dg;
with 0 < i < () are in the lower right part. The positive-colored differentials
are in the right half of the diagram, while the negative-colored ones are in
the left half.

We conjecture that the collection of differentials is invariant under mirror
symmetry and self-symmetry. Namely, let A be a rectangular Young diagram
and let p be obtained from A by removal of some rows or columns. Then

(2.22) DA(dy_,, (1)) = dy_, ,(Pa()),

(2.23) Mi(dy,,(2)) = dy,_, o (Mx(2)).

The involution @ provides an isomorphism

(2:24) H*(HN(K), d}_,,, (2)) = H*(HNK). 3, (2):

2.6. Representation theory interpretation of colored differen-
tials. The main explanation for the existence of all these positive- and
negative-colored differentials with the required behavior comes from the rep-
resentation theory of sl(N) and gl(n|m). We include the classical Lie algebra
sl(NV) in the family of Lie superalgebras gl(n|m) by setting m = 0.

Indeed, it is well known that the irreducible polynomial representations of
sl(N) are labeled by Young diagrams with at most N rows. Moreover, some
of these representations are isomorphic: namely, for every k with 0 < k < R,
the representations labeled by R x C' and k x C rectangular Young di-
agrams are isomorphic as sl(R + k) representations. This in turn implies
that the doubly-graded homologies H!(i+k):-FxC anq sl (F+R)EXC categori-
fying respectively the quantum polynomial invariants PSI(R+k)’RXC(q) and

PRIRTR)EXC () ),RxC

should be isomorphic. Finally, since Hs!(fi+k is isomor-

phic to the homology of HF*C with respect to the differential dR4kj0, We

(5) Although this middle colored differential dR\C is trivial, the gl(R|C) colored differ-
ential dg|c is in general nontrivial and is related to knot Floer homology, in the same way
as the differential dp in the uncolored case [20]. We discuss these HFK-like differentials in
Section 2.10.
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obtain the explanation of the expected behavior of positive row-removing
differentials.

As for positive column-removing differentials, one should look for repre-
sentations of the Lie superalgebras gl(n|m). There is an analogous theory
for polynomial representations of gl(n|m) |6, 7|, extending the classical case
of sl(N) algebras. This time, the irreducible representations are labeled by
Young diagrams whose (n + 1)st row contains at most m boxes. In the
case of gl(n|m) there are much more pairs of representations that are very
closely related: although in general they are not necessarily isomorphic, they
share many common features that are relevant for quantum knot invariants.
In particular, for fixed n and m there are pairs of irreducible represen-
tations that have the same dimensions and the corresponding R-matrices
(obtained as representations of U,(gl(n|m)) are the same, up to rescaling
[76, 81|. Therefore, the corresponding quantum polynomial knot invariants
are the same (up to scaling), and the corresponding categorifications—the
knot homologies—should be isomorphic. The first list of such pairs of rep-
resentations, related to the column-removing differentials, is given by the
fact that for every k with 0 < k < C, the gl(R|k) knot homologies labeled
by R x C' and R X k rectangular Young diagrams are isomorphic. Now one
gets the homology theory corresponding to the (gl(R|k), R x C) represen-
tations as the homology of HF*C with respect to dpy,- Hence, the above
isomorphisms of gl( R| k) representations give rise to positive column-removing
differentials.

As for negative differentials, they can be obtained in the same way as
positive differentials by using “dual” isomorphisms above, combined with
mirror symmetry. Indeed, two Young diagrams A\ and p yield the above-
described isomorphism of gl(n|m) knot homologies if and only if A' and p!
produce isomorphic gl(m|n) knot homologies. In other words,

(2.25) HECUIMA (K)o el () e qElmIn) N () o qgElimin)it ()

In such a way the existence of negative row-removing differentials diTlC

with 0 < k < R is a consequence of the isomorphism of gl(k|C') homologies
corresponding to R x C' and k x C' Young diagrams. Finally, the existence of
negative column-removing differentials d8(|)lc 45 With 0 < k& < C follows from
the isomorphism of gl(0|C' + k) representations corresponding to R x C' and
R x k Young diagrams.

2.7. Universal colored differentials. There exists yet another set of
colored differentials on H*(K) such that the homology with respect to any
of them is isomorphic to H* (K) for some X obtained from A by removing
some rows or columns. The difference from the differentials dfl“’}n above is
that they are universal in the sense that their a-degree is 0.
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Although the insights from the theory of deformations of potentials imply
that such universal colored differentials should exist for any row or column
removal, we have managed to find such differentials explicitly only in the
cases when A has two rows or two columns.

CONJECTURE 2.10. Let K be a knot. Let A be a 2xC' rectangular diagram
and let N be a 1 x C rectangular diagram. Then there exists a differential d'
on HMNK) of a-degree 0 such that the homology of H (K with respect to d'
is isomorphic to H (K).

Let i1 be an R x 2 rectangular diagram and let ' be an R x 1 rectangular
diagram. Then there exists a differential d~ on H*(K) of a-degree 0 such
that the homology of H*(K) with respect to d* is isomorphic to HM (K).

To be more precise, we give explicit values for the degrees of the differ-
entials d' and d and the degree changes in the isomorphisms of Conjec-
ture 2.10. We describe everything in the (a, @, t,, t., ¢)-gradings. The degrees
of the differentials are given by

(2.26) degd" = (0,0,-2,0,2),

(2.27) degd™ = (0,0,0,2,2).

The first isomorphism from Conjecture 2.10 gives

(2.28) H*(HNK),d") = HY (K).

Let = be a generator of HN (K) with degree (a,Q,ty,t.,q). Then the de-

grees of the corresponding generator ¢(x) of H*(HM(K),d"), denoted by
(av Qu%\rv%\w a\)a are given by

~

=24, Q=2Q, & =4t,, t.=2, §=4q—2t,.
The second isomorphism from Conjecture 2.10 gives
(2.29) H*(HM(K),d") = 1Y (K).
Let = be a generator of H¥ (K) with degree (a,Q,tr,teyq). Then the de-

grees of the corresponding generator ¢(z) of H*(H*(K),d* ), denoted by
(aa Qa tT‘a tcv Z]\)a are given by
i=2a, Q=2Q, & =2, l.=4, §=2q+2t.
2.8. Refined exponential growth. Now we are ready to formulate
a quantitative refinement of the “exponential growth conjecture” from [44].
Throughout, A denotes a representation corresponding to a Young diagram
of size R x C.

_ CONJECTURE 2.11. Let K be a two-bridge knot or a torus knot, and let
PMNK)(a,Q,t,) denote the Poincaré polynomial (in (a,Q,t,)-gradings, i.e.
after setting t. = 1) of HNK). Let PA"(K)(a,Q,t,) denote the Poincaré
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polynomial of ﬁAR(K) (Rth antisymmetric colored homology). Then
(2.30) PME)(a, Q1) = (P (K)(a, Q. ).

By using mirror symmetry and switching ¢, < t., we get the dual state-
ment:

_ CONJECTURE 2.12. Let K be a two-bridge knot or a torus knot. Let
PMNK)(a,Q,t.) denote the Poincaré polynomial in (a,Q,t.)-gradings of
HMNK), and let PS° (K)(a, Q. t.) denote the Poincaré polynomial of H5° (K)
(Cth symmetric colored homology). Then

(2:31) PAE)(@,Q.te) = (P (K)(a, @ 1)),

COROLLARY 2.13. Let K be a two-bridge knot or a torus knot. The di-
mensions of the “rectangular homology groups” satisfy

(2.32) dim #N(K) = (dim HP (K))M.

Moreover, the similar statement holds in (a,Q)-gradings, i.e. with both t,
and t. specialized to 1:

(2.33) PNE)(a,Q) = (P7(K)(a, Q).

COROLLARY 2.14. Let K be a two-bridge knot or a torus knot. The
Poincaré polynomial of the symmetric homology in (a,@Q,t,)-gradings can
be deduced from the uncolored Poincaré polynomial (recall that t, = t. =t
for the uncolored homology):

(234) ,ﬁST(K)(a7Q = Qat'r = t,tc = 1) = ('PD(K)(CL, Q?t))r'

The Poincaré polynomial of the antisymmetric homology in (a, Q,t.)-gradings
can be deduced from the uncolored Poincaré polynomial:

(2.35) PY(K)(a,Q = q,t, = 1,te =t) = (PU(K)(a,q,1))".

Going back to original g-degrees, i.e. the ordinary version of the colored
homology HA(K), the above relations reduce to two-variable (in variables a
and t) exponential growths:

(2.36) PY(K)(a,q=1,t, =t t. =1) = (PP(K)(a,q = 1,t))"
and
(2.37) PY(K)(a,q=1,t, =1,t. =t) = (PP (K)(a,q = 1,1))".

Although such nice (and surprising) exponential growth properties should
exist for large classes of knots, it is not expected that this should hold in
general, i.e. for every knot. For example, the uncolored homology of the
knot 942 is 9-dimensional (see [20]), its (triply-graded) S2-colored homology
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is computed and the result has 401 generators. Therefore, we do not have
any exponential growth property for it (7).

Nevertheless, Wedrich [93] proved that there is a spectral sequence from
A"-colored homology to the rth power of uncolored homology; see Theo-
rem 1.3.

2.9. Relation to the super-A-polynomial. The exponential growth of
the colored HOMFLYPT homology summarized in (2.30)—(2.34) nicely com-
plements the results of [30, 31, 71|, where the large-r limit of the S"-homology
was studied in detail. In particular, it was conjectured in [31] that for an
arbitrary knot K the S"-colored superpolynomials obey a recursion relation
that comes from quantization of an algebraic curve AS'P'(z,y;a,t) = 0.
Specifically, this recursion relation has the following general form:

(2.38)
IPST+H (K7 a,dq, t) + anfl’PSNr"71 (Ka a, q, t) +-- 4+ aO,PST (K’ a, q, t) =0

and can be conveniently expressed in the operator form AsuperpS™ — 0,
where the coefficients a; = a;(z;a, q,t) are rational functions of a, ¢, ¢, and
x = ¢". To make contact with (2.33), we need to set ¢ = 1, which, by
definition, reduces the operator ABUPer ¢4 its characteristic polynomial, the
super-A-polynomial AP (z,y;a,t).

Furthermore, since setting ¢ = 1 also implies + = ¢" = 1, we con-
clude that making contact with (2.33) involves comparison with the super-
A-polynomial evaluated at z = 1. Something very nice happens in this limit:
in every example studied so far, all coefficients a;(z;a,t) of the super-A-
polynomial vanish, except for a,_1. As a result, (2.38) reduces to a much
simpler recursion relation:

(2.39) PY(Kia,q=1,8) + ap1(z =1,a,)P% (Ka,q = 1,1) =0,

which indeed takes the form (2.33). Specifically, it can be consistent with
(2.33) if and only if ay,—1(x = 1,a,t) = P(K;a,q = 1,t). We conjecture that
this is always the case, thus providing a bridge between our present work
and [30, 31, 71

CONJECTURE 2.15. For any knot K, the following relation between
the super-A-polynomial AP (x,y; a,t) and the (uncolored) superpolynomial
holds:

(2.40) ASP (= 1, ysa,t) = yF + yF T IP(Ka, g = 1,1).

(") This could also be seen at the level of the S*-colored HOMFLYPT polynomial
of 942. It has nonzero terms with a-degree —6, while uncolored homology is concentrated
in a-degrees —2, 0 and 2. We thank Paul Wedrich for providing us with his computations
of colored HOMFLYPT polynomials.
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2.10. Symmetric and antisymmetric representations. In [44] the
conjectural triply-graded colored HOMFLYPT homology for the symmetric
and antisymmetric representations has been computed for plenty of knots.
We obtain a quadruply-graded theory by adding the ¢-degree of the cor-
responding generator of colored homology for the dual representation. The
t-grading used in [44] (and called “old”) corresponds to the ¢,-grading in this
paper. The other t.-grading coincides with the ¢-grading used in [2, 21, 20, 45].
In the case of symmetric representations, we have two additional properties of
quadruply-graded colored homology: d-grading and HFK-like differential. To
every generator x of the S”-colored quadruply-graded theory we can associate
a d-grading by

(241)  6(z) = a(z) + Q(;) _u@) ;tc("”) = a(z) + L

We call a knot K S"-thin if all generators of H°" (K) have the same
d-grading. In the uncolored case, r = 1, this coincides with the definition of

a thin knot. Also, in the uncolored case, the d-grading of all generators of a
thin knot K is equal to X'/2, where X' is defined as in Section 2.5.

CONJECTURE 2.16. Fwvery thin knot K is also S"-thin with the §-grading
of all generators of H>" (K) being equal to rX /2.

Additionally, the refined exponential growth congjecture (2.34) holds for all
thin knots.

The action of the “special” differential d;|, on S"-colored homology is
related to the action of the differential d;|; on uncolored homology. The latter
is denoted dy in [20], and it is conjectured that the homology H*(H"(K),dp)
is isomorphic to the knot Floer homology of K.

CONJECTURE 2.17. Let ﬁg;K(K)(a,Q,tr,tc) denote the Poincaré poly-
nomial in (a,Q,t,,t.)-gradings of H*(H% (K),dy,). Let Purx(K)(a,q,t)
denote the Poincaré polynomial of H*(HP(K),dy)1). Then

(242) Pﬁ;K(K)(aa Q=qtr=1t1t.= 1) = (PHFK(G) q, t))r'

We note two things: first, the above property does not descend to any
relation at the colored HOMFLYPT polynomial level, due to a nontrivial
presence of the @-grading. Secondly, both dy); on HEP(K) and dy|, on HY (K)
have nonzero §-grading and therefore act trivially on thin knots. Hence, the
relation (2.42) in the case of thin knots becomes simply (2.34). However,
once we pass to thick knots, in general the two relations are different, as we
shall show in the example below for the (3, 4)-torus knot.

3. Examples. In this section we give some models of quadruply-graded
colored HOMFLYPT homology that exhibit all of the structural properties
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and satisfy all of the conjectures from the previous sections. This gives a
highly nontrivial check of the existence and consistency of such large and
beautiful structures in colored HOMFLYPT homology. Also, we note that
the three-variable (a, g, t.)-specializations of the expressions that we get for
the superpolynomials match other existing results that were computed by
different methods [2, 14, 21|.

3.1. Trefoil. We start with the trefoil and its S?- and A2-colored ho-
mologies. The Poincaré polynomial of the uncolored HOMFLYPT homology
of the trefoil is (|20])

(3.1) PE(31)(a, q,t) = a’q 2 + a*¢*t* + a3
The uncolored homology is the only one where the two t-gradings coincide,
i.e.

PD (31)(0’7 q, tr, tc) = PD(Sl)(CL, q, t= trtc)'
From (3.1) we can get the value of the S-invariant of the trefoil (which we
denote X' in this paper):
(3.2) 2(3;) =2.
For easier visualization, triply-graded homologies are usually presented in
diagram form. A generator of (a,q,t)-degree (i,7,k) is presented as a dot

in the (g, a)-plane at position (j,7) and it is labeled by its t-degree k. The
triply-graded homology of the trefoil is presented in Figure 3 (left).

al 2 0 2
Fig. 3. The uncolored homologies of the trefoil (left) and figure-eight knot (right)

The (reduced) m-colored HOMFLYPT polynomial of the trefoil knot is
P™(31)(a, q) = alq~ +alq® + a'q* + a’q® — a® — aB¢? — a¥¢ — aB¢® + aBel.
The value of the four-variable tm-colored superpolynomial (the Poincaré
polynomial of the quadruply-graded H™(31)) of the trefoil is
(3:3)  PT(31)(a, q.tr te) = a* (g7 + Pt7tE + ¢ oS + P11td)

+aS (B30 + P3t] + 00t + Pt) + aB¢Btltl.
The triply-graded S2-homology of the trefoil, computed in [44], is obtained

from (3.3) by setting t. = 1, whereas the homology obtained in [2]| or [21] is
obtained after setting ¢, = 1.
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For the second-symmetric representation the ()-grading is expressed as
@ = q+t,—t.. Then the tilde-version, i.e. the quadruply-graded m-homology
n (a,Q,t,,t.)-gradings is given by

(3.4) P31 (a,Q, by te) = a*(Q* + 2t + 128 + Q**P)
+a%(Q722 + Q7ML + Q) + QP)tet) + aPtity?
We note that all generators have the same §-grading, equal to +2. Moreover,

the last homology is self-symmetric: in terms of the Poincaré polynomial this
amounts to

PEE1) (@, Q' 1% b te) = PP (31)(a, Qs o).

We represent the quadruply-graded homologies in diagram form in the fol-
lowing way: for each generator we place a dot in the (g, a)-plane. If the
(q,a)-degree of a generator x is (i,j) then we put a dot at the point with
coordinates (i,7). The two t-degrees are drawn as labels near the dot: the
t,-grading is written above the dot (and colored light green), while the
t-grading of a generator is written below the corresponding dot. In such a
way, the homology H™(3;) is presented in Figure 4.

A4
81 3
.
0
q

-6 —4 -2 0 2 4 6 8
Fig. 4. The S?-colored homology of the trefoil knot

We can see all five nontrivial colored differentials on this diagram: There
are two canceling ones d‘i% and dgTQI, represented by blue and red arrows,
respectively, both leaving a single generator. Furthermore the two gl(n|m)
colored differentials dﬁ’ll (dash-and-dot arrows) and d8‘|’§ (dashed arrows),
both leaving the homology isomorphic to H"(31). And finally the universal
one d (magenta arrows), also leaving the homology isomorphic to H"(3;).
We note that the re-gradings are exactly as predicted in Sections 2.5 and 2.7.

The diagram for the tilde-version of the homology H™(3;) is shown in
Figure 5. It is drawn analogously, with generators depicted by dots in the

(Q, a)-plane. The refined exponential growth indeed holds:
PRB1)(a,Q = g.tr = t,1c = 1) = (P7(31)(a,q,1))*.
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A ‘
8 o |
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 2
6 oo | i oo
,,,,,,,,,,,,,,,,,,,,, 57 e
4 ° o0 °
i 0 i i 4 6 i i 8 i i ‘Q

6 -4 -2 0 2 4 6 0
Fig. 5. The tilde-version of the S?-colored homology of the trefoil knot (Q = ¢ + ¢, — t.)

As for the second-antisymmetric representation, we see that the A2-colored
HOMFLYPT polynomial of the trefoil is given by

(3.5) PE@)(a,9) =a* (g + g +q 2 +4q")
—a%(¢ P+ q P+ q P +1) +dlg
The Poincaré polynomial of the quadruply-graded homology ’HB(31) equals
(3.6)  PHB1)(a,q tr te) = a (g + ¢ 402 + ¢ 242 + MBh)
+aO(q )+ Ot + 2D + 1)82) + aBq Oty

The corresponding diagram, together with the colored differentials, is pre-
sented in Figure 6. By comparing Figures 4 and 6 one can immediately see

A4
0 2 2 4
q

-10 -8 -6 —4 -2 0 2 4

Fig. 6. The A2-colored homology of the trefoil knot

mirror symmetry (2.11). This symmetry sends ¢ — —¢, and commutes with
the action of the colored differentials, as can be seen from the diagrams.
We remark that all re-gradings from the isomorphisms induced by colored
differentials are exactly as predicted in Sections 2.5 and 2.7.

Mirror symmetry is even better seen on the tilde-version of the homology.
For the second-antisymmetric representation H, the Q-grading is obtained by
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Q= (q+t, —t.)/2, and so

3.7)  PHG)(a, @t te) = a*(Q* + 1542 + 42 + QU3¢
+a(Q 7Pt + QTP + Q72 + Q7)EY) + bty

Its diagram is given in Figure 7.

A4
8 ]
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, L2 SO SO S
6 oo | 0
,,,,,,,,,,,,,,,,,,,,,,, 33, s s
4 ° o0 °
0 22 4 ‘Q
6 -4 -2 0 2 6 0

Fig. 7. The tilde-version of the A%-colored homology of the trefoil knot (Q =
(q+tr—tc)/2)

Comparison of Figures 5 and 7 shows that the two are related by a simple
exchange of the t,- and t.-gradings, as predicted by mirror symmetry (2.10).
Also, one can easily check that the explicit form of the other mirror symmetry
(2.11) is satisfied, too.

Before passing to further examples, we note that with the explicit mirror
symmetries, whenever we know the quadruply-graded A-colored homology of
a knot K, then we automatically also have its Af-colored homology:

PN(K)(a, Q. ty, te) = PMNK)(a,Q, te, tr).

Therefore, in the remaining examples we present the results only for one
diagram for each pair (A, \Y).

3.2. Figure-eight knot. We emphasize that our conjectures and pre-
dicted structures are for all knots, and not just torus knots. In particular,
all homologies conjectured in [44] (that includes S2-colored homologies of all
prime knots with up to six crossings) can be extended to quadruply-graded
homologies which have all of the required properties. Here we present explicit
expressions for the conjectural S2-colored homology of the figure-eight knot.
The uncolored homology of the figure-eight knot is given by

Po(41)(a,q,t) = a* + (¢t + 14+ %) + a7,

and its S-invariant is X(4;) = 0. The triply-graded homology of the figure-
eight knot is presented in Figure 3 (right). The m-colored HOMFLYPT
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polynomial of the figure-eight knot equals
PP(41)(a,q) = a'g +a* (=g + ¢ = ¢" = ")+ (¢ a7 +3 - ¢ +¢°)
T R I
The quadruply-graded m-colored HOMFLYPT homology of the figure-eight
knot that we computed is given by
P (1) (a, g, tr, te) = a’ g 018 + a® (¢ P trte + 1) + 262 + P2t + ¢ 080 + ¢°E0])
(g g T g T TR 3 G @ lte 4 gttt i)

+*a72(q76t;3t;74kq74t;3t;54*q72t;2t;44kt;2t;2AFt;lt;34Fq2t;lt;1)4*ai4

—4,—4,—8
q .t

It is presented in diagram form in Figure 8. All generators have the same

“\
4 °
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 8
2 ° oo o ° .
,,,,,,,,,,,,,,,,,,,,,,, 1 132 4 5 17 1
0 [ ] [ ] e O o000 [ I ] [ ] [ )
| 4 3 =2 -11000 21 3 | 4 0
2] e ° . o o °
| =7 S i -4 =8-20 -1 0
—4 _; q

Fig. 8. The S2%-colored homology of the figure-eight knot

d-degree 0, in accordance with the fact that 41 is a thin knot. The homology

H™ (41) has five colored differentials: two canceling ones dﬁ’é and dg%, two

colored gl(m|n) differentials dﬁ’i, and dg% both leaving homology isomorphic
to HB(41), and the universal one d also leaving homology isomorphic to
H(41). All re-gradings are as given in Sections 2.5 and 2.7.
The Q-grading is given by @ = q + t, — t.. So, the tilde-version of the
m-colored HOMFLYPT homology of the figure-eight knot becomes
P (41)(a,Q, tr, te) = a'tyte + a®(Q ot + Q7 tots + tite + tote + QP27 + Q1110
F Q2 Q72 P Q2 M g P 432 Q2 e+ QP 3+ QALY
+am2(Q 72t T QT s Pty M oty P P Q2 QP T ) am e S
The tilde-version is presented in Figure 9 in (a, Q, t,, t.)-gradings. It indeed
satisfies the self-symmetry (2.8) and the refined exponential growth (2.34).

3.3. (3,4)-torus knot. In this section we describe the conjectural quad-
ruply-graded S2-colored homology of the (3,4)-torus knot 75 4 (i.e. 819 knot)
and show that it has all the desired properties. This knot is a thick knot,
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A J |
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, N N N A
2 ‘e o ° e o o
,,,,,,,,,,,,,,,,,, (1030 2 4 15 70 1
0 e e o eceee (o o o
,,,,,,,,,,,, 4 =3 -1, 20002 |1 3; 4 |
-2 o o ° e e o
R S o A S - 0 b e N
~ S L
T T T T T T _—

Fig. 9. The tilde-version of the S2-colored homology of the figure-eight knot

and has nontrivial differential d;|; (i.e. dp) on the uncolored homology, which
makes this a highly nontrivial consistency check of all predicted properties.
The conjectural uncolored homology of T3 4 is given by (See [20])

PR(T3.4)(a,q,t) = a®q~C + a®q™> + a®q7%% + a®° + aS¢?t* + aBg't”
+a8518 + al% + aBq 2% + aBtT + a6t4.
Its S-invariant is X(754) = 6. There is a nontrivial differential do (or dy;)

on HE(T34) of (a,q,t)-degree (—2,0,—3) leaving 5-dimensional homology
isomorphic to the knot Floer homology of T3 4:

(3.8) (HP(T3,4),dy1) = a®q70 + aBq7 43 + abt* + aBgMT 4 5Bt
The quadruply-graded tm-colored homology of 73 4 that we have (Pmputed
has 121 generators. The Poincaré polynomial of the tilde-version H™ (T3 4)

in (a,Q,t,t.) variables is given by
P (Ts,4)(a, Q. tr,te) = a'*(Q7 2 + QP (t2 +2) + Q7 1 (22 + °)
QUMM+t +17) + QTN+ te!) + (87 e 10 7)o+ 18

F Q7 +12%) + QU + 2% +2%) + QOO (12 + 2+ QP (¢ + 7 )+Q12t12t
+a (QTIUNE +10) + QTR + teh) + QT2 + 2t
+Q74tZ(2ti3 +3ti5 +t,137) + Q72t7( 13 + 2t15 +2t17 +t19) +Q7 (
+t2(2t17 +3t19 +t21) +Q2 ( 17 +2t19 +2t21 +t23) +Q2t11( 21 t§3
+ QM (2621 + 323 +42°) + QO (121 4 262% 4+ 12°) + QB3 (42° ti

+ QU +2T)) +a" O (Q B + QOB (1 + 2628 + %) + QP (1l°
+Q 4t10t20+Q 2 10( 18+3t20+2t22)+t10( 20+t22+t24)+t12( 22+2t24+t26
+Q2t,1«2(t32+3tz4+2t36)+Q4t12( 24+t26)+Q4t14t28+Q6t14( 26+2t28+t30
+ QM) + o QT (12 + 1) +Q TP (12 + £27) + 4,7 (8

+ Q72 + 2 + QU (12 + £ ))+a2°t16t
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The Poincaré polynomial in (a, q,t,,t.)-gradings can be obtained from the
above expression by

PED (T3,4)(a) q, t’r‘a tc) = ﬁl:l:l (T3,4)(a) Q =4dq, tT - trqilv tc - th)
This homology has all the expected properties: there are four colored gl(n|m)

differentials d‘ﬁ’é, d8(|’21, d‘lx"ll and dg%, with the properties and re-gradings ex-

actly matching the predicted behavior from Section 2.5. Moreover, there
exists a universal colored differential d*~ as predicted in Section 2.7. Fur-
thermore, the homology H™ (T3 4) has the self-symmetry property
P (Ty4)(a, Q1110 b, te) = PP (Ty)(a, Quty, )
It also satisfies the refined exponential growth property
PP(T34)(a,Q = g, 1y = t,te = 1) = (P (Ts4)(a, g, 1))".
Moreover, since the HFK differential dy on HY(T34) is nontrivial, this
time the HFK-like exponential growth property (2.42) gives a new rela-
tion on the homologies. Indeed, there exists a differential dyj on H™ (T3 4) of
(a,Q,t,,tc)-degree (—2,0, —3, —5), so that the homology H*(?’:zED (T3,4),dy)2)
is 25-dimensional with Poincaré polynomial
(H™ (T3.4), duj2) (0, Q, tryte) = @ (Q7% + Q7O (82 + £°) + t(t:° + £2%) + 782"
+ Q" (1" +12°) + QU + a™ QT (12 + 1) + QTHI(t + )
QT + 1) + QUL 1) + QM (12T +12) + Q1 (1 + 7))
+a QT + 4,0 (87 + ) + Q%)
and such that
~ 2
(39) (HE(T?)A)? d1|2)(a7 Q = q, t, = t7 te = 1) = ((HD(TSA)? d1|1)(a7 q, t)) .

3.4. (2,2)-representation. In this section we describe the Hi-colored
HOMFLYPT homology of the trefoil knot. It should categorify the reduced
FH-colored HOMFLYPT polynomial of the trefoil:

PH@E)(a,q) = a' + (=0 =207 =77 — ¢ = 2¢* = ¢°)
+a2(4 42070 +2¢78 4+ 207 + ¢+ 3¢72 4+ 3¢% + ¢* +2¢° + 2¢° + 2¢'Y)
Falf(c2 g M 912 gm0 o8 3,6
gt - 3¢72 - 32 —4gt — 3¢5 — 8 — q10 — 2412 — ¢!
1 aB2q g0 28 g O g g 2 P gt S 2¢5 4+ gl0 4 ¢tF).
The HH-colored HOMFLYPT homology of the trefoil knot that we computed

has 81 generators. Its four-variable Poincaré polynomial is given by

PEEB1) (0,0t t0) = 622 + 0 (00000 + g7 (070 + 0100

+q 2+ PP+ BN P + PN
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4 a12 (q_lo(tiQt};O + t:‘4t;1:2) 4 2q—8ti2t(1:2 + q—G (t'}'ot};Q 4 t71~2t(1;4) + q_4t71~8ti4

+q 20t 426500 + (360t + 50 + P (8 + 26,°.°)

+ q4t14ti8 + q6 (t%otig + tEQtzO) + 2q8t20t§0 + qm(t,lnSth + tzotz2))

+a' (g7 T P00+ 10 + g7+ P+ g2+ 1)
gt + 3t ) + a2t + 1% + (Bt + 478

)

+q2(2ti5ti3 +ti7t:§5) +q4(ti3t:§3 +3ti5t};5) +q6(2ti3ti5 —&—tist};

+q8t:‘3t(1:7 +q10ti9ti7 +q12(t71‘7ti7 +t71‘9t(l:9) +ql4ti7ti9)
a0 T e+ g (e + 010 g+ g g+ 8
+t10t10 4 q2t8t10 4 q4t8t12 + q6t14t12 4 qs(t12t12 + t14t14) 4 q10t12t14 4 q16t16t16)
Let us list the various differentials and their (a, g, t,, t.)-degrees.
1. Categorification:
PE31) (0, ¢, t,=—1,t.=1)= PB(3,)(a, ) = PEB31)(a, ¢, t, =1, t.=—1).

2. Canceling differentials: There exist differentials dg?ol and dg(é, with
degrees (—2,4,—1,—1) and (—2,—4,—5,—5), respectively. The remaining
generators have degrees (8, —16,0,0) and (8, 16,16, 16), respectively.

3. Row-removing differentials: There exist differentials dg% and d‘ﬂg of

degrees (—2,6,—3,—1) and (—2,—2, -7, —5), respectively, such that
H*(HB(3)),d50) 2 HT(3)),  H (HB(31),d50) = HT(3)).

4. Column-removing differentials: There exist differentials dff"é and dg‘ﬁ
of degrees (—2,—6,—5,—7) and (—2,2, —1, —3), respectively, such that

B HBE),deh) 2 #186),  Br#HBE),d5) = H1O3)).

5. Universal colored differentials: There exist differentials d' and d< of
degrees (0,2,—2,0) and (0, 2,0, 2), respectively, such that

H*(HB3)),d") 21D (3y), HHB3),d7) 2H1B(3,).

The remaining properties are best seen in (a, @, t,,t.)-gradings. Recall
that in this case the @-grading can be expressed via the other ones by

Q:(q"‘tr_tC)/z'

We denote the HH-colored homology in these four gradings by 7:283(31), and
the corresponding four-variable Poincaré polynomial by pH (31)(a, Q, tr, tc).
In terms of PEH(?)l), we have

PHG1)(a, Q. tr, 1) = PH(31)(a, Q12 £,Q12, 1,Q71/2).
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6. Self-symmetry:

o ~ ;08
HLJ}k,l(?’l) = ,H’L',fj,kaj,l72j (31)-
7. Mirror symmetry: Since EBt = [, the mirror symmetry in this case is

another, different symmetry on 7 (3):

~H ~ i
Hzg kl( ) = Hi,j,l,k(gl)‘
8. Refined exponential growth:

PHEG (0, Q, b te = 1) = (PEB1)(a, Q, b1, 1 = 1))

3.5. (2,2,2)-representation. In this section we give the result for the
%-colored homology of the trefoil. Although this homology is very large
(729-dimensional) it contains all colored differentials predicted in Section 2.5.
Due to its size, and in order to simplify the presentation, we give the homol-
ogy and the differentials in (a, ¢, t.)-gradings, and simply denote ¢. by ¢. In
(a, q,t.)-gradings the Poincaré polynomial is given by

P%(gl):a12(q736+q730t4+q728(t4+t6)+q726(t4+t6)+q724(t6+t8)+q722t8
+q720(2t8+t10)+q718(t8+2t10)+q716(t8+2t10+t12)+q71 ( +2t

+q 2B+ M) + ¢ 02 4 26M) + ¢ (P 4 38 + ¢ (" + 2t
+q (T 2670) + 20770 + (2670 + 267) + ¢ (810 + 267%) + ¢" (110 + 267 +47°)
+q6(t18+t20)+q8t +q t +q12(t20+t22)+q14(t20+t2 )+q16t22 4t24)
+CL14( 36t5+q734(t5+t7)+q732(t5+t7)+q730(t7+t )+q728(
+q 203t + 36" + ¢ (2t + 5t + 1) + ¢ (0 + 4 + 3t
+q 20(213“+5t13+t15)+q*18(5t13+4t15)+q*16(4t13+7t15 )
g M@t 8 3T 4 PP 45t 6t g 02" + T 4 2t1)
+q78(6t17+5t19)+q76(4t17+8t19+t2 )+q74(2t17+8t19+3t21)
+q (T 5" £ 57 + 026" 4587 7% 4 P (487 + 267°) + ¢t (387 4 4t7P)
+q6(2t21+5t23+t25)+q8(t21+4t23+2t25)+q10(2t23+2t25)+q12t25+q t25
+q16(t25+t27)+q18( 25+t27)+q20t27)+a16(q734(t10+t12)+q732( +2t )
+q 30( +3t +t14)+q728(2t12+2t14)+q726( +3t +2t 6)
+q 2B 5t 1) P2t 8t 3" £ PO T 6t
+ g B4 4 8t 4 26%°) + 1O (0 + 7 + 5t%0) + ¢ (5" + 10670 4 2672)
+q712(2t18+11t20+5t22)+q710(t18+9t20+9t22+t2 )+q78(4t20+9t22+2t 4)
)
)
)

%)
16)

2t? + ')

+q76(t20+7t22+5t24)+q74(4t22+7t24 )+q72(2t22+9t24+3t 6
+q0(t22+7t24+6t26)+q2(4t24+6t26+t28)+q4(t2 +4t )+q (2t26+2t 8
+q8(t26+2t28)+q10(t26+3t28+t30)+q12(2t28+t30)+q (t28 )
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+a18(q_32t17+q_30(t15 +2t17—|—t19) +q_28(3t17+2t19) —2 ( +3t )

+q_24(t17 + 3419 + 2t21) + q_22(2t19 +4t21 +t23) + q_QO( +6t +4t 3)
+q718(6t21 + 7423 —|—t25) +q—16(3t21 —|—8t23 + 2t25) +q714( —|—6t +4t 5)

—12(3t25+6t25+t )+q—10( +7t +4t2 ) (6t25+7t27+t 9

31

)
+q 0(3t% + 8677 + 2t%) 4 ¢ (¢*° + 5t + 3t° )+q*2(2t27+3t29)+q (> + 367+ £°1)
+q2(3t29+2t31)+q4(2t29+3t31)+q6(t29+2t31+t33)+q8t31)+a ( 728( 24)
+q_26(t22+2t24)+q_24( +3t +t26)+ _22(2t24+t26)+q_20( +2t 6)

)

)

)

+q718(2t26+2t28)+q716(2t26+4t28+t30)+q714(t +5t +2t )+q712(3t28+3t 0

+q—10( —|—2t )+q—8(2t30+t32)+q—6(t30+2t52)+q ( +3t 34

+q72(2t32+t34)+q (t 2+t34))+a22(q724t29+q722(t29+t31)+q720( 29 31

+q718t31 + q714t33 + q712(t33 + t35)q710(t33 +t35) + q78t35)a24q718t36.
We note that the above Poincaré polynomial, after an appropriate change of

variables, matches the result from [14]. In addition, on such a big homology

7—[%(31) categorifying the reduced %—colored HOMFLYPT polynomial of
the trefoil knot, there exist all of the predicted colored differentials. These
straightforward, and clearly long and tedious checks are summarized below:

1. Canceling differential dg‘ré of (a,q,t.)-degree (—2,6,—1) such that the

homology H* 7—[% (31) dg‘l)é) is one-dimensional, and the remaining generator
has (a, ¢, t.)-degree (12, —36,0).
2. Canceling differential dg“)Ql of degree (=2, —4, —5) such that the homol-

ogy H *(’Hﬁ(?)l da’%) is one-dimensional, and the remaining generator has
(a,q,tc)-degree (12,24,24).

3. Positive row-removing differential dfﬁ’é of degree (—2,8, —1) such that

H*(”H%(?)l), dify) = HT(30).

4. Negative row-removing differential dﬁ)zl of degree (—2,—2,—5) such
that
H*(H%(Sﬂ,dﬁg) =~ H™(3y).
5. Positive row-removing differential dg‘fé of degree (—2,10, —1) such that
U B 30), a5 = 1B 3y,
6. Negative row-removing differential d;‘é of degree (—2,0, —5) such that

(3., gy = HFB(3y).
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7. Negative column-removing differential dg“’?l) of degree (—2, —6, —7) such
that

(M (30), ) = MO (3,).

8. Positive column-removing differential dg‘l’} of degree (—2,—4, —3) such
that

B, ap)) = 10,
9. Universal colored differential d= of degree (0,2,2) such that

H*(H%(?q), A7) = ’HE(31).

4. Bosonic and fermionic generators

4.1. The algebra of BPS states and knot cobordisms. While most
of this paper is probably aimed at a more mathematical reader, here we offer
a geometric interpretation of some of our observations in the framework more
familiar to physicists. Therefore, the purpose of this section is twofold. First,
it will help physicists to better understand some of our observations (which,
we believe, may go beyond the scope of the present paper and are worth
studying further in the context of BPS state counting). Second, the physi-
cal interpretation/motivation provides further evidence for the structures of
knot homologies discussed in this paper. In Section 6.4 we also comment on
the connection with the equivariant instanton counting in the presence of a
surface operator.

We begin with a lightning review of the physical interpretation of knot
homologies, in which Hiypet is identified with a space of supersymmetric
particles (the so-called BPS states) [43, 41, 96]:

(4.1) Hinot = Hpps-

In particular, it will allow us to see bosonic and fermionic generators of
homological knot invariants and will also help us in Section 6.4 to understand
the limit a — 0. As we shall see, the latter allows one to focus on the “bottom
row” of the superpolynomial which turns out to have a very elegant and
simple geometric interpretation in the physical framework.

In one of the duality frames, the physical system involves a compactifica-
tion on a very particular (noncompact) Calabi—Yau 3-fold X in the presence
of five-branes supported on a Lagrangian submanifold Ly C X:

space-time: R x X x My,
Mb5-branes: R x Lg x D.

Specifically, X is the total space of the O(—1) ® O(—1) bundle over CP!,
while the Lagrangian submanifold Ly is determined by a knot K C S3

(4.2)
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(cf. [73, 89, 62]). Furthermore, the Kéhler modulus of X is related to the
variable a in the superpolynomial:

(4.3) a = exp(—Vol(CP')),

whereas the number of five-branes in (4.2) is equal to the number of columns
in |A| (see e.g. [73, 63| for further details on how A is encoded in the five-brane
configuration (4.2)).

This summary was very telegraphic, of course, but the reader can always
consult e.g. [44] for further details, references, and an outline of the relation
between different ways of looking at the physical system (4.2). As reviewed
there, the system (4.2) was studied in physics as well as in math literature
from many different angles, e.g. from the target space point of view [43, 45]
that leads to a description of (4.1) in terms of enumerative invariants of
(X, Lk), or from the viewpoint of the five-brane [96], or from the viewpoint of
the N' = 2 gauge theory on a 4-manifold M, with ramification [19]. However,
only recently [31, 29] has (4.2) been considered from the viewpoint of the
two-dimensional theory on D, which will be yet another motivation for the
discussion in Section 6.4.

Now we are ready to discuss the BPS states that contribute to the reduced
and unreduced superpolynomials, P*(a, ¢,t) and f/\(a, q,t), respectively.

As discussed e.g. in [73, 43, 68|, there are two kinds of BPS particles
that contribute to (4.1) in the problem at hand: M2-branes supported on
bordered surfaces embedded in X with boundary on Lg, and momentum
modes (= DO0-branes). The charge of the former is precisely the a-grading,
while the charge of the latter is the ¢g-grading. Both types of states can mix
together (forming stable BPS particles that carry both charges) and both
can carry a nontrivial spin js, which becomes the third ¢-grading on (4.1).
To summarize, the dictionary between the three gradings on the colored
HOMFLYPT homology and the charges of the BPS particles is as follows:

“a-grading” = f € Ha(X,Lx) =7Z  (“winding number”),
(4.4) “g-grading” =n € Z (“DO-brane charge”),
“t-grading” = 2j3 € Z (spin).
Using this dictionary, we can identify every generator of (4.1) with the cor-
responding BPS particle. For example, if we see a term a™¢™t* in the super-
polynomial, the proper translation to the physics language is
monomial “a BPS particle with winding number m,

(4.5) f , & _
amq"t® C P DO-brane charge n, and spin k/2”.

The particles that carry no winding number (m = 0) are usually called
simply DO-branes.
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One well-known property of the BPS states in the present setup is that
particles that carry nontrivial winding number m = 1 are fermions, whereas
DO-brane states (with m = 0) are bosonic [18, 53]. When translated to
the language of knot homologies, this statement says that the statistics of
the generators in the colored HOMFLYPT homology is correlated to the
a-grading!

Namely, the generators with trivial a-grading are bosonic, whereas the
generators with a-grading equal to 1 are fermions. This will play a key role
in what follows.

Another useful lesson that we can learn from the connection with enumer-
ative (BPS) invariants (4.1)—(4.2) is the behavior of colored HOMFLYPT
homology with respect to cobordisms. First, however, it is convenient to
consider a dual brane system related to (4.2) by a geometric transition (%)
[34, 73]:

space-time: R X T*W x My,
(4.6) N Mb5-branes: R x W x D,
|A| M5-branes: R x Li x D,

where W = S3 in most of our applications (or its close cousin W = R3).
This system is relevant to sl(/V)-homological knot invariants and has been
studied from various points of view in |2, 52, 96]. One advantage of the
duality frame (4.6) that will serve us well in building knot cobordisms is
that the Lagrangian submanifold Ly C T*W can be defined simply as the
conormal bundle to the knot K C W.

Now, it is easy to describe how knot cobordisms can be implemented in
the physical setup. Since the factor of R in (4.2) and (4.6) plays the role of the
“time” direction, one can replace R x S2 by a general 4-manifold cobordism
V and replace R x K embedded in it by a more general knot cobordism
2} C V, as in Figure 10:

space-time: X7 X My,
(4.7) N Mb5-branes: V' x D,
|A| M5-branes: Ly x D.

Supersymmetry imposes certain constraints, which ensure that the physi-
cal setup here continues to maintain the relation between supersymmetric
configurations (BPS states) and functors on knot homologies. Specifically,
the 7-manifold X7 must be a special holonomy manifold with holonomy
group G, while the 4-manifold Ly must be a coassociative submanifold

(%) Sometimes also called “large N duality”, which is somewhat of a misnomer since
the duality holds for all values of N, as long as one is careful with differentials and wall
crossing (20, 44].
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in X7. Both can be constructed in a fairly simple way, starting with the data
of V and X, respectively.

Fig. 10. A real isotropic knot cobordism X C R x S® defines a coassociative 4-manifold
Ly CRxT*S3.

Just like T*W is a “canonical” Calabi-Yau 3-fold associated to a 3-
manifold W, from a 4-manifold V one can build a “canonical” Ga-holonomy
manifold X7 = A% (V) as the total space of the bundle of self-dual 2-forms.
This 7-manifold X; = A%*(V) replaces R x T*W and reduces to it when
V =R x W. In what follows, we restrict our attention only to this case, and
moreover assume W = S3. Then, given a knot cobordism ¥ C V =R x S3,
we wish to construct a coassociative 4-manifold Ly C A%% (V) with the prop-
erty Ly NV = X, which is a suitable Go-manifold version of the property
Lk NS% = K in (4.6). By analogy with the conormal bundle construction
of Lk, the desired coassociative 4-manifold Ly can be defined as the sub-
bundle of A%%(V) over ¥ < V such that restriction of the fiber to X is
trivial, provided that X' is a real isotropic minimal surface [51, 54]. Details
of this construction and its implications for functors on colored knot homolo-
gies will be discussed elsewhere. Here, we simply point out that the existence
of such a geometric construction implies the existence of a map

(4.8) HNO) o HNEK) — H\(K).

Indeed, applying geometric transition one more time to the setup (4.7) with
V =R x S we get a “cobordism version” of (4.2):

space-time: R x X x My,

Mb5-branes: Ly x D,

where Ly is a coassociative 4-manifold in R x X. When X' is a link cobor-
dism from K U () to K, the setup (4.9) defines a functor on the space of
refined open BPS states and, via (4.1), leads to a functor (4.8) on colored

HOMFLYPT homology.
Note, that (4.8) is very similar—and, in fact, possibly related—to the

conjecture [44] that ﬁ)\(K ) = Hpps is a module over the algebra of closed

(4.9)
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BPS states HCBII%SSed:

refined open BPS states: H%%eg
(4.10) o
refined closed BPS states:  H5osd

Even though we did not pursue the detailed comparison of A = H({)) and
the algebra H]%ll%s;d here, it is worth mentioning that the two have some sim-
ilarities. For instance, much like H({)) has sl(IV)-specializations indexed
by N and realized by the action of differentials dy (see below), the space
HCBI%SSed for the problem at hand also has an infinite set of chambers, con-
veniently labeled by N (see Figure 11). Moreover, in the Nth chamber the

space HE%ed has N stable BPS objects [68]: D0/D2 bound states of charge

(n,B) = (4, 1), where 0 < j < N, nicely matching the fact that QSI(N)’D(O)
is also N-dimensional.

AVOl(CPI)

~
~

Wq W-I ‘I/i{'

N

-3 -2 -1 0 1 2 3

Fig. 11. Walls and chambers for the conifold X in (4.2)

4.1.1. Supersymmetry and gl(n|m) representations. One of the struc-
tures we predict on HOMFLYPT homology is the structure of gl(n|m)
differentials—see Section 2.4, and in general, gl(n|m) representations. This
structure has appeared in the physics literature [91, 95| as a symmetry of
brane/antibrane systems, which makes it especially easy to implement in
the brane system (4.2) or, better yet, in the dual system (4.6) where the
rank N enters as the number of five-branes. In this framework, replacing
sl(IV) by a Lie superalgebra gl(n|m) can be easily implemented by replacing
N five-branes with a system of n five-branes and m antibranes.

Another, more supersymmetric way to realize quantum and homological
invariants of knots labeled by gl(n|m) representations is to consider n five-
branes supported on R x W x D exactly as in (4.6) and introduce m new five-
branes supported on R x W x D', such that C =2 D" € My and DN D' = {0}:
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space-time: R x T*W x My,
(4.11) n Mb5-branes: R x W x D,
m Mb5-branes: R x W x D',

For instance, if My = C? is parametrized by coordinates (21, z2), then we can
choose D = {z; = 0} and D' = {22 = 0}. Furthermore, identifying M, with
the Taub-NUT space and reducing on the circle fiber takes us from M-theory
to type IIA string theory with a system of D4-branes and D6-branes shown
in Figure 12.

D6

ps |—D4

Fig. 12. In the approach of [96], homological invariants of knots labeled by representations
of gl(n|m) can be realized by a system of n semiinfinite D4-branes ending on one side of
the D6-brane, and m semiinfinite D4-branes ending on the other side of the D6-brane.

Then, as in [96], homological gl(n|m) knot invariants can be obtained
by “counting” solutions to the following partial differential equations on a
5-manifold R x W x Ry:

Ft—iBxB-1iD,B=0, Fy,+D'B;=0
with the prescribed behavior near the “interface” y = 0:
B~ B(()i)/y as y — 0.
Here, B is a section of 2%F(R x W) ® ad(FE), so that

(B X B)U = Z[BZk’BJ ]
k

We relegate further study of this physical system to a future work.

4.2. Colored polynomials of the unknot. For a Young diagram A
and a box x in it we define the arm a(z), leg l(x), co-arm o' (z) and co-
leg I'(x) as shown in Figure 13. The hook-length of x is defined as h(x) =
a(xz) + l(z) + 1, and the content of x is defined as c(x) = d/(z) — I'(z).

Let A be a Young diagram with k£ boxes, let V) denote the irreducible
representation of Sy, labeled by A, and let Uy = Sy(C") denote the irreducible
representation of sl(N) labeled by A. The sl(N) quantum invariant of the A-
colored unknot coincides with the character of the representation Uy and is
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Fig. 13. Arm, leg, co-arm and co-leg

given by (4.12) below. This character is given by the hook formula

1— qN—i—c(w)
chUy =[] ——
TEA 1- q )
If we substitute qV = A, we get
1 — Aq“@
A _
(4.12) PMNA,q) = g on

Let My(q,t;p;) be a Macdonald polynomial corresponding to a diagram A,
where p; denotes the ith power sum. Recall that its evaluation can be com-
puted by the formula (see [65])

. 1— Al L e
(4.13) My (A, q,t) = M, (Pz‘ = H) = I;IA 1 — q@gl@+1"

Note that at g = t Macdonald polynomials degenerate to Schur polynomials
and (4.13) degenerates to (4.12). In all approaches based on the refined BPS
invariants the (unreduced) colored superpolynomials of the unknot are given
by the Macdonald dimensions

(4.14) PNO) = Mj(A q.t).

In order to write these expressions with positive coefficients, one needs to
convert to the variables (a, ¢, t) that we use throughout the paper:

(4.15) A=—-d*, q=4¢t t=q
The first few values of (4.14) read

—n 1—A4%2 1+ad%
(416) ,P(O)_l—t2_1—q27
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— 1— A% (1 - A%¢? 1+ at)(1 + a?¢*t3
(417) PE(O):( )( q):( ta )( +a’q )7
(1-t2)(1 - qt?) (1—=¢*)(1—q*t?)
where we normalized by overall powers of A, q, and t, so that all expressions
(4.14) have the form of a power series f/\(C) =1+---

The variable ¢ will be also denoted by t.. The equation (4.14) in these
variables has the form

(4.18) PO =TI

TEA

1 +a2 ZC(x)tQa’(:p)Jrl
| — 2@ 2a()

Note that the right-hand side is a polynomial in a and a series in g with all
nonnegative coefficients.

4.3. Schur—Weyl duality. Following [58|, one can identify the uncol-
ored HOMFLYPT homology of the unknot with the polynomial algebra in
one even and one odd variable, which is isomorphic to the space of differential
forms on a line. More precisely, one can write

HE(()) = 2°(C) = Clz, dx].

The sl(N) differential is given by the Koszul complex: dy(x) = 0 and
dn(dz) = zN. It is clear that H*(H",dy) ~ Un(sl(N)). The kth tensor

power of this construction will give
H :Q.(Ck):(C[.%'l,...,xk;d.%'l,...,dl'k],

and the differentials are given by dy(z;) = x. Following the ideas of [45],
define

(4.19) Hy, == Homg, (Vy, £2°(CF)).

It is naturally equipped with two gradings: the a-grading is given by the
degree of a differential form, and the g¢-grading is a standard polynomial
grading. In other words, the (a,q)-degree for z; equals ¢%, and for dx; it
equals a?.

O®k

PROPOSITION 4.1. For any X the (a, q)-character of the space H)
with the colored HOMFLYPT polynomial of the unknot.

Proof. It follows from the results of [59] (see also [67]) that the character
of H* equals

alg @grees

H q2(1 1) —l—aq(J 1)

(4.20) ch Halg a,q) )

(4,5)EX
Therefore, by (4.12),
(4.21) ch Hyy(a,q) = "M P av/—1,q),
where v(A) => (i — 1)\;. =
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For the symmetric representation we have

k
’Hflg = (Q'(Ck))s’“ = Cluy, ..., ug;duy, ..., dug),
where the u; denote the elementary symmetric polynomials. Note that the

(a,q)-degree for u; equals ¢%, and for du; = Y gg; dx; it equals a’q?2.

Therefore the bigraded Poincaré series of 7-[51’; has the form

k 2,2i—2
Sky 14+ a%q
P(H )*H 1—g% 7
i=1
in agreement with (4.12) (keeping in mind the change of variables (4.15),
and (4.21)).

CONJECTURE 4.2. There exists an additional t-grading on the space H
such that the (a,q,t)-graded Poincaré series agrees with (4.18).

A
alg

For example, for A\ = S* the space ’Hf{; is a free polynomial algebra in
even and odd generators and one can easily assign an additional ¢-grading
to its generators.

4.4. Colored homology of the unknot. Consider a free supercom-
mutative algebra A with even generators ui,...,u, and odd generators
&1, ..., &. Suppose that the algebra is graded so that deg u; = o, deg&; = 5;.
It is well known that the Hilbert series of this algebra is given by

S i
(4.22) Hoplg) = BT,
[Tizi (1 —q*)
The similarity of this formula to (4.12) and (4.18) suggests the following
construction. We conjecture that the homology H* of the unknot colored
by a rectangle with R rows and C' columns is isomorphic to the free graded
supercommutative algebra A.

As we will mostly discuss rectangle-shaped Young diagrams, let us fix
some notations for them. Let A be a rectangle with R rows and C' columns.
For a box z = (4,7), 1 <i < C,1<j <R, in it we have

a(z)=C—4, l(r)=R-—j, h(x)=R+C—i—j+1,
dx)=i—-1, l'(x)=7-1

CONJECTURE 4.3. The HOMFLYPT homology of the unknot colored by
the R x C rectangle X is a free polynomial algebra with one bosonic generator
ui; and one fermionic generator &; per box (i,j) € A. Their gradings are
given by

(4,0, te)[ugy] = 2(R+C —i—j+1),0,2(C —1)),
(4.a,t)[&5) = (2(i — 5),2,2i — 1).
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We define the fourth grading using the mirror symmetry between R x C
and C x R rectangles. To write down the isomorphism M) : H* — ’H)‘t, one
can define it on the level of generators. We let

My(uij) == ur—j+1,0-i+1,  Mx(&j) = &

The correspondence between boxes is shown in Figure 14. Note that
for bosonic generators we fix the southeast corner of the rectangle (marked
with %) while for the fermionic ones we fix the southwest corner. We define
the grading ¢, using the mirror symmetry relation t,(w) = t.(Mx(w)), so

tr(uig) =25 —2, (&) =25 -1

From the formula

_Q+tr_tc
Q_ R )

we get
Quij) =2, Q&) =0.

For A = S, Conjecture 4.3 was proven by Hogancamp:

7|
J
7 M
J o« *
i M, [
x [/ x

Fig. 14. Mirror symmetry for u;; (upper pair) and for &; (lower pair)

THEOREM 4.4 ([50]). The S"-colored HOMFLYPT homology of the un-
knot is isomorphic to the free polynomial algebra in r even and r odd gener-
ators.

4.5. Potentials and differentials: antisymmetric case. Let H*(K)
and HIMA(K) respectively denote the HOMFLYPT and sl(N) homology
of a knot K. By Theorem 1.1 there exists a differential dy of (a, q)-degree
(—2,2N) such that

HINNEKY) = H*(HMNK), dy).

Note that dy preserves the grading Na+ g, and its Euler characteristic with
respect to this grading equals PA(K;a = ¢V, q) = PSI(N))‘(K).
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On the other hand, it is known [45] that for some diagrams A one can con-
struct a family of potentials Wy n(u1,...,uq) such that ﬁSI(N)’A(O) coin-
cides with the Jacobi ring J = C[ui]/(ag/;’N ). More generally, ﬂSI(N)’/\(O)

is expected to coincide with the Hochschild homology of the category of ma-
trix factorizations of W) y, that is, with the homology of the Koszul complex
associated with the sequence of the partial derivatives of Wy n. The latter

homology contains the Jacobi ring J, and is equal to it if and only if W) x has

only isolated singularities. In other words, if the potentials W n(u1, ..., uq)
exist then one can consider the free supercommutative algebra A with even
generators uq, ..., uq, odd generators £1,...,&; and the differential

_ OWhN

(4.23) dN : C[u“fj] — (C[ui,fj], d]v(fl) = dN(uZ) =0.

8ui ’

This matches the above construction of differentials if one identifies u; and

&; with the even and odd generators of ﬁ/\( (), so that Clu;, &;] = ﬂ)‘( ).
The potential W,  was found in [45]:

(4.24) Wk y(u1, ... ug) = Coef nyq[In(1 + zug + -+ + 2Fu)],

where Coef), denotes the coefficient of z¥. This potential has an isolated
singularity at the origin, and the Jacobi rings of Wk n and Wyn—x y are
isomorphic.

PROPOSITION 4.5. Up to some change of variables (u;) — (v;) we have
(4.25) WAka_j(ul, Coug) = WAk—ij_j(Ul, cee, Uk—j)
1 J
+ 5 2:1 Vk—j+sVk+1—s-
P

Proof. Let us explain the construction of v; in general. Consider supple-
mentary variables w; defined by

1 k
ws:Coefj[ + zuq + + 2" ug :|

L+ zup + -+ 2P dug_j |
Clearly, ws = 0 for s < k — 7, and the change of variables
(Uty .oy ug) = (UL Uy Wh— g1y - - - W)
is invertible. Now
WAk,?k*j(ulv ) — WA’“—f,Zkfj(ula e 7uk—j)

1+ zup + -+ + 2Py
L+ zug + -+ 2F Ty

= Coeka_j_H In
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= Coefop—jr1 In(1+ w1 2" 7 4+ fwp2t + )

1J
~ 2 Zwk—j-i-swk—i—l—s +oee
s=1
Since the quadratic part of this expression is nondegenerate, one can apply
the Morse lemma with parameters and get rid of terms of higher degree
in w’s. See also [47] for an alternative proof of this result and further discus-
sions. m

For example, one can check that Wy2 3 = —uf/4 + ujus — u3/2 and
Wi 3 = —ui/4, hence
Waz g = =Wtz — (u2 — ui)?/2.
The equation (4.25) can be rewritten as Wk op_; = Wyk—j o5 _; + W', and
we get the diagram

d ik gk—j ;
Ak s Ak—J Ak—3
— = S H

A
(426) ko_jl lko_j

HAk,zk—j = HAk—j,Qk—j
Here the colored differential d 4x_, 4+—; coincides with the one defined in [44].
It is defined on HOMFLYPT homology colored by A, and its homology is
isomorphic to HOMFLYPT homology colored by AF=J Tt corresponds to
the “remainder potential” W’ = $3°7_ vp_jysvp1-s in (4.25). The cor-
responding Koszul complex is associated to the sequence of polynomials

Vk—j+15- -5 V!

(4.27) d ks p1-5(§i) = Vigh—j,

and its homology is isomorphic to a free superpolynomial algebra generated
by v1,...,Uk—j,§j+1,- .-, &n- We can easily see this differential on the picture

with the bosonic and fermionic generators labeled by the boxes of a Young
diagram. Recall that their ¢-degrees are twice the content and the hook-
length of the boxes of A* respectively, as shown in Figure 15. The differential
d gk, pk—; has g-degree 4k — 27,

(4.28) (@, @)ld g i) = (=2,4k — 25).

4.6. Potentials and differentials: extension to nA. Let us first fix
some notations. Let A = (A1,...,\;) be a Young diagram. Then the boxes
of nA = (nA1,...,n\,) are split into groups by n boxes labeled by the boxes
of A\. If x is a box of A, then we label the corresponding boxes in nA by
LI O

For every z in A we can also consider the generators u, and &, in H*

and the generators u(x) and 53(5) in #"™. For convenience, we can consider



Quadruply-graded colored homology of knots 47

2| u1 & |2 -2k
20k —j7+1) pre—n : & |25 —2k
2k | uk & | 0
q(uz) q(&x)

Fig. 15. Action of the differential d sx_, 4x—; and the g-degrees of the generators uz, &,

the generating functions
n
Uy (T) = Z ug(ci)Ti_lv (1) = Zgg(ci)'ri_l'
) i=1

Suppose that the diagram A admits a potential W n(u1, ..., uq).

CONJECTURE 4.6. For all n the diagrams nA admit potentials Wy n
such that

(4.29) W(r) = 7" Wy = Wan(ui(7), ..., ua(r)).

n=1
The sI(N) differential for n\ corresponds to Wy n by (4.23).
Since W2 3(u1,uz) = —uf/4 + uug — u3/2, we have
Wase gy i) g, uf?) = Coefy[—ur (r)! /4 + s (r)Pua(r) — ua(r)*/2]
2+ (P + 20?02

Note that the ul(j ) correspond to the boxes of the 2 x 2 rectangle (see Fig-
ure 16), so that their ¢-degrees are equal to the hook-lengths:

@) =gw) =2, o) =1, q@i’)=qw) =14, q@)=6.
The potential W52 3 is homogeneous of g-degree 10.

w1 ugz) uﬁl)

ug ugz) u<21)

Fig. 16. Bosonic generators for A% and 242
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& @ | g2

& s

Fig. 17. Fermionic generators for A? and 242

Moreover, suppose that we have some differential D on H* given by the

formula D(§) = pi(u1, . .., uq). Such a differential can be naturally extended
to nA by
(4:30) Da(g") = Coefiilpi(ur (7). .. ualr)].

Observe that equations (4.29) and (4.30) agree with each other. Indeed, every
potential W induces a differential Dy, such that Dy (§) = %’ if we match

a bosonic variable u; with the fermionic variable &. We can match ul(i) with
fl(z) so that

8Wn’\.’N = Coef,,_1 [W Oui(7)

Bul(l) Ouy 8u§i)

As an example of this construction, consider A = (1), so that n\ = (n)

= S™. We have W) y = 2V *1 and it was suggested in [39] (see also [40])
that

(4.31) Wen N = Coef,_1(z2M) + 2P 7 4 ... 4 M HNHL

This differential differs from the one proposed in [45], but its homology agrees
with the known categorifications of the Jones—Wenzl projectors [15, 16, 28|.

As a more interesting example, let us compute the colored differential for
the R x C rectangular diagram. Such a diagram can be presented as C - A%,
and as such admits an extension of the colored differential d & _, 4;. By (4.27)
we have

] = Coef,_1-i[pi(ur(7), ..., ua(7))]-

dpr_ar-i (&) = Wyr—j,
SO
d A (m)y _ , (m)
R><C—>(R—])><C(£l ) Uy R—j-

In Figure 18 we show the action of the differential dyy2_,541. The left and

4 | 2 210
//

6 41 A 0| 2
Uy &

Fig. 18. Colored differential dy2_,5.1
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right rectangles illustrate the g-degrees of the bosonic and fermionic genera-
tors respectively. The differential has ¢-degree 6 (the same as d 2_, 41), and
its homology is a free graded supercommutative algebra isomorphic to HS?

4.7. Hilbert scheme interpretation. In [38], following the earlier
work in [37, 40] the authors suggested a relation between braids and co-
herent sheaves on the Hilbert scheme of points on the plane. Recall that the
Hilbert scheme of n points on C? is the moduli space of ideals I C Clx,y] of
codimension n. It is a smooth algebraic symplectic variety of dimension 2n.
It admits a Hamiltonian action of C* which lifts the Hamiltonian action
t-(z,y) = (t"'x,ty) on C2. The fixed points of this action correspond to
monomial ideals and are labeled by Young diagrams of size n. The Hilbert
scheme carries the tautological bundle 7 of rank n whose fiber over a point [
is isomorphic to Clxz,y]/I. We refer to [69] for all details and further infor-
mation on Hilbert schemes of points.

DEFINITION 4.7. Given a fixed point Iy, one can consider the attracting
subvariety

ZM:{IEHMf

hmﬁI:A}
t—o0

By construction, Zy is a smooth n-dimensional subvariety in Hilb"(C?)
(it is Lagrangian with respect to the symplectic form) isomorphic to C™. The
following proposition is well known (see e.g. [69]).

PROPOSITION 4.8. Given an ideal I, the limit lim; .t - I exists if and

only if I is set-theoretically supported on the line {y = 0}; we denote the set
of such ideals by Hilb™(C2, line). In other words,

Hilb"™( C?, line) UZ A

In short, the main conjecture of [38] can be formulated as follows:

CONJECTURE 4.9. Given a braid $ on n strands (or, more generally, an
element of the Soergel category categorifying the Hecke algebra), there is an
object F(B) € D(Hilb™(C?, line)) such that the HOMFLYPT homology of 3
is isomorphic to the equivariant sheaf cohomology of @ F(B8) @ N' T*.

The a-grading is equal to i, and the differential dygn is given by contraction

with the section syrn of T corresponding to the monomial My,

In general, the construction of Fjp is rather subtle, and we refer the reader
to [38] for further details. We are interested in the homology of the unknot
colored by a diagram A, which corresponds to a categorified Jones—Wenzl
projector Py in the Soergel category. It was argued in [38] that Py naturally
corresponds to the fixed point Iy:; more precisely, the class [F(P,)] in the
equivariant K-theory is proportional (but not equal) to the class of this fixed
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point. On the other hand, the class [Z,¢] is also proportional to the class [Iy],
so the skyscraper sheaf Oz, is naturally related to a certain multiple of the
categorified projector Py (strictly speaking, an object in the triangulated
subcategory generated by the direct sums of P,). We summarize all these
observations in the following:

CONJECTURE 4.10. Let A be a rectangular Young diagram. The A-colored
homology of the unknot (in the normalization used in this paper) corresponds
to the sheaf cohomology of @i, Oz, @' T*. The differential dyyy is given
by contraction with the section sy n of T, corresponding to the monomial
aMyN,

PROPOSITION 4.11. The colored HOMFLYPT homologies of the unknot
described in Conjectures 4.3 and 4.10 agree.

Proof. The R x C diagram A corresponds to the monomial ideal I =
(2, y™). The quotient C[z,y]/I is spanned by the monomials z'y’, (4, )
€ A. The neighborhood of Iy in the Hilbert scheme consists of ideals such
that the same monomials span the quotient:

I = (:L'C + Z aijxiyj,ijL Z szl'zyj)
(3,7)EX (i.3)€X

The 2C'- R coefficients a;;, b;; form a natural coordinate system on Hilb™(C?)
around Iy. Under the action of the Hamiltonian torus, a;; has weight t—Cti=g
and b;; has weight th+i=i o

lim ¢ - a; = lim ¢ - by = 00.
Jmtoas =0 fimt-by —oo

Therefore the attracting subvariety Z) is a vector space spanned by the
coordinate vectors corresponding to a;;:

Zy = {I = (xc + Z aijxiyj,yR>}.
(3,5)EX

Furthermore, 7* is trivial on Z, and has a basis &; which is dual to x'y’.
Therefore

H* (Hilbn(«:?, line), D Oz, ® A\’ T*) = Clay] ® \(&;j). =
i=1
Furthermore, this construction agrees with the description of the differen-

tials dy.

THEOREM 4.12. If C' =1 then the homology of dn is isomorphic to the
Jacobi ring of Wgr . If R =1 then the homology of dn agrees with the
Jacobi ring of Wyc -
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Proof. If C =1 then

R-1

Zy = {I = (ac—i— ;aiyi,yp“>}.

The basis & is dual to y*. Now dy(&;) is the coefficient of 3 in 2V, but

N RZL N
Y = (—I)N(Z a,iy’> mod y%.

=0

This agrees (up to sign) with (4.31).

If R =1 then
Cc—-1
Z)\ = {I = (xc + Z aixi,y>}.
i=0
We can write
C-1
=N+ Z aEN):L‘i =0mod I.
i=0

The basis &; is dual to 2%, so dy(&) = al(-N). For each fixed i one gets a
recurrence relation

o™ 43 a0l =0, N>,

(N)

with initial condition a;, "’ = d; ;v for N < C. Therefore

C-1 0o
(1 +> ath*f) ST t¥alN =t 4 ac gt - agat©
=0 N=0

(N)

and the generating function for a; ’ is defined by the equation

i N ) _ T aoatT 4 4 gt
N=0 ' 1+ac_1t+ac—ot? + -+ aptC’

Finally, let us define hg(ag,...,ac—1) by the equation

> 1
thtk - 2 ok
=0 14+ ac_1t +ac—ot=+-- -+ apt



52 E. Gorsky et al.

then we get

N
CL(C_)l = hn-c+1,
N
a(c_)g =hN_cy2 + ac-1hN—c+1,

N
a(c,)g = hnN—c+3+ac-1hn-c+2 + ac—2hn—c+1,

N
a(() )= hy +ac_1hy1 4+ athN—cy1.

The ideal generated by dn (&) = a( ) coincides with the ideal generated by

hN—C+1,---,hn, and the higher Koszul homologies vanish. This agrees with
(4.24): if
W = Coefn41[In(1 + ac—1t + ac—ot® 4+ -+ + aotc)],

then

ow 1

= Coef i1y = AN41-C+i

e, OCIN+1-C+i 7 S ao 1t + gt + -+ agtC N+1-C+i

and
ow ow
e = (hy_ o hy).
(aaov 7aa0_1) ( N—-C+1, ) N) .

5. Colored HOMFLYPT homology for torus knots. In this part
we describe various algebraic and geometric approaches to the colored HOM-
FLYPT homology of torus knots.

5.1. Colored HOMFLYPT polynomials of torus knots. Let us
first recall the general formula for colored invariants of torus knots [64, 79,
85]. Define the coefficients c/\ by the equation

(5.1) sxa(al, xhy,...) = Z N nSu(T1, 22, ),

ll=nlA|
where sy(z1, z2,...) denotes the Schur polynomial. The A-colored invariant
of the (n, m)-torus knot can be expressed via the colored invariants of the
unknot by the following formula (we omit an overall scaling factor (%)):

(5.2) P\Tnm) = Y ¢ % PO,
|u|=n|\|

where k(1) =3 ; e, (i —J) =3 Z wi(pj — 25 + 1) is the content of f.

(?) Throughout this section we rescale the HOMFLYPT polynomials so that the lowest
a-degree is a = 0, and the lowest g-degree among all nonzero terms with a = 01is ¢ = 0. In
other words, the polynomials are rescaled (i.e. multiplied by an overall factor of the form
a'q’) so that the lowest term has both a- and g-degree equal to zero.
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Etingof, the first author and Losev [23] categorified (5.2) as follows. The
rational Cherednik algebra H.(S,) with parameter ¢ is defined by generators
TlyeeesTnyYl,---,Yn and g € S, and relations

[wiv ZL‘]] =0= [ylv yj]? gxig_l = xg(i)a gyig_l = yg(i)v

[,y =c(i ) fori#j, |zoyl=1-c) (ij)
j#i
We refer the reader to [24] and references therein for the detailed information
on representation theory of this H.(S,,). Here we just use standard represen-
tations M.(\) and simple representations L.(\) labeled by partitions A of
size n. All these are also graded representations of S,.

Let V' denote the (n—1)-dimensional reflection representation of .S,. If W
is a graded representation of S, then the space EB?;& Homg, (A’ V, W) is
bigraded by j (which we will refer to as a-degree) and by the grading on W
(which we will refer to as g-degree).

THEOREM 5.1 ([23]).

(a) The (a,q)-bigraded character of EB;:& Homg, (N’ V, Mo(11))  equals
g W PR(0)).
(b) In the Grothendieck group of representations of H.(Spnq) (where d = |\|),
LA = 3 & M),
|ul=nA

where the coefficients ¢, are defined by (5.1).
(c) Consider the space

nd—1
My, = @D Homg, ,(N'V, Ly (n))).
j=0
Then the (a,q)-graded character of Hy, ,, equals P*(T(n,m)).

Indeed, part (c) follows from (a) and (b) combined with (5.2). This sug-
gests the following:

CONJECTURE 5.2. The space H\, . admits additional gradings (or filtra-

m,n
tions) t, and t., and is isomorphic to HM(Tpu.p).

For A = o, Conjecture 5.2 agrees with the main conjecture of [40], and the

filtration was explicitly constructed there. For A = S we discuss a possible
filtration below.

5.2. Stable HOMFLYPT homology of torus knots. We will be
interested in the stable limit of the colored HOMFLYPT polynomials of
(n, m)-torus knots as m — oo.
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PROPOSITION 5.3. Let k(1) =3 ; 1ye, (i — j)- Define

_mm=DN—)
2

BA —mnk m/nk(n.
P (T(n,m)) := g~ mreMFm/nsnAlg P7(T'(n,m)).

Then
(5.3) lim P (T(n,m)) =P ().

m—r0o0
Proof. One can check that in (5.1) one has ¢§ = 1, and k(u) < k(n\)
if ;1 # nA and ¢} # 0. Therefore by (5.2),

—=A = nA

Py(T(m,n)) =P () +---,
where the dots denote higher order terms in ¢"/™. In the limit m — oo, we
get (5.3). m

We would like to use (5.3) as a definition of the stable colored homology
of the (n, co)-torus knot.

CONJECTURE 5.4. There exists a limit ﬁ/\(n, 00) =limy, 00 ﬁ/\(T(n, m))
which is isomorphic to gnA(O) as a vector space. Moreover, the (a,q,t.)-
gradings on these spaces match. Following the conjectures in Section 4, we

suggest that for rectangular diagrams X\ the space g)\(n, 00) is a free super-
commutative algebra with bosonic and fermionic gemerators labeled by the
bozxes of nA.

THEOREM 5.5. For A = 0, Conjecture 5.4 holds:

(a) [11, 80, 86| The limit of H (T (n,m)) asm — oo exists and agrees with
the S™-colored homology of the unknot.

(b) [50] The S™-colored HOMFLYPT homology of the unknot is a free su-
percommutative algebra with n even and n odd generators.

(n—1)C

(n)
©J

Fig. 19. Generators u
Let us determine the gradings of the generators of ﬁk(n, o0). The di-
agram pA is an R x pC rectangle, which can be naturally divided into p

different R x C rectangles. Let us denote by ugl) a bosonic generator in the
nth rectangle from the right at box (i,7), and by fi(;) a fermionic generator
in the nth rectangle from the left at box (i, j), as in Figures 19 and 20. Their
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(n—1)C

Fig. 20. Generators ég‘)

gradings are given by

a,q)lu’] = (0,2nC—z+R j+1),
(tc,tr [ug”] — (2(nC —i),2((n— )R+ j — 1)),
= (2,2(( n—lC—l—z—j))

La)le]
<tc,tr>[ W= (2((n - 1)C+i) —1,2((n— )R +j) — 1).

Note that ¢, is constant in rows and t. is constant in columns. This explains
the notations t, and t.. Using the equation @ = (¢ + t, — t.)/R, we get

Qi =2n, QL&) =2m—2.

It is important to note that these elements generate unreduced stable
homology. To work with reduced homology, one Should consider uw ,§
for n > 2 since the subalgebra generated by u ij ,§ coincides with the
unreduced homology of the unknot.

There exists a map My, : H(T'(p, 00)) — H (T'(p, ) such that for any
w we have

(5.4) (Q,te, tr) [Mx(w)] = (@, 1y, te)[w].
The map M) is defined by

MA(UE?)) = ugzﬁ_lp_i_;_p M/\(Ez(jn)) = ‘SJ(?)
One can check that it indeed satisfies (5.4). The refined exponential growth
conjecture also holds for the stable homology H*(T'(p, >0)):

(5:5)  PROT(p)a,Q.t) = (P (T(p,o0)ia, Q1))
The exponential growth conjecture follows from the fact that ¢, is constant
in rows: if we consider generators in (a, @, t,)-gradings, then we get C' copies
of HA™ (T (p, 00)) in the same gradings, which in turn implies (5.5).

Let us recall that in (2.9) we conjectured that the self-duality map @ can

be obtained as follows: there exists a “D0-brane” operator Ly : H(K) —
H?(K) such that

(5.6) (4,0, Q. te)[La] = (0, R+ C,2,R,C), y(x) = L, 9",
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We conjecture that for torus knots colored by R x C' rectangular diagrams A

the operator L) coincides with multiplication by u(g,)l. One can check that it
has the prescribed degrees. Moreover, the mirror map M), is chosen in such

a way that M A(Ug)l) = “g)p and so for rectangular diagrams we have

M)\OL)\ :L)\t OJM')\7

and therefore
M)\O@,\ :@/\t OM)\.

This is indeed the required compatibility relation between M and @.
Now let us describe the action of colored differentials in this algebraic
model. The positive row-removing differentials are given by

(n)y _,(n) .
dExC—ﬂch(fz‘,j )= Ucti—ij—ks J = k.

The positive column-removing differentials are given by

+ (n)y _ . (n) ‘
dRXCﬁRxl(gi,j )= Ucliy1—ijr U2 l.
The negative row-removing differentials are given by

_ 2
deC—>ka<£§,i<):+1) =1

The negative column-removing differentials are given by

dl_%xCeRxl(gl(—?-)l,l) =L
The differentials vanish on all other generators of colored HOMFLYPT ho-
mology. One can check that the degrees of these differentials agree with the
expected ones.
The duality between positive and negative differentials is partly explained
by the identities

(2 (2 _ 2)
dExc—mxc(guzﬂ) = “C,)p deC—)kXC’(gi,k—H) =1,

dJI%XC—)RXl(gl(—?-)l,l) = “(02,)1’ dli%xC%Rxl(gl(i)l,l) =L
5.3. Differential forms. Let A be an R x C rectangular Young dia-
gram, and let K = T(p,q) be a (p, q)-torus knot. We assume that H*(K)
is a quotient of HA(T'(p, 00)), the latter space being (a, g, t.)-graded isomor-
phic to the pA-colored homology of the unknot. Under this assumption, the
multiplicative generators of H*(K) coincide with the ones of H*(T(p, 20)),
while some additional relations are imposed.

DEFINITION 5.6. The unreduced moduli space M, ,(r) is defined in the
affine space with the coordinates wui, ..., upp;v1,...,0rq by

(5.7 (1+wuz+ U9z 4 -+ Urp2' ) = (1 +v12 + V922 4+ e 4 vpqz )P,

which should hold at every coefficient of its expansion in powers of z.
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PROPOSITION 5.7. The space M, 4(r) can also be defined in the affine
space with the coordinates uy, ..., urp by
Coefy[(1 +urz +ugz® + - + urpzrp)q/p] =0, rq+1<k<rg+rp—1
Proof. Let

oo
F(z) = (14 u1z + ugz® + - - + u,p2"P) /P = ka(ul,...,urp)zk.
k=0

One can rewrite (5.7) as:

(14 w1z +ugz® + -+ upr2P) P = 14012 + 0922 + -+ + 027"
This will express v;’s through u;’s as v; = fi(u1, ..., urp), and leave one with
the infinite system of equations

Je(ur, ... urp) =0, k> qr.

We need to reduce this infinite system to a finite one by proving that fg,. 41 =
-+ = for4pr—1 = 0 implies fi = 0 for all k£ > ¢r. Indeed, observe that

F(z)=U()"? = F'(2)-U(z) = %F(Z)U'(z).

By considering the coefficients of z¥~! one gets
(5.8)

kfk + (k - 1)fk—lu1 +--+ (k _pr)fk—p’rupr = (fk—lul 4 +prk—prupr)-

4
p
Now we can prove by induction on k > g¢r that f; = 0 given fy 11 =--- =
Jgr4pr—1 = 0. For k € {gr+1,...,qr+pr—1} this is obvious. For k = ¢qr+pr
the coefficients of fi_pru,. on both sides of (5.8) are equal:

k—pT:qT+p7’—pT=qT:g‘PT-
p

So these terms cancel, and fy, 4, is alinear combination of fg,ypr—1,. .., fgrs1
and hence vanishes. For k > qr+pr the recursion (5.8) expresses f}, as a linear
combination of fy_1,..., fk—pr, which all vanish by the induction assumption,

hence fr, =0. »
PROPOSITION 5.8. The dimension of M, 4(r) equals r.

Proof. Indeed, let us forget the scheme structure and study the underly-
ing subset of the affine space. One has U(z)? = V(z)? for coprime p and g iff
there exists a polynomial G(z) such that U(z) = G(2)P, V(z) = G(z)?. Since
G(z) starts from 1 and has degree r, we have r parameters at our disposal. m

CONJECTURE 5.9. The unreduced S"-homology of the (p,q)-torus knot
is the space of differential forms on M, 4(r):

(5.9) H (T(p,q) = 2°(Myq(r)).
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As an illustration of this conjecture, let us consider the example of the
unknot. We can choose p = ¢ = 1, so (5.7) takes the form

T4uiz+usz?+ - Fuz" =1+viz4+v922+ - +0v2".
Therefore M, ,(r) = Spec C[uy, ..., u,], and

2°(Mypy(r)) = Clu, ..., up, dus, . ..., duy].
This agrees with the above description of the unreduced S"-colored triply-
graded homology of the unknot.

DEFINITION 5.10. The reduced moduli space M ,(r) is defined in the
affine space with coordinates w, 11, ..., Upr; Vr41, ..., Vg by all coefficients in
the z-expansion of the equation

(5.10) (14 Uppr 2 T+ ur+gzr+2 + a2

= (1 4vg12 M Fu 02+ vgr21")P.

Similarly to Proposition 5.8 one can check that M, ,(r) defines a single
point 0, so it is zero-dimensional. We propose the following:

CONJECTURE 5.11. The reduced S"-homology of the (p, q)-torus knot is
the space of differential forms on M, 4(r):

(5.11) H (T (p,q)) = 12°(Myq(r).
Conjectures 5.11 and 5.9 are motivated by the following result.

THEOREM 5.12 ([23, 36]).

(a) 2*(Mylr) = HS,
rem 5.1.

(b) The (a,q)-character of 2°(M,4(r)) is equal to the unreduced S”-colored
HOMFLYPT polynomial of the (p,q)-torus knot.

(c) The (a,q)-character of £2°(M,4(r)) is equal to the reduced S”-colored
HOMFLYPT polynomial of the (p,q)-torus knot.

(d) 2°(Mpq(r)) = 2°(Mpq(r)) @ Clug, ..., up, dus, . .., du,].

A

on was introduced in Theo-

where the space H

Let us describe the gradings on the space 2°(My, 4(7)). The a-grading is
defined by the degree of a differential form, so that a(u;) = 0, a(du;) = 2.
Furthermore, we define the (g, t,,t.)-gradings by

(@ e, tr)[ui] = (21',22‘ — 2,2{1 ; 1J>

(¢, tr, te)[du;] = (22’ — 92,2 — 1,2{" — 1J + 1>.

(5.12)

r
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It is easy to check that the defining equations of M, ,(r) are homogeneous in
g-grading and not homogeneous in t-gradings. Therefore, strictly speaking,
on 2°(M, 4(r)) we get the (a, ¢)-bigrading and a pair of filtrations (¢,,%.).

For example, in the uncolored case the reduced homology of the tre-
foil knot has only one bosonic generator uo, and the defining equation for
M 3(1) reads

(5.13) ui = 0.

Similarly, for the (3,4)-torus knot the reduced uncolored homology has two
bosonic generators ue and wus, with the following defining equations for

M3z 4(1):

3
2us 9
5 = u3.

The reduced S2-colored homology of the trefoil knot has two even generators
u3 and uy with the defining equations

(5.14) UU3 = 0,

U3U4 :ui :ug =0.

Their differentials have the form

ugduyg + ugdug = 2uygduy = 3u§du3 =0.
So one can check that the monomial basis in £2*(Mag3(2)) is given by
(5.15) 1, ug, ug, uj, dus, dug, uzdus, uzdug, dug A dug.

We illustrate this homology in Figure 21 (compare with the figures in Sec-
tion 3.1).

dus N dua
dU3 dU4 U3dU3 U3dU4
1 u3 ug u3
0 2 4 6 8 0, 12

Fig. 21. Algebraic model for the S?-homology of the trefoil

For example, by computing the gradings of the basic elements (5.15) one
finds the Poincaré polynomial of the S2-colored trefoil knot (in the (a, g, t;)-
grading):

(5.16)
ps* (31) = 1+ P2+ B2+ ¢ 24 + 243 + a2¢Bt3 + 021085 + a2q 25 +-atq 1%,
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More generally, for the reduced S"-colored homology of the trefoil knot the
(a,q,t,)-gradings of the generators are given by

(a,q,t:)[w;] =(0,24,2), (a,q,t,)[du;] = (2,2i —2,3).

CONJECTURE 5.13 ([30, 31, 29]). The Poincaré polynomial of the reduced
HOMFLYPT homology of the S™-colored trefoil equals

- _ . . o o [r]‘
(517) PS (31) _ a27"q r a?ij(r—l—l)z—l—er—i—j(] l)tzz—s—ij'
ﬂzg [ [r —i—4]!

Here [N]! is the unbalanced quantum factorial:

2N —

2
qg-—1
We expect that (5.17) follows directly from Conjecture 5.11, but we do

not pursue this combinatorial exercise here. In particular, the monomial
Upyq - duppr Adupga Ao Adupyj has grading

V) = N [N =1 ) V) = S = g 2V,

i
i(0,2r +2,2)+ 3 (2,20 +20—2,3) = (25,2(r +1)i +2jr + j(j — 1), 2 + 35)
=1

and contributes ¢ g2(r+Di+2ri+i(i=1)4237 4 the Poincaré polynomial.

Finally, let us match the gradings (5.12) with those in the construction
of Section 4.4. We have R = 1, C = 7, so there are generators ugﬁ),fi(ﬁ),
1 <1¢ < r, with gradings

(a,q,tec, tr)[ugﬁ)] = (0,2 + 2rn — 2i,2rn — 2i,2n — 2),
(a, q,tc,tr)[fgﬁ)] =(2,2r(n—1)4+2i—2,2r(n—1)+2i —1,2n — 1).
Indeed, these gradings agree with (5.12) if one identifies

ufﬁ) = Urn+1—i, 61(2) = dur(n—l)—‘ri'

5.4. Differentials for supergroups. It has been conjectured in |35,
Conj. 3.22| that the differentials dy, d+,, belong to a bigger algebra. In par-
ticular, for the uncolored homology of the (4,5)-torus knot the following
operators were introduced: ay of (a, q,t)-degree (—2, -2, —5), oy of (a,q,t)-
degree (—2,2, —3). Their introduction was motivated by the observation that
the “usual” differentials dx applied to the (unique) generator with top a-de-
gree 6 do not generate uncolored triply-graded homology: there are seven
nontrivial differentials dy, d+,, while there are nine generators with a-de-
gree 4. The extra differentials solve this problem. We can now identify these
operators with the supergroup differentials:

Qg = d1|27 a1 = d2|1-
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In total, for the uncolored (4, 5) knot we have nine nontrivial differentials:
di =dyjo, d-1=dop,
dg =dyjp, do=dy1, d—2=dpp,
d3 =d3jg, a1 =dy1, a=dj, d-3=dys.

For a general (n,m)-torus knot (m > n) we will have all differentials dg,
with a + b < n, of total number

243+4+--+n=nn+1)/2—1=(n+2)(n—1)/2.

It has been explained in [40] that the differentials are tightly related to
the (conjectural) action of the rational Cherednik algebra H. on the triply-
graded homology of torus knots. More precisely, |40, Definitions 7.2-7.3|
assign a differential to every Sy,-equivariant copy of the standard (n — 1)-
dimensional irreducible representation V,, inside H.. These differentials have
some nice properties: for example, if the two copies o and [ are pure, then
by [40, Lemma 7.7| the corresponding differentials d, and dg anticommute.

The new supergroup differentials can be naturally embedded in this
framework. Namely, recall that H. has generators z;,y;. We define a(m|k)
to be a copy of V,, spanned by x’i"yf, and

A, = do(mk)-
Since this copy is pure in the sense of [40], the corresponding differentials
anticommute. Moreover, one can check that the a(m|k) span Homg, (V,,, H.),
so the supergroup differentials form a complete collection of differentials for
uncolored torus knot homology. The grading conventions of [40| ensure that
the d,,|,, have the prescribed gradings.

5.5. Examples. We have compared the results of Section 3.1 with the
algebraic model in (5.15). Let us make similar comparisons for other torus
knots of Section 3.

The stable reduced F5-colored homology of the (2, 00)-torus knot has four

even and four odd generators u( and § (see Section 5.2). They have the
following (a, q, t., t,)-degrees:

deg[u'?] = (0,10,6,4), deg[u!?] = (0,8,6,6),
deg[uld] = (0,8,4,4),  deg[ul?] = (0,6,4,6),
degle}] = (2,4,5,5),  deglel3)] = (2.2,5,7),
deglel})] = (2.6,7,5),  deglel)] = (2,4,7.7).

Asexplained in Section 5.2, Q[uij | =4and Q[f( | = 2. For example, the “bot-
tom row” of the homology (with an appropriate shlft of gradings) of the trefoil
is a 16-dimensional quotient of this polynomial algebra with monomial basis
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(2) ( (2))27 ( (2))3, ( (2)) 7

L, uyy, (ugy u21 Ugy
uﬁ), uﬁ) (221)’ (u;21)) )
ug22)7 u§2) gQI)’ u12 (u;21)) )
ufy, uS sy, W)y,

(us3)?, (uf})
The self-symmetry map @ reflects the first four sets of monomials in the
vertical axis, and preserves the remaining two monomials.
The stable reduced %—colored homology of the (2, 00)-torus knot has
six even and six odd generators. They have the following (a, g, t¢, t,)-degrees:

deg[ul?] = (0,12,6,6), deg[u'?] = (0,10,6,8),
deg[u{?] = (0,8,6,10), deg[u$?] = (0,10, 4,6),
deglu$y] = (0,8,4,8),  deglusy] = (0,6,4,10),
deglel)] = (2,4,5,7),  degléy)] = (2,2,5,9),
degl¢(] = (2,0,5,11),  deglel})] = (2,6,7.7),
deglesy)] = (2,4,7,9),  deglely)] = (2,2,7,11).

Indeed, Q[ul(f)] =4 and Q[ﬁg)] =2.
Finally, consider the S2-colored (3, 4)-torus knot. In the notation of Sec-
tion 5.3, we have four generators us, ug, us, ug of (a,q, tc, t,)-gradings
degus = (0,6,4,2), deguyg = (0,8,6,2),
degus = (0,10,8,4), degug = (0,12,10,4).
Note that in the notation of Section 5.2, one would have
Y Y S Y
and the grading conventions agree. The defining relations have the form
ug — ugus — Qugug = 2’LL§’U,4 — 3(u§ + 2uqug) = u;;ui + U§U5 — 3usug = 0,
5u§—12ui—72U3U4u5—36u§u6+54u§ = 5u§u4—9uZU5—QU3(U§+2U4UG) =0.
One can check that the monomial basis in the “bottom row” is given by the
following 25 monomials:
1, us, u%, ug, u%, ug, ug,
Ug, UAUZ, ULUS, UgUY, UsUS,
us, Usuz, UsU3, UsU,
Ug, UgU3s, UGZLg, UG”LL%,
uiuiuz, ujus,

2 3
us, uy.
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The self-symmetry map @ reflects the first five sets of monomials in the
vertical axis, and preserves the remaining two monomials.

6. HOMFLYPT homology from A-model and B-model. In this
section, we wish to look for geometric and physical models for colored HOM-
FLYPT homology, eventually formulating it in the language of symplectic
geometry or the so-called A-model.

Indeed, in mirror symmetry, the so-called B-model is famous for its for-
mulation in the language of complex (algebraic) geometry, while the A-model
side involves symplectic invariants, Fukaya category, and quantum cohomol-
ogy [60]. Clearly, the algebraic model described in the previous section is
closer to the B-model, and therefore it will be our natural starting point
here. Then, we will relate it to various problems—interesting in their own
right—in mirror symmetry and in symplectic geometry. We will give several
reformulations, in terms of A-model and B-model, open and closed (i.e. with
and without D-branes), in all of which colored HOMFLYPT homology will
be realized as cohomology of a suitable BRST operator @ such that Q% = 0:

(6.1) HMNK) = Q-cohomology.

In physics literature, @ is often called “supercharge” and its cohomology is
often called the space of BPS states since its elements are the so-called BPS
states (= supersymmetric configurations). Even though precisely this inter-
pretation of knot homology was proposed in [43] and studied from various
vantage points in [2, 19, 41, 52, 96], the A-model and B-model reformulations
discussed here appear to be completely new and do not make direct con-
tact with any of the existent geometric/physical models of knot homologies.
Therefore, by pursuing some of these new geometric descriptions further, one
is likely to learn a lot about colored HOMFLYPT homology, and possibly
even about homological mirror symmetry.

6.1. B-model on a supermanifold. With this goal in mind, we start
by reformulating Conjectures 5.9 and 5.11 in terms of the B-model on a
super-manifold C4% with a certain Landau-Ginzburg potential Wauper (K3 A),
such that
A
(6.2) H(K) = Jac(Wsyper (K3 N))
Note that C% is a super-Calabi-Yau manifold (see [3, 82, 97]).

Specifically, consider the potential W (T'(p,q); S™) on the u-space given
by

(6.3) W(T(p,q); S) = Coef (i1 (1 +urz+ -+ + Upy 2PT)AFP)P

Let us rename du; as & and introduce a potential Wyuper(T'(p, ¢); S™) on the
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superspace CP'IP" with coordinates u;, & by
ow
(6.4) Wauper (T'(p, q); S") =

Tui@'

THEOREM 6.1. The space C[M,, 4(r)] of functions is isomorphic to the
Jacobi ring of W(T(p,q); S"). The space 2°(M, 4(r)) of differential forms
is tsomorphic to the Jacobi ring of Wauper(T'(p,q); S”):

- 8W5u er 8Wbu er
(6.5) RIMypq(1)] = Clu, ..., upr, &1y - - ,§pr]/< 8ulp , 85; >

Proof. Indeed, the partial derivatives of W (T (p,q); S™) are
OW(T(p,q); 5")
8ui
_atp Coef(erq)r[zi(l +ugz+ -+ uprzpr)q/p]

p

0
= Coef (4 g)r11 a—u(l +uiz 4+ uprzpr)(wp)/p

+ .
N % Coef (prgyrr1-i(1 +wz+ -+ upr 2 )P i=1, . pr

Therefore by Proposition 5.7 the ring of functions on M, ,(r) coincides with
the Jacobi ring of W:

(6.6) C[Myo(r)] = Cluns - ., ] /@g).

The full space 2°(M,, 4(r)) of differential forms is the quotient of the space
of all differential forms on CP" by the equations

ow oW
6.7) Ju; O D5 duj =

The Jacobi ring of Weyper is defined by the following equations

8VVsuper o ow - awsuper
8& 8’LL1 07 8uz Z 8u]8ul

Since these equations coincide with (6.7), we get the relation (6.5). =

In the mirror symmetry literature [82, 84, 3, 32|, the setup we just de-
scribed is called a Landau-Ginzburg B-model with target space CU? and su-
perpotential Weyper(K; ). The function Wyyper (K5 A) is called the superpo-
tential even when the target space is an ordinary (bosonic) manifold, e.g.
W (u;) in our discussion might be called the superpotential of a Landau—
Ginzburg model on CP". As a final clarification of terminology, we should
mention that a model is called Landau—Ginzburg when the superpotential is

nonzero, and is referred to as the sigma-model (on a certain target manifold)
when W = 0.
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In our case, the colored HOMFLYPT homology (of torus knots) is re-
alized as the Jacobi ring (1) (6.2)-(6.5) of a Landau-Ginzburg model on
CP'IP" with the superpotential Wsuper(T'(p, q); S™). There are several aspects
of this B-model that make it rather special and interesting, the main being
undoubtedly the fact that the target space CP"IP" is a supermanifold.

It is instructive, though, to start with a more familiar and conventional B-
model with a target space X. Then, we will extend it to a Landau-Ginzburg
model with a superpotential W, and will see why (6.2)—(6.5) can be inter-
preted as a ring of observables with and without D-branes (called B-branes
in the context of the B-model). In general, we shall use X for the target
space of the B-model and Y for the target space of the A-model, so that X
and Y are mirror manifolds in most of our applications.

First, as a warm-up and a lightning review of the relevant facts about
the B-model, let us consider a B-model with target space X. The space
of observables—or, to be more precise, the space of closed (string) observ-
ables—in such model is then identified with the d-cohomology of X with
values in AP T'x:

(6.8) HU(X, NPTY).
Indeed, every (0, ¢)-form on X with values in A? Tx,

(6.9) A= df ko girein 9 ...i,
ki Oz; Oz,

in the topological B-model defines an observable:

(6.10) Oa=nkr . pha A%l"'.'{{qejl .0,

Contracting this “(—p, ¢)-form” with the holomorphic (n,0)-form 2 on X
we obtain an isomorphism between this space and (n — p, ¢)-forms, where n
is the total (complex) dimension of X. Moreover, {Q, 04} = —Op,, so that
observables in the B-model are Dolbeault cohomologies of forms valued in
exterior powers of the holomorphic tangent bundle, i.e. elements of (6.8).

Incorporating a superpotential W # 0 leads to a Landau—Ginzburg model
where the Q-operator acts as a differential Q = 9 + Qbary, such that

(6.11) Q* =W -id.

As a result, the space of closed string states in the Landau—Ginzburg model
can be described as a Hochschild homology, or equivalently as a hyper-
cohomology:

(6.12) HH, (MF (X, W)) = H*(A*2x, dWA)

(*%) Also known as the “chiral ring” or “ring of observables”; see below.
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where A*(2x denotes the exterior powers of the sheaf of differential forms.
The dual cohomology theory is

(6.13) HE*(MF(X, W)) 2 H* (AT, [W, -])
where A*T’x denotes the exterior powers of the tangent sheaf and [, —]
denotes the Lie bracket with W. In particular, if fi,..., f, are sections of

line bundles & on a smooth variety V', then they define a function W :
Tot(®€;) — C and we have the following equivalence of categories (1)

(6.14) MF (Tot(®&}), W) = QCoh({f; = 0})

that allows us to describe B-branes in a Landau-Ginzburg theory with the
superpotential W (i.e. objects in the category of matrix factorizations of W)
in terms of the category of coherent sheaves on the critical variety of W.

THEOREM 6.2 ([74]).
(6.15) HY(MF(W)) =D (W 1(0)).

sing

Note that this brings us very close to our applications (5.9) and (5.11),
where the moduli spaces M, ,(r) and M, ,(r) are defined by polynomial
equations f;(u;) = 0 in the space X = CP" of u’s. In situations like this,
when the equations f;(u;) = 0 integrate to a superpotential W (u;), the
chiral ring (also known as the (¢, ¢) ring) of the Landau-Ginzburg model on
X = C" is isomorphic to the quotient of the ring of polynomial functions
Cluq, ..., up] by dW,

(6.16) Retosed (C", W) = Clug]/(dW).
When W is quasihomogeneous, this ring is graded by the R-charge symme-
try U(1)g.

In order to interpret the colored HOMFLYPT homology, though, in the
Landau—Ginzburg model, not only do we need to find a natural home for the
moduli spaces M, 4(r) and M, ,(r) but also to describe the corresponding
spaces of differential forms (5.9) and (5.11) in the B-model language. One way
to do this is to replace the target space C™ by the supermanifold X = C"”
and to replace the superpotential W (u;) by Wiuper(us; &) defined in (6.4).
This gives

(617) Rclosed<(cn|n7 Wsuper) = Q*(M)

where M = {u € C| fi(u) = 0;W(u) = 0}. Specifically, for the superpo-
tential Wyyper defined by (6.3) and (6.4) we get a B-model realization of the
S"-colored HOMFLYPT homology of torus knots. For instance, from (5.13)

(11) The analogous statement for the topological A-model is

Fuk(Y, W) = Fuk(Sing(W)).
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and (5.14) we find the following potentials in the simple examples considered
earlier:

Tuj  ldugu?

. _ 3 . _
W(31, D) = U9, W(819, D) = 243 o7 ,
28u3  14u? 28usu
Wsuper(?’l; D) = 3“%527 Wsuper(8195 D) = <_ 2432 273>§2 2; 3§3-

Although conceptually this Landau—Ginzburg model should be the ef-
fective two-dimensional ' = 2 theory on D in the brane construction (4.2)
studied in [19, 31, 29|, the setup appears to be surprisingly different. Yet,
in both cases, the Poincaré polynomial of the colored HOMFLYPT homol-
ogy is realized as a supersymmetric index (character) of the two-dimensional
N = 2 theory on D. One important difference is that here we have a dif-
ferent 2d N/ = 2 theory for each particular value of the color, whereas in
[19, 31, 29] a single 2d N = 2 theory determines S"-colored superpolyno-
mials for all values of r. It would be interesting to better understand how
the new Landau—Ginzburg realization of the colored HOMFLYPT homology
discussed here relates to the 2d A/ = 2 theory on D studied in [19, 31, 29].

6.2. B-branes and open B-model. There is another way, however,
to describe the space of differential forms that is familiar to practitioners of
mirror symmetry. This will require introducing one more ingredient in our
story, namely D-branes, and considering the space of open string states, i.e.
the states of open strings stretched between branes. In the context of the
topological B-model, branes are usually called B-branes. Mathematically,
B-branes are objects of the derived category of coherent sheaves D?(X) in
the case of the sigma-model (when W = 0), or the category MF(X, W)
of matrix factorizations in the case of Landau—Ginzburg model with target
space X and superpotential W. We already saw both of these categories in
our previous discussion and now we will spend more time discussing their
objects, or B-branes.

Note that both the derived category of coherent sheaves and the category
of matrix factorizations are also familiar to practitioners of knot homology:
these categories play a key role in the constructions of e.g. [57, 58, 92, 98,
100].

Now, let us describe the “open” analogue of (6.8) and (6.16), i.e. the space
of states of open strings ending on a brane B in the B-model, starting with
the sigma-model on X (with W = 0), as we did in our previous discussion,
and then extend it to branes in more general Landau—Ginzburg models. In
both cases, the conclusion will be that open strings ending on B form an
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algebra, which is the Ext algebra (12)
(6.18) Ropen(B) = Ext* (B, B).

In order to see how it comes about, let us first consider two different branes,
By and Bs, represented by sheaves £ and F supported on S C X. Then
states of open strings stretched between By and Bsy are elements of

(6.19) H%(S, Y @ F @ NPNg/x).

There is a spectral sequence with (6.19) as the second page that converges

to (see [83])

(6.20) Ext (€, F)

and in many cases one has

(6.21) Ext% (£, F)= P HUS,EY & F @ A\PNg)x)
pt+g=n

because the spectral sequence degenerates at Ejs.

Now let us see how the boundary chiral ring (6.18) can help us to produce
yet another interpretation of (5.9) and (5.11) in the open B-model. The
simplest example is the unknot colored by A = 5", whose HOMFLYPT

homology 7 (O) is realized as the space of differential forms on V =
Spec Cluy, ..., u,]. The corresponding choice of B-brane is closely related
to the SYZ brane [87], which plays an important role in mirror symmetry.
Namely, it is well known that for a “zero-brane” (i.e. a skyscraper sheaf O))
supported at a smooth point on a manifold X of complex dimension r the
open string algebra (6.18) is the exterior algebra

(6.22) Ext*(0,, 0,) = A*(V)

where V =T, X = A*C". In order to upgrade A*(V') to the space of differen-
tial forms 2*(V) = C[V] ® A(V"Y), one simply needs to replace X = C" by
its complexification X¢ =& X x X, and consider a B-brane B = O x, where
A = C" is the diagonal in X x X =2 C" x C". Note that the new target space
X x X = C?" can be viewed as a SYZ torus fibration with a singular fiber at
the origin. To facilitate the discussion of the mirror A-model that will follow
next, it is convenient to replace X = C" by X = (C*)". Then the target
space X x X = (C*)?" is also a T?" fibration, but without singular fibers,
and one has

(6.23) Reopen(B) = Ext* (0O, 04) = Clut?!, du;).

Before we proceed to the mirror A-model, let us briefly discuss another in-
teresting feature of this example.

(*?) The algebra structure comes from the Yoneda product on the self-Ext groups.
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Note that (6.23) can be identified with HH* (D*(X)) 2 Clui!, du;], which,
according to our previous discussion, describes closed string states, not open.
This is an illustration of a more general phenomenon: the open string states
(6.18) of a B-brane supported on the diagonal A C X x X can be identified
with the closed string states (6.8) of a B-model on X. The mathematical
content of this statement is summarized in the following:

THEOREM 6.3 (Hochschild-Kostant—Rosenberg isomorphism [49]).

(6.24) Ext%yx(0a,0a) = @ HIX, N Tx)
ptg=n

where A is the diagonal in X x X.

Moreover, following [60], Yekutieli [99] shows that there is an isomor-
phism from the hypercohomology to self-Ext:

(6.25) H" (X, Dpoty (X)) = Ext’ x(Ox, Ox)

which is compatible with the cup product on the left and the Yoneda product
on the right. And using the isomorphism between Hochschild cohomology
and polyvector field cohomology [33], one has (see [61]):

(6.26) HH*(DY(X)) = Ext’y, 5 (Oa, 04) 2 H* (X, A*Tx).

6.3. HOMFLYPT homology from symplectic geometry. Now, let
us see what kind of A-models one gets by applying mirror symmetry to the
open and closed B-models in the above discussion.

In general, we denote by Y the mirror of X. The simplest example is
X = (C*)" viewed as a (trivial) 7" fibration over R". Then mirror symme-
try is simply a T-duality (a “Fourier transform”) along the fibers, and the
mirror manifold is Y = T*T". The mirror of the statement HH*(D"(X)) =
(C[u;ﬂ, du;] is the statement about the Hochschild cohomology of the Fukaya
category F(Y),

(6.27) HH*(F(T*T")) = Clu!, duy),

which, by analogy with (6.26), can also be realized as the boundary OPE
algebra in the A-model of Y x Y, where Y denotes the space Y with the
symplectic form —w. Indeed, in general, when a symplectic manifold Y has
“enough” Lagrangians, the Hochschild cohomology of its Fukaya category
F(Y) is expected [1, 60, 17] to be isomorphic to the Lagrangian Floer coho-
mology of the (anti)diagonal Ay <Y x Y,

(6.28) HH*(F(Y)) = HF*(Ay, Ay).

Thus, in our basic example of (6.23) and (6.27), mirror symmetry maps a
B-brane B = Oa, to a Lagrangian A-brane supported on the conormal
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bundle TX to To CT" xT"in Y x Y =T*T" x T*T", so that
(6.29) HF*(TX, TX) = Clui!, duy).

This is an open A-model version of (6.27) and a concrete illustration of
(6.28).

In general, this leads us to the following picture, where the (colored)
HOMFLYPT homology is realized either in terms of the closed A-model of
a symplectic manifold Y,

(6.30) HS(K) = HH*(F(Y)),

or in terms of the open A-model (Floer homology) of a certain Lagrangian
submanifold L,

(6.31) HY(K) = HF*(L, L).

(In our previous discussion, L was the (anti)diagonal Ay < Y x Y, but we
allow more general Lagrangian submanifolds and more general symplectic
manifolds here.) For torus knots, the closed A-model version can be obtained
by applying the supermanifold version of mirror symmetry [3, 32, 84| to the
B-model in Section 6.1. We plan to return to a systematic study of this
mirror symmetry elsewhere.

Here, let us simply point out that even for nontorus knots one might hope
to find a realization of the form (6.31). For example, for the figure-eight knot
K =4; and r = 1 a natural guess is

(6.32) L = S? with 3 punctures
embedded in some symplectic manifold Y, such that HF*(L, L) = H*(L).

6.4. “Bottom row” of the colored HOMFLYPT homology. In
this part we wish to study the “bottom row” of the colored superpolynomial,
defined as

(633) Pﬁottom(Qv t) = lim Q#P)\<a7 q, t)?
a—0

where a# denotes the appropriate power of a, such that the product
a® P (a,q,t) contains only nonnegative a-degrees starting from zero.

The “bottom row” (6.33) has a simple and beautiful interpretation in
terms of instanton /vortex counting. In order to explain the connection with
instanton and vortices, based on [19], let us start with a simple vortex count-
ing problem that is easy to do “by hand” and that has all the essential
features. Then, we shall upgrade it to the equivariant instanton counting
relevant to arbitrary knots and links.

Let V,, be the moduli space of m abelian vortices on a two-dimensional
plane, D = R2. In other words, V,, is the moduli space of solutions to the
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PDEs
(6.34) « Fy=i|o|?> —it, Da0=0,

where A is a connection on a U(1) bundle of first Chern class m, and ¢ is
a parameter. These equations describe supersymmetric configurations (BPS
states) in a two-dimensional theory on D with A = (2,2) supersymmetry:

(6.35) Tvortex : U(1) gauge theory with a single charged field ¢.
It is well known that V,, is a Kéhler manifold of (real) dimension 2m. Namely,
(6.36) Vi = Sym™(C) = C™/Sp,,

where one can think of coordinates on V,, as vortex positions on D = R? 2 C.
Since D admits a circle action, one can consider the equivariant character,
Chg(Vim), with respect to the rotation group U(1), acting on D. Indeed,
U(1)q acts on V,, in a natural way, by equal phase rotations on all factors
in the symmetric product (6.36). Moreover, identifying the vortex moduli
space V,, = Sym™(C) with the space of monic polynomials of degree m,

m
(637) f(l’) = H(;{;—x]) :$m+a1xm—1 + o+ am,
j=1
we immediately deduce the isomorphism V,, = C™ = ({ay, ..., an}) and also

learn that U(1), acts on the space V,, with weights (1,...,m). Therefore,
the U(1)4-equivariant character of V,, is

1
1-q)1—=¢*)...(L=qm)’
in which a careful reader will recognize the “bottom row” of the unnormalized
S™-_colored HOMFLYPT polynomial of the unknot (13).

This is not an accident, of course, and the physics setup (4.2) predicts that
the “bottom row” of any A-colored HOMFLYPT homology of any knot K has
a similar interpretation in terms of equivariant vortex counting on D = R2.
In order to explain this relation, based on [19], we need to generalize our
warm-up example in two important ways: first, we need to introduce the
homological t-grading, and secondly we need a generalization to arbitrary
knots. Both of these problems can be achieved by embedding D = R? into a
larger space M, = R*, and realizing our vortex counting problem on D as a
special case of counting solutions to coupled instanton-vortexr equations, or
equivalently via equivariant instanton counting on the 4-manifold M}y in the
presence of ramification along D C My.

(6.38) Chy(Vm) =

(**) Up to a scaling of variable: ¢ from the U(1),-equivariant character throughout
this section goes to ¢2 in the conventions we are using for the HOMFLYPT polynomials
and homologies in the rest of the paper.
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However, before we proceed to generalizations, let us stay a bit longer in
the world of vortex equations and explore the picture which seems to emerge:

(6.39) knot K ~ 2d vortex theory Tyortex(K) ~> Vin(K),

so that a suitable version Chy¢(Vy,) of the equivariant character computes
the bottom row of the colored superpolynomial (6.33) with A = S™,

(6.40) Chgt(Vim) = Phottom (@ 1)-

The details of the construction of the m-vortex moduli space V,,,(K) in the
theory Tyvortex () can be found in [19]. As already mentioned earlier, V,, (K)
is a Kahler quotient; the definition and the practical computation of its
equivariant character Chg (V) can be found in [72, 70].

Already at this stage the reader might suspect that incorporating the
t-grading and passing to knot homologies can be addressed by considering
equivariant cohomology or K-theory of the vortex moduli space,

(6.41) Hé(l)q(vm(K))a

where the t-grading is identified with the homological grading. Although this
idea is somewhat naive, it is actually on the right track, and it is instructive
to pursue it a little further.

Therefore, as the natural next step let us consider a nonabelian general-
ization of (6.34) that describes supersymmetric solutions in the 2d theory:

(6.42)  Tyortex : U(p + 1) gauge theory with p + 1 fundamental fields ¢;.

The corresponding vortex equations

p+1

Fa=1i) ¢ip] —it

(6.43) A Z;Wbl !
04¢i =0

involve a U(p + 1) gauge connection and p + 1 Higgs fields ¢; in the funda-
mental representation of the gauge group. Again, the m-vortex moduli space
is a Kéhler manifold of real dimension

(6.44) dim VIPH) = om(p +1).

In particular, the single-vortex moduli space is well known to be a (2p + 2)-
dimensional space

(6.45) Ve ~ ¢ x cpe,

where the factor C is parametrized by the “center-of-mass” position, while
CPP encodes the “internal degrees of freedom” of a single nonabelian vortex.
The rotation symmetry U(1), acts on C with Weight 1, so we expect that
it contributes to the equivariant character a factor ;= However unlike our

U(p+1)

first example (related to the unknot), now the moduh space Vj has
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nontrivial topology, and therefore, if the t-grading is simply the homological
grading on (6.41), the suitable generalization of the equivariant character
should be a product of 1—iq and the Poincaré polynomial of CP?,

1 &
6.46 —— N 4%
(6.46) . Z:;

This turns out to be, up to a change of variables (*4) and an overall shift, the
correct answer for the bottom row of the (uncolored) HOMFLYPT homology
of the (2,2p + 1)-torus knot.

Now, following [19], let us explain why all these examples “work” and
where the connection with vortex equations comes from. The reason, in fact,
is already contained in Section 4.1 where we reviewed the interpretation (4.1)
of homological knot invariants in terms of supersymmetric configurations
(BPS states) in the string theory setup (4.2). What this interpretation tells
us is that specializing to the bottom row (6.33), i.e. taking the limit a — 0,
means the “large volume limit”. Indeed, according to the identification of the
parameters (4.3), in this limit the interesting geometry (and topology) of the
Calabi—Yau space X is replaced by the simplest Calabi-Yau 3-fold, namely
the flat space:

(6.47) x 420 3.

In other words, the bottom row of the colored HOMFLYPT homology is
described by a much simpler “toy model” of (4.2) in which the pair (X, Lg)
is replaced by (C3, Lx). (Not much happens to the Lagrangian submanifold
Lk in this limit.)

The next step is to look at this system from the vantage point of the
4-manifold My = R* and the defect (called the “surface operator” [46]) sup-
ported on D = R?. Before we took the limit @ — 0, the compactification on
X produced abelian gauge theory on My with gauge group U(1) [55]. Incor-
porating an extra brane in this setup means including the so-called surface
operator supported on D, or, mathematically speaking, ramification in the
gauge theory on My.

Let My, be the moduli space of abelian instantons on My = R* with
ramification along D C My. In other words, My, ,,, is the moduli space of
solutions to the self-duality equation on My \ D,

(6.48) Fi=0

with the second Chern class k, with monopole number m = % S p Fa, and
with the prescribed behavior along D. The latter is what we call the ram-
ification data; e.g. a simple example of the so-called tame ramification can

(") q— ¢, t—tq.



74 E. Gorsky et al.

be obtained by introducing a Jd-function source in the self-duality equation
(6.48) on My:

(6.49) Fi =2ra(ép)*.

The gauge connections which solve this equation have a first-order pole at D.
More generally, one can study solutions to self-duality equations with singu-
larities of arbitrarily high order,

(6.50) A_dz<o;1+2f§+-~->+dz(...).

This is called wild ramification and is precisely how the dependence on the
knot K will enter, via the choice of the ramification data (°). Let us denote
the corresponding moduli space by My, ,, (K).

Much like the vortex moduli space V,, enjoyed an action of the rotation
group U(1)g, the moduli space of “ramified instantons” on My \ D = C x C*
has an action of the rotation group U(1), x U(1);, where U(1), acts by
rotations of D = C, and U(1); acts by rotations of its normal bundle C*.

Then, in the limit (6.47) the physical interpretation (4.1) of the colored
HOMFLYPT homology predicts (19)

(6.51) Chy.t (Mo (K)) = Progiom (K /2, 1),

which is very close to (6.40), and in fact is exactly the sought-after proper
generalization of it. The connection with vortex equations is now easy to
see. At least for some knots the moduli space My, (K) can be equivalently
described as the moduli space of solutions to the coupled instanton-vortex
equations

Ff =2m¢® ¢! (6p)",
(6.52) xpFp =i¢! @ ¢ — itlp,
94,89 =0,

where A is a unitary connection on the line bundle £ over My, B is a
unitary connection on the bundle F over D C My, ¢ is an element ¢ €
H°(MHom(E, L|p)), and ¢' is its adjoint.

As far as we know, the instanton-vortex equations (6.52) are new and
have not appeared in the literature previously. Their closest cousin is the
set of so-called coupled vortex equations studied e.g. in [8, 9|, where both

(**) For instance, it was conjectured [19] that (2,2p + 1)-torus knots correspond to
wild ramification of order p.

n

(*%) We recall that 2 (K;a,q,t) on the right-hand side is the Poincaré polynomial
of the S™-colored HOMFLYPT homology of the knot K. Its physical definition can be
found in [43], and computation in various examples, apart from this paper, can be found
in [2, 3, 21, 30, 31, 29, 44, 52, 71].
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E and £ are bundles over D. In other words, our equations (6.52) can be
viewed as analogs of the coupled vortex equations where one of the bundles
is extended over My. For instance, for the (2, 2p + 1)-torus knot T%2P*! one
takes F to be a unitary bundle of rank p + 1.

Then, as before, to get the “bottom row” of unreduced S™-colored HOM-
FLYPT homology we need to consider the equivariant character of Mg p, (K)
with instanton number k£ = 0 and vortex number m. In situations where
My m(K) can be identified with the moduli space of solutions to (6.52) this
boils down to studying nonabelian vortex equations on D. Thus, for 2p + 1
torus knots we end up with U(p+1) vortex equations, so that the equivariant
character of Mo,m(T2’2p“) = V%(p +1) essentially consists of p + 1 copies of
the abelian vortex character that we discussed earlier (cf. (6.38)).

Our prediction is that the equivariant character of the m-vortex moduli
space V%(p 1 matches the “bottom row” of the S™-colored HOMFLYPT
homology of the (2,2p + 1)-torus knot, i.e.

qrm

D DI | N

0<kp<kp_1 <<k <m
(2mA1) (ky+-tkp) =327 ki1kiy2(ki+-+kp)
9

Chg(V,PH) =

X q
with the convention ko := m (see e.g. [29] for the RHS of the above equation).
For example, when m = 2 and p = 1, Chqvt(Vg (2)) can be computed using
the equivariant U(2) action on Vg@) (see e.g. [19] and |88]):

R N AR
1-qg1—-¢*)
and the right-hand side matches the Poincaré polynomial of the HOMFLYPT

homology of the (2, 3)-torus knot (= trefoil knot 3;) colored by A = m, as
predicted. In the above example (6.53) of the S2-colored trefoil, the corre-

(6.53) Chy (V/®) = ¢

sponding moduli space V;J @ of two U(2) vortices has been studied in the
literature [48, 25, 4, 26, 5| and is known to have two strata, which correspond
to separated vortices and coincident vortices. The first stratum—of complex
dimension 4—is simply the product of two single-vortex moduli spaces V{J (2),
modulo the permutation of the two vortices,

y C x CP! x CP!
Lo
with the “diagonal” removed. The second stratum—of complex dimension 3—

is known to be the space of Hecke modifications (times the center of mass
position),

(6.55) Us(Vy ) = C x WCPY, .

(6.54) (V@) =c
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See [44] for color graphics illustrating the bottom row of S%-colored HOM-
FLYPT homology and the role of WCP%LLZ) in its construction.

Another direction for future work, already mentioned in Section 6.1, is
the relation between the theory Tyortex(K) and the surface operator theory
considered in [31, 29]. Indeed, here, in Section 6.1, and in [31, 29| the Poincaré
polynomial of colored HOMFLYPT homology (known as the superpolyno-
mial) is realized as a certain index (or character) of a two-dimensional N' = 2
theory that describes the physics on D in the brane construction (4.2). Yet,
the key difference is that here and in Section 6.1 there is a different N' = 2
theory for each choice of “color” A; the index of such theories determines col-
ored superpolynomials, and a priori all such theories are unrelated. In [31, 29],
on the other hand, a single N' = 2 theory Tk (that depends only on the
knot K') determines the entire tower of S™-colored homological invariants,
via specializations of its supersymmetric index:

7Sm
(6.56) Py (a,q,t) =Ir (x = ¢™;a,q,t).

Moreover, recursion relations found in [31, 71, 29|, which have a natu-
ral meaning (17) in the N' = 2 theory T, relate equivariant characters
of the form Chg(Monm(K)) to different values of the “vortex number”
m = % {p F. Similarly, from the vantage point of Section 6.1, the recur-
sion relations of [31, 71, 29] relate B-models to target manifolds of different
(super) dimension in a way reminiscent of the notions of “endoscopy” and
“transfer” in the geometric Langlands correspondence [27]. Thus, in the case
of the trefoil knot we have

(6.57)

gm+2 -1 2 2m 42\ ST 4 3m—1 Sm
7)bottom - (C] —t qm + (1 + Q)q "t )Pbottom +t q " (qm - 1)Pbottom =0.

Appendix A. Rectangle-colored invariants of (2, m)-torus knots.
As we use the quantum invariants of (2, m)-torus knots colored by representa-
tions labeled by rectangular Young diagrams in many examples throughout
the paper, we would like to provide the reader with a handy formula for
them. To compute F/\(T(n,m)), one just has to determine the “plethysm”
coefficients ¢j ,, appearing in (5.1). There is no closed formula for them for
general A, p and n. However, for n = 2 and A being an R x C rectangle,
a simple formula for the coefficients Cﬁf,n was found in [10].

A Young diagram pu = (p1, ..., per) is called (C, R)-balanced if
Wi + popt1—s = 2C  forall1 <i < R.

Balanced diagrams are in 1-to-1 correspondence with splittings of the C' x R

(17) E.g. the characteristic variety of the corresponding g¢-difference equations has a
nice interpretation as the moduli space of SUSY parameters, etc.



Quadruply-graded colored homology of knots 77

rectangle into pairs of complementary diagrams, as shown in Figure 22.

Fig. 22. Diagram p is balanced if diagrams a and g fill the rectangle.

For a (C, R)-balanced diagram p, let sgn(u) = (—1)8 = (_1)Zf11 i, Let
B(C, R) denote the set of (C, R)-balanced diagrams. By [10, Theorem 1],

sa@h @y, )= Y (1) Ws, (e, ,..0),
ueB(C,R)

hence

1)) if y € B(C, R)
Al po 0 T
( ) C)\,Z {0

otherwise.

The equations (5.2) and (A.1) determine the invariant P)‘(T(Q,m)) com-
pletely.

Appendix B. A proposal for the (2, 1)-colored trefoil. The reduced
F-colored HOMFLYPT polynomial of the trefoil is given by

PE@E)(a,9) = a2 +a (¢S + g+ g2+ @ gt + d5)
+a8(7q—10 o 2q—6 . 3q—2 . 3q2 _ 2q6 _ ql())
+a6(q_10—|—2q_6—q_4—|—2q_2+2q2 —q4+2q6+q10).

This polynomial has 31 terms, and therefore any homology theory categori-
fying it should have at least 31 generators. This already indicates the dis-
tinction between rectangular and hook diagrams: this time, already for the
trefoil, the exponential growth property cannot be satisfied (the uncolored
homology of the trefoil is 3-dimensional and 31 > 32). However, some of the
structural properties still exist in colored HOMFLYPT homology theories
for hook-shaped Young diagrams.

The representations corresponding to A = P and A = o0 have the same
dimension and the same (up to scaling) R-matrices of the quantum versions,
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as the representation of any of the superalgebras gl(2|0), as gl(1|1) and as
gl(0|2). Therefore, we expect three colored differentials, d5ol, d°9! and dS5} on

2100 “11 0|2
HEP(K), such that
(B.1) H*(HE(K), d5i}) = HO(K),
(B.2) H(HE (K), d5f}) = HO(K),
(B.3)

The (a, g,t)-degrees of these three differentials are

(B.4)
degdsty = (=2,4,—1), degd{l = (=2,0,=3), degdfp; = (=2, —4,—5).

1 (HE (k) ) = HO(K).

The requirement that 7 (31) should categorify pF (31)(a, q), together with

the existence of the colored differentials dg“’é, d‘i‘ﬁ and dg‘l’%, essentially deter-

mines the H-colored homology of the trefoil knot. It has 41 generators and
its Poincaré polynomial is given by

<B5) PB](?H)(G,,(],t) :a12t13+a10(q_6t8+q_4t8+q_2t10+t10+t11+q2t12
+q4t12+q6t14)+a8(q t3+2q76t5+q74t5+q74t6+3q72t7+t7+t8+3q2t9+q4t9
+q4t10+2q6t11+q +a6(q710+2q76t2+q74t3+2q72t4+t4+t5
+2q2t6+q4t7+2q6t8+q10 10).

—10

10t13)

An additional nice property that this homology satisfies, and which also
exists in the rectangular case, is mirror symmetry. Since FP* = 7, this

becomes a symmetry on HEP(?H):

H H
(B.6) Mg Hiji(31) = M i (31),
with the property that

There are some properties that we predict in the case of rectangular
representations and which do not exist for the hook diagram. First of all,
already for the trefoil, the exponential growth property is not satisfied. The
homology is 41-dimensional, and the F-colored HOMFLYPT polynomial
already has 31 terms.

Second, this time the isomorphisms (B.1)—(B.3) are valid only after an
appropriate collapse of tri-grading, i.e. after setting a = ¢"~™ in the case
of the differential d,,,,. Additionally, there is no explicit re-grading in these
isomorphisms, and we could not find the second t-grading. Therefore the
theory that we propose is triply-graded.



Quadruply-graded colored homology of knots 79

Finally, we note that there exists the SL(2) Lefschetz-like action on the
homology (B.5) with raising operator of degree (0,4,2). According to the
“dictionary” (4.4), this raising operator corresponds to forming a bound state
with a BPS state of DO-brane charge n = 4.

Appendix C. Unreduced colored HOMFLYPT homology

C.1. General structure. In Section 2, we gave a large list of struc-
tural properties that should hold on reduced HOMFLYPT homology. Here
we briefly discuss which of these properties should extend to the unreduced
case. We first show which of these properties extend to the case of the un-
knot. Using the assumption that the Poincaré polynomials of the reduced
and unreduced homologies are related by
(C.1) PK) = PME)P(O),
we then conclude that the properties that hold both for the reduced homol-
ogy of any knot and for the unreduced homology of the unknot also hold for
the unreduced homology of an arbitrary knot.

In order to simplify the presentation, we focus on the symmetric repre-
sentations A = S”.

Some of the properties of reduced homology extend to the unreduced
case: these include the existence and the behavior of the positive-colored
differentials and the totally refined exponential growth property. By (C.1)
these properties will follow from the fact that the unreduced homology of
the unknot satisfies these properties.

The unreduced colored homology of the unknot is described in Section 4.2
in terms of the bosonic and fermionic generators. Their explicit (a, @, t,, t¢)-
gradings have been obtained, which gives the following Poincaré polynomial
of the tilde-version of the unreduced S"-colored homology of the unknot:

~ 8T r 2 21—1
(C.2) P (O)a,Qtrte) =a"Q ][] %
o1 L Q2!
In “standard” (a, g, t,,t.)-gradings we have (the same convention, Q = ¢ +
t, — tc, holds for the symmetric representations as in the case of reduced
homology):

2q2i72trt3i71

2z‘tgi—2

__gr r oy - 1+a
©3  PHO)aatnt) =ad [
=1

The degrees of the positive-colored differentials are as in the reduced
case:

(C.4) (@, g, tr t)[dSh] = (=2,2(1 — k), -1, -2k = 1), 0<k<r
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They also have the “colored” property, i.e.

—Qqr __qk
(C.5) H(H (K),d) = H (K), 0<k<r
Indeed, the latter is a consequence of the following lemma (proven by straight-
forward computation) which shows that (C.5) holds for the unknot and with
the re-gradings in the corresponding isomorphisms being exactly the same
as for reduced homology (Section 2.5):

LEMMA C.1. For all nonnegative integers r and k, with k < r, we have

~ Q7 ~ qk

(C6) P (O)a,Qtrite) =P ((O)(a, Q" b, te)

— (1 +a_2Q2t;1t;2k_1)X
for some Laurent polynomial X (a,Q,t,,t.) all of whose coefficients are non-
negative integers, i.e. X € Z [a®!, QF, ¢! tF1].

The totally refined exponential growth property also holds for the unre-
duced homology of the unknot. Indeed,

~ 87 " 1+ a2t
cn P (O)(a,Q,trzt,tc=1>=£[11_Q2

~
= (P (O)(a, @ty =t tc=1))".

On the other hand, there are some differences between the reduced and
unreduced homology of any knot.

The first clear distinction from the reduced case is that unreduced homol-
ogy is infinite-dimensional, since so is the unreduced homology of the unknot.
In particular, there can be no symmetry that inverts the Q- or ¢g-grading, and
therefore the self-symmetry is not satisfied for unreduced homology. Conse-
quently, there are no negative-colored differentials in this case (recall that
self-symmetry exchanges positive- and negative-colored differentials).

The second distinction from the reduced homology case is that all dif-
ferentials dy|g, for N > 0, are now nontrivial, even for the unknot. This is
the reason why there is no simple relation like (C.1) between unreduced and
reduced sl(/V) homology. In the next section we compute the sl(/V)-colored
HOMFLYPT homology for some simple knots.

C.2. The unreduced sl(/V)-colored HOMFLYPT homology. The
unreduced (sl(V), S™)-colored homology of a knot K, denoted H~ U, T(K),
is obtained as the homology of H ( ) with respect to dyyo, followed by
collapsing of grading by setting a = ¢~. We view 7—[ ( ) here as a triply-
graded theory in (a, g, t.)-gradings, and also to simplify notation we denote
t. just by t. Therefore, ﬁsKN)’ST
(q,t)-degrees.

(K) becomes a doubly-graded theory in
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Unlike the reduced homology case, here all differentials d g, with N > 0,
are highly nontrivial, even for the unknot. Below we compute sl(2) homolo-
gies for the fundamental and the second-symmetric representations of the
unknot, the trefoil and the figure-eight knots.

The (a,q,t)-degrees of the sI(INV) differentials dy|9, N > 0, are as for
reduced homology:

(CS) (a'7 Q7t)[dN|0] = (_272N7_1)7 N >0.

For all three knots we assume that dy|o is such that it cancels all pairs
of generators of 7’ (K') whose (a, q,t)-degrees differ by (—2,2N, —1).

C.2.1. Unknot. In the fundamental representation, the Poincaré poly-
nomial of unreduced uncolored HOMFLYPT homology is

_ _, 1+a%t
PY(O)a,q.t) =a'q e

Then the homology with respect to dn\o is finite-dimensional for any n:
(C.9) (H () dnp) =a g1+ ¢* + -+ 27V,

Finally, after collapsing the tri-grading by setting a = ¢", we get the familiar
expression for the uncolored sl(IN) homology of the unknot:

(C10) PO g = H(O)dwjo)|_
— N L BN p N
The unreduced S?-colored homology of the unknot is given by
1+ a%t)(1 + a®¢*t)
(1=¢*)(1—q'?)
To further simplify computation of the homology with respect to dgg in
terms of the Poincaré polynomial, we say that P is equal to % modulo dyg

(C.11) fm(O) = a*2q2(

if P — Py, = (1+a"2¢* )Y for some Laurent polynomial Y in variables
a, q and t all of whose coefficients are nonnegative integers.

Then by using the result from the uncolored case, we deduce that mod-
ulo dy|g the expression (C.11) equals

_ 1+ a%¢?t3
2 2 2
1 _
1+ a?t a’q*t?
=2 2 2 4,2 -2 4,—1
=a q<1+q +qt71_q4t2+(1+a q't )71_q4t2 .

Therefore

_ _ 1+ a’t
(C12) (A (O)dy) =a 2q2<1+q2+q4t21—q4t2)’
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and so

—a(2), _ B 1+ ¢t
(©13) PO 0) = AT W) dyp)_p =0 + 14 PP

C.2.2. Trefoil. For the trefoil, we have

14 a’t

1—q2°
Now after taking the homology with respect to dgjg which cancels all pairs
of generators which differ in (a, q,t)-degree by (—2,4, —1), we are left with

(C.15) (H7(31), dapo) = alg ' +q +¢°°) + a*¢*¢;
after setting a = ¢? this gives
1(2), —
P31 (0,0) = (7 B1), dapo)lamge = 0+ ¢* + P + 1

which equals precisely the free part of the (unreduced) Khovanov homology
of the trefoil.
For the second-symmetric representation, we have

(C.14)  P°(31) =P(31)P (1)) = (a®q % + >t + a*t*)a ¢

(C.16) PE(31) =PPEP(O),
where the reduced homology of the trefoil was computed in Section 3:
(C.17)

As we have seen above, the Poincaré polynomial of the unknot fm(O)
modulo dy|y equals

gyaa o 2 4, gpltdt
(C.18) (H () dop) =a™ | ¢" +q" +q't T2 )
As for the reduced S2-colored Poincaré polynomial of the trefoil, P™(31),
we split it according to the canceling differential dg‘l’%:
(C.19) PH(31) = (1 + a*¢*t°)(a*q™* + a*t* + aq*t® + aO?t")
+ a4q8t8.
Multiplying the RHS of (C.18) by 1+ a%¢*t® gives
_ 1+a’t
2 4,5\ —2( 2 | 4 | 6.2

= (1+a?¢*)a2(* + ¢*) + o 252 (1 + a2q4t5)1+702t
1— q4t2
= (1+d?¢*t")a2(¢* + ¢*)
1+at
rorar <1 a4 g't 4 aPgtd 4 (14 a—2q4t—1>a2q4t51+a4t2>
—q
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_ (172(]2(1 +q2 —|—q4t2 +a2q4t3 —i—a2q6t5 —i—a2q8t5)

10,7 1+ at )

1 —2 4t_1 6t5
+(1+a gt )¢t +q A

Substituting this into (C.16), we see that P (31) modulo dajo equals

a_2q2(1+q2+q4t2+a2q4t3+a2q6t5 —|—a2q8t5)(a4q_4+a4q2t4+a4q4t6+a6q2t7)

5, 1+ a?t
1—q4t2 :

By canceling all possible remaining pairs of generators by dyg we get

+a2q8t8 (q2 +q4 + q6t

(H™(31),dgjo) = a*(q 2 + 1) + a2 + a1 + a®(¢* + ¢O)t!
+a4(q4 + q6)t5 + a4(q6 —|—q8)t7 —|—a2q10t8 +a4q10t9
4t2 1 + a2t
1— q4t2 :

Finally, by setting a = ¢?, we obtain the following (s1(2), 5?)-colored homol-
ogy of the trefoil:

PIOE(31)(g,t) = (H ™ (31), dajo),_,

— (q2 4 q4) +q6t2 4 qutB 4 (q8 4 q10)t4 4 (q12 4 q14)t5
+ (q14 + qu)t7 + q14t8 + q18t9 + q20t11 + q24t12

1+ ¢*
+q10t6 (1 +q2 +q4t2 q >

+ a4q12t11 + a6q12t12 + a2q6t6 <1 + q2 +q

1— q4t2
We note that this result for the free part of the homology coincides (up to
an overall shift) with the one obtained in [15] (1%).

C.2.3. Figure-eight knot. Similarly, for the figure-eight knot,
(C.20) P (4) =PP()P (0)
— (@22 U 1+ gt a_Qt_Z)a_lqlltc(L;t.
Taking homology with respect to dg|g (i.e. modulo 1 + a2¢*t 1), we get
(C21)  (H"(41),dyo) = a®qt® +q (¢ + 1) +q(1 + ) + a2 172,
and after setting a = ¢2, we are left with

(H™(41),dojo)lamqe = 2 + gt +q+ g +q7 7 + 7772

(*®) Note that the so(3) homology corresponding to the fundamental representation
that is computed in [15] is indeed isomorphic to the homology H*'®'H  due to the
well-known isomorphism between the fundamental (vector) representation of so(3) and
the second-symmetric representation of sl(2).
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which is the free part of the (unreduced) Khovanov homology of the figure-
eight knot.

For the second-symmetric representation we have
(C.22) P (41) = PR ()P (),
where the reduced S2-homology is already computed in Section 3:

P4 =14+ (1+PtHa2¢7 2741 + a7 %) (1 + a%¢tD)
+a M 4+ a2 (1 + (1 + d2¢* D) (1 + a2¢5t7).

In the same way as above for the trefoil, after grouping all terms with the
factor 1+ a?q*t® and multiplying by the RHS of (C.18), we find that modulo

da|o the polynomial P (41) equals
021+ P+ ¢ 2+ a2 P+ a2+ a3 (1+242) (11 a2q~2t)a~ 22~

o 1+a%
1—q¢%2 )

Finally, by canceling by dy|y all possible remaining pairs of generators we get

+a g8 (1422 (14+a*t%) (14-a%¢5t7)) +a 2 <q2 +¢*+¢5t

(H (1), dyjo) = a (¢4 + (¢ + ¢t 2 + ¢°)
Fam2(t3 4 2% + gt + 1) + 265 + ¢Bt9)
+ (P + (" + O+ Pt +a 8
e e A S A N 7 )
+a 2t + P72+ 26" + O 4 Bt
+ (q4t + q6t3 + q8t5 + q10t7) + a2q10t8
2
—Fa2q2<1—kq24—q4f_fggi>.

After setting a = ¢? in the above expression, we get the (s1(2), S?)-colored
homology of the figure-eight knot:

P (4)(g,8) = (H (41), o)),
— WS 0T 8D (8 g

e G e L o (/R o R o )
R Y B § L (VR
+ (1424 +¢")t + (¢ + ¢ + ) + (¢ + ¢O)F
(gt ) 4 B+ 10T 4 M

2,2 1+ ¢t .

1— q4t2
Again, the homology obtained matches the result from [15].

+q +1+g¢
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C.3. Comparison with the algebraic model. Following Section 4.6
and [39], we can compare the above computations with the corresponding
algebraic models. Recall that the S"-colored triply-graded homology of the
unknot has even generators ui,...,u, and odd generators &i,...,&, such
that

[a,q,tJu; = (0,24,2i — 2), [a,q,t]& = (2,20 — 2,20 — 1).
The differential dyy is defined by dajo(&;) = E;:l ujUiy1—j, in particular,

d2|0(£1) = ’U,%,
(C.23) dyjo(&2) = 2uqug,  dyyo(&3) = uj + 2uqus,
dojo(84) = 2urug + 2ugug.

The uncolored HOMFLYPT homology of the unknot is a free algebra
generated by u; and &7, so the uncolored sl(2) homology is two-dimensional
and spanned by 1 and u;.

Using (C.23), one can check that the (s1(2), 5?) homology of the unknot
is spanned by

1, ur, pa, uf, ubpe, k> 1,

where p1 = 2u0é; — u1€2. Note that the homology has nontrivial Zs-torsion,
which we do not consider here; see [39] for more details.

The reduced triply-graded homology of the trefoil is three-dimensional
and spanned by 1, ug, &2. Therefore the uncolored sl(2) homology of the trefoil
can be considered as a quotient of the (sl(2),.5%) homology of the unknot
by u3 and w1, hence it is spanned by 1, uq, ug and p;.

Finally, consider the (s1(2), 5%) homology of the trefoil. Following (5.15),
the reduced S? HOMFLYPT homology of the trefoil is spanned by

2
17 us, u4, U3, 537 547 U3€3, ’LL4§3 - —U3€4, §3£4‘

For simplicity, let us focus on the bottom row. By our assumption, the unre-
duced S? HOMFLYPT homology of the trefoil is the tensor product of the
unreduced S? HOMFLYPT homology of the unknot and the reduced S2
HOMFLYPT homology of the trefoil. The cokernel of dyy on the bottom

row of the unknot part is spanned by 1, u; and u§ for & > 1, while dyjo 1s
trivial on the reduced homology of the unknot. Therefore, the bottom row

of (s1(2),5?) HOMFLYPT homology is contained in
(1,u1,u) @ (1,u3, uq, ud).
Using (C.23), we can eliminate ujus and ujug. Moreover,
urug = dojo(usés — Juols + Juaa),  usug = dojo(Fusés — Jusla),

usuy = djo(€3us — Equs) + 2ugu3, uy = djo(uals — uz2),
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and these can be eliminated too. Therefore the bottom row of the unreduced
(s1(2), 5?) homology of the trefoil is spanned by

1, w1, ug, us, ug, U3, ugus, usug, usu3, k> 0.
The homology of dy|y on higher levels can be computed by similar methods.
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