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ABSTRACT: Terpenes are emitted by vegetation, and their oxidation in the W Autoxidation
atmosphere is an important source of secondary organic aerosol (SOA). A part of 6 J

this oxidation can proceed through an autoxidation process, yielding highly

oxygenated organic molecules (HOMs) with low saturation vapor pressure. They

can therefore contribute, even in the absence of sulfuric acid, to new particle o

formation (NPF). The understanding of the autoxidation mechanism and its 3

kinetics is still far from complete. Here, we present a mechanistic and kinetic
analysis of mass spectrometry data from a-pinene (AP) ozonolysis experiments

performed during the CLOUD 8 campaign at CERN. We grouped HOMs in
classes according to their identified chemical composition and investigated the relative changes of these groups and their
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components as a function of the reagent concentration. We determined reaction rate constants for the different HOM peroxy
radical reaction pathways. The accretion reaction between HOM peroxy radicals was found to be extremely fast. We developed
a pseudo-mechanism for HOM formation and added it to the AP oxidation scheme of the Master Chemical Mechanism
(MCM). With this extended model, the observed concentrations and trends in HOM formation were successfully simulated.

KEYWORDS: HOM, terpene oxidation, autoxidation, dimers, peroxy radicals, chamber study, CLOUD,

atmospheric oxidation mechanism

1. INTRODUCTION

Biogenic volatile organic compounds (BVOCs) comprise the
largest fraction of total volatile organic compounds (VOCs) in
the atmosphere, with an estimated emission rate of 760 Tg of C
per year." Isoprene and terpenes dominate, among which a-
pinene (AP) accounts for 32 Tg of C year™" or 34% of the total
yearly terpene emissions." In the atmosphere, AP is oxidized by
ozone (Oj), hydroxyl radicals (OH), and nitrate radicals
(NO,;).”> A substantial fraction of the oxidation products
contributes to the formation of secondary organic aerosol
(SOA). As shown recently, the oxidation of AP involves an
autoxidation pathway that leads to highly oxygenated organic
molecules, denoted here as HOMs.> ® HOMs hold several
oxygen-containing functional groups, in particular, hydro-
peroxides. As a result of their low volatility, AP HOMs can
nucleate, even in the absence of sulfuric acid, at atmospherically
relevant conditions’ and can support the early growth of
nanoparticles.”” HOM:s have also been identified in the ambient
atmosphere and linked to new particle formation (NPF) events
at various sites.'’”'> NPF in the absence of sulfuric acid is
especially important for a full understanding of the formation of
cloud condensation nuclei and the cloud properties before the
Industrial Revolution, when sulfur had no anthropogenic
sources, and, consequently, for the assessment of today’s climate
sensitivity.'”'* HOM formation has been observed in the
oxidation of rnonotelrpenes,“’ls’16 sesquiterpenes,”’18 iso-
prene,"® cycloalkenes,'” ** which are mostly from biological
sources, and also aromatics,”>~>° which are mainly emitted from
anthropogenic sources. The different chemical structures of the
precursors, the type of oxidants, and the presence of radicals,
such as nitrogen oxide (NO), nitrogen dioxide (NO,), and
peroxyl radicals (HO, and RO,), influence the chemical
composition and molar yield of HOMs."*"*® The autoxidation
mechanism is thought to start with a peroxy radical and proceeds
via an internal hydrogen abstraction of a weakly bound hydrogen
atom, forming a hydroperoxyalkyl radical, which, in turn, rapidly
reacts with oxygen to a new peroxy radical.’ Recent findings also
suggest that, in some cases, the radical propagation chain can be
sustained by the formation of an endoperoxy ring in the presence
of a still intact double bond.”” Both of these types of radical
propagation chains can lead to the very high oxygen content and
oxygen/carbon ratio (0/C) found in HOMs.

We performed a series of AP ozonolysis experiments at
various atmospherically relevant concentrations to study NPF.
Kirkby et al. and Trostl et al.”” demonstrated that HOM
monomers and HOM dimers drive the NPF and early growth.
Here, we present a chemical framework of HOM formation from
AP ozonolysis based on previous work on cyclohexene®” and
include this in the Master Chemical Mechanism (MCM) for
AP.”**’ The influence of the AP concentration (i.e., a varying
oxidation rate) on the total HOM O/C and the relative HOM
concentrations was investigated, and reaction rate constants for
some peroxy—peroxy radical reactions leading to some specific
HOM classes were determined. Reaction rate constants of the
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autoxidation mechanism in the extended MCM were con-
strained to fit the measured data.

2. EXPERIMENTAL SECTION

We performed experiments at the CERN Cosmics Leaving
Outdoor Droplets (CLOUD) chamber during the CLOUD 8
campaign (Oct—Nov 2013). They are discussed in detail by
Kirkby et al.” and the Supporting Information. In brief, the
CLOUD chamber is a 26.1 m® electropolished stainless-steel
continuously stirred tank reactor, which is operated at ultraclean
standards. Experiments are conducted using synthetic air
produced by evaporation of cryogenic nitrogen and oxygen,
and humidification uses ultraclean water, which ensures
extremely low levels of contamination with organic vapors
(sub-pptv level).”*° Experiments were performed at 278 K, 38%
relative humidity (RH), and an ozone (O;) mixing ratio of 30—
35 ppbv. Background sulfuric acid was below § X 10* molecules
cm™ at dark conditions (i.e.,, no active photochemistry). OH
radicals formed only as a side product of the AP ozonolysis. We
injected AP at stable chamber conditions by use of an
evaporation system and monitored its concentration with a
proton transfer reaction time-of-flight mass spectrometer
(PTR—TOF-MS).*" We conducted 10 experiments, with AP
ranging from 17 to 1692 pptv (Table S1 of the Supporting
Information). We measured gas-phase HOMs from AP
ozonolysis with a nitrate chemical ionization mass spectrometer
(nitrate—CIMS) as either anions or nitrate clusters.”*> We
analyzed CIMS data using MATLAB/TofTools.”® In the
absence of a suitable HOM compound as a calibrant, we
calibrated with sulfuric acid and used this calibration factor for
the HOM clusters,* correcting for measured mass-dependent
ion transmission efficiency”* and also taking sampling line losses
into account.” We estimate the uncertainty to be in a range from
—50 to +100%.

3. CHEMICAL MECHANISM DESCRIPTION

3.1. HOM Formation from Ozonolysis. We derived a
pseudo-mechanism for AP ozonolysis autoxidation analogous to
the scheme developed previously by Mentel et al.** for
cycloalkenes and also presented in a recent review.”> We extend
this mechanism to better represent observed alkoxy radical
pathways, carbon chain fragmentation, and dimer formation.
The AP (C,,H;;) ozonolysis is initiated by an ozone addition to
the double bond leading to the so-called primary ozonide
(CH160;) as an intermediate product. The cleavage of an
oxygen—oxygen bond in the primary ozonide yields four
different carbonyl oxide (Criegee intermediate) isomers
(C1oH¢03). Three of these Criegee intermediate isomers can
isomerize via a 1,4-hydrogen shift reaction and lead to
vinylhydroperoxides (C,,H;40;). These decompose via O—O
bond scission, yielding an OH radical and a vinoxy radical
(CyoH;50,), which, in turn, takes up a molecule of oxygen from
the atmosphere, yielding the initial peroxy radicals (C,oH;50,).
This peroxy radical is thought to be the initiator of the so-called
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autoxidation mechanism, which yields, via consecutive molec-
ular oxygen additions, HOM:s.*® Here, we treat all constitutional
isomers as a single compound. The possible reactions involved
in the autoxidation mechanism are given by reactions R1—RS
and illustrated in Scheme S1 of the Supporting Information in a
generalized framework.

RO, —» QOOH; QOOH + O, - R(OOH)O,

autoxidation path (C;,H,0,,,,) (R1)
RO, - RO + OH

carbonyl channel (C,oH,40(;45,-1)) (R2)
RO, + HO, — ROOH + O,

hydroperoxide channel (C,oH,40(; 5,)) (R3a)
RO, + HO, — RO + OH + O,

alkoxy radical channel (CloHlso(2 Fon 1)) (R3b)
RO, + R'O, — ROH + R';0 + O,

carbonyl (CoH,40(;,,-1)) or hydroxyl channel

(C10H160(2+2n—1)) (R4a)
RO, + RO, - RO + RO + O,

alkoxy radical channel (C,oH,50(;45,-1) (R4b)
RO, + R'O, = ROOR’ + O, dimer channel  (R4c)
RO + O, - RO + HO,

carbonyl channel (C,,H;4,0;42,-1)) (RS)

The initial peroxy radical (C,;yH;50,) can follow the
autoxidation path by rearranging via a hydrogen shift to a
carbon-centered radical (QOOH, long recognized in combus-
tion chemistry’’), which subsequently adds molecular oxygen
(reaction R1). Repeating cycles of this process can lead to
observed peroxy radicals with up to 12 oxygen atoms (molecular
formula of C,;H;50},), with each step increasing the oxygen
content by 2 atoms. The general molecular formula of these
peroxy radicals can therefore be represented as C,yH;s0,.,,,
where 7 is the number of oxygen molecules that the vinoxy
radical takes up during the autoxidation. Previous work has
shown that the radical chain can be terminated when the
hydrogen shift occurs in geminal position to a pre-existing
hydroperoxy group.'” This reaction eliminates an OH radical
and forms a closed-shell molecule with the general formula
C1oH140(2424-1) terminated with a carbonyl functional group
(reaction R2). Because this unimolecular termination step
requires the presence of at least one hydroperoxide group in the
molecule, the first suitable peroxy radical is the C;;H;sOq4
radical. The C;H;s0(,,,, radical can also react with a
hydroperoxy radical (HO,), yielding either a hydroperoxide
functional group (reaction R3a) with general formula
C10H160 (2420 or an alkoxy radical with general formula
CioH150(2420-1) (reaction R3b). Similarly, the HOM-peroxy
radicals (RO,) can react with any other peroxy radical (R'O,)
according to reactions R4a—R4c. Thus, a radical with the
formula C;0H;50(;,,,) can undergo a disproportionation
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reaction (reaction R4a), yielding either a carbonyl functional
group (carbonyl channel) with general formula C,oH,40 3,20.1)
or alternately a hydroxyl functional group (hydroxy channel)
with general formula C,gH,03.,-1). Furthermore, reaction
R4b leads to the formation of an alkoxy radical (RO) with
general formula C;oH;503,,,-1). Reaction Réc is thought to
generate dimers via a Eeroxy bond formation, as discussed
further in section 3.4.”%° With this framework, the first-
generation HOMs can be rationalized on the basis of their
molecular formula, ncnyng, giving the number of carbon,
hydrogen, and oxygen atoms.

Alkoxy radicals formed from reactions R3b and R4b can
follow several pathways. Except for ternary alkoxy radicals, they
can react with molecular oxygen according to reaction RS,
producing compounds with general formula C;oH;,03,2,-1)-
Alternatively, as shown in Scheme 1, they can undergo internal

Scheme 1. Alkoxy Radical Rearrangements™

R R' R R'
\C
J i
—_——
OH

R6a
H ( o
N
R
R 0
~ — R6b
< *H,C R'
Co' R
H,C
Ré6c

Rw ° \R'
0

“Reported possible unimolecular rearrangements for the alkoxy
radical: hydrogen abstraction (reaction Réa), ring opening (reaction
R6b), and molecular fragmentation (reaction R6c). With reactions
R6a and R6b, the C; carbon backbone is preserved, while reaction
R6c leads to two fragments of variable length.

molecular rearrangements, including hydrogen shift (reaction
Réa), ring opening (reaction R6b), or fragmentation of the
carbon chain (reaction R6c). The hydrogen shift reaction
(reaction R6a), similar to the autoxidation mechanism, leads to a
carbon-centered radical and a hydroxyl group. A ringopening
reaction (reaction R6b) was already postulated™® as an
important step to overcome steric hindrance in the autoxidation
pathway to highly oxygenated organic molecules.

The ring-opening pathway proceeds via the formation of a
carbonyl group and a carbon-centered radical. The carbon-
centered radicals, formed either by hydrogen shift or ring
opening, can subsequently take up molecular oxygen and
eventually continue the autoxidation mechanism, leading to a
class of peroxy radicals with the general formula
C1oH150(2424-1)- When the alkoxy radical does not dissociate
on aring, the reaction (reaction R6c) results in the formation of
two fragments. Peroxy radicals produced via an alkoxy radical
step and subsequent rearrangement reactions (reactions R6a
and R6b) have the chemical formula C,yH;505,,-1). All of the
observed compounds with this chemical formula are assumed to
be peroxy radicals as a result of the very short lifetime of the
alkoxy radicals with the same composition. We assume that they
also react according to reactions R1—R4 (Scheme S2 of the
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Table 1. C;, Monomer Classification™

14 hydrogens 15 hydrogens 16 hydrogens 17 hydrogens 18 hydrogens
Even | unimolecular R2, primary hydroperoxyl R3a, alkoxy R1 hydroxyl
o carbonyl R4a, radical R1 hydroxyl R4a, R4a
alkoxy-O, R5 unimolecular R2,
carbonyl R4a,
alkoxy-O2 R5
Odd | unimolecular R2, alkoxy R1 hydroxyl R4a, primary hydroperoxyl
o carbonyl R4a, hydroperoxyl R3a radical R1 R3a
alkoxy-O, RS

“In gray, first-generation products from the AP ozonolysis without the alkoxy autoxidation pathway (Scheme S1 of the Supporting Information); in
blue, products from the AP ozonolysis that went through an alkoxy rearrangement step (Scheme S2 of the Supporting Information); and in orange,
first-generation products from the OH addition autoxidation mechanism (Scheme S3 of the Supporting Information). The reaction pathway to the

products is also indicated.

Supporting Information). The entry point into this scheme can
be by species with different oxygen atom contents depending
upon the number of autoxidation cycles before the alkoxy step
occurs. Along this alkoxy pathway, reaction R2 leads to
compounds with general formula C,oH,;,0(3,3,-2) (only for n
> 2), reaction R3a to CioH160(2424-1) (only for n > 1), and
reaction R4a to C;oH 4,0 342,—2) and C10H 60 (242,-2) (only forn
> 2). A second-generation alkoxy radical intermediate can be
formed via reactions R3b and R4b, but here, we do not treat
further reaction steps from there.

3.2. Monomer C;, HOMs from OH Reactions. Ozonolysis
of AP yields OH radicals (see above), which can react with AP
by either hydrogen abstraction or OH radical addition.
Hydrogen abstraction is considered a minor pathway and
accounts for only 12% of reacted AP.'® For this reason, it is not
further considered here. An OH radical addition to the double
bond results in a carbon-centered radical with formula C,,H;,0
that can undergo an autoxidation mechanism'® and yield peroxy
radicals with the general formula C,oH;,0(y,5,). We assume that
the reaction framework described above (reactions R4—R6) can
also be applied to this class of peroxy radicals. The peroxy
radicals and closed-shell oxidation products from these reactions
contain 16—18 hydrogens (Scheme S3 of the Supporting
Information). On the basis of the different combinations of
hydrogen and oxygen atoms, the products from the autoxidation
mechanism can be separated into 10 different classes (Table 1).
It appears that specific combinations of hydrogen number with
an even or odd oxygen number can be used to constrain and
study certain chemical pathways.

3.3. Fragmentation Products. Following reaction R6c
(Scheme 1), alkoxy radicals can undergo C—C bond fission of
the carbon chain to produce two fragments: one with a carbonyl
functional group, while the other one is a carbon-centered
radical. In principle, the fragmentation may happen every time a
peroxy radical is converted to an alkoxy radical. Because the
fragmentation can occur at different positions of the carbon
skeleton, fragments of different lengths (e.g., 9—1, 8—2, and 7—3
carbon atoms each) are formed. This is exemplified on three
peroxy radical C,,H;O, structures in Scheme S4 of the
Supporting Information. We included the radicals with carbon
numbers of 8 and 9 (CyH,;0,, C;H,;0,, CH,;0,, C,H,,0,,
and CgH50,,) in the mechanism (Scheme SS of the Supporting
Information). These carbon-centered radicals are rapidly
converted to peroxy radicals by the addition of molecular
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oxygen and can react further by autoxidation (reactions R1 and
R2) or reactions R3 and R4.

3.4. Dimer Formation. It has been proposed that peroxy
radicals can associate to form a dimer molecule combining the
carbon backbones of both radicals via a peroxy bond (reaction
Réc). Although this mechanism was believed to be either slow or
even spin-forbidden,”® others™ recently demonstrated exper-
imentally that this reaction is very fast for HOM:-like peroxy
radicals. Therefore, in our reaction scheme, all combinations of
reactions of C;oH ;50 5,,,) and CioH;50(45,-1) peroxy radicals
were included, yielding the following dimers:

C10H150(2+2n) + C10H150(2+2m)

= CyoH30O0xu12n42m-2) T Oy (R7a)
C1oH1500 420y + Ci1oHisO0 12m-1)

= CyoH3000412n42m-1-2) T O, (R7b)
CioH1500420-1) + CioHi150012m-1)

= CyoH3000u12n42m-2-2) T O, (R7¢)

Reactions R7a and R7c always yield dimers with an even number
of oxygen atoms, while reaction R7b yields dimer molecules with
an odd number of oxygen atoms. Additionally, reactions of
peroxy radicals from fragmentation pathways with 8 and 9
carbon atoms generate another series of dimers: C;H,40,,
C16H280x) C16H300xl C17H260x) C17H280xJ C17H300x)
Cy7H3,0,, C;3Hy60,, Ci3Hy30,, Ci3H30,, Ci3H30,,
CisH340, Cy9Hp30,, CyyH;30,, CiyH;3,0, Ci4H;3,0,
C,0H300,, C,0H;3,0,, and C,iH3,0,. Among these, we
observed, in the experimental data, the 14 classes shown in
bold and failed to observe only the five classes shown in a normal
font.

4. RESULTS

The following three sections describe how we integrated the
mechanistic scheme to the measurements. In the first section, we
present the measured HOM distribution and concentration
trends with experimental conditions. For each experiment, we
focus on data when AP and HOM (major species)
concentrations reached a plateau, meaning that sources (vapors
injection and chemical production) and sinks (chemical
reactions, wall and particle losses, and dilution) were in a steady
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state. Then, we describe the implementation of the mechanistic
scheme in a kinetic model and present the simulation of the
experiments. Finally, we use the model to further constrain
kinetic parameters from the experimental data.

4.1. HOM Products. We conducted the experiments under
neutral (natural ions scavenged) and GCR (natural ions
present) conditions. Because we did not observe any relevant
differences in terms of chemistry between the two types of
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experiments, we use both data sets in our mechanistic analysis
without differentiation. In our analysis, we focus on the
dependence and relative contributions of identified HOMs
upon the amount of reacted AP (AP,,.) by ozone and OH
radicals. We identified around 300 different molecular formulas;
most of the HOMs appeared as adducts with the nitrate anion
(NO;7), and a small fraction appeared as adducts with the
nitrate dimer anion (HNO;-NO;~). We divide the identified
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compounds into monomers with 10 or fewer (8—10) carbon
atoms (C,y) and dimers with 16—20 carbon atoms. Figure la
shows the dependence of the total HOM concentration and
their O/C upon the amount of AP, We corrected HOM
concentrations for wall and condensational loss, assuming the
same maximal loss rates for all compounds. A stronger than
linear increase of the total HOM concentration with higher
AP, is evident, while the average O/C decreases from 0.81 to
0.70 from the lowest to the highest AP, concentration. The
average H/C stays unchanged at 1.5. The decrease of the average
O/C indicates that a higher fraction of the less oxygenated
HOM:s is formed with increasing AP, as a result of faster
bimolecular termination reactions (reactions R3 and R4)
interrupting the autoxidation chain. Because the less oxygenated
HOMs have a higher volatility and partition less to the particles,
a higher fraction of HOMs might be observed in the gas phase at
high APreaCt'

4.1.1. Relative Contributions of HOM Classes. We grouped
the Cyy and C,, compounds according to their number of
hydrogen atoms, while we classified the products from
fragmentation pathways only with respect to their carbon
number, i.e.,, Cg and C, for monomers and C,4—C, for dimers.
Figure 1b illustrates the relative contribution of these classes at
different AP, .. The fraction of the C,, compounds and radicals
decreases from 65 to 33% with increasing AP,,,, while the C,,
dimers always comprise between 10 and 19%. On the other
hand, the contribution of the compounds from the fragmenta-
tion pathways strongly increases with AP, While the C,
monomer fraction stays roughly constant, the Cg fraction grows
from 3 to 10% with increasing AP, Similarly, the
corresponding C,4—C g fraction of the dimers rises from 8 to
28%. HOM clustering with a nitric acid dimer (HNO;-NO;™)
accounts for 8—11% of the detected signal.

4.1.2. Variability of HOMs within Classes. In the following,
we present the contributions of individual species withina HOM
class as a function of AP,,, . Each HOM is shown as its ratio to
the total HOM concentration normalized to the highest ratio
among the different experiments. Panels a—d of Figure 2 show
the Cy, classes with 14 and 15 hydrogen atoms each separated
into subclasses with even and odd oxygen atom numbers (from 6
to 12 and from § to 11, respectively). The contribution of the
C1oH15O¢even and CgH 4O, 44 species, which have not undergone
an alkoxy autoxidation sequence (Table 1), generally decreases
with increasing AP, .. The decline is higher for the species with
a higher oxygen content. This indicates that, with an increasing
peroxy radical concentration, peroxy—peroxy radical reactions
do prevent autoxidation from reaching a very high oxygen
content.

The classes C;gH 4Oy, and C;;H;sO4q are formed from
products via the alkoxy channel (Table 1). Here, the trends are
variable. In both classes, the species with the highest oxygen
number, C,;H;50,, and C,;H ,0,,, also decrease with rising
AP,.,... The other species in the CgH 4Oy, class increase first
and then decline with higher AP,,,.. This shows the increasing
importance of the alkoxy autoxidation pathway at higher
ozonolysis rates, whereby the formation of the very highly
oxygenated compounds is again inhibited by peroxy—peroxy
radical reactions. In the C;jH;50,q4q class, the less oxygenated
species do not show a clear trend. Panels e and f of Figure 2
present the dimers with even and odd oxygen numbers
(C30H30Oeven and Cy0H300,44). The most oxygenated species
(Cy0H30016 and C,0H30045) decrease with increasing AP,
while the least oxygenated species (CyH;oOs) increase. The
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Cy0H30010,12,14 compounds first increase with AP, and then
exhibit a slight decline. These trends of the dimers reflect the
trends of the C;jH;5O,., radicals, which show a fast decline of
the most oxygenated species. Because the C;,H;50,44
concentrations are lower, their recombination contributes less
to CyoH30O¢ven- The odd oxygen dimers in Figure 2f generally
increase with increasing AP, Panels g and h of Figure 2
illustrate two classes of product species that arise from the
fragmentation pathway. As expected, both the CgH, O, as well as
C,6H,60, species generally increase with AP, as a result of the
growing importance of the alkoxy pathway (see also Figure 1b).

4.2. Master Chemical Mechanism HOM Add-on. We
extended the near-explicit Master Chemical Mechanism 3.3.1
(MCM) with a chemical scheme for HOMs based on the
mechanism described above. In a first step, the MCM forms two
Criegee structures APINOOA and APINOOB from a different
cleavage of the ozonide. APINOOA decays to two peroxy radical
species of chemical formula C,;H,;;O,, labeled C10702 and
C10902 in the MCM. However, APINOOB decays to a C,
peroxy radical and pinonaldehyde. Therefore, we also
introduced a C,(H,5sO, peroxy radical as a product of the
APINOOB branch. Starting from these C;,H;sO, peroxy
radicals, we extended the mechanism by including autoxidation
reactions, forming products with up to 10 oxygen atoms. The
kinetic model includes 29 new chemical species and 57 new
chemical reactions, which are derived from the generic reaction
schemes discussed in Section 3 and shown in Schemes S1 and S2
of the Supporting Information). Alkoxy radical reactions
account for hydrogen shift (reaction R6a), ring opening
(reaction R6b) and fragmentation of the carbon chain (reaction
Réc) (Scheme S1 of the Supporting Information). We added
products of a fragmentation step (peroxy radicals) to an existing
MCM species with less than 10 carbon atoms to preserve the
carbon balance. Our model does not include Cg and C; HOM
monomers. Neither do we implement HOM formation from the
OH attack. We set the reaction rate constants (reactions R3 and
R4) in the autoxidation mechanism based on generic rate
constants available in the MCM database for similar reactions or
derived from experimental data when available.

We ran the model with the conditions of the CLOUD
chamber as detailed in the Supporting Information. In the
simulations, the HO, concentration increases from 3.9 X 10° to
8.0 X 10° molecules cm™, while RO, rises from 2.1 X 10® to 9.9
X 10 molecules cm ™ with increasing AP, (Figure S1 of the
Supporting Information). Thus, RO,/HO, increases from 43 to
a maximum of 1244. In the MCM, the reaction rate constant for
a generic RO,—HO, reaction is 3.1 X 107! cm® molecule™ 57},
while the generic reaction rate constants for RO,—RO, reactions
range from 1.0 X 107" to 9.2 X 10™"* cm® molecule™ s™* for
peroxyacid and tertiary carbon peroxy radicals, respectively. This
implies that, at low AP,,,, RO,—HO, may still be competitive
with RO,—RO, radical reactions, while at high AP,.,, the latter
reaction becomes the dominant bimolecular termination
reaction of peroxy radicals.

Figure 3 shows the results of the simulations for the same
HOM classes as presented in panels a—d of Figure 2 from the
measurements. The simulated trends of C;oH;4O.ven
CioH14044¢ and CgH 5Oy, are in good agreement with the
measurements. Species produced directly from the autoxidation
mechanism C;oH;4,0.44 and C;gH 5Oy, (Scheme S1 of the
Supporting Information) decline as a function of AP,.,. The
decrease is stronger for more oxidized C,,H,,0and C,;H ;50 .
HOM s produced via an alkoxy radical step (Scheme S2 of the
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Supporting Information) instead show a positive trend as a
function of reacted AP, and no clear effect on the oxygen number
is seen. The increasing concentration of RO, species seems to
promote the alkoxy radical autoxidation route. In the case of
CioH 50,44, the simulation shows a similar but much more
pronounced increase compared to the measurements (Figure
2d). Figure 4 presents a comparison of measured and modeled

108 -

& o ©
E10¢ o

7 ) @ @

K e

o )

E 4

- @o

5 10°} ’g

£ @°

o P e C10H1407
g o C10H1607
w © C10H1508
g 105F e C10H1409
I e C10H15010

10* 10° 108 107 108

HOM Model (molec cm'3)

Figure 4. Comparison between modeled (x axis) and measured (y axis)
HOM concentrations. The main HOM monomer species C,,H,,0-,
C,oH 407, and C;;H;,09 and HOM radicals C,,H;50g and C;;H ;50
are shown.

HOM concentrations for the species C;;H;,0,44 (O and Oy),
C10H ;60,44 (O5), and the radicals C;gH;5O¢e, (Og and Oyy).
Overall, the relative contributions and trends of these HOMs
with AP, were simulated rather well. However, the model
tends to underestimate the measured HOM concentration for
low AP,.,., while at high AP .., the model overestimates the
HOM concentration. This may be due to the fact that the model

879

does not consider all possible reaction pathways. The systematic
trend of the deviation from the 1:1 line may also indicate that the
MCM model does not correctly simulate the total RO,
concentration. For example, a narrower range of RO,
concentrations from low to high AP, could bring the
dependence of HOMs upon AP, in better agreement with
the measurements.

4.3. Kinetic Analysis. 4.3.1. RO, Reactions. According to
Table 1, C,(H ;0,49 compounds are exclusively formed from
the primary peroxy radicals C;;H;sO¢en, While C;oH4Ocpen
compounds arise from the C;;H;sO,4q radicals, which have
cycled through an alkoxy radical path. The three pathways to
CioH4O, are either via unimolecular decomposition of the
peroxy radical (reaction R2) or via reaction of the C;(H,;50,
radicals with any other RO, (reaction R4). Therefore, a
dependence of C;,H,,O, upon the RO, concentration should
be seen. Indeed, for all C;(H;,0,/C(H;sO, pairs a good
correlation with total modeled RO, is obtained, as seen in panels
a and b of Figure S. The same can also be observed for the
dependence of C;oH;¢0,44/C10H;5Oeen on RO, (Figure Sc).
This confirms that the reaction channel with HO, (reaction
R3a) is a minor pathway, as expected from the high modeled
RO,/HO, (see Figure S1b of the Supporting Information).

From the slope and intercept of a linear fit to the displayed
data, the reaction rate constants for the reaction R'O, + RO, —
RyO (or R'O, + RO, — ROH for panel c) (kg4,) and the
unimolecular decomposition (kg,) can be derived, i.e., kg4, =
slope X ky (K being the wall loss rate), and kg, = intercept X
k. (see the Supporting Information). Table 2 summarizes the
reaction rate constants using a CLOUD chamber typical wall
loss rate for HOM monomers of 1.1 X 1072 s~ for the three
different cases.” The values for kg, are in the range from 7.9 X
107" to 5.0 X 107" cm™ molecule™ s™', which spans a range
similar to the generic reaction rate constants for such reactions
in the MCM. The unimolecular decomposition rate constants
are in the range of (0.6—7) X 107 s". It has to be noted that
these rate constants do not represent one specific reaction but
rather are (weighted) averages over several reaction pathways.

4.3.2. Dimer Formation. 1t is thought that dimers are formed
by the recombination of two RO, radicals (reaction R4c). The
rate of dimer formation would then follow eq 1.

d[ROOR’]
dt (1)

We neglect the dilution rate because it is 10 times smaller than
the wall loss rate. Under steady-state conditions, the
concentrations of the C,, dimers are given by eqs 2 and 3,
whereby [x] denotes C,(H,;5O, with the corresponding number
of oxygen atoms. We summarize the possible radical—radical
recombinations, yielding a specific dimer in Table S2 of the
Supporting Information.

= kR4c[ROZ][RO,2] - kwall[ROOR,]

[CaoH3002, 2 leven = (ky[x][x] + kylx — 1][x + 1]

+ kylx = 2]0x + 2]..) /k @)
[CooH300n1loaa = (kilx]lx + 1] + ky[x — 1][x + 2]
+ k3[x - 2][x + 3]"‘)/kwall (3)

Dimers with 14, 15, and 16 oxygen atoms are formed by four
RO,—RO, combinations, while for dimers with 17 and 18
oxygen atoms, only three combinations are possible. We
calculated reaction rate constants from eq 2 and 3 with a non-
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Table 2. Reaction Rate Constants of HOM Monomer
Formation via the Reactions R4a and R2 as Derived from
Linear Regression Fits to the Data Shown in Figure $ and
HOM Dimer Formation as Described in Section 4.3.2

R;0/RO, Kraa (cm3 S_I) kgo (5_1) K gimer (cm3 S_l)
CoH,405/CoH,504 3.0x 107" 14x107°
C1oH,40,/C1oH,504 12x107% 25x107°
C1oH,406/C1oH 501 42x 107" 14x107°
C1oH,40,,/C1oH,50, 43 x 107" 51x1073
C1oH,404/C1oH, 50, 47 x 1071 1.0 X 1073
C1oH,405/C1oH,504 9.6x 1072  65x107°
C1oH4,0,0/CoH 50y, 7.4 x 10712 1.9 x 1073
CoH,605/C1oH,504 3.8x 1071
C1oH,60,/C1oH,504 6.0x 1071
C1oH,605/C1oH,5049 64x 107"

C1oH,6011/C1oH 501, 23 x 107"

Cy0H3004 32%x 1071
CyoH30015 6.6—8.7 x 1071°
Cy0H30016 23 %1071
CyoH3,0,, 1.8—4.4 x 1071
CyoH30015 0.8—1.6 x 107%°

negative linear least squares analysis (Isqnonneg from
MATLAB™). In a first approach, we used all variables given in
Table S2 of the Supporting Information. This produced some
very high rate constants (>107'° cm® molecule™ s™") and zero
values (Table S3 of the Supporting Information). The latter are
due to pairs of variables with very high collinearity. Therefore, in
a second approach, we neglected those reactions with rate
constants much above 9 X 107'° cm® molecule™ s™! because
they do not contribute much to the dimer concentration and
improve only the fit. The rate constants obtained for the
remaining reactions do not differ much from those fits with all
reactions (Table S3 of the Supporting Information). This
confirms that there are only one or two main RO, combinations
to the different dimers. This analysis reveals that the rate
constants of the formation of highly oxygenated dimers appear
to be extremely fast, in the range of (0.8—9) X 107'% cm?
molecule™ 7.

880

5. DISCUSSION

With NO;—CIMS, we identified about 300 HOM products
from the ozonolysis of AP as a result of an autoxidation
mechanism that leads to a highly complex series of reactions and
oxidation products. Because this type of mass spectrometry
reveals only the chemical composition of the analyzed ions but
not their chemical structure, many more HOM isomers may
have been formed.

With increasing AP,.,., we observed a decreasing fraction of
C,oand highly oxygenated monomers and dimers and a decrease
of the O/C, while the fraction of compounds with nc < 10 was
increasing. While the production rate of peroxy radicals
increases linearly, their loss rate as a result of the reaction of
RO, with R'O, increases quadratically. This leads to a stronger
competition between the peroxy—peroxy radical reaction and
the autoxidation reaction, which interrupts the latter at an earlier
stage and forms molecules with a lower degree of oxygenation.
With a RO,—RO, reaction rate constant of 107'* cm?
molecule™ s™' (Table 2) and a RO, concentration between
10° and 10" cm™ (Figure S1 of the Supporting Information),
the autoxidation rate constant should be in the range from 10~
to 107 s™! to compete. From quantum chemical calculations,
rate coeflicients for 1,5 and 1,6 hydrogen shift transfers in the
order from 107* to 1 s™! have been reported by Praske et al.*’
and even faster rate coefficients in the range of 10 s™' for
autoxidation in alkylbenzenes have been reported by Wang et
al.”* Slow rate coefficients are calculated for 1,4 hydrogen shifts
and hydrogen abstraction at a non-functionalized carbon atom.
Fitting the kinetic parameters in the extended MCM model to
the measured HOM concentrations for hydrogen shift transfer
rate constants of around 1.3—2.4 X 107 s™' (Table S4 of the
Supporting Information) was obtained. Note that these are the
average rate constants for the various possible RO, stereo-
isomers. While such high rate constants have been calculated for
functionalized peroxy radicals, the rigid four-member ring is
expected to hinder hydrogen migration.”>*' It has been
suggested that the rigid four-member ring needs to open for
the autoxidation to proceed to high oxygen numbers.”® This
most likely happens via the formation of an alkoxy radical,
leading to a ring cleavage (reaction R6b in Scheme 1) and
further autoxidation from there. This would imply a switch in the
radical series to C,oH;;0,44. However, this is not observed here,
and the C,;H;sOen syecies are by far the main HOM radicals
measured. Zhao et al.”* used flow tube experiments to develop
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an extended mechanism for HOM formation in the MCM. They
determine an autoxidation rate of 3—10 s™', whereby they allow
only 10% of peroxy radicals from the ozonolysis to proceed
along this pathway. Taken together, this comes close to the
values used by us.

Assuming that the simulated RO, concentrations are correct,
we determined average reaction rate constants for the HOM—
RO,—RO, reactions, leading to a carbonyl and alcohol product
(reaction R4a) in the range of (0.05—7) X 107> cm® molecule™
s~ These are compatible with rate constants measured for
smaller primary peroxy radicals.”> We believe that these values
are good estimates given the fact that the reaction almost
exclusively occurs between C;H;O, and a RO, radical with a
low degree of oxygenation or small size. The branching ratio to
alkoxy radicals (reaction R4b) is reported to vary from 10 to
90%. These have a lower barrier for fragmentation when there is
a neighboring oxygen-containing functional group** and could
thus explain the increase of fragmentation products. In addition,
atlow AP, the reaction of HO, with peroxy radicals leading to
hydroperoxides (reaction R3a) does contribute to HOM
formation, while at high AP, this pathway is negligible as a
result of the high RO,/HO, in the chamber. Furthermore, we
also estimated the reaction rate constants of the dimer formation
assuming the mechanism given by reaction R4c. We found very
high rate coefficients in the range of (1-9) x 107" cm’®
molecule™ s7!. We determined the highest possible collision
rate of such large molecules to be 9 X 107'° cm® molecule™ s~
(see the Supporting Information). We restricted our analysis
only to the dimers with high oxygen numbers, for which we
expect that the contributing peroxy radicals are well-measured
with NO;—CIMS. However, because there is currently no
method to calibrate the instrument for such compounds, there
remains some uncertainty. It has to be noted that an uncertainty
in the measured concentration by a factor of 2 would change the
rate coefficient by a factor of 4. Recently, the reaction rate
constants of such accretion reactions between HOM peroxy
radicals formed through the OH oxidation of 1,3,5-trimethyl-
benzene and AP ozonolysis have been determined.”>** These
authors also found rate constants close to (1—2) X 107'° and
(3.7-7.9) X 107" cm® molecule™" s7', respectively. Several
dimers with less than 20 carbon atoms, which are formed from
HOMs with n¢ < 10, were also observed. In the mechanism of
Zhao et al,, the RO, radicals are lumped together. RO, cross
reaction rate constants had to be constrained to (0.75—2) X
1072 cm™ molecule™! s7!, with a dimer branching ratio of 0.04.
While our rate constants kg, for the HOM—RO,—RO, are in a
similar range, the HOM—RO, cross reactions, yielding highly
oxygenated dimers, have much higher rate constants (kgiper)-
The accretion rate constants for smaller and less functionalized
peroxy radicals have been found to be much slower.”>** This
indicates that the structure and functionality of HOM—RO,
seems to be very critical regarding the reaction pathway and rate.
Detailed studies on these parameters are strongly needed.

The atmospheric relevance of this chemistry is a crucial issue.
The formation of HOM monomers, which dominate the
products that we observe, only depends upon the competition
between the unimolecular RO, chemistry and any termination
reactions. This will, if anything, be even more favorable to HOM
formation in the atmosphere than in these chamber experiments.
However, production of ROOR dimers may be key to the role of
HOM in “pure biogenic” nucleation.” Very often, the presence
of significant RO, + RO, chemistry in a chamber experiment is a
sign that the chamber chemistry has diverged from typical
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atmospheric conditions. There are two reasons for this. First, the
atmospheric RO,/HO, is thought to be significantly less than 1
(on the order of 0.1—0.2).*® The reason is that reactions of OH
with oxygenated organics (CO being the most obvious) tend to
lead directly to HO, rather than first producing RO, and that
chemistry tends to be underrepresented in chamber experi-
ments, where chambers are charged with hydrocarbons. Second,
RO, + RO, reactions for smaller and less oxygenated carbon
backbones tend to be slow compared to either RO, + HO, or
RO, + NO, which both occur for roughly 1 in 10 collisions (with
a rate constant near 107! cm® molecule™ s™!). However, as we
have shown, the RO, + RO, dimerization reactions that are
responsible for ROOR production are roughly 10 times faster
than the more conventional RO, + HO, or RO, + NO
termination reactions and will therefore be important under
typical atmospheric conditions (even at a relatively high NO
concentration).

6. CONCLUSION

In this work, we show that the HOM formation from AP
ozonolysis cannot be described as a linear process. While the
production rate of peroxy radicals increases linearly, their loss
rate as a result of the reaction of RO, with RO, increases
quadratically. This leads to a stronger competition between the
peroxy—peroxy radical reaction and the autoxidation reaction,
which interrupts the latter at an earlier stage and forms
molecules with a lower degree of oxygenation. One pathway of
the peroxy—peroxy radical reaction leads to alkoxy radicals,
which can fragment, explaining the increase of fragmentation
products. This change in composition of HOMs, mainly the
decrease of the very highly oxygenated compounds with
extremely low volatility, may have consequences on NPF and
early growth of particles. Additional degrees of complexity can
be imagined when other chemical species come into play.
Different oxidation regimes and the presence of NO, translate to
more players in the radical reaction pool. It may not be allowed
to linearly extrapolate high-concentration experiments to lower
concentrations without proper parametrization of the HOMs.
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