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ABSTRACT

In the decade or so below the Ozmidov wavenumber (N3/«)1/2, that is, on scales between those attributed to

internal gravity waves and isotropic turbulence, ocean and atmosphere measurements consistently find k1/3

horizontal wavenumber spectra for horizontal shear uh and horizontal temperature gradient Th and m21

vertical wavenumber spectra for vertical shear uz and strain jz. Dimensional scaling is used to constructmodel

spectra below as well as above the Ozmidov wavenumber that reproduces observed spectral slopes and levels

in these two bands in both vertical and horizontal wavenumber. Aspect ratios become increasingly anisotropic

below the Ozmidov wavenumber until reaching;O(f/N), where horizontal shear uh ; f. The forward energy

cascade below the Ozmidov wavenumber found in observations and numerical simulations suggests that

anisotropic and isotropic turbulence are manifestations of the same nonlinear downscale energy cascade to

dissipation, and that this turbulent cascade originates from anisotropic instability of finescale internal waves at

horizontal wavenumbers far below the Ozmidov wavenumber. Isotropic turbulence emerges as the cascade

proceeds through the Ozmidov wavenumber where shears become strong enough to overcome stratification.

This contrasts with the present paradigm that geophysical isotropic turbulence arises directly from breaking

internal waves. This new interpretation of the observations calls for new approaches to understand aniso-

tropic generation of geophysical turbulence patches.

1. Introduction

This paper seeks to reproduce observed horizontal

wavenumber k and vertical wavenumber m spectra in the

decade or so below theOzmidov (1965) wavenumber kO5
(N3/«)1/2, that is, at scales lying between those usually at-

tributed to isotropic turbulence and internal gravity waves

(vertical wavelengths lz ; 1–10m, horizontal wavelengths

lh ; 1–1000m in the ocean; lz ; 1–10km and lh ; 1–

1000km in stratosphere). TheOzmidov wavenumber is the

lowest wavenumber for stationary homogeneous isotropic

turbulence. Below theOzmidovwavenumber, stratification

N suppresses density overturns, diapycnal buoyancy fluxes,

and isotropy, but this does not prevent horizontal shears

uh5 ku frombeing nonlinear and turbulent (uh. f). In this

paper, uh denotes the magnitude, or any component of, the

horizontal shear tensor
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under a turbulence assumption of horizontal isotropy.

Likewise, isotropy is assumed for horizontal wavenumber

k ; kx ; ky. The symbol ; denotes dependence within

unknown ;O(1) scaling factors throughout this paper.

Wavenumbers several decades below the Ozmidov

are thought to be dominated by internal gravity waves

and geostrophic flows (Pinkel 2014; Callies et al. 2015).

Vertical wavenumber spectra for internal-wave verti-

cal shear uz and vertical strain jz are flat or weakly blue

for wavenumbers below a rolloff wavenumber mc ;
(EGM/E)[2p/(10m)] (Gargett et al. 1981; Duda and

Cox 1989; Fritts et al. 1988; Gregg et al. 1993) where the

rolloff wavenumber mc is the lowest wavenumber of

the m21 saturated spectra, E is the nondimensional

internal-wave spectral level below mc, and EGM 5
6.3 3 1025 its canonical value. Spectra for vertical

wavenumbersm,mc are well described by the Garrett

andMunk (1979) internal-wave model spectrum (Gregg

and Kunze 1991).
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Spectra above the Ozmidov and below dissipative Kol-

mogorov and Batchelor (1959) wavenumbers are well ex-

plained by isotropic turbulence theory (Batchelor 1953;

Tennekes and Lumley 1972; Thorpe 2005). Above the

Ozmidov wavenumber mO ; kO, shear spectra rise with

slope11/3 before falling off sharply above the Kolmogorov

(1941) wavenumber mK ; kK ; («/n3)1/4. Isotropic turbu-

lence is nonlinear and lognormal. Internal waves are linked

to isotropic turbulence production by weakly nonlinear

internal-wave/wave interaction theory (McComas and

Müller 1981; Henyey et al. 1986) such that turbulent dissi-

pation rate«}E2 (GreggandKunze1991;Polzinet al. 1995).

In the wavenumber band between internal waves and

isotropic turbulence, that is, the decade or so below the

Ozmidov wavenumber that is the focus here, motions

are also nonlinear with uz ; N. In this paper, a spectral

model is constructed using dimensional scaling with the

turbulent energy cascade or dissipation rate «, back-

ground buoyancy frequency N, Coriolis frequency f,

and horizontal wavenumber k (Table 1). The model is

guided by and seeks to replicate the following features in

the ocean, atmosphere, and numerical simulations:

1) Spectral slopes of11/3 for several decades in horizontal

wavenumber k below the Ozmidov wavenumber for

horizontal gradient quantities such as horizontal shear

uh and horizontal temperature gradient Th (Fig. 1a).

In the ocean, a 11/3 gradient spectral slope is found

at horizontal wavelengths lh ; 1–100m with towed

thermistors (Ewart 1976; Klymak and Moum 2007;

Moum 2015) and seismic sections (Holbrook and Fer

2005; Sheen et al. 2009; Holbrook et al. 2013; Falder

et al. 2016; Fortin et al. 2016). In the atmosphere,

Nastrom andGage (1985) find equivalent25/3 spectral

slopes for both along- and across-track horizontal

velocity components and temperature at lh ; 5–

500km. At lower wavenumbers, the spectrum is red-

der, with gradient spectral slopes of from 21 to 0.

A 11/3 gradient spectral slope is also found in nu-

merical simulations of stratified turbulence (Riley

and deBruynKops 2003; Waite and Bartello 2004;

Lindborg 2006; Brethouwer et al. 2007). A 11/3 gra-

dient spectral slope is thought to characterize a tur-

bulent energy cascade that depends only on cascade

rate « and wavenumber k with no intermediate sour-

ces or sinks (e.g., Kolmogorov 1941). While other

explanations cannot be ruled out based on spectral

slope alone, a uniform forward (downscale) energy

cascade in horizontal wavenumber k will be assumed

here based on point 4 below.

2) Spectral levels that rise and fall with turbulent kinetic

energy dissipation rates « below as well as above the

Ozmidov wavenumber (Fig. 1a) in Th measurements

(Klymak and Moum 2007). This indicates a quantita-

tive dynamical connection between (i) isotropic turbu-

lence above the Ozmidov wavenumber (k . kO) and

(ii) the horizontal wavenumber k spectrum below the

Ozmidov wavenumber (k , kO). This observation has

led to a parameterization of turbulent dissipation rate « in

terms of spectral levels below the Ozmidov wavenumber

in horizontal wavenumber k that is now routinely being

applied to seismic measurement sections (Sheen et al.

2009; Holbrook et al. 2013; Falder et al. 2016; Fortin et al.

2016) anddrifter arraydata (Poje et al. 2017) in theocean.

3) No change in spectral slopes or levels across the

Ozmidov wavenumber in horizontal wavenumber k

spectra for Th (Fig. 1a; Klymak and Moum 2007). This

again indicates a smooth transition between the dy-

namics below the Ozmidov wavenumber and isotropic

turbulence above the Ozmidov wavenumber. It also

suggests no additional sources or sinks at k 5 kO, at

odds with the conventional wisdom that isotropic

turbulence is generated by breaking internal waves at

the Ozmidov wavenumber.

4) Inference of a forward, or downscale, energy cas-

cade below the Ozmidov wavenumber in horizontal

wavenumber k transfer spectra for atmospheric

scalars (Lindborg and Cho 2000), oceanic surface

drifter trajectories (Poje et al. 2017), and numerical

simulations (Waite and Bartello 2004; Lindborg

2006; Brethouwer et al. 2007). This, along with

points 2 and 3 above, suggests that the source for

geophysical turbulence (k . kO) lies below the

Ozmidov wavenumber (k , kO). Lindborg (2005)

reported that the forward energy cascade was not

suppressed by rotation for uh . 0.1f (Rossby

number df 5 uh/f , 0.1, also denoted Ro). Lindborg

(2006) reported that a forward cascade was associ-

ated with (=3 v) � =b; (=3 v)N2, that is, buoyancy

gradient anomalies comparable to the background

stratification N2, while an inverse cascade with

(=3 v) � =b � (=3 v)N2, that is, buoyancy gradi-

ent anomalies weak compared to the background

TABLE 1. Fundamental dimensional variables. The vertical

wavenumberm; k for isotropic turbulence (N3/«)1/2 , k , («/n3)1/4

andm;Nk1/3/«1/3 for anisotropic stratified turbulence (f3/«)1/2, k,
(N3/«)1/2.

Variable Description Units

« Cascade rate m2 s23

N Buoyancy frequency rad s21

f Coriolis frequency rad s21

n Kinematic molecular viscosity m2 s21

k Scalar molecular diffusivity m2 s21

k 5 ‘h
2‘ 5 2p/lh Horizontal wavenumber radm21

m 5 ‘z
21 5 2p/lz Vertical wavenumber radm21
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stratification as was assumed by Charney (1971),

Riley et al. (1981), and Lilly (1983). Lindborg (2006)

also found that vertical nonlinearity w›/›z was

necessary for a forward cascade, suggesting that

it needs to be included and may be comparable

to horizontal nonlinear terms in the conservation

equations.

5) Vertical wavenumber m spectra for vertical shear

uz 5 ›u/›z 5 mu and vertical strain jz 5 ›j/›z 5 mj

behaving as m21 for the decade or so below the

Ozmidov wavenumber (Fig. 1b), corresponding to

vertical wavelengths lz ; 0.1–10m in the ocean

(Gargett et al. 1981;Gregg et al. 1993) and;1–10km in

the atmosphere (Dewan 1979; Fritts 1984; Fritts et al.

1988; Dewan andGood 1986; Smith et al. 1987). Gregg

et al. (1993) reported redder finescale spectral slopes

of 21.4 at low latitudes in the Pacific.

6) Invariant spectral levels in this m21 band (Fig. 1b),

for example, S[uz/N](m) ; S[jz](m) ; m21 {where

S[X](m) denotes the spectrum S for variable X as a

function of m} for normalized vertical shear and

vertical strain so that this band is referred to as the

saturated spectrum (Dewan 1979; Gargett et al. 1981;

Fritts 1984; Fritts et al. 1988; Dewan and Good 1986;

Smith et al. 1987; Gregg et al. 1993; Dewan 1997). Its

invariance contrasts with covarying internal-wave

(lower m) and turbulent (higher m) spectral levels

that rise and fall together (Fig. 1b).

Riley and Lindborg (2008) provide a concise review of

observed submesoscale horizontal and finescale vertical

wavenumber spectra in the atmosphere and ocean that

are summarized here with Fig. 1.

There have been numerous explanations put forward

for the level and slope of the saturated vertical wave-

number spectrum (mc , m , mO), and the corre-

sponding horizontal wavenumber k spectrum (k , kO),

lying between internal-wave (lower m) and isotropic

turbulence wavenumber bands:

1) Apurely kinematic effect of vertical self-straining ›j/›z

by internal gravity waves (Eckermann 1999). This

might explain the m21 vertical wavenumber spectrum

but this one-dimensional (1D) model does not address

the k1/3 horizontal wavenumber gradient spectrum.

2) Breaking of upward-radiating internal waves in the

stratosphere as they propagate into rarefying density

and saturate in a downscale, or forward, energy

cascade (Dewan 1979; Fritts 1984; Dewan and Good

1986; Smith et al. 1987; Dewan 1997). This argument

does not apply in the ocean, where density varies by

only a few percent, and again does not address the k1/3

horizontal wavenumber gradient spectrum.

3) A transition fromweak to strong internal-wave/wave

interactions based on ray-tracing simulations (Hines

1993), though it was recognized that the transition to

nonlinearity may no longer be wavelike.

4) Anisotropic stratified turbulence, sometimes referred to

as blini, pancake eddies, or vortical motion (Riley et al.

1981; Lilly 1983; Müller et al. 1986, 1988). This physics
has been extensively investigated numerically (Billant

and Chomaz 2000, 2001; Riley and deBruynKops 2003;

Waite and Bartello 2004; Lindborg 2005, 2006;

Brethouwer et al. 2007; Bartello and Tobias 2013;

Maffioli 2017) to uncover the underlying spectral

behavior for anisotropic turbulence, as well as to

explore generation (Waite and Bartello 2006a,b) and

the transition to isotropic turbulence. In the ocean,

Polzin et al. (2003) ascribed features in finescale u, y,

and b vertical profiles and current-meter time series that

were not consistent with linear internal gravity waves to

FIG. 1. Schematic interpretation of log–log spectra above and

below the Ozmidov wavenumber kO5mO5 (N3/«)1/2 for gradient

quantities such as (a) horizontal buoyancy gradient bh and hori-

zontal shear uh in horizontal wavenumber k, and (b) vertical shear

uz or vertical buoyancy gradient bz in vertical wavenumber m.

Dotted lines at low wavenumbers correspond to weakly nonlinear

internal waves or balanced motions. Spectral slopes are labeled.

The thick dotted lines track S(kO) vs kO in (a) and S(mO) vsmO in

(b). Spectra above the Ozmidov wavenumber kO 5 mO describe

isotropic turbulence. Spectral levels go as «2/3 in the isotropic band

(k5m. kO5mO) and as «
1/2 in the ‘‘internal wave’’ band. The21

slope band in vertical wavenumber with invariant spectral level in

(b) is referred to as the saturated spectrum.
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linear vortical motions (vortical mode or geostrophy).

The subinertial energy ratio in current-meter data was

used to assign an aspect ratio k/m ; O(f/N) under the

assumption that this signal represented Doppler-shifted

geostrophic finestructure of zero Lagrangian frequency.

They argued that their inferred vortical finestructure

could only arise from an upscale (inverse) cascade from

irreversible mixing at the microscale, which is in the

opposite direction to the transfer spectra inferences

quoted earlier. A more recent study by Pinkel (2014)

used profile time series to transform shear and strain

profiles onto isopycnal (semi-Lagrangian SL) coordi-

nates to eliminate vertical Doppler shifting. In this

frame, a finescale strain peak at vSL , 0.1f was isolated

from the internal-wave band (vSL $ f), implying

vortical-mode aspect ratios k/m , 0.1f/N and hori-

zontal wavelengths ;O(10 km). Such low aspect

ratios have almost no dynamic flow signature (pas-

sive density finestructure or layering). Finescale

shear signals were centered on vSL ; f with horizon-

tal Doppler smearing around f consistent with aspect

ratio k/m ; 0.1f/N near-inertial waves. Pinkel showed

that vortical-mode strain was four orders of magnitude

larger than normalized vortical-mode vertical vorticity

z/f, and that internal-wave relative vorticity was two

orders of magnitude larger than vortical-mode relative

vorticity. While Pinkel’s measurements did not resolve

the finescale (lz , 10m), these results suggest that the

subinertial energy ratio attributed to vortical mode by

Polzin et al. (2003) might be a Doppler-smeared

admixture of subinertial density layering and finescale

near-inertial shear rather than a single vortical-mode

source. If this interpretation is correct, Polzin et al.

would have overestimated vortical-mode shear and,

since Polzin and Ferrari (2004) used these shears to

infer vortical-mode stirring, this too would have been

overestimated. Neither of these observational studies

tested nonlinear alternatives. While anisotropic strati-

fied turbulence is often assumed to be associated with

potential vorticity finestructure (vortical motion), and

most model simulations are initialized with potential

vorticity anomalies, this is not necessary for a forward

energy cascade, as, for example, in a broadband in-

ternal-wave field (McComas and Müller 1981; Henyey

et al. 1986). This issue will be revisited in section 5b.

This paper argues that these submesoscale [(f 3/«)1/2, k,
(N3/«)1/2] and finescale [(fN2/«)1/2 , m , (N3/«)1/2] wave-

number bands represent an anisotropic turbulent forward

energy cascade in horizontal wavenumber k (point 4

above), which transitions into isotropic turbulence and

density overturning above theOzmidovwavenumber. Thus,

geophysical isotropic and anisotropic stratified turbulence

are manifestations of the same forward energy cascade to

dissipation.

Section 2 lays out dimensional scaling for isotropic and

anisotropic turbulence spectra, with the core break-

through of inferring the vertical wavenumber m spectra

for anisotropic stratified turbulence for m , mO 5 kO
described in section 2c. Figures cited in section 3 describe

the unified vertical and horizontal wavenumber model

spectra and compare them to observations. After a

summary in section 4, section 5 discusses implications

for energy pathways, potential-vorticity-carrying fines-

tructure, mixing efficiency, shear dispersion, and obser-

vational and numerical testing. Section 6 provides

concluding remarks. Table 1 lists the fundamental di-

mensional variables used in this study. Table 2 lists de-

rived dimensional variables. Table 3 lists nondimensional

variables. Table 4 lists horizontal wavenumber k, vertical

wavenumberm, and straining frequency uh spectral forms

for horizontal shear uh, vertical shear uz ; (m/k)uh, ver-

tical divergence wz ; uh, horizontal buoyancy gradient

bh, vertical buoyancy gradient bz ; (m/k)bh, and hori-

zontal strain xh 5
Ð
uhdt.

2. Dimensional spectral scaling

Dimensional scaling and dynamical constraints will

be used to recreate observed spectral slopes (Fig. 1),

assuming a uniform energy cascade rate « in horizontal

wavenumber k (Table 1) above and below the Ozmidov

wavenumber as suggested by Klymak and Moum’s

(2007) trans-Ozmidov wavenumber spectra.

For a stationary turbulent cascade with source wave-

number kS well separated from the dissipative sink

wavenumber, the dissipation rate « is the preferred vari-

able for characterizing turbulence strength since it is in-

variant with wavenumber k, following classic stationary

homogeneous turbulence arguments (Kolmogorov 1941;

Batchelor 1953).As a normalized version of the dissipation

rate «, the buoyancy Reynolds number Reb 5 «/(nN2)

is also invariant with wavenumber, but Reynolds number

Re 5 u/(nk) (5 1 at kK and 5 Reb at kO) is not. Nor are

horizontal shears uh or energies. While turbulent kinetic

energy (TKE) is also an integral quantity, it is sensitive to

the source wavenumber kS for the turbulent cascade, that

is, TKE ; («/kS)
2/3, so is not a reliable invariant. The

gradient Froude number dN 5 uz/N proves to be invariant

in the anisotropic stratified turbulence band k, kO but not

the isotropic turbulence band (kO , k , kK).

Dynamical considerations suggests three regimes: (i) iso-

tropic turbulence between the Ozmidov and Kolmogorov

wavenumber [kO, k, kK5 («/n3)1/4] where uh; uz. N

(gradient Froude number dN 5 uz/N . 1) and the energy

cascade is downscale (section 2a), (ii) anisotropic stratified

388 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 49



turbulence between the Coriolis andOzmidov wavenumber

[; kf , k , kO where Coriolis wavenumber kf ; (f3/«)1/2

corresponds to horizontal shears comparable to the Coriolis

frequency (uh; f)] where f, uh,N (Rossby number df5
uh/f . 1, dN [ Fr 5 uz/N ; 1) and the energy cascade is

downscale (sections 2b and 2c), and (iii) baroclinic balanced

turbulence below the Coriolis wavenumber (k , kf) where

uh , f (df 5 uh/f , 1, dN , 1) with an inverse or upscale

energy cascade (section 2d). A forward energy cascade for

k . kf and inverse cascade for k , ; kf might produce a

spectral gap near k ; kf if these wavenumbers are not

continuously replenished by finescale instabilities. However,

finescale internal waves dominate this band so will likely

obscure this feature. Sincequasigeostrophic turbulence is not

part of the forward energy cascade, it will not be considered

in any detail here.

a. Isotropic turbulence

Dimensional arguments are well known for stationary

homogeneous isotropic turbulence (ISO) scales and

spectra that depend on the turbulent kinetic energy

dissipation rate «, background buoyancy frequency N,

molecular kinematic viscosity n (and molecular scalar

diffusivity k), and isotropic wavenumber k ; m . kO
(Table 1; Kolmogorov 1941; Batchelor 1953; Ozmidov

1965; Tennekes and Lumley 1972; Thorpe 2005). These

familiar arguments are reviewed to set the stage for

scaling for anisotropic stratified turbulence below the

Ozmidov wavenumber kO (sections 2b,c).

Dimensional scaling implies that the Ozmidov (1965)

wavenumber kO;LO
21; (N3/«)1/2 is the lowest bounding

wavenumber for isotropic turbulence. The corresponding

time scale is N21. The uppermost bounding wavenumber

for turbulent shear is the Kolmogorov (or viscous) wave-

number kK ; LK
21 ; («/n3)1/4. Viscosity suppresses

shear on time scale (n/«)1/2. Provided these bounding

wavenumbers are sufficiently separated, that is, kK/kO;
(«/nN2)3/4 ; Reb

3/4 � 1, variances at intermediate

wavenumbers kO � k� kK are insensitive toN and n

so the shear spectra can be expressed on dimensional

grounds solely in terms of the energy cascade (or

dissipation) rate « and wavenumber k, that is, S[uh]

(k) ; «2/3k1/3 with a 11/3 spectral slope, correspond-

ing to a 25/3 spectral slope for energy variables in this

inertial subrange. The time-scale ratio tK/tOReb
1/2.

Above the Kolmogorov wavenumber and below the

Batchelor (1959) wavenumber kB ; LB
21 ; («/k2n)1/4,

TABLE 2. Derived dimensional variables. The Kolmogorov wavenumber kK 5 mK is the upper bound and the Ozmidov kO 5 mO the

lower bound for isotropic turbulence, while the Ozmidov wavenumber kO 5 mO is the upper bound and Coriolis wavenumbers kf and

mf ;mc the lower bound for anisotropic stratified turbulence. Horizontal shear uh defines the evolution rate or straining frequency of the

turbulence both above and below the Ozmidov wavenumber. The normalized horizontal buoyancy gradient bh/N
2 is equivalent to the

isopycnal slope s 5 jh and normalized vertical buoyancy gradient bz/N
2 is equivalent to the vertical strain jz in the anisotropic stratified

turbulence band k , kO.

Variable Description Scaling Units

kB 5 mB 5 LB
21 Bachelor wavenumber [«/(nk2)]1/4 radm21

kK 5 mK 5 LK
21 Kolmogorov wavenumber («/n3)1/4 radm21

kO 5 mO 5 LO
21 Ozmidov wavenumber (N3/«)1/2 radm21

kf Horizontal Coriolis wavenumber (f 3/«)1/2 radm21

mf ; mc Vertical Coriolis wavenumber; internal-wave

rolloff wavenumber

(fN2/«)1/2 radm21

kS . kf Turbulent source wavenumber — radm21

uh 5 ku Horizontal shear «1/3k2/3 s21

uz 5 mu 5 ›u/›z Vertical shear (m/k)uh s21

wz Vertical divergence «1/3k2/3 s21

b Buoyancy N2j m s22

bh/N
2 Normalized horizontal buoyancy gradient N21«1/3k2/3 Unitless

bz/N
2 5 (m/k)bh/N

2 Normalized vertical buoyancy gradient — Unitless

xh 5
Ð
uh dt Horizontal strain — Unitless

KE ; HKE Kinetic energy u2 m2 s22

APE Available potential energy b2/N2 ; N2j2 m2 s22

TKE Turbulent kinetic energy («/kS)
2/3 ; «/f m2 s22

P Potential vorticity fN2 s23

TABLE 3. Nondimensional variables.

Variable Description Definition

df Rossby number (Ro) uh/f

dN Gradient Froude number (Fr) uz/N

Reb Buoyancy Reynolds number «/(nN2)

Re Reynolds number u/(nk)

RE Energy ratio HKE/APE

RLn‘ Nonlinear dynamic length-scale ratio Nk/(uhm)

RL‘ Linear dynamic length-scale ratio

(Burger number)

Nk/(fm)
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the spectrum for scalars with molecular diffusivities k,
n (n 5 1026m2 s21 and k 5 1.4 3 1027m2 s21 for tem-

perature, 1.1 3 1029m2 s21 for salinity in the ocean) is

controlled by the shear at the Kolmogorov wavenumber

(n/«)1/2, yielding a scalar-gradient spectrum of the form

x(n/«)1/2k, where x is the scalar variance dissipation rate.

The time-scale ratio tK/tB 5 1 where tB 5 (kkB
2 )21 is the

scalar diffusion time at the Batchelor wavenumber.

b. Horizontal wavenumber k dependence in
anisotropic stratified turbulence band

For k , kO, vertical and horizontal wavenumber

spectra have different spectral slopes (Fig. 1). Only hor-

izontal wavenumber k gradient spectra exhibit a 11/3

slope, so it will be assumed that the isotropic turbulence

spectral scaling for k . kO extends below kO in hor-

izontal wavenumber k, while vertical wavenumber

spectra must be treated separately because of the in-

fluence of stratification (section 2c).We propose that the

k1/3 horizontal wavenumber spectra observed at wave-

numbers below the Ozmidov wavenumber in the ocean

and atmosphere (Ewart 1976; Gage 1979; Nastrom and

Gage 1985; Klymak and Moum 2007; Holbrook et al.

2013) represents a uniform turbulent energy cascade in

horizontal wavenumber k that depends only on a cas-

cade rate «0 and horizontal wavenumber k. Because (i)

Klymak and Moum observed no change in their hori-

zontal wavenumber k spectral slope or level across the

Ozmidov wavenumber and (ii) a downscale energy

cascade is inferred below the Ozmidov wavenumber

(Lindborg and Cho 2000; Waite and Bartello 2004;

Lindborg 2006; Poje et al. 2017), we equate the energy

cascade rate below the Ozmidov wavenumber «0 to the

dissipation rate above the Ozmidov wavenumber associ-

ated with isotropic turbulence « (« ; «0), that is, assume

that the source for isotropic turbulence lies in the aniso-

tropic stratified turbulenceband (ANISO)atk� kO. If this

were not the case, there would be accumulation or de-

pletion of variance at intermediate kO, which Klymak and

Moum did not observe. The Klymak and Moum (2007)

observations are unique in spanning above and below kO,

so this assumption should be viewed with caution until it

can be confirmed with additional measurements.

From this assumption, as with isotropic turbulence, the

horizontal wavenumber spectrum for horizontal shear will

be of the form S[uh](k); «2/3k1/3 (Dewan 1997; Billant and

Chomaz 2001) below the Ozmidov wavenumber and

above a Coriolis wavenumber kf ; (f3/«)1/2 where the

Coriolis term does not inhibit horizontal nonlinearity

(Lindborg 2005). Thus, the Coriolis wavenumber kf is

taken to represent the lower bounding wavenumber for

anisotropic stratified turbulence. The ratio of the bounding

horizontal wavenumbers, that is, the bandwidth, for this

anisotropic stratified turbulence band is kO/kf ; (N/f)3/2,

independent of cascade rate «, approaching 1 asNY f as in

abyssal waters and at high latitudes, implying that aniso-

tropic stratified turbulencewill bemost readily observed in

the mid- and high-latitude pycnocline. The uh spectrum is

identical to that for horizontal Froude number uh/N, which

was used as a defining state variable by Billant and

Chomaz (2001) and Lindborg (2006) following Lilly

(1983), though it is not invariant with wavenumber k. Be-

cause available potential energy (APE) ; b2/N2 is ex-

pected to scale in the same way as kinetic energy (KE)

S[KE](k) ; k22S[uh](k), the horizontal wavenumber

spectrum for normalized horizontal buoyancy gradient bh/

hbzi 5 kb/N2 scales as S[bh/hbzi](k) ; N22«2/3k1/3, con-

sistent in form with that used by Klymak and Moum

(2007), S[Th/hTzi](k) 5 2gCTN
22«2/3k1/3, where g 5 0.2

and CT 5 0.4 from Batchelor (1959); note that, as a cau-

tionary example, the combined ‘‘O(1) scaling’’ in this case

is 0.08. The ratio bh/N
2 is the square root of the horizontal

Cox number Cxh 5 hb2
hi/hbzi2 and can be equated with

isopycnal slope s for bh/N
2 , 1, which holds in the aniso-

tropic stratified turbulence band (k , kO). For isotropic

turbulence, vertical and horizontal Cox numbers are iden-

tical, Cxh ;Cxz 5 hb2
zi/hbzi2 ;Cx5 h(=b)2i/hbzi2. Hori-

zontal wavenumber k spectra are listed in Table 4.

c. Vertical wavenumber m dependence in ANISO

This section will construct the m21 spectrum in the

decade below the Ozmidov wavenumberm , mO 5 kO

TABLE 4. Anisotropic stratified and isotropic turbulence horizontal wavenumber k, vertical wavenumberm, and straining frequency uh
spectra for horizontal shear uh, vertical shear uz, vertical divergence wz, normalized horizontal buoyancy gradient bh/N

2, normalized

vertical buoyancy gradient bz/N
2, and horizontal strain xh5

Ð
uh dt.

Variable ANISO k ISO k ANISO m ISO m ANISO uh ISO uh

uh «2/3k1/3 «2/3k1/3 N24«2m3 «2/3m1/3 uh uh
uz ; (m/k)uh N2k21 «2/3k1/3 N2m21 «2/3m1/3 N2uh

21 uh
wz ; uh «2/3k1/3 «2/3k1/3 N24«2m3 «2/3m1/3 uh uh
bh/N

2 N22«2/3k1/3 N22«2/3k1/3 N26«2m3 N22«2/3m1/3 N22uh N22uh
bz/N

2 k21 N22«2/3k1/3 m21 N22«2/3m1/3 uh
21 N22uh

xh ; jz k21 N22«2/3k1/3 m21 N22«2/3m1/3 uh
21 N22uh
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by finding a relationship betweenm and k in the saturated

band [(5)]. This is the core new contribution of this paper.

Stratification dependence arises for vertical wavenumber

m because N suppresses isotropy. To find this depen-

dence for kf , k , kO, corresponding to f , uh , N,

nonlinear conservation of horizontal momentum can be

expressed in a water-following or Lagrangian frame as

›u
z

›t
1 u

h
u
z
1w

z
u
z
; b

h
(1)

by analogy to thermal windwhere buoyancy b;N2j and

isopycnal displacement j for k , kO. The Coriolis term is

neglected because uh . f. The assumed hydrostatic bal-

ance pz ; b, where p is reduced pressure, will break down

as k[ kO and uh[N. In the nonlinear (uh. f) regime, ›/›t

will scale as the straining or advective frequency uh and

continuity requires that vertical divergence wz # uh since

uh is horizontal shear and not horizontal divergence, so

that all three terms in the left-hand side of (1) are smaller

than or scale as uhuz, reducing (1) to a gradient-wind-like

balance

u
h
u
z
; b

h
0u

h
mu; kb . (2)

Balance (2) can be rearranged to express the energy ratio

RE 5 KE/APE, where KE ; HKE ; u2 and APE ; b2/

N2;N2j2, in terms of either (i) an aspect ratio k/m or (ii) a

nonlinear dynamic length-scale ratio RLn‘ 5 (Nk)/(uhm)

R
E
5

HKE

APE
;

N2k2

u2
hm

2
5R2

Ln‘ , (3)

where horizontal shear or straining frequency uh5 ku has

replaced the Coriolis frequency f of the customary linear

dynamic length-scale ratio or Burger number RL‘ 5 Nk/

(fm)5 df/dN5 dfRLn‘. For a more rigorous, though more

restrictive, scaling of the equations of motion, the reader

is referred to Billant and Chomaz (2001).

We assume that RLn‘
2 5 RE 5 HKE/APE ; O(1) in-

variant with horizontal wavenumber k. The choice of

RLn‘ ; 1 is also explicable by recognizing that this ratio

is analogous to the continuum (f � v � N) linear

internal-wave dispersion relation Nk/(vm) with shear-

ing frequency uh replacing the intrinsic frequencyv. The

RE invariance is supported by u, y, and T sharing the

same 25/3 spectral slope (Nastrom and Gage 1985) but

is likely to break down for uh; f (kY kf) and uh;N (k[
kO). Equipartition of KE and APE is also found in iso-

tropic turbulence (k. kO). Higher-aspect-ratio motions

with HKE/APE . 1 are subject to zigzag instability

(Billant and Chomaz 2000), analogous to barotropic

instability in balanced flows, likewise implying a ten-

dency toward RE 5 HKE/APE ; O(1).

Assuming HKE/APE ; O(1), (3) implies

m2 ;

�
APE

HKE

�
N2k2

u2
h

;
N2k2/3

«2/3
, (4)

which can be rearranged to

m;
Nk

u
h

;
Nk1/3

«1/3
(5)

for f� uh�N, corresponding to (f3/«)1/2� k� (N3/«)1/2.

This expression is equivalent to m ; N/u (Billant and

Chomaz 2001; Lindborg 2006) since u ; «1/3k21/3 on di-

mensional grounds (Taylor 1935). The aspect ratio k/m

varies smoothly from;1 isotropy atk; kO to;f/N fork;
kf (uh; f). The ratio of bounding vertical wavenumbers for

the anisotropic stratified turbulence bandmO/mf; (N/f)1/2,

independent of cascade rate «. For k � kO, the model is

consistent with the uh/N� 1, uz/N;O(1) spectrum found

theoretically and numerically by Billant and Chomaz

(2001) and Lindborg (2006), but extends to uh/N ;
O(1) at the transition to isotropic turbulence (k ; kO).

They found uz/N ; O(1) so that vertical length scale

‘z5m21; u/N andRE;O(1) while here, invariants «,

N, and f are used along with RE5RLnl;O(1) to arrive

at uz/N ; O(1), m ; N(k/«)1/3 and a spectral repre-

sentation, but the end results are equivalent. Riley

et al. (1981), Lilly (1983), and Laval et al. (2003) as-

sumedm�N/u and aspect ratiom/k;O(1), neither of

which holds in the anisotropic stratified turbulence

regime described here.

The corresponding vertical wavenumber m spectrum

for buoyancy-frequency-normalized shear (or gradient

Froude number) dN 5 uz/N is the saturated spectrum

S[d
N
](m);

m2

N2k2
S[u

h
][k(m)]

dk

dm
; m21 (6)

(Dewan 1997), as found numerically by Lindborg (2006)

and Brethouwer et al. (2007). This is independent of

cascade rate «. It is also the spectrum for vertical strain

jz5 bz/N
2 formf,m,mO (Fig. 1b). A consequence of

this m21 spectrum is that uz/N ; O(1) over the vertical

wavenumber band mc , m , mO so that the buoyancy

wavenumber mb 5 N/u used in some of the stratified

turbulence literature (e.g., Riley and deBruynKops

2003; Almalkie and de Bruyn Kops 2012) is not well

constrained. While not consistent with the KE/APE ;
O(1) assumption here, Polzin et al.’s (2003) finding

HKE/APE decreasing with vertical wavenumber for

m . mc might be explicable as a wavenumber-varying

admixture of anisotropic stratified turbulence and near-

inertial waves as might arise from averaging lognormal

distributions of finescale internal waves (E, mc).
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Dimensional scaling recovers the cascade rate « from its

spectral representations S[E](k)dk/dt and S[E](m)dm/dt,

where the evolution of the wavenumbers is expressed in

terms of the geometrical-optics approximation, dk/dt 5
2kdu/dx2 ‘dy/dx2mdw/dx; kuh ; k2u and dm/dt5
2kdu/dz 2 ‘dy/dz 2 mdw/dz ; muh ; kmu (Lighthill

1978), for local interactions. Vertical and horizontal

terms in both equations are of the same order of mag-

nitude. This indicates that a local time rate of change

uh 5 (k2«)1/3 applies to both horizontal and vertical

wavenumbers.

d. Vertical wavenumber m dependence for k , kf

In this section, the vertical wavenumber m is inferred

below the Coriolis wavenumber assuming a cascade

for uh, f. If energy cascades uniformly at rate «00 for k,
kf ; (f3/«00)1/2, equivalent to uh , f (df 5 Ro , 1), then

S[uh](k) ; «002/3k1/3 and thermal wind implies

fu
z
;b

h
0 fmu;kb (7)

by analogy to (2). Again assuming an invariant energy

ratio HKE/APE ; O(1) or dynamic length-scale ratio

Nk/(fm) ; O(1) (Charney 1971)

m2 ;

�
APE

HKE

�
N2

f 2
k2 ;

N2

f 2
k2 (8)

can be rewritten as

m;
Nk

f
(9)

so that S[uh](m) ; (f/N)1/3«002/3m1/3 and S[HKE](m) ;
(N/f)5/3«002/3m–5/3, with similar dependence on k and «00 as
in the isotropic turbulence regime. However, the energy

cascade is expected to be upscale for uh � f; Lindborg

(2005) reported an upscale, or inverse, cascade for uh ,
0.1f. Thus, the cascade rate «00 need not be the same as «

for k . kf. The upscale cascade could be made up of

weakly nonlinear balanced motions or internal gravity

waves. The divergence in transfer rate near k; kfmight

lead to a spectral gap if this band is not continually re-

plenished. Finescale internal waves dominate these

scales and therefore may confound identification of the

simple turbulent dimensional scaling used here, but

spectral transfer rates might be able to isolate the di-

vergence in horizontal wavenumber. There will also be a

change of spectral dependence at the transition to 2D

turbulence where m ; H21, so that m is no longer

compliant and the energy ratio RE no longer constant.

While included for completeness, there are enough un-

certainties in interpretation that the k , kf band will

not be explored further here.

3. Unified turbulence spectrum

This section brings together the pieces of section 2 to

construct spectra in horizontal wavenumber k (section 3b),

straining frequency uh (section 3c), and vertical wave-

number m (section 3d). These are then compared with

observations (section 3e). Horizontal wavenumber k,

vertical wavenumberm, and straining frequency uh spectra

for anisotropic and isotropic turbulence are listed in

Table 4.

a. Wavenumbers and frequencies

Anisotropic and isotropic turbulence ranges for hori-

zontal wavenumber k, vertical wavenumber m, and

straining frequency uh are shown in Fig. 2. Turbulent

horizontal wavenumbers k range from the Coriolis

wavenumber kf ; (f3/«)1/2 below the Ozmidov wave-

number kO 5 (N3/«)1/2 to the Kolmogorov wavenumber

kK 5 («/n3)1/4 above the Ozmidov. Corresponding ver-

tical wavenumbers m are associated with the saturated

spectrum band mc ; mf , m , mO (e.g., Gargett et al.

1981) and isotropic turbulence band mO , m , mK

(Fig. 2a). For midlatitude f 5 1024 rad s21, upper pycno-

cline N 5 1022 rad s21, and buoyancy Reynolds numbers

Reb5 «/(nN2)5 500 and 5000 (diapycnal diffusivitiesK5
gRebn5 1024m2s21 and 1023m2s21whereg52hw0b0i/«
is the mixing coefficient), kf

21; 200–700m, and horizontal

wavenumber k spans more than six decades and vertical

wavenumber m four decades. Vertical wavenumbers m

vary more weakly (m ; k1/3) in the anisotropic stratified

turbulence band so that the aspect ratio k/m goes smoothly

from;O(1) isotropy atk5 kO to;O(f/N) layered flows as

kY kf. Bandwidths are broader in the low- andmidlatitude

pycnocline due to higher N. Straining or advective fre-

quencies uh ; «1/3k2/3 lie in the internal-wave band (f ,
uh , N) for anisotropic stratified turbulence while uh . N

for isotropic turbulence (Fig. 2b).

b. Horizontal wavenumber k spectrum

Horizontal wavenumber k spectra (Table 4) for nor-

malized horizontal shear df 5 uh/f (Fig. 3a) and nor-

malized horizontal buoyancy gradient bh/N
2 (Fig. 3b)

behave as k1/3 above and below kO, their levels rising

and falling with dissipation rate « (Figs. 3a,b), consistent

with Klymak and Moum’s (2007) Th spectra and

Nastrom and Gage (1985) k25/3 spectra for u, y, and T

(Fig. 1a). Spectra for horizontal strain xh 5
Ð
uhdt 5 uh/

uh ; 1, since t; uh
21, and normalized vertical shear dN 5

uz/N have 21 spectral slope and invariant spectral level

for k, kO and «2/3k1/3 dependence for k. kO (Figs. 3c,d;

Table 4).

The Garrett and Munk (1979) model spectrum (GM),

with spectral level E varying as «1/2 (Gregg 1989), peak
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mode number j* 5 3 and rolling off at vertical wave-

number mc 5 (EGM/E)2p/(10m), has finite vertical

wavenumber bandwidth (m* , m , mc) as well as a

limited-frequency bandwidth (f , v , N), so finite

horizontal wavenumber k bandwidth. GM horizontal

wavenumber gradient spectra have broad maxima in

horizontal wavenumber k 5 m[(v2 2 f2)/(N2 2 v2)]1/2

spanning 1–2decades and peaking at different k for

different Reb and different variables (thin gray dotted

lines in Fig. 3): (3–6) 3 1022 radm21 (lh ; 100–200m)

for normalized horizontal shear df, 1 radm
21 (;10m)

for horizontal buoyancy gradient bh/N
2 (though sensitive

to high wavenumbers and frequencies, which are not well

constrained observationally), 3 3 1023 radm21 (;5km)

for horizontal strain, and xh5
Ð
uhdt and 1023 radm21

(6km) for vertical shear dN. GM model levels lie below

those inferred for the turbulence model spectra, but

this may be because of the unknown ;O(1) scaling

factor; Kunze et al. (2015) found that the GM model

matched observed k0 horizontal strain xh spectra near

k ; 1022 radm21 (lh ; 600m), which suggests that the

anisotropic stratified turbulence model spectra (Fig. 3c)

may be overestimated by an order of magnitude.

To test sensitivity to additional high-frequency variance, a

near-N peak (Desaubies 1975) was added bymultiplying the

canonical GM model spectrum by [N2/(v2 2 N2)]1/4 (thick

gray dotted lines in Fig. 3). Only horizontal buoyancy gra-

dient bh/N
2 spectra (Fig. 3b) were significantly affected, be-

coming comparable to the turbulence model spectra around

the Ozmidov wavenumber and therefore offering an alterna-

tive explanation for theKlymak andMoum (2007)Th spectra.

c. Straining frequency uh spectra

This section describes straining frequency uh spectra

(Table 4). Like isotropic turbulence, evolution of aniso-

tropic stratified turbulence is governed by the straining or

advective frequency uh 5 ku ; «1/3k2/3, which represents

the rate of change in a water-following frame (without

vertical and horizontal Doppler-shifting by more ener-

getic, larger-scale internal waves and mesoscale eddies,

FIG. 2. Model dependence of (a) vertical wavenumberm (5Nk1/3«21/3 for kf, k, kO,5 k

for kO, k, kK) and (b) normalized straining or advective frequencyv/f5 uh/f5 k2/3« 1/3f21

on horizontal wavenumber k for buoyancy frequency N 5 1022 rad s21, Coriolis frequency

f5 1024 rad s21, and buoyancy Reynolds numbers Reb5 «/(nN2)5K/(gn)5 500 (thick solid)

and 5000 (thick dotted). Slopes are indicated. Anisotropic stratified turbulence lies below the

Ozmidovwavenumber (k, kO), and isotropic turbulence lies above theOzmidovwavenumber

(k . kO). Coriolis wavenumbers kf ; (f 3/«)1/2, Ozmidov wavenumbers kO 5 (N3/«)1/2, and

Kolmogorov wavenumbers kK 5 («/n3)1/4 for buoyancy Reynolds number Reb 5 500 (solid

vertical lines) and 5000 (dotted vertical lines) as well as horizontal wavelengths lh are listed above

the top axis of (a). Ozmidov and Coriolis wavenumbers decrease with increasing turbulent in-

tensity Reb, while Kolmogorov wavenumber increases. Vertical wavelengths lz are listed along

the right axis of (a) and normalized Coriolis and buoyancy frequencies along the right axis of (b).

The stratified turbulence band has straining frequencies in the internal-wave band, f , uh , N.
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which confounds frequency quantification in Eulerian

field measurements). Straining frequencies uh lie in the

internal-wave band f, uh,N for (f3/«)1/2, k, (N3/«)1/2

as proposed by Müller et al. (1988), while uh . N for

isotropic turbulence [k . (N3/«)1/2] (Fig. 4). Straining

frequency uh spectra are constructed from the horizontal

wavenumber spectra (Fig. 3; Table 4) using the trans-

formation k ; «21/2 uh
3/2 so that dk/duh ; «21/2uh

1/2 and

then S[X][k(uh)]dk/duh. This yields frequency spectra that

behave as (i) ;uh/f
2 for normalized horizontal shear df,

(ii) ;uh/N
2 for horizontal buoyancy gradient bh/N

2, and

(iii);uh
21 for k, kO and;uh/N

2 for k. kO for horizontal

strain xh (Fig. 4). All these spectra have spectral levels

independent of cascade rate « as a result of the di-

mensional scaling and thus provide no information about

turbulent dissipation rates «. Frequency spectra for an-

isotropic turbulence spectra are bluer than the GM

internal-wave spectra. In Fig. 4, their levels are higher

than those of internal waves for normalized horizontal

shear df 5 uh/f and horizontal strain xh 5
Ð
uhdt, while

FIG. 3. Model horizontal wavenumber k spectra for (a) normalized horizontal shear S[df](k);
«2/3k1/3f22wheredf5 uh/f, (b) normalizedhorizontal buoyancygradientS[bh/N

2](k); «2/3k1/3N22,

(c) horizontal strain S[xh](k) where xh5
Ð
uh dt, and (d) normalized vertical shear S[dN](k) (;k21

for kf , k , kO, ;«2/3k1/3N22 for kO , k , kK) where dN 5 uz/N (Table 4) for buoyancy

frequencyN5 1022 rad s21, Coriolis frequency f5 1024 rad s21, andbuoyancyReynolds numbers

Reb 5 «/(nN2) 5 500 (thick black solid line) and 5000 (thick black dotted line). These Reb cor-

respond to diapycnal diffusivities K 5 gnReb 5 1024m2 s21 and 10 3 1024m2 s21, respectively

Slopes are marked. Spectral levels are uncertain because of unknown O(1) constants. Corre-

sponding GM model internal-wave spectra (gray dotted curves) assume a canonical vertical

wavenumber cutoff at mc5(EGM/E)(2p/10m). Thin gray dotted curves for the two Reb assume

the canonical frequency spectrum, while thick dotted curves add a near-N peak (section 3b).
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horizontal buoyancy gradient bh/N
2 shows a crossover be-

tween vf ; f and vO ; N (Fig. 4b). Again, this should be

viewed with caution since the model spectra are based on

dimensional scaling andmay be overestimated (section 3b).

d. Vertical wavenumber m spectra

Vertical wavenumber m spectra for normalized ver-

tical shear dN 5 uz/N (Fig. 5) and normalized vertical

buoyancy gradient bz/N
2 are identical (Table 4), closely

resembling observed spectra (Fig. 1b). In the isotro-

pic turbulence band above the Ozmidov wavenumber

mO5 kO, spectral slopes are11/3 and levels vary as «2/3.

In the anisotropic turbulence band below the Ozmidov

wavenumber, spectral slope is 21 and spectral level

invariant, consistent with observed saturated vertical

wavenumber spectra for vertical shear S[uz](m);N2m21

FIG. 4. Model straining frequency v 5 uh 5 ku 5 «1/3k2/3 spectra for (a) normalized hor-

izontal shear S[df](v) ; vf22 where df5uh/f, (b) normalized horizontal buoyancy gradient

S[bh/N
2](v); vN22, and (c) isopycnal strain S[xh](v) where xh 5

Ð
uh dt5 uh/v5 uh/uh ; 1

(Table 4). Thick black solid lines correspond to buoyancy Reynolds number Reb5 «/(nN2)5
500 and thick black dotted lines to Reb 5 5000. Anisotropic stratified turbulence straining

frequencies lie in the internal-wave band f , uh , N. Corresponding GM model spectra are

redder (gray dotted lines). Spectral levels are independent of Reb but the Kolmogorov rolloff

kK increases with «. Stratified anisotropic turbulence horizontal shear uh/f and isopycnal

strain xh lie above the GM spectral levels, while normalized horizontal buoyancy gradient

bh/N
2 spectra have similar levels but have O(1) constants so may be overestimated (section 3c).
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(Gargett et al. 1981; Fritts 1984; Fritts et al. 1988; Dewan

and Good 1986; Smith et al. 1987; Gregg et al. 1993;

Dewan 1997; Billant and Chomaz 2001). The gradient

Froude number dN 5 uz/N ; O(1) in the stratified tur-

bulence band (if dN5 2 atmO, then dN; 1.3 atmc;mf),

consistent with the tendency in stratified turbulence

simulations (Billant and Chomaz 2001; Riley and

deBruynKops 2003; Lindborg 2006; Brethouwer et al.

2007) and contrary to earlier modeling of stratified tur-

bulence that assumed dN� 1 (Riley et al. 1981; Lilly 1983;

Laval et al. 2003). TheCoriolis vertical wavenumbermf5
(N/f)kf 5 (f/N)1/2mO 5 (fN2/«)1/2 appears to correspond

to the rolloff wavenumber mc of the modified canonical

internal-wave model spectrum (e.g., Gargett et al. 1981).

GM internal waves dominate below the rolloff wave-

number mc ; mf.

e. Comparison with observations

The spectral model compares favorably with ocean

observations. Klymak and Moum (2007) displayed

ocean Th spectra for diapycnal diffusivities K 5 (0.05–

15)3 1024m2 s21, corresponding to buoyancy Reynolds

numbers Reb ; 25–7500. For the buoyancy frequency

N; 4.53 1023 rad s21, this implies dissipation rates «5
53 10210–1.53 1027Wkg21 andOzmidov length scales

of 0.01–1.1m. For a Coriolis frequency f; 1024 rad s21,

it implies kf ; 0.3–0.015 radm21 (lf ; 20–400m), which

matches the lower-wavenumber bounds of their 11/3

spectral slope ranges. Corresponding rms velocities are

(«/f)1/2 ; 0.2–4 cm s21. For more typical average ocean

diffusivities K ; 0.1 3 1024m2 s21 and pycnocline

buoyancy frequencies N ; 5 3 1023 rad s21, rms veloc-

ities associated with anisotropic stratified turbulence

(«/f)1/2 ; 1 cm s21 are consistent with the current fines-

tructure that could not be accounted for by linear in-

ternal gravity waves in the Internal Wave Experiment

(IWEX) trimooring (Briscoe 1977; Müller et al. 1978).
Predicted horizontal shear variances of ;0.03f 2 at

1000-m scales and;200f2 at 5-m scales (Fig. 3a) are also

consistent with IWEX array measurements (Müller et al.
1988). At lower horizontal wavenumbers k ; (2–20) 3
1024 radm21 (horizontal wavelengths 3–30km) in the

summer Sargasso Sea pycnocline, Callies et al. (2015)

reported roughly 25/3 spectral slopes for velocity with

Rossby numbers df 5 uh/f ; 0.5–1 and spectral levels

close to those of the GMmodel spectra. They partitioned

these signals to internal waves based on a linear de-

composition (Bühler et al. 2014) that attributes all hori-
zontal divergence to linear internal-wave motions. Since

the nonlinear anisotropic stratified turbulence described

here has horizontal divergence ; uh ; wz ; «1/3k2/3, its

variance would be misassigned to internal waves by this

decomposition.

The proposedmodel spectra are also comparable with

atmospheric aircraft data. Nastrom and Gage (1985)

found a25/3 spectral slope from aircraft measurements

FIG. 5. Model vertical wavenumber m spectra S[dN](m) for normalized vertical buoyancy

gradient bz/N
2 and normalized vertical shear dN 5 uz/N behave as;m21 formc ;mf ,m,

mO and; «2/3m1/3N22 for mO ,m ,mK (Table 4). Buoyancy Reynolds number Reb 5 500

correspond to the thick black solid line and Reb 5 5000 the thick black dotted line. Corre-

sponding GM model spectra for peak mode number j* 5 3 are shown below the Coriolis

vertical wavenumber mf ; mc as thick gray dotted curves. Coriolis vertical wavenumbers

mf ; (N2f/«)1/2, Ozmidov wavenumbers mO 5 (N3/«)1/2, and Kolmogorov wavenumbers

mK 5 («/n3)1/4 for buoyancy Reynolds number Reb 5 500 (solid vertical lines) and 5000

(dotted vertical lines) as well as vertical wavelengths lz are indicated above the top axis.
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of velocity and temperature at horizontalwavenumbersk5
(1–100)3 1025 radm21 (5–500kmhorizontal wavelengths)

and a23 slope at lower wavenumbers. For f; 1024 rads21

and N ; 1022 rads21, this implies dissipation rates « ;
0.25Wkg21, Ozmidov length scales LO ; 0.5km and rms

velocitiesuf; 10ms21, which are somewhat larger than the

;4ms21 inferred from their spectra. Their spectra imply

Rossby numbers df ; 1 at 500-km horizontal wavelength

and ;2 at 5-km wavelength, consistent with the spectral

model. More recent atmospheric horizontal wavenumber

spectra (Callies et al. 2014, 2016) also show 25/3 spec-

tral slopes over horizontal wavenumbers k ; (1–50) 3
1025 radm21 with corresponding rms Rossby numbers

df ; 0.5–2. Their linear decomposition ascribed this band

to internal gravity waves based on horizontal divergence

and lower wavenumbers to geostrophic turbulence.

4. Summary

Taking inspiration from classic turbulence theory (e.g.,

Kolmogorov 1941; Batchelor 1953), dimensional scaling

was used to construct a spectral model from the turbulent

cascade or dissipation rate «, background buoyancy fre-

quency N, Coriolis frequency f, and horizontal wave-

number k (Table 1) for the decade or so below the

Ozmidov (1965) wavenumber kO 5 (N3/«)1/2 (Figs. 3, 5),

that is, at scales lying between those attributed to internal

gravity waves and isotropic turbulence (vertical wave-

lengths lz ; 1–10m, horizontal wavelengths lh ; 1–

1000m in the ocean; lz ; 1–10km and lh ; 1–1000km

in stratosphere). Spectral forms are listed in Table 4.

Derived dimensional and nondimensional variables are

listed in Tables 2 and 3, respectively. A forward energy

cascade rate « invariant in horizontal wavenumber k was

assumed below as well as above the Ozmidov wave-

number (N3/«)1/2 (sections 2a and 2b). To produce a

vertical wavenumber m spectrum (Fig. 5), the energy

ratio RE ; KE/APE, was assumed to be an ;O(1) in-

variant across horizontal wavenumber k (section 2c). If

the finescale parameterization (McComas and Müller
1981; Henyey et al. 1986; Gregg 1989; Polzin et al. 1995)

links the internal-wave field to isotropic turbulence, the

spectral model described here fills in the gap between the

two as a further step toward unifying this range of scales

and dynamics. The model should be relevant in Earth’s

ocean and atmosphere, in stellar and planetary atmo-

spheres, and in other rotating stratified fluids.

The model horizontal wavenumber k and vertical

wavenumber m spectra (Figs. 3, 5; Table 4) are consis-

tent with those observed (Fig. 1). Specifically, the model

reproduces (i) the 11/3 gradient spectral slope in hori-

zontal wavenumber k for horizontal buoyancy gradient

bh (Fig. 1a; Klymak and Moum 2007) and horizontal

shear uh [equivalent to the 25/3 spectral slope for u, y,

and T in Nastrom and Gage (1985)], with spectral levels

rising and falling with the dissipation rate « above and

below kO (Figs. 3a,b), (ii) the 21 spectral slope in ver-

tical wavenumber m for normalized vertical shear uz/N

(Fig. 1b; Gargett et al. 1981) and vertical buoyancy

gradient bz/N
2, with invariant spectral levels in the sat-

urated spectrum band below the Ozmidov wavenumber

(Fig. 5), and (iii) a 11/3 gradient spectral slope in ver-

tical wavenumber above the Ozmidov wavenumber for

these variables that rises and falls with « (Fig. 5).

Straining frequencies uh occupy the same band as in-

ternal gravity waves (f, uh ,N), but frequency spectra

are bluer (more positive spectral slope) than the GM

model spectrum for internal waves and have invariant

spectral levels (Fig. 4).

5. Discussion

Anisotropic stratified turbulence has a finite band-

width [;kf , k , kO, mf ; mc , m , mO, uz ; N, f ,
uh ; v , N, where kf 5 («/f3)1/2, mf 5 («/fN2)1/2, kO 5
mO 5 (N3/«)1/2] in the bands between internal gravity

waves (f, v,N,m,mc, uh, v, uz,N) and isotropic

turbulence (kO , k ; m , kK, uh ; uz . N). In the

following subsections, broader implications will be dis-

cussed for (section 5a) energy pathways, (section 5b)

potential-vorticity-carrying finestructure (vortical mo-

tion), (section 5c) mixing efficiency, (section 5d) shear

dispersion, (section 5e) observational, and (section 5f)

numerical testing. This discussion challenges several of

the author’s preconceptions:

1) That isotropic turbulence arises from vertical shear

and/or overturning instability of internal gravity

waves at the Ozmidov scale (e.g., Miles 1961;

Thorpe 1978; Kunze 2014), instead suggesting that

isotropic turbulence is part of a forward energy

cascade that can originate at horizontal wavenum-

bers k well below the Ozmidov wavenumber kO
where anisotropic rather than vertical internal-wave

instability feeds energy into anisotropic.

2) That potential vorticity can only be modified by

diabatic processes at molecular dissipative, that

is, Kolmogorov («/n3)1/4 and Batchelor [«/(nk2)]1/4

wavenumbers (Ertel 1942; Polzin et al. 2003), instead

finding that dissipative forcing of potential vorticity

takes the form of a convolution integral in spectral

space that induces potential vorticity anomalies across

the anisotropic and isotropic turbulence wavenumber

bands (section 5b). This indicates that turbulence will

create potential-vorticity-carrying finestructure (vor-

tical motion) in the process of dissipating.
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a. Energy pathways

Proposed energy pathways are illustrated in Fig. 6.

Tides and wind feed energy into the internal-wave field

at the bottom and surface boundaries. Low-mode wave

energy (m�mc) propagates vertically and horizontally

to fill the stratified ocean interior, while nonlinear wave/

wave interactions cascade wave energy from low to high

vertical wavenumbers m and to low frequencies v ; f

and low aspect ratios k/m (McComas and Müller 1981;
Henyey et al. 1986). Internal waves are assumed to be

stable (df , 1, dN , 1) except intermittently at their

highest wavenumbers kf and mf ; mc. Rather than

vertical shear or convective instability of finescale in-

ternal waves (dN . 2) directly injecting energy into

isotropic turbulence at or above the Ozmidov wave-

number kO, this paper proposes that anisotropic in-

stability (detailed below) of ;f/N aspect ratio finescale

near-inertial waves (df. 1) can feed energy into the low-

wavenumber end of anisotropic stratified turbulence (k;
kf � kO). A downscale energy cascade proceeds through

the Ozmidov wavenumber kO 5 mO where it transitions

to isotropic turbulence and density overturning to con-

tinue the forward cascade to molecular dissipation at the

Kolmogorov wavenumber kK 5 mK 5 («/n3)1/4. The av-

erage cascade rate « is assumed to be identical in all three

domains, and identical to the turbulent dissipation rate,

so that there is no accumulation or depletion of variance

at any intermediate wavenumber, that is, anisotropic

stratified turbulence is part of the turbulent downscale

energy cascade to dissipation.

The forward energy cascade inferred in the aniso-

tropic stratified turbulence regime in transfer spectra for

atmospheric tracers (Lindborg and Cho 2000), ocean

drifter arrays (Poje et al. (2017), and numerical simula-

tions (Waite and Bartello 2004; Lindborg 2006), to-

gether with continuity in spectral slope and level across

the Ozmidov wavenumber in Klymak and Moum’s

(2007) horizontal Th spectra, suggests that anisotropic

stratified turbulence below kO and isotropic turbulence

above kO are manifestations of the same downscale

cascade to dissipation. It further suggests that a down-

scale geophysical turbulent cascade can be initiated

FIG. 6. Schematic showing proposed energy pathways in horizontal wavenumber k and

vertical wavenumber m space from tide and wind sources in the lower-left corner to dissi-

pation « at the upper-right corner. The cascade rate « is invariant across all bands to ensure no

accumulation or depletion of variance at any intermediate wavenumber. Internal gravity

waves (f , v , N) will have horizontal shears less than their frequencies (uh , v) and

gradient Froude number dN5 uz/N, 1 [blue internal gravity wave (IGW); lower-left corner].

Wave–wave interactions transfer energy toward the rolloff vertical wavenumber mc ; mf 5
(fN2/«)1/2 5 (N/f)kf and low frequencies v; f. Anisotropic instability at;kf, k, kO5mO5
(N3/«)1/2 triggers anisotropic stratified turbulence (red ANISO; df 5 uh/f . 1, dN ; 1), which

continues the energy cascade, transitioning to isotropic turbulence (black ISO; upper right;

dN. 1) and density overturning at theOzmidov wavenumber kO and on to dissipation « at the

Kolmogorov wavenumber kK 5 mK 5 («/v3)1/4. The Coriolis wavenumber kf ; (f3/«)1/2

corresponds to where horizontal shear uh ; f.
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anisotropically at source horizontal wavenumbers kS as

low as the Coriolis wavenumber kf ; (f3/«)1/2 (Lindborg

2005), with no intervening sources or sinks between

kS� kO and the sinkKolmogorov wavenumber kK. This

implies turbulent energy sources at horizontal scales as

large as ;100m in the ocean and ;500km in the at-

mosphere. In the stratified ocean interior, energy sour-

ces for turbulence are well established as instability of

finescale near-inertial waves by the predictive skill of

the finescale shear/strain parameterization for turbulent

dissipation rate « (Gregg 1989; Polzin et al. 1995; Gregg

et al. 2003; Whalen et al. 2015); this parameterization

is based on the energy cascade to high wavenumbers

by internal-wave/wave interactions (McComas and

Müller 1981; Henyey et al. 1986). Here, the transition

from internal waves to turbulence is proposed to be due

to horizontal (uh . f) or anisotropic instability of fine-

scale internal waves.

This contrasts with conventional wisdom that isotropic

turbulence is generated by vertically breaking internal

waves (uz . 2N) injecting energy directly into the outer

scales of isotropic turbulence, that is, at the Ozmidov or

density-overturning scales (e.g., Kunze et al. 1990;

D’Asaro and Lien 2000; Smyth et al. 2001; Mashayek

et al. 2017). This convention is founded on theoretical and

laboratory studies without background horizontal vari-

ability (›/›x5 0; e.g., Miles 1961; Thorpe 1973) for which

vertical instability is the only option. However, in the

ocean pycnocline, the most energetic turbulence patches

have aspect ratios ;f/N and are associated with margin-

ally unstable finescale near-inertial wave packets (Gregg

et al. 1986; Marmorino 1987; Marmorino et al. 1987;

Itsweire et al. 1989; Rosenblum and Marmorino 1990;

Marmorino and Trump 1991; Hebert and Moum 1994;

Kunze et al. 1995; Polzin 1996) with aspect ratios k/m 5
(v2 2 f2)1/2/N 5 f(2�)1/2/N ; f/N, where near-inertial

frequency v 5 f(1 1 �) and � 5 0.1–0.2 (D’Asaro and

Perkins 1984). Therefore, unstable vertical shears dN 5
juzj/N. dNcwill be accompanied or preceded by unstable

horizontal shears df 5 juhj/f 5 (k/m)(N/f)dN ; dN . dfc
where dNc and dfc are O(1) critical thresholds for in-

stability in the vertical and horizontal, respectively.

Horizontal, or some kind of mixed anisotropic, instability

would inject energy into the anisotropic stratified turbu-

lence band at horizontal wavenumbers kS ; (f/N)mc �
kO. The author is unaware of any stability theory or

modeling that takes into account the horizontal structure

of near-inertial wave packets with ;f/N aspect ratios.

A turbulence source at wavenumber kS � kO implies

a turbulent energy reservoir TKE ; («/kS)
2/3 ; «/f,

much larger than the ;«/N of isotropic turbulence. The

time scale for dissipation of energy injected at kO is

(«kO
2)1/3 ; O(N21), while a lower source wavenumber

;kf would allow turbulence to persist for («kf
2)1/3 ;

O(f21). This is consistent with observed durations of

energetic ;f/N aspect ratio turbulent patches (Gregg

et al. 1986; Hebert and Moum 1994). Thus, persistent

turbulence patches need not be maintained by recurrent

vertical instabilities but could be instigated by a single

instability event.

Anisotropic stratified turbulence can exist for lower

dissipation rates « than isotropic turbulence. Isotropic

turbulence requires Reb � 1 for there to be sufficient

bandwidth between the Ozmidov and Kolmogorov

wavenumbers. However, anisotropic turbulence only re-

quires there to be sufficient bandwidth between the

Coriolis and Kolmogorov wavenumbers, that is,mK/mf5
(N/f)1/2Reb

3/4 � 1. In the pycnocline, this allows dissipa-

tion rates as much as an order of magnitude smaller to be

turbulent. Assuming that (N/f)3/2Reb . O(100) is suffi-

cient for there to be anisotropic turbulent bandwidth be-

tween mf ; mc and mK, then cascade rates « as low as

10211Wkg21 (kf ; 1 radm21, kK ; 30 radm21) and as

high as 1028Wkg21 (kf; 0.01 radm21, kK; 100 radm21)

in the midlatitude pycnocline (f 5 1024 rad s21, N 5
1022 rad s21) might forward cascade to dissipation with

no isotropic band between kS and kK. Globally, these

would represent less than 1022 TW integrated dissipation,

or ;1% of tide and wind generation. If isotropic turbu-

lence never forms, viscous damping would act aniso-

tropically on vertical shear. There would be no isotropic

Batchelor spectrum for density, but an anisotropic

Batchelor spectrum would arise for passive scalars on

isopycnals over («/n3)1/4 , k , [«/(nk2)]1/4.

b. Anisotropic stratified turbulence and
potential-vorticity-carrying finestructure

This section discusses potential vorticity generation

by molecular dissipation at the end of the cascade. This

occurs nonlocally in horizontal wavenumber k over

the anisotropic and isotropic turbulence wavenumber

bands. In the ocean interior, Ertel potential vorticity

P5=b � (2V1=3 v) can only be modified from its

planetary value fN2 through irreversible dissipative

processes due to molecular viscosity n and diffusivity k

DP

Dt
5=b � n=2(2V1=3 v)1 (2V1=3 v) � k=2(=b)

(10)

(Ertel 1942; Lelong 1989). In the isotropic turbulence

band that is expected to dominate gradients on the rhs

of (10), planetary rotation can be neglected, j=bj; jbhj
with Fourier transform ;N«1/3k2/3/k, j=3 vj; juhj with
Fourier transform;«1/3k2/3/k, and Laplacian j=2j; jk2j.
Thus, (10) can be approximated spectrally as a convolution
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integral describing nonlocal influences across horizontal

wavenumber k

~P
t
(k); nN«2/3

ð‘
2‘

"
k02/3

k0
(k2 k0)2(k2 k0)2/3

k2 k0

#
cosu

r
dk0

1 kN«2/3
ð‘
2‘

"
k02/3

k0
(k2 k0)2(k2 k0)2/3

k2 k0

#
cosu

r
dk0 , (11)

where ur represents the orientation difference between

the vorticity and buoyancy-gradient vectors. Since the

two integrands are identical and n� k, the second integral

prefaced by k will be neglected and (11) simplifies to

~P
t
(k); nN«2/3

ð‘
2‘

[k02/3(k2 k0)5/3]cosu
r
d logk0 , (12)

where d logk 5 dk/k. The potential vorticity Fourier

transform time rate of change [(12)] is evaluated nu-

merically, with integrands assumed to vanish for jk0j,
jk 2 k0j , kO and jk0j, jk 2 k0j . kK. If the buoyancy

gradient and vorticity vectors are orthogonal across all

wavenumbers k, as with internal gravity waves, then (12)

vanishes. At the other extreme, if the vectors are parallel

to each other over all k so that cosur5 1, the convolution

implies a rate of change ~Pt(k)/~P(k) ; O(N) over the

anisotropic stratified turbulence band ;kf , k , kO
(Fig. 7), normalized by the maximal potential vorticity,

which is also as a convolution integral

~P(k);N«2/3
ð
[k02/3(k2 k0)21/3] d logk0 . (13)

This high rate arises because the convolution integral

is dominated by vorticity and buoyancy gradient in-

teractions at k; kKwhere both aremaximal. Performing

the integration only over jk0j, jk2 k0j. kK/2 yields almost

identical results in the anisotropic turbulence band.

Neither zero nor perfect coherence between different

wavenumbers k seem likely for turbulence.Monte Carlo

simulations where ur was chosen at random within {0–

2p} for each of 2000 k0 generate potential vorticity

anomalies of both signs at rates ; O(0.1N) ; O(10f) at

all wavenumbers in the anisotropic and isotropic tur-

bulence bands (Fig. 7). Inferred maximal potential

vorticity anomalies from (13) near the Coriolis wave-

number kf are;O(0.1fN2). These may be overestimates

because the vorticity and buoyancy gradient vectors are

taken to be parallel to each other in (13). The relation-

ship between these two vectors near the Kolmogorov

wavenumber is uncertain.

While the analysis above is far from robust, damp-

ing at dissipative scales appears capable of producing

potential vorticity anomalies across the anisotropic

and isotropic turbulence bands, consistent with Winters

and D’Asaro (1994) finding a large fraction of wave

energy encountering a critical layer left behind in low-

wavenumber vortical motion. Since molecular dissipa-

tion is responsible for potential vorticity modification

[(10)], vortical motion will only arise after the cascade

reaches dissipative wavenumbers k; kK 5 («/n3)1/4 and

so is an end product of turbulence, likemixing. This does

not address whether vortical motion is dynamically im-

portant for the energy cascade.

Some energy injected near ;kf (uh ; f) is likely to in-

verse cascade to larger horizontal length scales (Lindborg

2005, 2006), as will variance left behind as turbulence

decays and kf increases. Molecular viscosity will act more

rapidly to extract laminar momentum than molecular

scalar diffusivity removes density anomalies, further

modifying potential vorticity. Viscous decay will cause

the energy ratio KE/APE to decrease and aspect ratios

k/m flatten, producing subinertial density layering (uh /
0, k/m, f/N) with little dynamic signal like that reported

by Pinkel (2014). This train of events is conjectural.

c. Mixing coefficient g

A turbulence source at kS � kO may explain why mi-

crostructure measurements in the ocean pycnocline more

consistently infer mixing coefficients g 5 2hw0b0i/« ; 0.2

at high-buoyancy Reynolds numbers Reb (Oakey 1982;

St. Laurent and Schmitt 1999; Gregg et al. 2018; Ijichi and

Hibiya 2018) than the smaller values reported in laboratory

experiments (Barry et al. 2001), numerical simulations (Shih

et al. 2005), and near boundaries (Davis and Monismith

2011;LozovatskyandFernando2012;Bluteauet al. 2013). If

turbulence is generated anisotropically at kS � kO and

cascades energy forward, isotropic turbulence will always

arise at the Ozmidov scale away from boundaries. In con-

trast, laboratory tanks, numerical domains, and proximity to

boundaries will suppress overturns at the largest scales

as Reb increases and the Ozmidov length scale LO 5
(«/N3)1/2 5 (nNReb)

1/2 exceeds the domain size, reducing

turbulent buoyancy anomalies b0 and fluxes hw0b0i relative
to dissipation rates «, and so lowering themixing coefficient

g. This argument will not hold in the abyssal ocean where

N/ f so that kS; kO and the ratio of Thorpe to Ozmidov

length scalesLT/LO is observed to regularly exceed 1 (Ijichi

and Hibiya 2018), consistent with young turbulence.

d. Shear dispersion

Anisotropic stratified turbulence will contribute to

shear dispersion and isopycnal diffusivity Kh

K
h
5 hKx2

zi5 hKihx2
zi1 hdKdx2

zi , (15)
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where strain component xz 5
Ð
uz dt, diapycnal diffu-

sivityK5 g«/N25 gnReb andmixing coefficient g; 0.2

(section 5c). The model spectrum S[xh](k) (Table 4) can

be used to evaluate the first term on the rhs of (15) as-

suming xz ; (m/k)xh in the anisotropic stratified tur-

bulence band

hx2
zijk 5

ðkO
kS

S[x
z
](k) dk5

ðkO
kS

�
m2

k2

�
S[x

h
](k) dk

5

ðkO
kS

�
m2

k3

�
dk5

N2

«2/3

ðkO
kS

dk

k7/3
. (16)

Integrating from the upper-bound kO toward lower k,

horizontal diffusivity Kh increases through the aniso-

tropic stratified turbulence band, behaving like the di-

mensional scaling;k24/3 for kf , kS , kO and reaching

Kh ; g«/f2 ; KN2/f2 at kS ; kf. For K 5 0.1 3
1024m2 s21, N 5 5 3 1023 rad s21 and f 5 1024 rad s21,

this yieldsKh; 0.025m2 s21, comparable to that inferred

by Young et al. (1982) for hxz2i5huz2i/f2 for a GM-level

internal-wave field, but over an order of magnitude

below ;1–10-km scale estimates from deliberate dye-

release experiments in the ocean (Ledwell et al. 1998;

Sundermeyer and Ledwell 2001; Shcherbina et al.

2015). However, turbulence and vertical shears are

lognormally distributed and correlated since turbulence is

generated by unstable shears. Kunze and Sundermeyer

(2015) showed that, for observed intermittencies e; 0.1, the

second (Reynolds) term in (15) dominates. Provided that

turbulence persists for O(f21) as argued for in section 5a,

isopycnal diffusivity Kh is better approximated as

K
h
5 hdKdx2

zi; e
hKi
e

hx2
zi
e

5
hKihx2

zi
e

(17)

(Kunze and Sundermeyer 2015). For intermittency e ;
0.1, (17) yields Kh ;O(1) m2 s21 as observed, lending

support for these arguments. This is approximate

because diapycnal diffusivities are not bimodal as

FIG. 7. Convolution spectra for the time rate of change of potential vorticity ~Pt(k) [(12)]

normalized by the maximal ~P(k) convolution [(13)] (red). Perfect coherence between the

vorticity and buoyancy gradient vectors across all wavenumbers yields rates;O(N) over the

anisotropic stratified turbulence band;kf , k, kO (black curve). Monte Carlo simulations

with random relative orientations between the vectors to simulate isotropic turbulence

generates potential vorticity anomalies of both signs (pink and blue) at rates ; O(0.1N) ;
O(10f) across the anisotropic turbulence band.
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{0, hKi/e}, which is assumed in (17), but lognormally

distributed. Nevertheless, it demonstrates the effect of

turbulent intermittency. Intermittency e� 1 and;O(f21)

durations of turbulence imply that shear dispersion by

this mechanism will be patchy and only smooth out

over time scales of weeks. Other mechanisms such as

internal-wave Stokes dispersion and vortical-motion

stirring may be more uniform. Similar values have

been inferred for subinertial vortical-mode stirring

(Polzin and Ferrari 2004; Sundermeyer and Lelong

2005) and intermittent internal-wave-driven shear

dispersion (Kunze and Sundermeyer 2015). None of

these mechanisms have been ruled out, so the mech-

anism producing ;1-km-scale isopycnal diffusivities

Kh ; 1m2 s21 remains uncertain.

e. Observational testing

Anisotropic stratified turbulence may be difficult to

identify in observations and models. It shares the same

frequency band f , uh , N and ‘‘dispersion relation’’

Nk/(uhm) ; O(1) as internal gravity waves. Its fre-

quency spectral level is invariant (Table 4) in contrast to

the GM model, and frequency spectra are bluer (more

positive) for anisotropic turbulence than the GMmodel

spectra though we caution that Doppler smearing by

more energetic larger-scale flows will produce similar

effects in measurements that are not fully Lagrangian.

Vertical wavenumber m spectral levels appear to be in-

variant in the anisotropic stratified turbulence (saturated)

band (Figs. 1b, 5;Gargett et al. 1981; Smith et al. 1987) and so

are auseful referencepoint though they yield no information

about the cascade rate «. Vertical wavenumber bandwidth

mO/mf is predicted to be (N/f)1/2, narrower in the abyss

and high latitude, and independent of cascade rate «

in contrast to the isotropic turbulence bandwidth

mK/mO 5 kK/kO ; [«/(nN2)]3/4. Testing the bandwidth

would require vertical resolution of;O(1022)m to span

the Ozmidov wavenumber (N3/«)1/2 5 (gN/K)1/2 for

typical diapycnal diffusivitiesK; (0.1–1)3 1024m2 s21.

Sampling more turbulent environments would be less

restrictive (Klymak and Moum 2007).

Most of the evidence quoted here comes from hori-

zontal measurements (Figs. 1a, 3a,b). For horizontal

shear uh 5 ku and horizontal buoyancy gradient bh 5
kb, the 11/3 gradient spectral slope is predicted to

extend unbroken above and below the Ozmidov

wavenumber kO, rising and falling with dissipation rate

as «2/3 (Figs. 3a,b). This has thus far only been reported

by Klymak and Moum (2007) for horizontal tempera-

ture gradients Th. More horizontal measurements re-

solving across Ozmidov wavenumber kO are needed to

test that these spectra are not discontinuous in slope or

level across kO. These need to be accompanied by

microscale dissipation rates « measurements both to es-

timate kO and determine whether spectral levels vary as

«2/3. Horizontal shears uh should exceed f for horizontal

wavenumbers k. kf5 (f3/«)1/25 (f/N)3/2kOwith Rossby

numbers df 5 uh/f ; «1/3k2/3 increasing monotonically

with k from ;O(1) at ;kf to ;O(N/f) at kO. The pre-

dicted horizontal bandwidth kO/kf ; (N/f)3/2 should vary

from ;30 in the abyss to ;1000 in the pycnocline, in-

dependent of «. Aspect ratios k/m should vary ask2/3 from

;f/N at kf; (f3/«)1/2 to;1 atkO; (N3/«)1/2. Both vertical

strains jz and gradient Froude numbers dN5 uz/N should

be ;1 and have 21 spectral slopes over ;kf , k , kO.

These features might be tested with towed CTD chains

and high-frequency ADCP measurements but would re-

quire vertical and horizontal resolution of ;O(1022) m

to span typical Ozmidov length scales.

The strongest proof of the model’s underlying as-

sumptions would be transfer spectra inferring identical

forward energy cascade rates below and above the

Ozmidov wavenumber that match the turbulent kinetic

energy dissipation rate «.

f. Numerical testing

The full problem, spanning four to six orders of

magnitude in horizontal wavenumber k for midlatitude

pycnocline and lower-stratosphere buoyancy frequen-

cies N; 1022 rad s21 (Figs. 1, 2), is beyond the scope of

contemporary numerical modeling, which can span

three decades (e.g., Brethouwer et al. 2007; Almalkie

and de Bruyn Kops 2012; Bartello and Tobias 2013).

This has made simulations attempting to straddle kf or

kO difficult to interpret due to inadequate bandwidth,

and may have prevented clean reproduction of the sat-

urated spectrum in vertical wavenumber m because of

the large range of horizontal wavenumbers that con-

tribute to it (Fig. 2; Maffioli 2017). Depending on the

focus, this burden might be reduced by choosing abyssal

stratifications N ; 1023 rad s21 to reduce kO/kf or a

lower Reb to reduce kK/kO. Reduced bandwidths would

make it more difficult to unambiguously identify spec-

tral slopes, for example, the isotropic turbulence band

is expected to vanish for Reb , O(100) (Gargett et al.

1984) and mO/mf , 3 for N/f , 10. Most simulations

of anisotropic stratified turbulence have focused on

uh,N (Billant andChomaz 2001; Riley and deBruynKops

2003;Waite andBartello 2004; Lindborg 2006;Brethouwer

et al. 2007), have been irrotational, used anisotropic

grids, and forced with potential vorticity anomalies.

These preconditions are suitable for studying the

middle of the stratified turbulence band kf � k � kO
(Fig. 6) but not (i) anisotropic generation by internal-

wave instabilities at k � kO or (ii) the transition to

isotropic turbulence at kO.
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These two subproblems are of special interest because

they involve a change in dynamics and behavior. The

first would establish that an anisotropic forward turbu-

lent cascade can be triggered by anisotropic instability of

finescale ;f/N aspect ratio near-inertial wave packets

at k � kO where rotation and horizontal shears are

important. To the author’s knowledge, this problem

has not been examined theoretically or numerically.

Numerically, it could be treated with anisotropic grids

;O(f/N) at moderate buoyancy Reynolds number, al-

lowing the resulting anisotropic turbulence to dissipate

via a subgridscale damping parameterization like hy-

perviscosity at k , kO before becoming isotropic. Mar-

ginally unstable (dN ; df ; 1) wave packets could be

forced into instability by subjecting them to a wave-

capture scenario (Bühler and McIntyre 2005) where

both vertical and horizontal wavenumbers increase,

forcing group velocities to shrink and shears to amplify.

If source instability and dissipative scales are sufficiently

separated, these simulations could identify when during

the cascade process potential vorticity arises at wave-

numbers well below those associated with dissipation.

Waite and Bartello (2006a) attempted to investigate

internal-wave generation of anisotropic stratified tur-

bulence but reported inconclusive results.

The second problem would study the transition from

anisotropic stratified turbulence at k , kO to isotropic

turbulence and density overturning at k; kOwhere uh;
N. This would require an isotropic grid and buoyancy

Reynolds numbers sufficiently high to ensure isotropy at

the transition (e.g., Reb . 200; Gargett et al. 1984). The

full inertial isotropic cascade might not need to be re-

solved if dissipation could be handled with hyperviscosity

(e.g., Winters and D’Asaro 1994). Such simulations

would be initialized with k , kO anisotropic stratified

turbulence based on the simulations described in the

previous paragraph, consistent with the desired buoyancy

Reynolds number and lowest resolvedwavenumber, then

allowed to evolve.

Both of these subproblems have been studied but

proven challenging to implement and hard to interpret

because of aphysical forcing at low wavenumber and

uncertain influences on the intermediate wavenumber

domain by both the low-wavenumber forcing and high-

wavenumber dissipation.

Another question is whether numerical simulations

could produce a forward energy cascade in the absence

of potential vorticity forcing. Most of the model simu-

lations have been initialized with barotropic vortices

that break down into lower aspect ratio layers via the

zigzag instability (Billant and Chomaz 2000), or forced

spectrally at lower wavenumbers then allowed to relax

to stratified turbulence (Lindborg 2006). Neither of

these forcings excludes potential vorticity. It would be

illuminating to contrast the properties of numerically

simulated anisotropic stratified turbulence and its cas-

cade with and without potential vorticity forcing.

6. Concluding remarks

A new interpretation is offered for ocean and atmo-

sphere horizontal and vertical wavenumber spectra in the

decade or so below theOzmidov wavenumber kO5mO5
(N3/«)1/2 (Fig. 1), that is, on scales between those attributed

to internal waves [m , mc ; N(f/«)1/2] and isotropic tur-

bulence (m . mO) (Fig. 1). Based on the forward energy

cascade reported in the atmosphere (Lindborg and Cho

2000), ocean (Poje et al. 2017), and numerical simulations

(Waite andBartello 2004; Lindborg 2006; Brethouwer et al.

2007), this band is identified as anisotropic stratified tur-

bulence following Riley and Lindborg (2008). A spectral

model constructed from dimensional scaling (section 2;

Table 4; Figs. 3–5) reproduces the observations summa-

rized in Fig. 1. Anisotropic stratified turbulence does not

occupy the full parameter space of Rossby number, gradi-

ent Froude number, and energy ratioRE but is constrained

to have 1 , df , N/f (Lindborg 2006), dN ; O(1) (Billant

and Chomaz 2001) and RE ; 1. It shares a ‘‘dispersion

relation’’ with internal waves, that is, m/k ; N/uh, with

straining frequency uh replacing the intrinsic wave fre-

quency and lying in the internal-wave band f , uh , N

(section 3c; Fig. 4).

The most novel implication of this interpretation is

that small-scale geophysical turbulence is made up of

both anisotropic stratified and isotropic turbulence such

that the anisotropic turbulent energy cascade feeds

smoothly into the isotropic turbulent cascade as it

crosses the Ozmidov wavenumber (section 5a). This

further implies that isotropic turbulence in the stratified

ocean need not be directly generated by internal-wave

breaking as commonly assumed. Rather, anisotropic

instability of finescale near-inertial wave packets can

feed energy into anisotropic stratified turbulence at

horizontal wavenumbers kS � kO, which then cascades

downscale through the isotropic turbulence band to

dissipation (section 5a; Fig. 6).

The interpretation of submesoscale and finescale data

presented here is by no means certain, based on multiple

unique measurements that have often been interpreted

differently.While linear internal gravity waves have been

ruled out (Müller et al. 1988; Polzin et al. 2003) and lin-

earity in general seems unlikely on the finescale where

uz ; N and uh . f, either nonlinear internal waves or a

variant of the turbulent forward cascade in horizontal

wavenumber proposed here remain possible.Many of the

assumptions and conclusions require rigorous testing
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including that (i) aspect ratio;f/N finescale near-inertial

wave packets in the ocean become anisotropically un-

stable at horizontal wavenumbers k � kO to produce

anisotropic stratified turbulence (Fig. 6), (ii) variance at

wavenumbers ;kf , k , kO has invariant energy ratio

KE/APE ; O(1) at all horizontal wavenumbers k and

cascades energy forward uniformly with k (section 2), (iii)

the transition from anisotropic to isotropic turbulence

occurs smoothly across the Ozmidov wavenumber kO
with no change in spectral slope or level for uh or bh/N

2

(Figs. 3, 4), and (iv) the cascade rate below and above the

Ozmidov wavenumber is identically the microscale dis-

sipation rate «. It is hoped that the work presented here

will provide a framework to help unravel the dynamics of

finescale motions in the decade or so below the Ozmidov

wavenumber kO 5 (N3/«)1/2 in the ocean, atmosphere,

and other stratified fluids.
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