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ABSTRACT

In the decade or so below the Ozmidov wavenumber (N*/£)"/?, that is, on scales between those attributed to

internal gravity waves and isotropic turbulence, ocean and atmosphere measurements consistently find k'
horizontal wavenumber spectra for horizontal shear u,, and horizontal temperature gradient 7}, and m
vertical wavenumber spectra for vertical shear u, and strain §,. Dimensional scaling is used to construct model
spectra below as well as above the Ozmidov wavenumber that reproduces observed spectral slopes and levels
in these two bands in both vertical and horizontal wavenumber. Aspect ratios become increasingly anisotropic
below the Ozmidov wavenumber until reaching ~O(f/N), where horizontal shear u;, ~ f. The forward energy
cascade below the Ozmidov wavenumber found in observations and numerical simulations suggests that
anisotropic and isotropic turbulence are manifestations of the same nonlinear downscale energy cascade to
dissipation, and that this turbulent cascade originates from anisotropic instability of finescale internal waves at
horizontal wavenumbers far below the Ozmidov wavenumber. Isotropic turbulence emerges as the cascade
proceeds through the Ozmidov wavenumber where shears become strong enough to overcome stratification.
This contrasts with the present paradigm that geophysical isotropic turbulence arises directly from breaking
internal waves. This new interpretation of the observations calls for new approaches to understand aniso-
tropic generation of geophysical turbulence patches.
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1. Introduction

This paper seeks to reproduce observed horizontal
wavenumber k and vertical wavenumber m spectra in the
decade or so below the Ozmidov (1965) wavenumber ko =
(N°/)", that is, at scales lying between those usually at-
tributed to isotropic turbulence and internal gravity waves
(vertical wavelengths A, ~ 1-10m, horizontal wavelengths
Ap ~ 1-1000m in the ocean; A, ~ 1-10km and A, ~ 1-
1000 km in stratosphere). The Ozmidov wavenumber is the
lowest wavenumber for stationary homogeneous isotropic
turbulence. Below the Ozmidov wavenumber, stratification
N suppresses density overturns, diapycnal buoyancy fluxes,
and isotropy, but this does not prevent horizontal shears
uy, = ku from being nonlinear and turbulent (1, > f). In this
paper, u;, denotes the magnitude, or any component of, the
horizontal shear tensor

Denotes content that is immediately available upon publica-
tion as open access.

Corresponding author: Eric Kunze, kunze@nwra.com

DOI: 10.1175/JPO-D-18-0092.1

under a turbulence assumption of horizontal isotropy.
Likewise, isotropy is assumed for horizontal wavenumber
k ~ k. ~ ky. The symbol ~ denotes dependence within
unknown ~O(1) scaling factors throughout this paper.

Wavenumbers several decades below the Ozmidov
are thought to be dominated by internal gravity waves
and geostrophic flows (Pinkel 2014; Callies et al. 2015).
Vertical wavenumber spectra for internal-wave verti-
cal shear u, and vertical strain &, are flat or weakly blue
for wavenumbers below a rolloff wavenumber m,. ~
(EgM/E)[27/(10m)] (Gargett et al. 1981; Duda and
Cox 1989; Fritts et al. 1988; Gregg et al. 1993) where the
rolloff wavenumber m. is the lowest wavenumber of
the m ' saturated spectra, E is the nondimensional
internal-wave spectral level below m., and Egy =
6.3 X 1077 its canonical value. Spectra for vertical
wavenumbers m < m_ are well described by the Garrett
and Munk (1979) internal-wave model spectrum (Gregg
and Kunze 1991).
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Spectra above the Ozmidov and below dissipative Kol-
mogorov and Batchelor (1959) wavenumbers are well ex-
plained by isotropic turbulence theory (Batchelor 1953;
Tennekes and Lumley 1972; Thorpe 2005). Above the
Ozmidov wavenumber mo ~ ko, shear spectra rise with
slope +1/3 before falling off sharply above the Kolmogorov
(1941) wavenumber my ~ kx ~ (e/v°)". Isotropic turbu-
lence is nonlinear and lognormal. Internal waves are linked
to isotropic turbulence production by weakly nonlinear
internal-wave/wave interaction theory (McComas and
Miiller 1981; Henyey et al. 1986) such that turbulent dissi-
pationrate & = E* (Gregg and Kunze 1991; Polzin et al. 1995).

In the wavenumber band between internal waves and
isotropic turbulence, that is, the decade or so below the
Ozmidov wavenumber that is the focus here, motions
are also nonlinear with u, ~ N. In this paper, a spectral
model is constructed using dimensional scaling with the
turbulent energy cascade or dissipation rate e, back-
ground buoyancy frequency N, Coriolis frequency f,
and horizontal wavenumber k (Table 1). The model is
guided by and seeks to replicate the following features in
the ocean, atmosphere, and numerical simulations:

1) Spectral slopes of +1/3 for several decades in horizontal
wavenumber k below the Ozmidov wavenumber for
horizontal gradient quantities such as horizontal shear
uy, and horizontal temperature gradient 7), (Fig. 1a).
In the ocean, a +1/3 gradient spectral slope is found
at horizontal wavelengths A, ~ 1-100m with towed
thermistors (Ewart 1976; Klymak and Moum 2007;
Moum 2015) and seismic sections (Holbrook and Fer
2005; Sheen et al. 2009; Holbrook et al. 2013; Falder
et al. 2016; Fortin et al. 2016). In the atmosphere,
Nastrom and Gage (1985) find equivalent —5/3 spectral
slopes for both along- and across-track horizontal
velocity components and temperature at A, ~ 5-
500km. At lower wavenumbers, the spectrum is red-
der, with gradient spectral slopes of from —1 to 0.
A +1/3 gradient spectral slope is also found in nu-
merical simulations of stratified turbulence (Riley
and deBruynKops 2003; Waite and Bartello 2004;
Lindborg 2006; Brethouwer et al. 2007). A +1/3 gra-
dient spectral slope is thought to characterize a tur-
bulent energy cascade that depends only on cascade
rate & and wavenumber k with no intermediate sour-
ces or sinks (e.g., Kolmogorov 1941). While other
explanations cannot be ruled out based on spectral
slope alone, a uniform forward (downscale) energy
cascade in horizontal wavenumber k will be assumed
here based on point 4 below.

2) Spectral levels that rise and fall with turbulent kinetic
energy dissipation rates & below as well as above the
Ozmidov wavenumber (Fig. 1a) in 7T}, measurements
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TABLE 1. Fundamental dimensional variables. The vertical
wavenumber m ~ k for isotropic turbulence (N/e)'? < k < (e/v*)'*
and m ~ Nk'?/&'” for anisotropic stratified turbulence (F/e)"? < k <
(N3/8)1/2.

Variable Description Units
€ Cascade rate m?s >
N Buoyancy frequency rads ™!
f Coriolis frequency rads™!
v Kinematic molecular viscosity m?s~!
K Scalar molecular diffusivity m?s ™!
k=0;"= 2w\, Horizontal wavenumber radm™!
m =01 =2m/\, Vertical wavenumber radm™!

(Klymak and Moum 2007). This indicates a quantita-
tive dynamical connection between (i) isotropic turbu-
lence above the Ozmidov wavenumber (k > ko) and
(ii) the horizontal wavenumber k spectrum below the
Ozmidov wavenumber (k < ko). This observation has
led to a parameterization of turbulent dissipation rate € in
terms of spectral levels below the Ozmidov wavenumber
in horizontal wavenumber k that is now routinely being
applied to seismic measurement sections (Sheen et al.
2009; Holbrook et al. 2013; Falder et al. 2016; Fortin et al.
2016) and drifter array data (Poje et al. 2017) in the ocean.

3) No change in spectral slopes or levels across the
Ozmidov wavenumber in horizontal wavenumber k
spectra for T}, (Fig. 1a; Klymak and Moum 2007). This
again indicates a smooth transition between the dy-
namics below the Ozmidov wavenumber and isotropic
turbulence above the Ozmidov wavenumber. It also
suggests no additional sources or sinks at k = ko, at
odds with the conventional wisdom that isotropic
turbulence is generated by breaking internal waves at
the Ozmidov wavenumber.

4) Inference of a forward, or downscale, energy cas-
cade below the Ozmidov wavenumber in horizontal
wavenumber k transfer spectra for atmospheric
scalars (Lindborg and Cho 2000), oceanic surface
drifter trajectories (Poje et al. 2017), and numerical
simulations (Waite and Bartello 2004; Lindborg
2006; Brethouwer et al. 2007). This, along with
points 2 and 3 above, suggests that the source for
geophysical turbulence (k > ko) lies below the
Ozmidov wavenumber (k < ko). Lindborg (2005)
reported that the forward energy cascade was not
suppressed by rotation for u;, > 0.1f (Rossby
number 8 = u,/f < 0.1, also denoted Ro). Lindborg
(2006) reported that a forward cascade was associ-
ated with (V X v) - Vb ~ (V X v)N?, that is, buoyancy
gradient anomalies comparable to the background
stratification N2, while an inverse cascade with
(VX v)-Vb < (VXV)N? that is, buoyancy gradi-
ent anomalies weak compared to the background
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FIG. 1. Schematic interpretation of log-log spectra above and
below the Ozmidov wavenumber ko = mo = (N3/8)1/2 for gradient
quantities such as (a) horizontal buoyancy gradient b, and hori-
zontal shear 1, in horizontal wavenumber k, and (b) vertical shear
u, or vertical buoyancy gradient b, in vertical wavenumber m.
Dotted lines at low wavenumbers correspond to weakly nonlinear
internal waves or balanced motions. Spectral slopes are labeled.
The thick dotted lines track S(ko) vs ko in (a) and S(mp) vs mo in
(b). Spectra above the Ozmidov wavenumber ko = mo describe

isotropic turbulence. Spectral levels go as £ in the isotropic band

(k =m > ko = mo) and as £"? in the “internal wave”” band. The —1

slope band in vertical wavenumber with invariant spectral level in
(b) is referred to as the saturated spectrum.

stratification as was assumed by Charney (1971),
Riley et al. (1981), and Lilly (1983). Lindborg (2006)
also found that vertical nonlinearity wd/dz was
necessary for a forward cascade, suggesting that
it needs to be included and may be comparable
to horizontal nonlinear terms in the conservation
equations.

5) Vertical wavenumber m spectra for vertical shear
u, = dul/dz = mu and vertical strain £, = 9&/0z = mé
behaving as m ' for the decade or so below the
Ozmidov wavenumber (Fig. 1b), corresponding to
vertical wavelengths A, ~ 0.1-10m in the ocean
(Gargett et al. 1981; Gregg et al. 1993) and ~1-10km in
the atmosphere (Dewan 1979; Fritts 1984; Fritts et al.
1988; Dewan and Good 1986; Smith et al. 1987). Gregg
et al. (1993) reported redder finescale spectral slopes
of —1.4 at low latitudes in the Pacific.
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6) Invariant spectral levels in this m ! band (Fig. 1b),
for example, S[u,/N](m) ~ S[£.](m) ~ m™! {where
S[X](m) denotes the spectrum S for variable X as a
function of m} for normalized vertical shear and
vertical strain so that this band is referred to as the
saturated spectrum (Dewan 1979; Gargett et al. 1981;
Fritts 1984; Fritts et al. 1988; Dewan and Good 1986;
Smith et al. 1987; Gregg et al. 1993; Dewan 1997). Its
invariance contrasts with covarying internal-wave
(lower m) and turbulent (higher m) spectral levels
that rise and fall together (Fig. 1b).

Riley and Lindborg (2008) provide a concise review of
observed submesoscale horizontal and finescale vertical
wavenumber spectra in the atmosphere and ocean that
are summarized here with Fig. 1.

There have been numerous explanations put forward
for the level and slope of the saturated vertical wave-
number spectrum (m. < m < mg), and the corre-
sponding horizontal wavenumber k spectrum (k < ko),
lying between internal-wave (lower m) and isotropic
turbulence wavenumber bands:

1) A purely kinematic effect of vertical self-straining 9£/0z
by internal gravity waves (Eckermann 1999). This
might explain the m ! vertical wavenumber spectrum
but this one-dimensional (1D) model does not address
the k' horizontal wavenumber gradient spectrum.

2) Breaking of upward-radiating internal waves in the
stratosphere as they propagate into rarefying density
and saturate in a downscale, or forward, energy
cascade (Dewan 1979; Fritts 1984; Dewan and Good
1986; Smith et al. 1987; Dewan 1997). This argument
does not apply in the ocean, where density varies by
only a few percent, and again does not address the k'
horizontal wavenumber gradient spectrum.

3) A transition from weak to strong internal-wave/wave
interactions based on ray-tracing simulations (Hines
1993), though it was recognized that the transition to
nonlinearity may no longer be wavelike.

4) Anisotropic stratified turbulence, sometimes referred to
as blini, pancake eddies, or vortical motion (Riley et al.
1981; Lilly 1983; Miiller et al. 1986, 1988). This physics
has been extensively investigated numerically (Billant
and Chomaz 2000, 2001; Riley and deBruynKops 2003;
Waite and Bartello 2004; Lindborg 2005, 2006;
Brethouwer et al. 2007; Bartello and Tobias 2013;
Maffioli 2017) to uncover the underlying spectral
behavior for anisotropic turbulence, as well as to
explore generation (Waite and Bartello 2006a,b) and
the transition to isotropic turbulence. In the ocean,
Polzin et al. (2003) ascribed features in finescale u, v,
and b vertical profiles and current-meter time series that
were not consistent with linear internal gravity waves to
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linear vortical motions (vortical mode or geostrophy).
The subinertial energy ratio in current-meter data was
used to assign an aspect ratio k&/m ~ O(f/N) under the
assumption that this signal represented Doppler-shifted
geostrophic finestructure of zero Lagrangian frequency.
They argued that their inferred vortical finestructure
could only arise from an upscale (inverse) cascade from
irreversible mixing at the microscale, which is in the
opposite direction to the transfer spectra inferences
quoted earlier. A more recent study by Pinkel (2014)
used profile time series to transform shear and strain
profiles onto isopycnal (semi-Lagrangian SL) coordi-
nates to eliminate vertical Doppler shifting. In this
frame, a finescale strain peak at wg;, < 0.1f was isolated
from the internal-wave band (wsy, = f), implying
vortical-mode aspect ratios k/m < 0.1f/N and hori-
zontal wavelengths ~O(10km). Such low aspect
ratios have almost no dynamic flow signature (pas-
sive density finestructure or layering). Finescale
shear signals were centered on wgr, ~ f with horizon-
tal Doppler smearing around f consistent with aspect
ratio k/m ~ 0.1f/N near-inertial waves. Pinkel showed
that vortical-mode strain was four orders of magnitude
larger than normalized vortical-mode vertical vorticity
/f, and that internal-wave relative vorticity was two
orders of magnitude larger than vortical-mode relative
vorticity. While Pinkel’s measurements did not resolve
the finescale (A, < 10m), these results suggest that the
subinertial energy ratio attributed to vortical mode by
Polzin et al. (2003) might be a Doppler-smeared
admixture of subinertial density layering and finescale
near-inertial shear rather than a single vortical-mode
source. If this interpretation is correct, Polzin et al.
would have overestimated vortical-mode shear and,
since Polzin and Ferrari (2004) used these shears to
infer vortical-mode stirring, this too would have been
overestimated. Neither of these observational studies
tested nonlinear alternatives. While anisotropic strati-
fied turbulence is often assumed to be associated with
potential vorticity finestructure (vortical motion), and
most model simulations are initialized with potential
vorticity anomalies, this is not necessary for a forward
energy cascade, as, for example, in a broadband in-
ternal-wave field (McComas and Miiller 1981; Henyey
et al. 1986). This issue will be revisited in section 5b.

This paper argues that these submesoscale [(f*/e)"* < k <
(N?/e)"?] and finescale [(fN/e)'* < m < (N°/g)"*] wave-
number bands represent an anisotropic turbulent forward
energy cascade in horizontal wavenumber k (point 4
above), which transitions into isotropic turbulence and
density overturning above the Ozmidov wavenumber. Thus,
geophysical isotropic and anisotropic stratified turbulence
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are manifestations of the same forward energy cascade to
dissipation.

Section 2 lays out dimensional scaling for isotropic and
anisotropic turbulence spectra, with the core break-
through of inferring the vertical wavenumber m spectra
for anisotropic stratified turbulence for m < mp = ko
described in section 2c. Figures cited in section 3 describe
the unified vertical and horizontal wavenumber model
spectra and compare them to observations. After a
summary in section 4, section 5 discusses implications
for energy pathways, potential-vorticity-carrying fines-
tructure, mixing efficiency, shear dispersion, and obser-
vational and numerical testing. Section 6 provides
concluding remarks. Table 1 lists the fundamental di-
mensional variables used in this study. Table 2 lists de-
rived dimensional variables. Table 3 lists nondimensional
variables. Table 4 lists horizontal wavenumber k, vertical
wavenumber m, and straining frequency u;, spectral forms
for horizontal shear u, vertical shear u, ~ (m/k)u,, ver-
tical divergence w, ~ uy,, horizontal buoyancy gradient
by, vertical buoyancy gradient b, ~ (m/k)b;,, and hori-
zontal strain x, = [u,dt.

2. Dimensional spectral scaling

Dimensional scaling and dynamical constraints will
be used to recreate observed spectral slopes (Fig. 1),
assuming a uniform energy cascade rate ¢ in horizontal
wavenumber k (Table 1) above and below the Ozmidov
wavenumber as suggested by Klymak and Moum’s
(2007) trans-Ozmidov wavenumber spectra.

For a stationary turbulent cascade with source wave-
number kg well separated from the dissipative sink
wavenumber, the dissipation rate ¢ is the preferred vari-
able for characterizing turbulence strength since it is in-
variant with wavenumber k, following classic stationary
homogeneous turbulence arguments (Kolmogorov 1941;
Batchelor 1953). As a normalized version of the dissipation
rate &, the buoyancy Reynolds number Re, = &/(vN?)
is also invariant with wavenumber, but Reynolds number
Re = u/(vk) (= 1 at kg and = Re,, at k) is not. Nor are
horizontal shears u;, or energies. While turbulent kinetic
energy (TKE) is also an integral quantity, it is sensitive to
the source wavenumber kg for the turbulent cascade, that
is, TKE ~ (el/ks)®?, so is not a reliable invariant. The
gradient Froude number 6,y = u,/N proves to be invariant
in the anisotropic stratified turbulence band k < k¢ but not
the isotropic turbulence band (ko < k < k).

Dynamical considerations suggests three regimes: (i) iso-
tropic turbulence between the Ozmidov and Kolmogorov
wavenumber [ko < k < kx = (e/v*)""*] where uj, ~ u, > N
(gradient Froude number 6, = u,/N > 1) and the energy
cascade is downscale (section 2a), (ii) anisotropic stratified
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TABLE 2. Derived dimensional variables. The Kolmogorov wavenumber kg = my is the upper bound and the Ozmidov ko = m the
lower bound for isotropic turbulence, while the Ozmidov wavenumber ko = my is the upper bound and Coriolis wavenumbers k; and
my~ m, the lower bound for anisotropic stratified turbulence. Horizontal shear u;, defines the evolution rate or straining frequency of the
turbulence both above and below the Ozmidov wavenumber. The normalized horizontal buoyancy gradient b,/N* is equivalent to the
isopycnal slope s = ¢, and normalized vertical buoyancy gradient b_/N? is equivalent to the vertical strain £, in the anisotropic stratified

turbulence band k < k.

Variable Description Scaling Units
kg =mp = Lj' Bachelor wavenumber [e/(wiP)]"* radm™!
kx =myg = Lg! Kolmogorov wavenumber (elv) radm ™!
ko =mo = Lg! Ozmidov wavenumber (N3/s)”2 radm™!
kr Horizontal Coriolis wavenumber (FPle)'? radm™!
my~ me Vertical Coriolis wavenumber ~ internal-wave (fN?1s)'? radm™!

rolloff wavenumber
ks > ky Turbulent source wavenumber — radm™
u, = ku Horizontal shear Pyl st
u, = mu = ou/dz Vertical shear (mlk)uy, st
w, Vertical divergence ek st
b Buoyancy N’ ms 2
bulN? Normalized horizontal buoyancy gradient N33 Unitless
b.IN* = (mlk)b,/N* Normalized vertical buoyancy gradient — Unitless
Xn = juh dt Horizontal strain — Unitless
KE ~ HKE Kinetic energy w? m?s 2
APE Available potential energy b*IN? ~ N?& m?s 2
TKE Turbulent kinetic energy (elks)®? ~ &lf m?s 2
II Potential vorticity N? s

turbulence between the Coriolis and Ozmidov wavenumber
[~ k< k < ko where Coriolis wavenumber k; ~ (f*/e)"?
corresponds to horizontal shears comparable to the Coriolis
frequency (4, ~ f)] where f < u;, < N (Rossby number §,=
ulf > 1,8y = Fr = u,/N ~ 1) and the energy cascade is
downscale (sections 2b and 2c), and (iii) baroclinic balanced
turbulence below the Coriolis wavenumber (k < ky) where
up < f (8 = uplf < 1, 8y < 1) with an inverse or upscale
energy cascade (section 2d). A forward energy cascade for
k > kg and inverse cascade for k < ~ k; might produce a
spectral gap near k ~ k; if these wavenumbers are not
continuously replenished by finescale instabilities. However,
finescale internal waves dominate this band so will likely
obscure this feature. Since quasigeostrophic turbulence is not
part of the forward energy cascade, it will not be considered
in any detail here.

a. Isotropic turbulence

Dimensional arguments are well known for stationary
homogeneous isotropic turbulence (ISO) scales and
spectra that depend on the turbulent kinetic energy
dissipation rate &, background buoyancy frequency N,
molecular kinematic viscosity v (and molecular scalar
diffusivity «), and isotropic wavenumber k ~ m > ko
(Table 1; Kolmogorov 1941; Batchelor 1953; Ozmidov
1965; Tennekes and Lumley 1972; Thorpe 2005). These
familiar arguments are reviewed to set the stage for
scaling for anisotropic stratified turbulence below the
Ozmidov wavenumber ko (sections 2b,c).

Dimensional scaling implies that the Ozmidov (1965)
wavenumber ko ~ Lo~ ' ~ (N°/e)"? is the lowest bounding
wavenumber for isotropic turbulence. The corresponding
time scale is N~ '. The uppermost bounding wavenumber
for turbulent shear is the Kolmogorov (or viscous) wave-
number kg ~ L ' ~ (e/v°)"*. Viscosity suppresses
shear on time scale (v/e)"?. Provided these bounding
wavenumbers are sufficiently separated, that is, kx/ko ~
(e/vN*)** ~ Rep* > 1, variances at intermediate
wavenumbers ko < k < kg are insensitive to N and v
so the shear spectra can be expressed on dimensional
grounds solely in terms of the energy cascade (or
dissipation) rate e and wavenumber k, that is, S[u;]
(k) ~ k' with a +1/3 spectral slope, correspond-
ing to a —5/3 spectral slope for energy variables in this
inertial subrange. The time-scale ratio tltoRel2.

Above the Kolmogorov wavenumber and below the
Batchelor (1959) wavenumber kg ~ Lz’ ~ (e/k*v)"4,

TABLE 3. Nondimensional variables.

Variable Description Definition
& Rossby number (Ro) ulf
Sn Gradient Froude number (Fr) u,/N
Re, Buoyancy Reynolds number s/(vN?)
Re Reynolds number ul(vk)
R Energy ratio HKE/APE
Ry Nonlinear dynamic length-scale ratio Nk/(upm)
Ry, Linear dynamic length-scale ratio Nkl(fm)

(Burger number)
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TABLE 4. Anisotropic stratified and isotropic turbulence horizontal wavenumber k, vertical wavenumber m, and straining frequency u;,
spectra for horizontal shear u, vertical shear u,, vertical divergence w., normalized horizontal buoyancy gradient b,/N°, normalized

vertical buoyancy gradient b,/N?, and horizontal strain ;= [u;, dt.

Variable ANISO k ISO k ANISO m ISOm ANISO u, ISO uy,
1y £23) 113 £23)1/3 N 423 25313 ", ”
w, ~ (mlku, N2k £23)1/3 Nl 28313 Nuj! hy
W, ~ &2 113 £23) 113 N 423 28313 w, "
b,/ N? N—2:283 13 N-22B35 13 N-6e2p3 N-22/3,103 N2, N~2u,
bIN? = N-223413 ml N262/3,103 u N2y,

b4 1

X ~ E- k! N-2283513 ml N-2g23,,1/3 ! N~2u,

the spectrum for scalars with molecular diffusivities k <
v(r=10"°m’s 'and k = 1.4 X 107 "m?s ™! for tem-
perature, 1.1 X 10~ ?m?s ™! for salinity in the ocean) is
controlled by the shear at the Kolmogorov wavenumber
(vle)"?, yielding a scalar-gradient spectrum of the form
x(v/€)"?k, where y is the scalar variance dissipation rate.
The time-scale ratio tx/ty = 1 where t5 = (kk%) ' is the
scalar diffusion time at the Batchelor wavenumber.

b. Horizontal wavenumber k dependence in
anisotropic stratified turbulence band

For k < ko, vertical and horizontal wavenumber
spectra have different spectral slopes (Fig. 1). Only hor-
izontal wavenumber k gradient spectra exhibit a +1/3
slope, so it will be assumed that the isotropic turbulence
spectral scaling for k > ko extends below kg in hor-
izontal wavenumber k, while vertical wavenumber
spectra must be treated separately because of the in-
fluence of stratification (section 2¢). We propose that the
k' horizontal wavenumber spectra observed at wave-
numbers below the Ozmidov wavenumber in the ocean
and atmosphere (Ewart 1976; Gage 1979; Nastrom and
Gage 1985; Klymak and Moum 2007; Holbrook et al.
2013) represents a uniform turbulent energy cascade in
horizontal wavenumber k that depends only on a cas-
cade rate ¢ and horizontal wavenumber k. Because (i)
Klymak and Moum observed no change in their hori-
zontal wavenumber k spectral slope or level across the
Ozmidov wavenumber and (ii) a downscale energy
cascade is inferred below the Ozmidov wavenumber
(Lindborg and Cho 2000; Waite and Bartello 2004;
Lindborg 2006; Poje et al. 2017), we equate the energy
cascade rate below the Ozmidov wavenumber &' to the
dissipation rate above the Ozmidov wavenumber associ-
ated with isotropic turbulence & (¢ ~ &), that is, assume
that the source for isotropic turbulence lies in the aniso-
tropic stratified turbulence band (ANISO) at k < k. If this
were not the case, there would be accumulation or de-
pletion of variance at intermediate ko, which Klymak and
Moum did not observe. The Klymak and Moum (2007)
observations are unique in spanning above and below ko,

so this assumption should be viewed with caution until it
can be confirmed with additional measurements.

From this assumption, as with isotropic turbulence, the
horizontal wavenumber spectrum for horizontal shear will
be of the form S[u, (k) ~ £k (Dewan 1997; Billant and
Chomaz 2001) below the Ozmidov wavenumber and
above a Coriolis wavenumber ky ~ (fP/e)"* where the
Coriolis term does not inhibit horizontal nonlinearity
(Lindborg 2005). Thus, the Coriolis wavenumber k¢ is
taken to represent the lower bounding wavenumber for
anisotropic stratified turbulence. The ratio of the bounding
horizontal wavenumbers, that is, the bandwidth, for this
anisotropic stratified turbulence band is ko/ks ~ (N/f)*?,
independent of cascade rate &, approaching 1 as N | fasin
abyssal waters and at high latitudes, implying that aniso-
tropic stratified turbulence will be most readily observed in
the mid- and high-latitude pycnocline. The uy, spectrum is
identical to that for horizontal Froude number w;/N, which
was used as a defining state variable by Billant and
Chomaz (2001) and Lindborg (2006) following Lilly
(1983), though it is not invariant with wavenumber k. Be-
cause available potential energy (APE) ~ b*N? is ex-
pected to scale in the same way as kinetic energy (KE)
S[KE](k) ~ k >S[us](k), the horizontal wavenumber
spectrum for normalized horizontal buoyancy gradient b,/
(b.) = kbIN* scales as S[b/(b.)](k) ~ N %k, con-
sistent in form with that used by Klymak and Moum
(2007), S[TW/(T.)](k) = 2yCyN 2e**k'”, where y = 0.2
and Cy = 0.4 from Batchelor (1959); note that, as a cau-
tionary example, the combined “O(1) scaling” in this case
is 0.08. The ratio b,/N? is the square root of the horizontal
Cox number Cx;, = (b2)/(b.)* and can be equated with
isopycnal slope s for b,/N* < 1, which holds in the aniso-
tropic stratified turbulence band (k < k). For isotropic
turbulence, vertical and horizontal Cox numbers are iden-
tical, Cx; ~ Cx, = (b2)/(b.)* ~ Cx = ((Vb)*)/(b,)*. Hori-
zontal wavenumber k spectra are listed in Table 4.

c. Vertical wavenumber m dependence in ANISO

This section will construct the m ™! spectrum in the
decade below the Ozmidov wavenumber m < mo = ko
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by finding a relationship between m and k in the saturated
band [(5)]. This is the core new contribution of this paper.
Stratification dependence arises for vertical wavenumber
m because N suppresses isotropy. To find this depen-
dence for ky < k < ko, corresponding to f < u, < N,
nonlinear conservation of horizontal momentum can be
expressed in a water-following or Lagrangian frame as

ou, +
T +wu ~b, (1)
by analogy to thermal wind where buoyancy b ~ N*¢ and
isopycnal displacement ¢ for k < k. The Coriolis term is
neglected because u;, > f. The assumed hydrostatic bal-
ance p, ~ b, where p is reduced pressure, will break down
ask T ko and uy, T N. In the nonlinear (1, > f) regime, 9/t
will scale as the straining or advective frequency u, and
continuity requires that vertical divergence w, < u, since
uy, is horizontal shear and not horizontal divergence, so
that all three terms in the left-hand side of (1) are smaller
than or scale as uyu,, reducing (1) to a gradient-wind-like
balance

uu, ~b, = umu~kb. (2)

Balance (2) can be rearranged to express the energy ratio
Ry = KE/APE, where KE ~ HKE ~ u” and APE ~ b%/
N? ~ N*#, in terms of either (i) an aspect ratio k/m or (ii) a
nonlinear dynamic length-scale ratio Ry, = (Nk)/(upm)

HKE N2
ETAPE igpe N @)

where horizontal shear or straining frequency u;, = ku has
replaced the Coriolis frequency f of the customary linear
dynamic length-scale ratio or Burger number R, , = Nk/
(fm) = 8,46 = 8Re. For amore rigorous, though more
restrictive, scaling of the equations of motion, the reader
is referred to Billant and Chomaz (2001).

We assume that R7,, = Ry = HKE/APE ~ O(1) in-
variant with horizontal wavenumber k. The choice of
Ry, ~ 11is also explicable by recognizing that this ratio
is analogous to the continuum (f < @ < N) linear
internal-wave dispersion relation Nk/(wm) with shear-
ing frequency u, replacing the intrinsic frequency w. The
Rp invariance is supported by u, v, and T sharing the
same —5/3 spectral slope (Nastrom and Gage 1985) but
is likely to break down for u;, ~ f(k | kp)andu, ~ N (k 1
ko). Equipartition of KE and APE is also found in iso-
tropic turbulence (k > ko). Higher-aspect-ratio motions
with HKE/APE > 1 are subject to zigzag instability
(Billant and Chomaz 2000), analogous to barotropic
instability in balanced flows, likewise implying a ten-
dency toward Rz = HKE/APE ~ O(1).
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Assuming HKE/APE ~ O(1), (3) implies

272 21,2/3
> (APE\N’k* N’k @)
HKE/) u2 g3
which can be rearranged to
Nk Nk
m~u—h~ ST ®)

for f < uy, < N, corresponding to (f/e)"* < k < (N*/e)".

This expression is equivalent to m ~ N/u (Billant and
Chomaz 2001; Lindborg 2006) since u ~ £k~ on di-
mensional grounds (Taylor 1935). The aspect ratio k/m
varies smoothly from ~1 isotropy at k ~ ko to ~f/N for k ~
k¢ (up, ~ f). The ratio of bounding vertical wavenumbers for
the anisotropic stratified turbulence band m o/~ (NIf)',
independent of cascade rate e. For k < ko, the model is
consistent with the u;,/N < 1, u,/N ~ O(1) spectrum found
theoretically and numerically by Billant and Chomaz
(2001) and Lindborg (2006), but extends to u/N ~
O(1) at the transition to isotropic turbulence (k ~ ko).
They found u,/N ~ O(1) so that vertical length scale
¢, =m~' ~u/N and Rz ~ O(1) while here, invariants &,
N, and fare used along with Rz = R;,,; ~ O(1) to arrive
at u,/N ~ O(1), m ~ N(k/e)" and a spectral repre-
sentation, but the end results are equivalent. Riley
et al. (1981), Lilly (1983), and Laval et al. (2003) as-
sumed m < N/u and aspect ratio m/k ~ O(1), neither of
which holds in the anisotropic stratified turbulence
regime described here.

The corresponding vertical wavenumber m spectrum
for buoyancy-frequency-normalized shear (or gradient
Froude number) 65 = u,/N is the saturated spectrum

S15,)0m) ~ oz Sl Ik S~ m™(6)

(Dewan 1997), as found numerically by Lindborg (2006)
and Brethouwer et al. (2007). This is independent of
cascade rate €. It is also the spectrum for vertical strain
&, = b,/N*for my<m < mg (Fig. 1b). A consequence of
this m ! spectrum is that u,/N ~ O(1) over the vertical
wavenumber band m,. < m < mg so that the buoyancy
wavenumber m;, = N/u used in some of the stratified
turbulence literature (e.g., Riley and deBruynKops
2003; Almalkie and de Bruyn Kops 2012) is not well
constrained. While not consistent with the KE/APE ~
O(1) assumption here, Polzin et al.’s (2003) finding
HKE/APE decreasing with vertical wavenumber for
m > m, might be explicable as a wavenumber-varying
admixture of anisotropic stratified turbulence and near-
inertial waves as might arise from averaging lognormal
distributions of finescale internal waves (E, m,).
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Dimensional scaling recovers the cascade rate ¢ from its
spectral representations S[E](k)dk/dt and S[E](m)dm/dt,
where the evolution of the wavenumbers is expressed in
terms of the geometrical-optics approximation, dk/dt =
—kduldx — ¢dvidx — mdwldx ~ kuy, ~ k*u and dm/dt =
—kdu/dz — tdv/dz — mdwldz ~ muy;, ~ kmu (Lighthill
1978), for local interactions. Vertical and horizontal
terms in both equations are of the same order of mag-
nitude. This indicates that a local time rate of change
u, = (k*c)'? applies to both horizontal and vertical
wavenumbers.

d. Vertical wavenumber m dependence for k < ky

In this section, the vertical wavenumber m is inferred
below the Coriolis wavenumber assuming a cascade
for uy, < f. If energy cascades uniformly at rate &’ for k <
kp~ (Ple")'?, equivalent to u;, < f (6= Ro < 1), then
S[up](k) ~ &"*3k'? and thermal wind implies

fu, ~b, = fmu~kb (7

by analogy to (2). Again assuming an invariant energy
ratio HKE/APE ~ O(1) or dynamic length-scale ratio
Nk/(fm) ~ O(1) (Charney 1971)

APE\ N2 , N?
2 (ATENNT o N7
" (HKE) pl Tk ®)

can be rewritten as

Nk
f

so that S[u,](m) ~ (fIN)*e"**m'? and S[HKE](m) ~
(NI)*3&"*3m™>  with similar dependence on k and £” as
in the isotropic turbulence regime. However, the energy
cascade is expected to be upscale for u;, < f; Lindborg
(2005) reported an upscale, or inverse, cascade for u, <
0.1f. Thus, the cascade rate £” need not be the same as ¢
for k > ks The upscale cascade could be made up of
weakly nonlinear balanced motions or internal gravity
waves. The divergence in transfer rate near k ~ kymight
lead to a spectral gap if this band is not continually re-
plenished. Finescale internal waves dominate these
scales and therefore may confound identification of the
simple turbulent dimensional scaling used here, but
spectral transfer rates might be able to isolate the di-
vergence in horizontal wavenumber. There will also be a
change of spectral dependence at the transition to 2D
turbulence where m ~ H ', so that m is no longer
compliant and the energy ratio Rg no longer constant.
While included for completeness, there are enough un-
certainties in interpretation that the k < k; band will
not be explored further here.
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3. Unified turbulence spectrum

This section brings together the pieces of section 2 to
construct spectra in horizontal wavenumber k (section 3b),
straining frequency u, (section 3c), and vertical wave-
number m (section 3d). These are then compared with
observations (section 3e). Horizontal wavenumber k,
vertical wavenumber 1, and straining frequency i, spectra
for anisotropic and isotropic turbulence are listed in
Table 4.

a. Wavenumbers and frequencies

Anisotropic and isotropic turbulence ranges for hori-
zontal wavenumber k, vertical wavenumber m, and
straining frequency u; are shown in Fig. 2. Turbulent
horizontal wavenumbers k range from the Coriolis
wavenumber k; ~ (/e)'? below the Ozmidov wave-
number ko = (N*/e)"* to the Kolmogorov wavenumber
kx = (e/v*)""* above the Ozmidov. Corresponding ver-
tical wavenumbers m are associated with the saturated
spectrum band m, ~ m; < m < mg (e.g., Gargett et al.
1981) and isotropic turbulence band mo < m < mg
(Fig. 2a). For midlatitude f = 10~ rads ™, upper pycno-
cline N = 10 %rads ™!, and buoyancy Reynolds numbers
Re, = /(vN*) = 500 and 5000 (diapycnal diffusivities K =
yRepr =107 *m*s ™ 'and 10 °m*s™ ' where y = — (W'b')/e
is the mixing coefficient), k7 ! ~ 200-700 m, and horizontal
wavenumber k spans more than six decades and vertical
wavenumber m four decades. Vertical wavenumbers m
vary more weakly (m ~ k') in the anisotropic stratified
turbulence band so that the aspect ratio k/m goes smoothly
from ~O(1) isotropy at k = ko to ~O(fIN) layered flows as
k | k;. Bandwidths are broader in the low- and midlatitude
pycnocline due to higher N. Straining or advective fre-
quencies u;, ~ &"°k*” lie in the internal-wave band (f <
uy, < N) for anisotropic stratified turbulence while u;, > N
for isotropic turbulence (Fig. 2b).

b. Horizontal wavenumber k spectrum

Horizontal wavenumber k spectra (Table 4) for nor-
malized horizontal shear 6, = u,/f (Fig. 3a) and nor-
malized horizontal buoyancy gradient b,/N* (Fig. 3b)
behave as k'® above and below ko, their levels rising
and falling with dissipation rate ¢ (Figs. 3a,b), consistent
with Klymak and Moum’s (2007) 7 spectra and
Nastrom and Gage (1985) k> spectra for u, v, and T
(Fig. 1a). Spectra for horizontal strain x, = [w,dt = u,/
uy, ~ 1, since ¢ ~ uj, !, and normalized vertical shear 8y =
u,/N have —1 spectral slope and invariant spectral level
for k < ko and €2’k dependence for k > ko, (Figs. 3c.,d;
Table 4).

The Garrett and Munk (1979) model spectrum (GM),
with spectral level E varying as £ (Gregg 1989), peak
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FIG. 2. Model dependence of (a) vertical wavenumber m (= Nk'3s 1" for kr<k<ko,=k
for ko < k < k) and (b) normalized straining or advective frequency w/f = w,/f = k¥3¢ V3f 1
on horizontal wavenumber k for buoyancy frequency N = 10 *rads™', Coriolis frequency
f=10"*rads ™!, and buoyancy Reynolds numbers Re;, = &/(vN?) = K/(yv) = 500 (thick solid)
and 5000 (thick dotted). Slopes are indicated. Anisotropic stratified turbulence lies below the
Ozmidov wavenumber (k < k), and isotropic turbulence lies above the Ozmidov wavenumber
(k > ko). Coriolis wavenumbers k; ~ (f/e)"2, Ozmidov wavenumbers ko = (N*/e)'?, and
Kolmogorov wavenumbers kx = (e/v°)"* for buoyancy Reynolds number Re, = 500 (solid
vertical lines) and 5000 (dotted vertical lines) as well as horizontal wavelengths A, are listed above
the top axis of (a). Ozmidov and Coriolis wavenumbers decrease with increasing turbulent in-
tensity Re;, while Kolmogorov wavenumber increases. Vertical wavelengths A, are listed along
the right axis of (a) and normalized Coriolis and buoyancy frequencies along the right axis of (b).
The stratified turbulence band has straining frequencies in the internal-wave band, f < u;, < N.

mode number j* = 3 and rolling off at vertical wave-
number m, = (Egm/E)27/(10m), has finite vertical
wavenumber bandwidth (ms < m < m,.) as well as a
limited-frequency bandwidth (f < o < N), so finite
horizontal wavenumber k bandwidth. GM horizontal
wavenumber gradient spectra have broad maxima in
horizontal wavenumber k = m[(0* — £)/(N* — »?)]'?
spanning 1-2decades and peaking at different k for
different Re, and different variables (thin gray dotted
lines in Fig. 3): (3-6) X 10 >radm ™" (A;, ~ 100-200m)
for normalized horizontal shear &4, 1rad m~! (~10m)
for horizontal buoyancy gradient b,/N? (though sensitive
to high wavenumbers and frequencies, which are not well
constrained observationally), 3 X 10 *radm ™' (~5km)
for horizontal strain, and Xh=juh dt and 10 3radm™!
(6 km) for vertical shear 6. GM model levels lie below
those inferred for the turbulence model spectra, but
this may be because of the unknown ~O(1) scaling
factor; Kunze et al. (2015) found that the GM model
matched observed k” horizontal strain y, spectra near

k~10"?radm ! (A, ~ 600m), which suggests that the
anisotropic stratified turbulence model spectra (Fig. 3c)
may be overestimated by an order of magnitude.

To test sensitivity to additional high-frequency variance, a
near-N peak (Desaubies 1975) was added by multiplying the
canonical GM model spectrum by [N*/(w® — N*)]"* (thick
gray dotted lines in Fig. 3). Only horizontal buoyancy gra-
dient b,/N” spectra (Fig. 3b) were significantly affected, be-
coming comparable to the turbulence model spectra around
the Ozmidov wavenumber and therefore offering an alterna-
tive explanation for the Klymak and Moum (2007) 7}, spectra.

c¢. Straining frequency uy, spectra

This section describes straining frequency u,, spectra
(Table 4). Like isotropic turbulence, evolution of aniso-
tropic stratified turbulence is governed by the straining or
advective frequency u;, = ku ~ £*k*, which represents
the rate of change in a water-following frame (without
vertical and horizontal Doppler-shifting by more ener-
getic, larger-scale internal waves and mesoscale eddies,
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FIG. 3. Model horizontal wavenumber k spectra for (a) normalized horizontal shear S[5/(k) ~
£2°k3f 2 where &¢= uy/f, (b) normalized horizontal buoyancy gradient S[buN?|(k) ~ e**KkPN2,
(c) horizontal strain S[x;](k) where x; = [uy, dt, and (d) normalized vertical shear S[S](k) (~k "
for ky < k < ko, ~e**k"*N 2 for ko < k < ky) where 8y = u,/N (Table 4) for buoyancy
frequency N = 10~ %rads ™, Coriolis frequency f = 10~ *rad s ', and buoyancy Reynolds numbers
Re;, = &/(vN*) = 500 (thick black solid line) and 5000 (thick black dotted line). These Re,, cor-
respond to diapycnal diffusivities K = yvRe, = 10" *m?s ' and 10 X 10" *m?s ™!, respectively
Slopes are marked. Spectral levels are uncertain because of unknown O(1) constants. Corre-
sponding GM model internal-wave spectra (gray dotted curves) assume a canonical vertical
wavenumber cutoff at m,.=(Egnm/E)(27/10 m). Thin gray dotted curves for the two Re,, assume
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the canonical frequency spectrum, while thick dotted curves add a near-N peak (section 3b).

which confounds frequency quantification in Eulerian
field measurements). Straining frequencies u, lie in the
internal-wave band f< u,, < N for (f/e)"? < k < (N°/e)""?
as proposed by Miiller et al. (1988), while u;, > N for
isotropic turbulence [k > (N°/)"?] (Fig. 4). Straining
frequency uy, spectra are constructed from the horizontal
wavenumber spectra (Fig. 3; Table 4) using the trans-
formation k ~ & 2 1% so that dkldu;, ~ ¢ "*u,'? and
then S[X][k(uy,)]|dk/du,,. This yields frequency spectra that
behave as (i) ~u,/f* for normalized horizontal shear o

(ii) ~u,/N* for horizontal buoyancy gradient b,/N*, and
(iii) ~uy, ! for k < ko and ~u,/N* for k > ko, for horizontal
strain y;, (Fig. 4). All these spectra have spectral levels
independent of cascade rate & as a result of the di-
mensional scaling and thus provide no information about
turbulent dissipation rates e. Frequency spectra for an-
isotropic turbulence spectra are bluer than the GM
internal-wave spectra. In Fig. 4, their levels are higher
than those of internal waves for normalized horizontal
shear 6; = w,/f and horizontal strain x, = [u,dt, while
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FIG. 4. Model straining frequency o = u;, = ku = &"*k*> spectra for (a) normalized hor-

izontal shear S[6/(w) ~ wf” 2 where 8s=uy/f, (b) normalized horizontal buoyancy gradient
S[bi/N*](w) ~ wN~2, and (c) isopycnal strain S[x;](w) where x; = [u; dt = wplo = wpluy, ~ 1
(Table 4). Thick black solid lines correspond to buoyancy Reynolds number Re;, = &/(vN?) =
500 and thick black dotted lines to Re, = 5000. Anisotropic stratified turbulence straining
frequencies lie in the internal-wave band f < u;, < N. Corresponding GM model spectra are
redder (gray dotted lines). Spectral levels are independent of Re;, but the Kolmogorov rolloff
ki increases with e. Stratified anisotropic turbulence horizontal shear u,/f and isopycnal
strain )y, lie above the GM spectral levels, while normalized horizontal buoyancy gradient
by/N? spectra have similar levels but have O(1) constants so may be overestimated (section 3c).
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horizontal buoyancy gradient b,/N* shows a crossover be-
tween wy ~ fand wo ~ N (Fig. 4b). Again, this should be
viewed with caution since the model spectra are based on
dimensional scaling and may be overestimated (section 3b).

d. Vertical wavenumber m spectra

Vertical wavenumber m spectra for normalized ver-
tical shear 65 = u,/N (Fig. 5) and normalized vertical

buoyancy gradient b./N? are identical (Table 4), closely
resembling observed spectra (Fig. 1b). In the isotro-
pic turbulence band above the Ozmidov wavenumber
mo = ko, spectral slopes are +1/3 and levels vary as £°.
In the anisotropic turbulence band below the Ozmidov
wavenumber, spectral slope is —1 and spectral level
invariant, consistent with observed saturated vertical
wavenumber spectra for vertical shear S[u,](m) ~ N*m ™!
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FIG. 5. Model vertical wavenumber m spectra S[6y](m) for normalized vertical buoyancy
gradient b_/N* and normalized vertical shear 8, = u_/N behave as ~ m ™" for m, ~ my<m <
mg and ~ £°>m">N~2 for my < m < my (Table 4). Buoyancy Reynolds number Re;, = 500
correspond to the thick black solid line and Re, = 5000 the thick black dotted line. Corre-
sponding GM model spectra for peak mode number j* = 3 are shown below the Coriolis
vertical wavenumber m; ~ m, as thick gray dotted curves. Coriolis vertical wavenumbers
my ~ (N*fle)"%, Ozmidov wavenumbers mo = (N*/e)'%, and Kolmogorov wavenumbers
mg = (e/v*)"* for buoyancy Reynolds number Re, = 500 (solid vertical lines) and 5000

(dotted vertical lines) as well as vertical wavelengths A, are indicated above the top axis.

(Gargett et al. 1981; Fritts 1984; Fritts et al. 1988; Dewan
and Good 1986; Smith et al. 1987; Gregg et al. 1993;
Dewan 1997; Billant and Chomaz 2001). The gradient
Froude number 65 = u,/N ~ O(1) in the stratified tur-
bulence band (if 6y = 2 at m, then 8 ~ 1.3 at m. ~ my),
consistent with the tendency in stratified turbulence
simulations (Billant and Chomaz 2001; Riley and
deBruynKops 2003; Lindborg 2006; Brethouwer et al.
2007) and contrary to earlier modeling of stratified tur-
bulence that assumed 6y < 1 (Riley et al. 1981; Lilly 1983;
Laval et al. 2003). The Coriolis vertical wavenumber 1y =
(NIPks = (fIN)">me = (fN°/¢)""? appears to correspond
to the rolloff wavenumber m, of the modified canonical
internal-wave model spectrum (e.g., Gargett et al. 1981).
GM internal waves dominate below the rolloff wave-
number m, ~ my.

e. Comparison with observations

The spectral model compares favorably with ocean
observations. Klymak and Moum (2007) displayed
ocean T}, spectra for diapycnal diffusivities K = (0.05-
15) X 10~*m?s ™!, corresponding to buoyancy Reynolds
numbers Re;, ~ 25-7500. For the buoyancy frequency
N ~ 4.5 X 10 >rads ™", this implies dissipation rates & =
5x1071°-1.5 X 107" Wkg ' and Ozmidov length scales
of 0.01-1.1m. For a Coriolis frequency f ~ 10~ * rads ™!,
it implies kr ~ 0.3-0.015radm ™" (A; ~ 20-400m), which
matches the lower-wavenumber bounds of their +1/3

spectral slope ranges. Corresponding rms velocities are
(e/)* ~ 0.2-4cms ™', For more typical average ocean
diffusivities K ~ 0.1 X 10 *m*s™!' and pycnocline
buoyancy frequencies N ~ 5 X 10 3rads ™!, rms veloc-
ities associated with anisotropic stratified turbulence
(¢/H"* ~ 1cms™! are consistent with the current fines-
tructure that could not be accounted for by linear in-
ternal gravity waves in the Internal Wave Experiment
(IWEX) trimooring (Briscoe 1977; Miiller et al. 1978).
Predicted horizontal shear variances of ~0.03f> at
1000-m scales and ~200f2 at 5-m scales (Fig. 3a) are also
consistent with IWEX array measurements (Miiller et al.
1988). At lower horizontal wavenumbers k ~ (2-20) X
10 *radm ™' (horizontal wavelengths 3-30km) in the
summer Sargasso Sea pycnocline, Callies et al. (2015)
reported roughly —5/3 spectral slopes for velocity with
Rossby numbers 6, = u,/f ~ 0.5-1 and spectral levels
close to those of the GM model spectra. They partitioned
these signals to internal waves based on a linear de-
composition (Biihler et al. 2014) that attributes all hori-
zontal divergence to linear internal-wave motions. Since
the nonlinear anisotropic stratified turbulence described
here has horizontal divergence ~ u;, ~ w, ~ 81/3k2/3’ its
variance would be misassigned to internal waves by this
decomposition.

The proposed model spectra are also comparable with
atmospheric aircraft data. Nastrom and Gage (1985)
found a —5/3 spectral slope from aircraft measurements
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of velocity and temperature at horizontal wavenumbers k =
(1-100) X 10> radm ™! (5-500 km horizontal wavelengths)
and a —3 slope at lower wavenumbers. For f~ 10 *rads ™!
and N ~ 10 ?rads ', this implies dissipation rates & ~
025Wkg ', Ozmidov length scales Lo ~ 0.5km and rms
velocities us~ 10ms™ ! which are somewhat larger than the
~4ms ™! inferred from their spectra. Their spectra imply
Rossby numbers 6~ 1 at 500-km horizontal wavelength
and ~2 at 5-km wavelength, consistent with the spectral
model. More recent atmospheric horizontal wavenumber
spectra (Callies et al. 2014, 2016) also show —5/3 spec-
tral slopes over horizontal wavenumbers k ~ (1-50) X
107> radm ™! with corresponding rms Rossby numbers
&7~ 0.5-2. Their linear decomposition ascribed this band
to internal gravity waves based on horizontal divergence
and lower wavenumbers to geostrophic turbulence.

4. Summary

Taking inspiration from classic turbulence theory (e.g.,
Kolmogorov 1941; Batchelor 1953), dimensional scaling
was used to construct a spectral model from the turbulent
cascade or dissipation rate &, background buoyancy fre-
quency N, Coriolis frequency f, and horizontal wave-
number k (Table 1) for the decade or so below the
Ozmidov (1965) wavenumber ko = (N*/e)"? (Figs. 3, 5),
that is, at scales lying between those attributed to internal
gravity waves and isotropic turbulence (vertical wave-
lengths A, ~ 1-10m, horizontal wavelengths A, ~ 1-
1000 m in the ocean; A, ~ 1-10km and A;, ~ 1-1000 km
in stratosphere). Spectral forms are listed in Table 4.
Derived dimensional and nondimensional variables are
listed in Tables 2 and 3, respectively. A forward energy
cascade rate ¢ invariant in horizontal wavenumber k was
assumed below as well as above the Ozmidov wave-
number (N°/g)"? (sections 2a and 2b). To produce a
vertical wavenumber m spectrum (Fig. 5), the energy
ratio Rg ~ KE/APE, was assumed to be an ~O(1) in-
variant across horizontal wavenumber & (section 2c). If
the finescale parameterization (McComas and Miiller
1981; Henyey et al. 1986; Gregg 1989; Polzin et al. 1995)
links the internal-wave field to isotropic turbulence, the
spectral model described here fills in the gap between the
two as a further step toward unifying this range of scales
and dynamics. The model should be relevant in Earth’s
ocean and atmosphere, in stellar and planetary atmo-
spheres, and in other rotating stratified fluids.

The model horizontal wavenumber k and vertical
wavenumber m spectra (Figs. 3, 5; Table 4) are consis-
tent with those observed (Fig. 1). Specifically, the model
reproduces (i) the +1/3 gradient spectral slope in hori-
zontal wavenumber k for horizontal buoyancy gradient
by, (Fig. 1a; Klymak and Moum 2007) and horizontal

KUNZE

397

shear u;, [equivalent to the —5/3 spectral slope for u, v,
and T in Nastrom and Gage (1985)], with spectral levels
rising and falling with the dissipation rate & above and
below ko (Figs. 3a,b), (ii) the —1 spectral slope in ver-
tical wavenumber m for normalized vertical shear u,/N
(Fig. 1b; Gargett et al. 1981) and vertical buoyancy
gradient b_/N?, with invariant spectral levels in the sat-
urated spectrum band below the Ozmidov wavenumber
(Fig. 5), and (iii) a +1/3 gradient spectral slope in ver-
tical wavenumber above the Ozmidov wavenumber for
these variables that rises and falls with & (Fig. 5).
Straining frequencies u;, occupy the same band as in-
ternal gravity waves (f < u;, < N), but frequency spectra
are bluer (more positive spectral slope) than the GM
model spectrum for internal waves and have invariant
spectral levels (Fig. 4).

5. Discussion

Anisotropic stratified turbulence has a finite band-
width [~k < k < ko, my~m. <m <mo,u, ~ N, f<
w, ~ < N, where ks = (e/f)"*, mp = (e/fN)'"?, ko =
mo = (N°/e)"?] in the bands between internal gravity
waves (f< o < N,m <mg, u, < w,u, < N) and isotropic
turbulence (ko < k ~ m < kg, u, ~ u, > N). In the
following subsections, broader implications will be dis-
cussed for (section 5a) energy pathways, (section 5b)
potential-vorticity-carrying finestructure (vortical mo-
tion), (section 5c¢) mixing efficiency, (section 5d) shear
dispersion, (section 5¢) observational, and (section 5f)
numerical testing. This discussion challenges several of
the author’s preconceptions:

1) That isotropic turbulence arises from vertical shear
and/or overturning instability of internal gravity
waves at the Ozmidov scale (e.g., Miles 1961;
Thorpe 1978; Kunze 2014), instead suggesting that
isotropic turbulence is part of a forward energy
cascade that can originate at horizontal wavenum-
bers k well below the Ozmidov wavenumber ko
where anisotropic rather than vertical internal-wave
instability feeds energy into anisotropic.

2) That potential vorticity can only be modified by
diabatic processes at molecular dissipative, that
is, Kolmogorov (&/»*)"* and Batchelor [e/(vk*)]"*
wavenumbers (Ertel 1942; Polzin et al. 2003), instead
finding that dissipative forcing of potential vorticity
takes the form of a convolution integral in spectral
space that induces potential vorticity anomalies across
the anisotropic and isotropic turbulence wavenumber
bands (section 5b). This indicates that turbulence will
create potential-vorticity-carrying finestructure (vor-
tical motion) in the process of dissipating.
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FIG. 6. Schematic showing proposed energy pathways in horizontal wavenumber k and
vertical wavenumber m space from tide and wind sources in the lower-left corner to dissi-
pation ¢ at the upper-right corner. The cascade rate ¢ is invariant across all bands to ensure no
accumulation or depletion of variance at any intermediate wavenumber. Internal gravity
waves (f < w < N) will have horizontal shears less than their frequencies (1, < w) and
gradient Froude number 8 = u_/N <1 [blue internal gravity wave (IGW); lower-left corner].
Wave-wave interactions transfer energy toward the rolloff vertical wavenumber m, ~ m; =
(fN*/e)"? = (NI f)k¢and low frequencies w ~ f. Anisotropic instability at ~k; < k < ko = mo =
(N%le)""? triggers anisotropic stratified turbulence (red ANISO; &= wy/f> 1,8y ~ 1), which
continues the energy cascade, transitioning to isotropic turbulence (black ISO; upper right;
&y > 1) and density overturning at the Ozmidov wavenumber ko and on to dissipation ¢ at the
Kolmogorov wavenumber kx = myg = (&/v°)"*. The Coriolis wavenumber kf ~ (Ple)'?
corresponds to where horizontal shear u;, ~ f.
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a. Energy pathways

Proposed energy pathways are illustrated in Fig. 6.
Tides and wind feed energy into the internal-wave field
at the bottom and surface boundaries. Low-mode wave
energy (m < m,) propagates vertically and horizontally
to fill the stratified ocean interior, while nonlinear wave/
wave interactions cascade wave energy from low to high
vertical wavenumbers m and to low frequencies w ~ f
and low aspect ratios k/m (McComas and Miiller 1981;
Henyey et al. 1986). Internal waves are assumed to be
stable (6 < 1, 85 < 1) except intermittently at their
highest wavenumbers k; and m; ~ m.. Rather than
vertical shear or convective instability of finescale in-
ternal waves (6 > 2) directly injecting energy into
isotropic turbulence at or above the Ozmidov wave-
number kg, this paper proposes that anisotropic in-
stability (detailed below) of ~f/N aspect ratio finescale
near-inertial waves (87> 1) can feed energy into the low-
wavenumber end of anisotropic stratified turbulence (k ~
ks < ko). A downscale energy cascade proceeds through
the Ozmidov wavenumber ko = mo where it transitions

to isotropic turbulence and density overturning to con-
tinue the forward cascade to molecular dissipation at the
Kolmogorov wavenumber kx = myg = (¢/v°)"*. The av-
erage cascade rate € is assumed to be identical in all three
domains, and identical to the turbulent dissipation rate,
so that there is no accumulation or depletion of variance
at any intermediate wavenumber, that is, anisotropic
stratified turbulence is part of the turbulent downscale
energy cascade to dissipation.

The forward energy cascade inferred in the aniso-
tropic stratified turbulence regime in transfer spectra for
atmospheric tracers (Lindborg and Cho 2000), ocean
drifter arrays (Poje et al. (2017), and numerical simula-
tions (Waite and Bartello 2004; Lindborg 2006), to-
gether with continuity in spectral slope and level across
the Ozmidov wavenumber in Klymak and Moum’s
(2007) horizontal T}, spectra, suggests that anisotropic
stratified turbulence below ko and isotropic turbulence
above ko are manifestations of the same downscale
cascade to dissipation. It further suggests that a down-
scale geophysical turbulent cascade can be initiated
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anisotropically at source horizontal wavenumbers kg as
low as the Coriolis wavenumber k ~ (f*/e)"" (Lindborg
2005), with no intervening sources or sinks between
ks < ko and the sink Kolmogorov wavenumber k. This
implies turbulent energy sources at horizontal scales as
large as ~100m in the ocean and ~500km in the at-
mosphere. In the stratified ocean interior, energy sour-
ces for turbulence are well established as instability of
finescale near-inertial waves by the predictive skill of
the finescale shear/strain parameterization for turbulent
dissipation rate & (Gregg 1989; Polzin et al. 1995; Gregg
et al. 2003; Whalen et al. 2015); this parameterization
is based on the energy cascade to high wavenumbers
by internal-wave/wave interactions (McComas and
Miiller 1981; Henyey et al. 1986). Here, the transition
from internal waves to turbulence is proposed to be due
to horizontal (1, > f) or anisotropic instability of fine-
scale internal waves.

This contrasts with conventional wisdom that isotropic
turbulence is generated by vertically breaking internal
waves (u, > 2N) injecting energy directly into the outer
scales of isotropic turbulence, that is, at the Ozmidov or
density-overturning scales (e.g., Kunze et al. 1990;
D’Asaro and Lien 2000; Smyth et al. 2001; Mashayek
et al. 2017). This convention is founded on theoretical and
laboratory studies without background horizontal vari-
ability (8/9x = 0; e.g., Miles 1961; Thorpe 1973) for which
vertical instability is the only option. However, in the
ocean pycnocline, the most energetic turbulence patches
have aspect ratios ~f/N and are associated with margin-
ally unstable finescale near-inertial wave packets (Gregg
et al. 1986; Marmorino 1987; Marmorino et al. 1987;
Itsweire et al. 1989; Rosenblum and Marmorino 1990;
Marmorino and Trump 1991; Hebert and Moum 1994;
Kunze et al. 1995; Polzin 1996) with aspect ratios k/m =
(0 — AN = f(2¢)'"*IN ~ f/N, where near-inertial
frequency w = f(1 + ¢€) and € = 0.1-0.2 (D’Asaro and
Perkins 1984). Therefore, unstable vertical shears 8y =
|uz|/N > 8 5. will be accompanied or preceded by unstable
horizontal shears 6, = |u|lf = (kIm)(NIf)6y ~ 6n > &/
where 6y, and 8, are O(1) critical thresholds for in-
stability in the vertical and horizontal, respectively.
Horizontal, or some kind of mixed anisotropic, instability
would inject energy into the anisotropic stratified turbu-
lence band at horizontal wavenumbers kg ~ (fIN)m, <
ko. The author is unaware of any stability theory or
modeling that takes into account the horizontal structure
of near-inertial wave packets with ~f/N aspect ratios.

A turbulence source at wavenumber kg < ko implies
a turbulent energy reservoir TKE ~ (glks)™® ~ &ff,
much larger than the ~&/N of isotropic turbulence. The
time scale for dissipation of energy injected at ko is
(ko) ~ O(N™'), while a lower source wavenumber
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~ky would allow turbulence to persist for (sk7)'? ~

O(f 1). This is consistent with observed durations of
energetic ~f/N aspect ratio turbulent patches (Gregg
et al. 1986; Hebert and Moum 1994). Thus, persistent
turbulence patches need not be maintained by recurrent
vertical instabilities but could be instigated by a single
instability event.

Anisotropic stratified turbulence can exist for lower
dissipation rates e than isotropic turbulence. Isotropic
turbulence requires Re, > 1 for there to be sufficient
bandwidth between the Ozmidov and Kolmogorov
wavenumbers. However, anisotropic turbulence only re-
quires there to be sufficient bandwidth between the
Coriolis and Kolmogorov wavenumbers, that is, mg/m; =
(NIf)"*Re;* > 1. In the pycnocline, this allows dissipa-
tion rates as much as an order of magnitude smaller to be
turbulent. Assuming that (N/f)**Re, > O(100) is suffi-
cient for there to be anisotropic turbulent bandwidth be-
tween my; ~ m. and my, then cascade rates & as low as
107" Wkg ' (kf~ 1 radm™ ', kx ~ 30radm™ ") and as
highas 10" *Wkg ™' (ky~ 0.01radm ™', kx ~ 100radm ™)
in the midlatitude pycnocline (f = 10 * rads ', N =
1072 rads~ ') might forward cascade to dissipation with
no isotropic band between kg and k. Globally, these
would represent less than 102 TW integrated dissipation,
or ~1% of tide and wind generation. If isotropic turbu-
lence never forms, viscous damping would act aniso-
tropically on vertical shear. There would be no isotropic
Batchelor spectrum for density, but an anisotropic
Batchelor spectrum would arise for passive scalars on
isopycnals over (e/v°)"* < k < [e/(v®)]""™.

b. Anisotropic stratified turbulence and
potential-vorticity-carrying finestructure

This section discusses potential vorticity generation
by molecular dissipation at the end of the cascade. This
occurs nonlocally in horizontal wavenumber k over
the anisotropic and isotropic turbulence wavenumber
bands. In the ocean interior, Ertel potential vorticity
[T=Vb-(2Q +V Xv) can only be modified from its
planetary value fN® through irreversible dissipative
processes due to molecular viscosity v and diffusivity

DIL_gy. W2 (2Q + VX V) + (2Q + V X v) - kV(Vb)

Dt
(10)

(Ertel 1942; Lelong 1989). In the isotropic turbulence
band that is expected to dominate gradients on the rhs
of (10), planetary rotation can be neglected, |Vb| ~ |by|
with Fourier transform ~Ne'?k*?/k, |V X v| ~ |u;| with
Fourier transform ~&'?k*/k, and Laplacian |V?| ~ |k?|.
Thus, (10) can be approximated spectrally as a convolution
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integral describing nonlocal influences across horizontal
wavenumber k

11, (k) ~ vNamj z T

—o0

o (128 (1 — N2 (1 — 23
[k (k= k) (k= k) }cos@rdk/

+ KN82/3[ o =k cosf dk', (11)

—®

0 |:k/2/3 (k _ k’)z(k _ k/)2/3

where 6, represents the orientation difference between
the vorticity and buoyancy-gradient vectors. Since the
two integrands are identical and v >> k, the second integral
prefaced by k will be neglected and (11) simplifies to

3 57 e nS/3 /
I1,(k) ~ vNe? 3‘|700[k'2 S(k— k) Jcosf, dlogk’,  (12)

where dlogk = dk/k. The potential vorticity Fourier
transform time rate of change [(12)] is evaluated nu-
merically, with integrands assumed to vanish for |k'|,
|k — k'| < ko and |K|, |k — k| > kg. If the buoyancy
gradient and vorticity vectors are orthogonal across all
wavenumbers k, as with internal gravity waves, then (12)
vanishes. At the other extreme, if the vectors are parallel
to each other over all k so that cos, = 1, the convolution
implies a rate of change II,(k)/II(k) ~ O(N) over the
anisotropic stratified turbulence band ~k; < k < ko
(Fig. 7), normalized by the maximal potential vorticity,
which is also as a convolution integral

(k) ~ N82/3J[k'2/3(k — k) "Pdlogk’.  (13)

This high rate arises because the convolution integral
is dominated by vorticity and buoyancy gradient in-
teractions at k ~ ki where both are maximal. Performing
the integration only over |k'|, |k — k'| > kx/2 yields almost
identical results in the anisotropic turbulence band.

Neither zero nor perfect coherence between different
wavenumbers k seem likely for turbulence. Monte Carlo
simulations where 6, was chosen at random within {0-
27} for each of 2000 k' generate potential vorticity
anomalies of both signs at rates ~ O(0.1N) ~ O(10f) at
all wavenumbers in the anisotropic and isotropic tur-
bulence bands (Fig. 7). Inferred maximal potential
vorticity anomalies from (13) near the Coriolis wave-
number kyare ~O(0.1fN?). These may be overestimates
because the vorticity and buoyancy gradient vectors are
taken to be parallel to each other in (13). The relation-
ship between these two vectors near the Kolmogorov
wavenumber is uncertain.

While the analysis above is far from robust, damp-
ing at dissipative scales appears capable of producing
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potential vorticity anomalies across the anisotropic
and isotropic turbulence bands, consistent with Winters
and D’Asaro (1994) finding a large fraction of wave
energy encountering a critical layer left behind in low-
wavenumber vortical motion. Since molecular dissipa-
tion is responsible for potential vorticity modification
[(10)], vortical motion will only arise after the cascade
reaches dissipative wavenumbers k ~ kx = (e/v*)"* and
sois an end product of turbulence, like mixing. This does
not address whether vortical motion is dynamically im-
portant for the energy cascade.

Some energy injected near ~k (u, ~ f) is likely to in-
verse cascade to larger horizontal length scales (Lindborg
2005, 2006), as will variance left behind as turbulence
decays and kyincreases. Molecular viscosity will act more
rapidly to extract laminar momentum than molecular
scalar diffusivity removes density anomalies, further
modifying potential vorticity. Viscous decay will cause
the energy ratio KE/APE to decrease and aspect ratios
k/m flatten, producing subinertial density layering (u;, —
0, k/m < fIN) with little dynamic signal like that reported
by Pinkel (2014). This train of events is conjectural.

¢. Mixing coefficient vy

A turbulence source at ks < ko may explain why mi-
crostructure measurements in the ocean pycnocline more
consistently infer mixing coefficients y = —(w'b’)/e ~ 0.2
at high-buoyancy Reynolds numbers Re; (Oakey 1982;
St. Laurent and Schmitt 1999; Gregg et al. 2018; Ijichi and
Hibiya 2018) than the smaller values reported in laboratory
experiments (Barry et al. 2001), numerical simulations (Shih
et al. 2005), and near boundaries (Davis and Monismith
2011; Lozovatsky and Fernando 2012; Bluteau et al. 2013). If
turbulence is generated anisotropically at kg < ko and
cascades energy forward, isotropic turbulence will always
arise at the Ozmidov scale away from boundaries. In con-
trast, laboratory tanks, numerical domains, and proximity to
boundaries will suppress overturns at the largest scales
as Re, increases and the Ozmidov length scale Lo =
(e/N*)? = (vNRe,)" exceeds the domain size, reducing
turbulent buoyancy anomalies »' and fluxes (w'b’) relative
to dissipation rates &, and so lowering the mixing coefficient
v. This argument will not hold in the abyssal ocean where
N — fsothat kg ~ ko and the ratio of Thorpe to Ozmidov
length scales L7/L is observed to regularly exceed 1 (Ijichi
and Hibiya 2018), consistent with young turbulence.

d. Shear dispersion

Anisotropic stratified turbulence will contribute to
shear dispersion and isopycnal diffusivity K,

K, = (Kx2) = (K)(x2) + (8K5x?) . (15)
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FIG. 7. Convolution spectra for the time rate of change of potential vorticity IT,(k) [(12)]
normalized by the maximal II(k) convolution [(13)] (red). Perfect coherence between the
vorticity and buoyancy gradient vectors across all wavenumbers yields rates ~ O(N) over the
anisotropic stratified turbulence band ~k; < k < ko (black curve). Monte Carlo simulations
with random relative orientations between the vectors to simulate isotropic turbulence
generates potential vorticity anomalies of both signs (pink and blue) at rates ~ O(0.1N) ~

O(10f) across the anisotropic turbulence band.

where strain component y, = [u.dt, diapycnal diffu-
sivity K = ye/N? = yvRe, and mixing coefficient y ~ 0.2
(section 5c¢). The model spectrum S[x;](k) (Table 4) can
be used to evaluate the first term on the rhs of (15) as-
suming x, ~ (m/k)x; in the anisotropic stratified tur-
bulence band

m2

0= j:sm(k) k= [ () str1ce) a

k 2 2 rk
:J0<m>dk_N dek

o\

S

el AR (16)
s
Integrating from the upper-bound ko, toward lower k,
horizontal diffusivity K increases through the aniso-
tropic stratified turbulence band, behaving like the di-
mensional scaling ~k~*? for kr < ks < ko and reaching
K, ~ velf ~ KN*If at ks ~ kp For K = 0.1 X
107 *m?s ', N=5x 10 rads ' and f= 10 *rads™’,
this yields Kj, ~ 0.025m?s~ !, comparable to that inferred

by Young et al. (1982) for (x2)=(u?)/f* for a GM-level
internal-wave field, but over an order of magnitude
below ~1-10-km scale estimates from deliberate dye-
release experiments in the ocean (Ledwell et al. 1998;
Sundermeyer and Ledwell 2001; Shcherbina et al.
2015). However, turbulence and vertical shears are
lognormally distributed and correlated since turbulence is
generated by unstable shears. Kunze and Sundermeyer
(2015) showed that, for observed intermittencies e ~ 0.1, the
second (Reynolds) term in (15) dominates. Provided that
turbulence persists for O(f ') as argued for in section 5a,
isopycnal diffusivity K}, is better approximated as

(K){(x2)

K, = (BK8X?2) ~e<ljf> @=

. . a7

(Kunze and Sundermeyer 2015). For intermittency e ~
0.1, (17) yields K;, ~ O(1)m?s ' as observed, lending
support for these arguments. This is approximate
because diapycnal diffusivities are not bimodal as
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{0, (K)/e}, which is assumed in (17), but lognormally
distributed. Nevertheless, it demonstrates the effect of
turbulent intermittency. Intermittency e < 1 and ~O(f ')
durations of turbulence imply that shear dispersion by
this mechanism will be patchy and only smooth out
over time scales of weeks. Other mechanisms such as
internal-wave Stokes dispersion and vortical-motion
stirring may be more uniform. Similar values have
been inferred for subinertial vortical-mode stirring
(Polzin and Ferrari 2004; Sundermeyer and Lelong
2005) and intermittent internal-wave-driven shear
dispersion (Kunze and Sundermeyer 2015). None of
these mechanisms have been ruled out, so the mech-
anism producing ~1-km-scale isopycnal diffusivities
K, ~ 1m?s~ ! remains uncertain.

e. Observational testing

Anisotropic stratified turbulence may be difficult to
identify in observations and models. It shares the same
frequency band f < u;, < N and ““dispersion relation”
Nkl(upm) ~ O(1) as internal gravity waves. Its fre-
quency spectral level is invariant (Table 4) in contrast to
the GM model, and frequency spectra are bluer (more
positive) for anisotropic turbulence than the GM model
spectra though we caution that Doppler smearing by
more energetic larger-scale flows will produce similar
effects in measurements that are not fully Lagrangian.

Vertical wavenumber m spectral levels appear to be in-
variant in the anisotropic stratified turbulence (saturated)
band (Figs. 1b, 5; Gargett et al. 1981; Smith et al. 1987) and so
are a useful reference point though they yield no information
about the cascade rate e. Vertical wavenumber bandwidth
mo/my is predicted to be (NIH)'?, narrower in the abyss
and high latitude, and independent of cascade rate &
in contrast to the isotropic turbulence bandwidth
mylmeo = kilko ~ [e/(vN?)]*'*. Testing the bandwidth
would require vertical resolution of ~O(10~?) m to span
the Ozmidov wavenumber (N°/e)'? = (yN/K)'* for
typical diapycnal diffusivities K ~ (0.1-1) X 10 *m?s ",
Sampling more turbulent environments would be less
restrictive (Klymak and Moum 2007).

Most of the evidence quoted here comes from hori-
zontal measurements (Figs. 1a, 3a,b). For horizontal
shear u;, = ku and horizontal buoyancy gradient b, =
kb, the +1/3 gradient spectral slope is predicted to
extend unbroken above and below the Ozmidov
wavenumber ko, rising and falling with dissipation rate
as ¥ (Figs. 3a,b). This has thus far only been reported
by Klymak and Moum (2007) for horizontal tempera-
ture gradients 7j. More horizontal measurements re-
solving across Ozmidov wavenumber kg are needed to
test that these spectra are not discontinuous in slope or
level across ko. These need to be accompanied by
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microscale dissipation rates & measurements both to es-
timate ko and determine whether spectral levels vary as
. Horizontal shears u, should exceed f for horizontal
wavenumbers k > k; = (f'/e)"* = (fIN)*”*k¢ with Rossby
numbers 8, = uy/f ~ &'”k*? increasing monotonically
with k from ~O(1) at ~k; to ~O(NIf) at k. The pre-
dicted horizontal bandwidth ko/k ~ (NIf)** should vary
from ~30 in the abyss to ~1000 in the pycnocline, in-
dependent of &. Aspect ratios k/m should vary as k> from
~fIN atk;~ (f/e)""* to ~1 at ko ~ (N*/e)'”. Both vertical
strains &, and gradient Froude numbers 6y = u,/N should
be ~1 and have —1 spectral slopes over ~ky < k < ko.
These features might be tested with towed CTD chains
and high-frequency ADCP measurements but would re-
quire vertical and horizontal resolution of ~O(10~%) m
to span typical Ozmidov length scales.

The strongest proof of the model’s underlying as-
sumptions would be transfer spectra inferring identical
forward energy cascade rates below and above the
Ozmidov wavenumber that match the turbulent kinetic
energy dissipation rate e.

f- Numerical testing

The full problem, spanning four to six orders of
magnitude in horizontal wavenumber k for midlatitude
pycnocline and lower-stratosphere buoyancy frequen-
cies N ~ 10 %rads ! (Figs. 1, 2), is beyond the scope of
contemporary numerical modeling, which can span
three decades (e.g., Brethouwer et al. 2007; Almalkie
and de Bruyn Kops 2012; Bartello and Tobias 2013).
This has made simulations attempting to straddle k; or
ko difficult to interpret due to inadequate bandwidth,
and may have prevented clean reproduction of the sat-
urated spectrum in vertical wavenumber m because of
the large range of horizontal wavenumbers that con-
tribute to it (Fig. 2; Maffioli 2017). Depending on the
focus, this burden might be reduced by choosing abyssal
stratifications N ~ 10 >rads™! to reduce kolks or a
lower Re,, to reduce kx/ko. Reduced bandwidths would
make it more difficult to unambiguously identify spec-
tral slopes, for example, the isotropic turbulence band
is expected to vanish for Re, < O(100) (Gargett et al.
1984) and mo/my < 3 for N/f < 10. Most simulations
of anisotropic stratified turbulence have focused on
uy, < N (Billant and Chomaz 2001; Riley and deBruynKops
2003; Waite and Bartello 2004; Lindborg 2006; Brethouwer
et al. 2007), have been irrotational, used anisotropic
grids, and forced with potential vorticity anomalies.
These preconditions are suitable for studying the
middle of the stratified turbulence band k; < k < ko
(Fig. 6) but not (i) anisotropic generation by internal-
wave instabilities at k < ko or (ii) the transition to
isotropic turbulence at kq.
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These two subproblems are of special interest because
they involve a change in dynamics and behavior. The
first would establish that an anisotropic forward turbu-
lent cascade can be triggered by anisotropic instability of
finescale ~f/N aspect ratio near-inertial wave packets
at k < ko where rotation and horizontal shears are
important. To the author’s knowledge, this problem
has not been examined theoretically or numerically.
Numerically, it could be treated with anisotropic grids
~O(fIN) at moderate buoyancy Reynolds number, al-
lowing the resulting anisotropic turbulence to dissipate
via a subgridscale damping parameterization like hy-
perviscosity at k < ko before becoming isotropic. Mar-
ginally unstable (5 ~ 8 ~ 1) wave packets could be
forced into instability by subjecting them to a wave-
capture scenario (Biihler and MclIntyre 2005) where
both vertical and horizontal wavenumbers increase,
forcing group velocities to shrink and shears to amplify.
If source instability and dissipative scales are sufficiently
separated, these simulations could identify when during
the cascade process potential vorticity arises at wave-
numbers well below those associated with dissipation.
Waite and Bartello (2006a) attempted to investigate
internal-wave generation of anisotropic stratified tur-
bulence but reported inconclusive results.

The second problem would study the transition from
anisotropic stratified turbulence at k < ko to isotropic
turbulence and density overturning at k ~ ko where uy, ~
N. This would require an isotropic grid and buoyancy
Reynolds numbers sufficiently high to ensure isotropy at
the transition (e.g., Re, > 200; Gargett et al. 1984). The
full inertial isotropic cascade might not need to be re-
solved if dissipation could be handled with hyperviscosity
(e.g., Winters and D’Asaro 1994). Such simulations
would be initialized with k < ko anisotropic stratified
turbulence based on the simulations described in the
previous paragraph, consistent with the desired buoyancy
Reynolds number and lowest resolved wavenumber, then
allowed to evolve.

Both of these subproblems have been studied but
proven challenging to implement and hard to interpret
because of aphysical forcing at low wavenumber and
uncertain influences on the intermediate wavenumber
domain by both the low-wavenumber forcing and high-
wavenumber dissipation.

Another question is whether numerical simulations
could produce a forward energy cascade in the absence
of potential vorticity forcing. Most of the model simu-
lations have been initialized with barotropic vortices
that break down into lower aspect ratio layers via the
zigzag instability (Billant and Chomaz 2000), or forced
spectrally at lower wavenumbers then allowed to relax
to stratified turbulence (Lindborg 2006). Neither of
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these forcings excludes potential vorticity. It would be
illuminating to contrast the properties of numerically
simulated anisotropic stratified turbulence and its cas-
cade with and without potential vorticity forcing.

6. Concluding remarks

A new interpretation is offered for ocean and atmo-
sphere horizontal and vertical wavenumber spectra in the
decade or so below the Ozmidov wavenumber ko = mo =
(N?le)'” (Fig. 1), that is, on scales between those attributed
to internal waves [m < m, ~ N(fle)"?] and isotropic tur-
bulence (m > myp) (Fig. 1). Based on the forward energy
cascade reported in the atmosphere (Lindborg and Cho
2000), ocean (Poje et al. 2017), and numerical simulations
(Waite and Bartello 2004; Lindborg 2006; Brethouwer et al.
2007), this band is identified as anisotropic stratified tur-
bulence following Riley and Lindborg (2008). A spectral
model constructed from dimensional scaling (section 2;
Table 4; Figs. 3-5) reproduces the observations summa-
rized in Fig. 1. Anisotropic stratified turbulence does not
occupy the full parameter space of Rossby number, gradi-
ent Froude number, and energy ratio Ry but is constrained
to have 1 < 8, < N/f (Lindborg 2006), 65 ~ O(1) (Billant
and Chomaz 2001) and Rg ~ 1. It shares a “dispersion
relation” with internal waves, that is, m/k ~ N/u,,, with
straining frequency u,, replacing the intrinsic wave fre-
quency and lying in the internal-wave band f < u;, < N
(section 3c; Fig. 4).

The most novel implication of this interpretation is
that small-scale geophysical turbulence is made up of
both anisotropic stratified and isotropic turbulence such
that the anisotropic turbulent energy cascade feeds
smoothly into the isotropic turbulent cascade as it
crosses the Ozmidov wavenumber (section 5a). This
further implies that isotropic turbulence in the stratified
ocean need not be directly generated by internal-wave
breaking as commonly assumed. Rather, anisotropic
instability of finescale near-inertial wave packets can
feed energy into anisotropic stratified turbulence at
horizontal wavenumbers ks < ko, which then cascades
downscale through the isotropic turbulence band to
dissipation (section 5a; Fig. 6).

The interpretation of submesoscale and finescale data
presented here is by no means certain, based on multiple
unique measurements that have often been interpreted
differently. While linear internal gravity waves have been
ruled out (Miiller et al. 1988; Polzin et al. 2003) and lin-
earity in general seems unlikely on the finescale where
u, ~ N and u;, > f, either nonlinear internal waves or a
variant of the turbulent forward cascade in horizontal
wavenumber proposed here remain possible. Many of the
assumptions and conclusions require rigorous testing
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including that (i) aspect ratio ~f/N finescale near-inertial
wave packets in the ocean become anisotropically un-
stable at horizontal wavenumbers k < ko to produce
anisotropic stratified turbulence (Fig. 6), (ii) variance at
wavenumbers ~ky < k < ko has invariant energy ratio
KE/APE ~ O(1) at all horizontal wavenumbers k and
cascades energy forward uniformly with k (section 2), (iii)
the transition from anisotropic to isotropic turbulence
occurs smoothly across the Ozmidov wavenumber ko
with no change in spectral slope or level for u, or b,/N
(Figs. 3,4), and (iv) the cascade rate below and above the
Ozmidov wavenumber is identically the microscale dis-
sipation rate e. It is hoped that the work presented here
will provide a framework to help unravel the dynamics of
finescale motions in the decade or so below the Ozmidov
wavenumber ko = (N°/e)"? in the ocean, atmosphere,
and other stratified fluids.
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