Efficient Synthesis of Edit Functions for Opacity Enforcement Using
Bisimulation-Based Abstractions

Sahar Mohajerani, Yiding Ji and Stéphane Lafortune

Abstract— This paper investigates the synthesis of edit func-
tions for opacity enforcement using abstraction methods to
reduce computational complexity. Edit functions are used to
alter system outputs by erasing or inserting events in order
to prevent violations of opacity. We introduce two abstraction
methods, called opaque observation equivalence and opaque
bisimulation, that are used to abstract the original system and
its observer before calculating edit functions. We present a set
of results on abstraction for opacity and its enforcement by
edit functions that prove that edit functions synthesized from
abstracted models are “equivalent” to ones synthesized from
original ones. Our approach leverages the technique of edit
function synthesis using the All Edit Structure from prior works.

Index Terms— Finite-state automata, abstraction, opacity,
edit function.

I. INTRODUCTION

Opacity is a security property that characterizes whether
the integrity of system secrets can be preserved from the
inference of an outside intruder, potentially with malicious
purposes. The intruder is modeled as an observer with
knowledge of the system’s structure. A system is called
opaque if the intruder is unable to infer any of the system’s
secrets from its observations using model-based inferencing.
For systems modeled as finite state automata or Petri nets,
various notions of opacity have been studied and the survey
paper [1] summarizes recent results on opacity in discrete
event systems (DES). In this paper, we consider automata
models and current-state opacity [2].

When opacity does not hold, it is natural to study its
enforcement. Several mechanisms have been considered for
this purpose; see [1]. We consider the technique of opac-
ity enforcement using insertion or edit functions, initially
proposed in [3] and further developed in [4]-[7]. An edit
function works as an interface between the system’s output
and the intruder’s observations; it may manipulate the output
of the system by erasing events of by inserting fictitious
events to obfuscate the intruder.

Recently, the work [8] revisited the synthesis of edit func-
tions using a three-player game-like discrete structure called
the All Edit Structure (AES), which provably embeds all
opacity-enforcing edit functions. This structure is constructed
as a so-called “three-player observer” from the system model

The work of the first author was supported by the Swedish Research
Council. The work of the second and third authors was supported in part
by US NSF grant CNS-1421122 and CNS-1738103.

Sahar Mohajerani, Yiding Ji and Stéphane Lafortune are with
the Department of Electrical Engineering and Computer Science
at the University of Michigan, Ann Arbor, Michigan, USA.
{saharm; jiyiding; stephaneQumich.edu}

and the opacity enforcement problem is viewed as a three-
player game and solved within the AES. The AES of [8]
is the structure that we will abstract in this paper, by using
bisimulation-based abstractions of the system model and of
its observer.

To construct the AES, the observer and the desired ob-
server of the system need be calculated [3]. The desired
observer is obtained by removing the states of the observer
that are subsets of secret states. Calculating the observer can
potentially be computationally costly. To mitigate this issue,
we investigate abstraction methods that can be used to reduce
the size of the system before calculating its observer and
before calculating the AES. Bisimulation and observation
equivalence [9] are well-known abstraction methods to ab-
stract the state space of an automaton. Bisimulation and ob-
servation equivalence in general cannot be used in an opacity
setting; some adjustments must be made. Abstraction-based
bisimulation was used in [10] to reduce the state space of
the system when verifying infinite-step opacity, a property
that is different from current-state opacity. We introduce
special versions of bisimulation called opaque observation
equivalence and opaque bisimulation, which consider the
secrecy status of states in the bisimulation setting.

In our methodology, the system is first abstracted by
merging some states or removing some transitions using
opaque observation equivalence. Next, the observer of the
abstracted system is calculated. Since the abstraction pro-
cedure reduces the size of the system, the computational
complexity of calculating the observer can potentially be
reduced significantly. In addition, the observer of the system
can be abstracted further using opaque bisimulation, before
calculating the desired observer. We show that the abstracted
observer and the abstracted desired observer are bisimilar
to their original counterparts and that they can be used to
obtain an abstracted AES. We prove that the abstracted AES
calculated in this manner still contains all the edit functions
that can be used to enforce opacity. Therefore, the performed
abstractions preserve the full generality of the AES for the
purpose of edit function synthesis.

The presentation of our results is organized as follows.
Sect. II gives a brief background about edit function and
the AES. Next, Sect. III explains how the abstraction-based
AES can be obtained. Then, Sect. IV defines the abstraction
methods that are used and shows how they are leveraged for
AES synthesis. Finally, some concluding remarks are given
in Sect. V. The proof of Theorems 2 and 4 have been omitted
due to space constraints.

II. OPACITY ENFORCEMENT BY EDIT
FUNCTIONS

We need to introduce a good amount of material about
opacity enforcement before we can present our contributions
in the following sections. We consider discrete event systems
modeled by deterministic or nondeterministic automata.

Definition 1: A (nondeterministic) finite-state automaton
is a tuple G = (%,,;,0,—,0°), where X,y is a finite set
of events, Q is a finite set of states, — C Q X X;,; X Q is
the state transition relation, and Q° C Q is the set of initial
states. G is deterministic, if |Q°] <1 and x E)yl and x g>y2
always implies y; = y;.
We assume that the intruder can only partially observe G.
Thus, X, is partitioned into two disjoint subsets: X the set
of observable events and X, the set of unobservable events,
Yot =X U X,,. Moreover, in opacity problems, the set of
states is also partitioned into two disjoint subset: Q5 the set
of secret states and QNS = Q\QS the set of non-secret states.

¥* is the set of all finite traces of events from ¥, including
the empty trace €. The natural projection P: X}, — X* is the
operation that removes from traces t € X7, all events not in X,
which means unobservable events. The transition relation is
written in infix notation x > v, and is extended to strings in
¥* by letting x 5 x for all x € Q, and x '3 z if x 5 y and
y 5, z for some y € Q. Furthermore, x L, means that x y for
some y € O, and x — y means that x 4 y for some ¢t € X},
These notations also apply to state sets, X Ly for X , YCQ
means that x - y for some x € X and y € Y, and to automata,
G -5 means that Q° %, etc. For brevity, p = ¢, with s € Z*,
denotes the existence of a string ¢ € X}, such that P(t) =
and p 5 q. Similarly, p = g means that there exists t € ¥,
such that p 4 q.

The language of an automaton G is Z(G) = {s € Z* |G =
} and the language generated by G from g € Q is (G, q) =
{s €Z* | ¢=}. For nondeterministic automaton G = (%,
Q,—,0°), the set of unobservably reached states of B € 22,
is UR(B) =U{C C Q | B= C}. The observer automaton
det(G) = (X, Xobs, —obs: Xp) 18 a deterministic automaton,
where X = UR(Q°) and X,ps C 22, and X —,p, ¥, where
X,Y C Xyps, if and only if ¥ = U{UR(y) | x>y for some x €
X and y € Q}. By convention, in this paper, only reachable
states from X7, - under — 5, are considered in X,p;.

One common automaton operation is the quotient modulo
an equivalence relation on the state set.

Definition 2: Let Z be a set. A relation ~ C Z x Z is called
an equivalence relation on Z if it is reflexive, symmetric,
and transitive. Given an equivalence relation ~ on Z, the
equivalence class of z€ Zis [z ={7 €Z|z~7}, and Z=
{[z]|z€ Z} is the set of all equivalence classes modulo ~.

Definition 3: Let G = (L;51,Q,—,0°) be an automaton
and let ~ C Q x Q be an equivalence relation. The quotient
automaton of G modulo ~ is

G:<Et0taQ7_>/NaQO> ’ (1)

where —/~ = {([x],0,[y]) |x %y} and 0° = {[x’] |x° €
0}

Bisimulation is a widely-used notion of abstraction that
merges states with the same future behaviour.

Definition 4: [9] Assume G| = (Xior.1,0;,—>,05) and
Gy = (Zior2,0,,—,,05) are two automata. A relation
~ C Q) x Q is called a bisimulation between G; and G,
if, for all x; € Q1 and x; € Q> and for all ¢ € ¥ such that
X1 = X2,

if x; > y1 then Iy, € @ such that x; 5 yo and y; = yy,
if xp E>yz then Jdy; € Q; such that x; £>y1 and y; = y;.

G; and G, are bisimilar if there exists a bisimulation =~
between Gi and G such that Q7 = Q5.

When def. 4 is applied on a single automaton (i.e., over
state space Q x (), the bisimulation seeks to merge sates
with the same outgoing transitions into equivalence classes,
including outgoing unobservable events. If the unobservable
events are disregarded in bisimulation, a more general ab-
straction method called weak bisimulation or observation
equivalence is obtained.

Definition 5: [9] Let G = (¥,,1,0,—,0°), where X, =
Y U X,,, be a nondeterministic automaton. An equivalence
relation ~ C Q x Q is called an observation equivalence
on G, if the following holds for all x1,x; € Q such that x| ~
xp: if x = y; for some s € L*, then there exists y, € Q such
that x, £> y2, and y; ~ y;.

A system is opaque if an intruder cannot determine with
certainty, from the observed behavior, if the system has
entered a secret state. Different notions of opacity have been
introduced in literature [1]. In this paper only current-state
opacity is considered [2].

Definition 6: A nondeterminitic automaton G with set of
observable events ¥,,, =X U X, and set of secret states Q°
is current-state opaque with respect to Q3 if and only if

(Vgqo € Q° Vs € Z(G,q°) : ¢° = Q)

then (3¢"° € Q°) such that | ¢° = QN9
The system is current-state opaque if for any string reaching
a secret state, there is a string with the same sequence of
observable event reaching a non-secret state.

It is well-known [1] that current-state opacity can be
verified by building the observer automaton of G.

Definition 7: Let G = (X,1,Q,—,0°) be a nondetermin-

istic automaton with set of secret state Q. Let det(G) =
(X, Xobs, —>obs, X5y, be the observer of G. Then G is current-
state opaque with respect to Q5 if and only if [det(G) —,ps
[s]X implies that X Z Q5].
If all the states of the observer det(G) that are violating
current-state opacity are removed, the accessible part of
the resulting subautomaton of det(G) is called the desired
observer, denoted by det;(G). The language generated by
the desired observer is referred to as safe language (W.r.t.
opacity): Ly e = £ (dety(G)). Accordingly, we define the
unsafe language, Lynsafe = L (G) \ Lyafe-

If a system is not current-state opaque, then it is possible
to add an output interface called an edit function to enforce
opacity [4], [5], [8]. An edit function can both insert and
erase events and the intruder cannot distinguish between

inserted events and their genuine counterparts. We denote

by Xf = {0 — €: 6 € L} the set of “event-erasure” events.
Definition 8: A deterministic edit function is defined as

fe:T¥xE—=XLU{e}. Given s € Z(G), 6 €L,

sjo if sy is inserted before ¢
fe(s,0)=<¢€
Sy if sy is inserted and o is erased

In [5] private safety for an edit function is defined,
when the intruder does not know about the edit function’s
implementation.

Definition 9 (Private Safety): [5] Given G and its ob-
server det;(G), an edit function f, is privately safe if Vs €
Z(G), fe(s) € Lygse, ie. fo(Z(G)) C Lyafe.

Recently, an approach to calculate the All Edit Structure,
or AES, which contains all the opacity-enforcing edit func-
tions, was investigated in [8], building on the work in [3],
[5]. In this approach, a so-called three-player observer of the
system is first calculated, then pruned to obtain the AES. In
this paper, we will follow the approach of the three-player
observer (TPO) to obtain the AES.

Definition 10 (Three-Player Observer): [8] Given a sys-
tem G, its observer det(G) and desired observer det;(G),
let I C X psq X X,ps be the set of information states.
A three-player observer is a tuple of the form T =
(QYa 07,0w,%, 25,0, —Pyzy T2z TP 7ws _>wyayo)» where:

e Qy C 1 is the set of Y states.

e 07 CIxXis the set of Z states. Let I(z), E(z) denote
the information state component and observable event
component of a Z state z respectively, so that z =
(I(2),E(2)).

e Oy CIx(XUZXE) is the set of W-states. Let I(w),
A(w) denote the information state component and action
component of a W state w respectively, so that w =
(I(w).A(w)).

« X C%,, is the set of observable events.

o XF is the set of event-erasure events.

e @ CXU{e}UXE is the set of edit decisions at Z states.

(i) —yz: Oy X X X Q7 is the transition function from Y
states to Z states. For y = (xd,x‘f) € Qy, e, € X, we
have: y 3y, 2= [xp Sons] Al(z) = Y| A E(2) = e,).

(1) —;: Oz x ® x Q7 is the transition function from Z
states to Z states. For z = ((xg,x¢),e,) € Oz, 0 € O,
we have: z izz =10 eXAI) = (x,xp)] A
g B, XA E(D) = o).

(1) —,p1: Oz X O X Qw is the € insertion transition func-
tion from Z states to W states. For z= ((x4,x7),e,) €
0z, 0 € ® we have: z i>zw1 w=[0=¢|A[I(w)=
I A [AW) = €] A g e, A xp S ons).

(iv) —: Oz X ® X Qw is the event erasure transi-
tion function from Z states to W states. For z =
((xa,xr),e0) € Qz, B € O, we have: z 2>ZW2 w=[0=
eo =+ E]A[I(W) = 1(2)] A[A(W) = e — €] A [xy “ops]-

(V) —rwy1: Ow X X X Qy is the transition function from W

states whose action component is in X to Y states. For

if o is erased

w = ((x4,Xf),€,) € Qw, we have: w 4,1y = [y =
(xﬁj,x})] Alxq gde,d XA [xp 28 bs x}]
(Vi) —yy2: Ow X X X Qy is the transition function from W
states whose action component is in X¢ to Y states.
For w = ((x4,xf),e, = €) € Ow, we have: w ﬁSWyz
Y= [y = (xa, X)) ATy “Sons X
e Yo € Qy is the initial Y state where yp = (x(,bsd7(),x(,b_y’()).
Xobsd,0 and X,ps o are initial states of det;(G) and det(G),
respectively.
In order to characterize the information flow in a TPO,
the notion of run is defined [8].
Definition 11 (Run): [8] In a three-player observer T, a

e, 1 % 0% 6" 60"
. m
run is defined as: @ =yo =z}, — 25 — -+~ ——) —

0" 1

o7 e e 6
1 ...Z'I"I 5w _1>y2..._”>zylli>

[&h) ST 911 2

wo — ylmn—) 3y —Z —
g == Wy e—"> Yn+1, Where yg is the initial state of T,
e €X,0/€0(z]),V0<i<n, 1<j<mjandneN, m; e NT.

For simplicity, similar notation as for automata are used
for TPOs and thus T -3 x denotes existence of a run in 7.
Next, we need to define edit projection and string generated
by a run before we can state the key results we will leverage.

Definition 12 (Edit Projection): [8] Given a run @ =

my—1 m

6; 63) o/
€0 0 0 0 0 €0 €] 1
Yo = Zh =T = 00— wo >y — 2 —
2 912 m I”l €l €n 19,} erlznn €n
L WL Y gy = I = Wy

Ynt1, edit projection P, : Q — P[.Z(G)] is defined such that
P.() =eper---ey.
Definition 13 (String Generated by a Run): [8] Given a
e 8 0 6" 6" € el
run @ =yop —)Z(l) —>Z2 —
1 o} > o7 m 9:"1 e] en. 1 6, m, 6
I T W Yo gy — g ——
Wn 2 Yn+1, the string generated by @ is defined as:
(@) = 6,62---6]°7'6)ex6] -6 e e, 16 ---Oe,,
where Vi <n, 6"e;= ¢ if 6" =¢; — €.

Definition 14 (Edit Function Embedded in TPO): [8]
Given TPO T, a deterministic edit function f, is embedded
in T, denoted by f, € T, if Vs € P[.Z(G)], o € Qr, s.t.
P.(w) =s and [(w) = f,(s).

In this sequel, the only TPO T we will consider is the
largest TPO that satisfies the above definition; i.e., all defined
transitions are included at each state. This structure is well
defined in terms of graph union [8]. After calculating the
largest three-player observer T, the next step is to remove
deadlocking Z-states and W-states, where no transition is
defined [8]. Those deadlocking states are due to infeasible
insertion choices as well as edit decisions that are not allowed
by edit constraints [8]. The three-player observer with no
deadlocking W or Z states is called complete. Since in this
paper we do not have any constraint and the edit function is
always allowed to erase events in its operation, there are no
deadlocking states in the largest three-player observer, which
is identical to the All Edit Structure.

Definition 15 (All Edit Structure): [8] Given system G,
observer det(G), desired estimator det;(G), the All Edit
Structure (AES) is the largest complete three-player observer.

It is shown in [8] that all the edit functions that satisfy private
safety are embedded in the AES. This is analogous to the
result in [3] for insertion functions (i.e., no erasures).

Theorem 1: [4], [5] Given a system and its observer, an
edit function f, is privately safe if and only if f, € AES.
Henceforth, our goal is to build the AES starting from
suitable abstractions of G and det(G).

III. ABSTRACTED ALL EDIT STRUCTURE

This section describes the abstraction-based All Edit Struc-
ture. We show in Corollary 3 below that AESs of bisim-
ilar observers and desired observers embed the same edit
functions. To establish this, Theorem 2 first establishes that
bisimilar observers and desired observers have AESs with
the same runs.

Theorem 2: Let G = (X;p1,Q,—,0°), where X, =
Y U X,,, be a nondeterministic automaton with set of secret
states Q5 C Q and set of non-secret states QS = Q\QS.
Let H;,; and H,,s be two deterministic automata such that
det(G) = Hy and det;(G) ~ Hy,g, Where = is a bisimulation
relation. Let AES be the All Edit Structure of G and let AES’
be the All Edit Structure of Hy,, and Hg,,. Then AES 3 g
if and only if AES' 3 g.

As was reviewed earlier, the AES is the largest three-
player observer under our assumption, and it contains all the
edit functions that can be used to enforce opacity. The fol-
lowing corollary shows that AESs of bisimilar observers and
bisimilar desired observer contain the same edit functions.

Corollary 3: Let G = (%,,1,0,—,0°), where X, =
Y U X,,, be a nondeterministic automaton with set of secret
states Q5 C Q and set of non-secret states QNS = Q\QS .
Let H;,, and H,,s be two deterministic automata such that
det(G) = Hy; and det;(G) ~ Hy,g, Where = is a bisimulation
relation. Let AES be the All Edit Structure obtained from
det(G) and dety(G) and let and AES' be the All Edit
Structure obtained from Hy, and H;.s. Then f, € AES if
and only if f, € AES'.

Proof (=) Assume f, € AES. From f, € AES it holds
that 3s € .Z(G), Jw € AES such that P,(®) =s and /() =
f(s). Then based on Theorem 2 it holds that w € AES’ and
P,(w) =s and l(®) = f,(s). Thus, f, € AES'.

(<) The same argument as (=) holds. [|

The following example is provided to clarify how the AES
is calculated. It will be re-used later.

Example 1: Consider automaton G with secret state Q5 =
2, 2 ={e,B,y} and X,, = {t}. Automaton G and its
observer are shown in Fig. 1. The system is not current-state
opaque as by executing event Y the intruder will know that
system is in the secret state 2. Thus, an edit function needs to
be calculated to enforce opacity. State 2 in det(G) is violating
current-state opacity, {2} € @5, and it is removed when
calculating the desired observer, det;(G). After removing
{2} state {4} becomes unreachable and should also be
removed. The desired observer is shown in Fig. 1. The next
step is to calculate the largest three-player observer, which is
shown in Fig. 1. In the figure Y, Z and W states are shown by
rectangular, oval and diamond, respectively. For simplicity

G det(G) dety(G)
S0 S0 SO
c a c a a
S S2 St S2 S13
b tau b b b
S5 S3 S5 S4 S5

Fig. 1.

Automata of Example 1 and its corresponding AES.

the observer states in the three-player observer are shown
by their elements, i.e, O refers to the state {0}, 13 refers
{1,3}, etc. The initial state of the three-player observer is
yo = (0,0). At (0,0) the dummy player execute event ¥ or
o. After executing a, Z state ((0,0), &) is reached. At state
((0,0), &) the edit function can either erase event ¢, where
the W state ((0,0), @ — €) can be reached, or take no action,
where the W state ((0,0),0) is reached. When the system
executes event at the W state ((0,0), o) the Y state (13,13)
is reached. The whole structure is interpreted in a similar
way. The AES is the same as the calculated largest three-
player observer T and can be observed that all the Z and W
states have outgoing transitions.

IV. OPAQUE OBSERVATION EQUIVALENCE

In the previous section it was shown that bisimilar
observers and desired observers produce AESs with the same
edit functions. Following the results of Sect. III, in this
section abstraction methods are introduced to abstract the
system such that the observer and the desired observer of the
abstracted system are bisimilar to their original counterparts.
The abstraction methods are based on bisimulation and
observation equivalence, which are computationally efficient
and can be calculated in polynomial-time. In order to use
observation equivalence for abstraction in the setting of
opacity, the secrecy status of states needs to be considered. In
the following, a restricted version of observation equivalence
called opaque observation equivalence is defined.

Definition 16: Let G = (¥L;0,Q,—,0°), where Y, =

input : G
opaque observation
o

equivalence, Theorem 4

-

observer
opaque bisimulation, det(G
Theorem 4 and 5 blslmulatlon
H,p [H,

desired observer

H, obd

AES of H}, and Hobd, Theo-
rem 2, 6 and Corollary 3

(AESabs)

The steps of calculating an abstracted AES of system G.

Fig. 2.

Y U X,,, be a nondeterministic automaton with set of secret
states Q5 C Q and set of non-secret states Q5 = Q\ Q5.
An equivalence relation ~, C Q x Q is called an opaque
observation equivalence on G with respect to Q5, if the
following holds for all x1,x; € Q such that x| ~, x:

() if x; = y1 for some s € £*, then there exists y, € Q such
that x; = y5, and yi ~ y2,
(ii) x; € Q% if and only if x, € Q5.

In this paper bisimulation is used to abstract the observer
of a nondeterministic system. Similarly to opaque observa-
tion equivalence, opaque bisimulation is defined.

Definition 17: Let G = (10,0, —,0°), where Y, =
Y U X,,, be a nondeterministic automaton with set of secret
states Q5 C Q and set of non-secret states QNS = Q\QS
Let det(G) = (X, Xops, —>obs, X, be the observer of G. An
equivalence relation =2,C X, X X,ps is called an opaque
bisimulation equivalence on det(G) with respect to Q5, if
the following holds for all X;,X, € X,ps such that X; ~, X»:

Q) if X; =>,ps ¥) for some s € £*, then there exists Y» € X,ps
such that X, i>0bs X5, and Y| =, V>,
(i) X; C Q% if and only if X, C Q5.

Fig. 2 gives an overview of the methodology to construct
an abstraction-based AES. The input to the algorithm is a
nondetermistic automaton G. The algorithm first abstracts
G using opaque observation equivalence. This results in
G, which has fewer (or the same) states and transitions
as compared with G. Since the computational complexity
of calculating the observer of G is 22, merging states can
potentially reduce the complexity significantly. Next, opaque
bisimulation and bisimulation are applied to the observer
of G, det(G), resulting in abstracted deterministic automata
H,, and Hp, respectively. Next, H,, is used to calculate the

Fig. 3.

Automata of Examples 2-3.

desired observer of the abstracted system, H,,;. The final
step is to calculate the AES from the abstracted observer H),
and the abstracted desired observer H,,,. It will be shown
that the abstracted AES embeds all the possible edit functions
that enforce opacity of the system.

The first step of the abstraction-based AES algorithm is to
abstract the system using opaque observation equivalence. It
has been shown in [11] that if two automata are bisimilar,
then their observers are also bisimilar. In this paper this result
is extended: abstracting a nondeterministic automaton using
opaque observation equivalence results in an observer and a
desired observer which are bisimilar to the original system’s
observer and the desired observer, respectively.

Theorem 4: Let G = (X1,0,—,0°), where X, =
Y U X,,, be a nondeterministic automaton with set of secret
states Q5 C Q and set of non-secret states Q"5 = Q\ Q5. Let
~o be an opaque observation equivalence on G resulting in
G and let ~ be a bisimulation. Let dety(G) and detd(G) be
the desired observer of G and G. Then det(G) ~ det(G) and
dety(G) = del‘d(G).

The need for using opaque observation equivalence and
considering the secrecy status of the merged states is essen-
tial to guarantee bisimilarity between the abstracted desired
observer and the original desired observer.

Example 2: Consider automaton G with set of secret
states 05 = {2} and ¥ = {a,B,y} and ¥,, = {7}, shown
in Fig. 1. States 1 and 3 are opaque observation equivalent
as they are both non-secret states and state 5 can be reached
from both by ignoring the unobservable event 7. Thus, 1
and 3 can be merged. A similar argument holds for states 4
and 5. Merging the equivalent states results in G shown in
Fig. 3. Since G is deterministic, then det(G) is isomorphic to
G. Since {2} C @% it should be removed when calculating

det;(G). The desired observer dety(G) is shown in Fig. 3
as Hy,. It can be observed that H; is bisimilar, in fact
isomorphic, to det;(G), shown in Fig. 1.

Opaque observation equivalence seeks to merge the states
of a nondeterministc automaton before the construction of
the observer. After calculating the observer it is possible
to abstract the observer further using opaque bisimulation.
This can guarantee construction of the smallest observer that
generates the same language as the original observer. Then
Theorem 5 shows that if opaque bisimulation is used to
abstract the observer of an automaton then the abstracted
desired observer is bisimilar to the original desired observer.

Theorem 5: Let G = (X,,,0,—,0°), where X, =
Y U X,,, be a nondeterministic automaton with set of secret
states Q5 C Q and set of non-secret states Q5 = Q\ Q5.
Let ~, be an opaque bisimulation on det(G) resulting in

det(G). Let detq(G) and Hy be the desired observers of

det(G) and det(G), respectively. Then det;(G) ~ H;, where
~ is a bisimulation relation. _

Proof Since det(G) ~, det(G), based on Def. 17 it holds
that det(G) o X if and only if det(G) = [X'] and X € [X'].
Thus, it is enough show that X & X 4er,(c) if and only if
(X' & Xobs,H,» where X € [X'].

First assume X C Q°, which mean X ¢ Xobs,dety(G)- Then
since X € [X'] based on Def. 17 it holds that VX’ € [X'], X' C
Q5. This means [X'] C Q% and consequently [X'] & Xops p1,-

Now assume [X'] C 05, which mean [X'] & X,ps ,. Then
since X € [X'] based on Def. 17 it holds that X C Q5. This
means X & Xops der, (G)- |

So far, we have shown that after opaque observation
equivalence, the resulting observer and desired observer
are bisimilar to the original observer and desired observer,
respectively. Moreover, in Theorem 5, it was proven that
opaque bisimulation can be used to abstract an observer and
then the abstracted desired observer will be bisimilar to the
original desired observer. Therefore, based on Corollary 3,
it can be established that opaque observation equivalence
and opaque bisimulation can be used to abstract a nonde-
terministic system and its observer to reduce computational
complexity. This result is shown in the following theorem.

Theorem 6: Let G be a nondeterministic automaton with
set of secret states Q5. Let det(G) and dety(G) be the
observer and the desired observer of G, respectively, and
let AES be the All Edit Structure of G. Let ~, be an opaque
observation equivalence on G resulting in G. Let ~, and ~
be opaque bisimulation and bisimulation on det(G), resulting
in H,, and H,, respectively, such that H,, ~, det(G) and
H), ~ det(G). Let H,;4 be the desired observer obtained from
H,;, and let AES,;, be the All Edit Structure obtained from
H,pq and Hp. Then f, € AES if and only if f, € AES ;.

Proof The proof follows directly from Theorem 4 and 5
in combination with Corollary 3.

Example 3: Consider automaton G with set of secret
states 05 = {2}, £ = {«,B,y} and ¥,, = {7}, shown in
Fig. 1. As it was shown in Example 2, G can be ab-
stracted using opaque observation equivalence. The resulting

abstracted automaton G is shown in Fig. 3. The next step
is to calculate the observer of G. Since G is determinisitic
det(G) is isomorphic to G. Next, opaque bisimulation is
applied to det(G), resulting in automaton H,. States 2 and
[3] are bisimilar but not opaque bisimilar as [3] £ Q5 and
2 C Q5. Thus, H,, and det(G) are the same. Next, the
desired observer H,; is obtained by removing state 2 from
H,,. Hypq is shown in Fig. 3 as H;. After calculating the
desired observer automaton, det(G) can be abstracted further
using bisimulation, resulting in Hj, shown in Fig. 3. The
final step is to calculate AES,,s from H,,; and Hj. Fig. 3
shows AES,ps, and Fig. 1 shows AES, which is the All Edit
Structure of the original system. Comparing AES and AES s,
it can be observed that AES,;,; and AES embed the same edit
functions while AE'S has 24 states and AES,;,, has 16 states.

V. CONCLUSION

We investigated abstraction-based synthesis of edit func-
tions for opacity enforcement based on the All Edit Structure.
The AES is a game-like structure that embeds all valid
edit functions that can be used to make a non-opaque
system opaque. To mitigate the computational complexity
of constructing the AES, we defined two bisimulation-based
abstractions that account for the secrecy status of states:
opaque observation equivalence and opaque bisimulation.
We presented a methodology that employs these abstractions
to reduce the size of the original system model and of its
observer, in the process of synthesizing a reduced AES that
still embeds all valid edit functions. It would be of interest to
investigate in the future how abstraction methods should be
adapted when there are constraints on edit functions that arise
when synthesizing the AES. Moreover, developing scalable
benchmarks to quantify the performance gains from these
abstraction methods is also of interest.

REFERENCES

[1] R. Jacob, J.-J. Lesage, and J.-M. Faure, “Overview of discrete event
systems opacity: Models, validation, and quantification,” Annual Re-
views in Control, 2016.

[2] A. Saboori and C. Hadjicostis, “Notions of security and opacity in
discrete event systems,” in Decision and Control, 2007 46th IEEE
Conference on. 1EEE, 2007, pp. 5056-5061.

[3] Y-C. Wu and S. Lafortune, “Synthesis of insertion functions for
enforcement of opacity security properties,” Automatica, vol. 50, no. 5,
pp. 1336-1348, 2014.

[4] Y. Ji and S. Lafortune, “Enforcing opacity by publicly known edit
functions,” in 56th 17, Dec. 2017, pp. 4866—4871.

[5] Y.-C. Wu, V. Raman, B. C. Rawlings, S. Lafortune, and S. A. Seshia,
“Synthesis of obfuscation policies to ensure privacy and utility,”
Journal of Automated Reasoning, vol. 60, pp. 107-131, 2018.

[6] Y. Ji, Y.-C. Wu, and S. Lafortune, “Enforcement of opacity by public
and private insertion functions,” Automatica, vol. 93, pp. 369-378,
2018.

[7]1 Y. Ji, X. Yin, and S. Lafortune, “Opacity enforcement by insertion
functions under energy constraints,” in Proceedings of the 14th Inter-
national Workshop on Discrete Event Systems, 2018, pp. 291-297.

, “Opacity enforcement using nondeterministic publicly-known

edit functions,” IEEE Trans. on Auto. Control, under review, 2018.
[91 R. Milner, Communication and concurrency, 1989.

[10] K. Zhang and M. Zamani, “Infinite-step opacity of nondeterministic
finite transition systems: A bisimulation relation approach,” in 56st
2017, Dec. 2017, pp. 5615-5619.

[11] J. Rutten, “Automata and coinduction (an exercise in coalgebra),” in
9th *98, vol. 1466, 1998, pp. 194-218.

[8]

