
Efficient Synthesis of Edit Functions for Opacity Enforcement Using
Bisimulation-Based Abstractions

Sahar Mohajerani, Yiding Ji and Stéphane Lafortune

Abstract— This paper investigates the synthesis of edit func-
tions for opacity enforcement using abstraction methods to
reduce computational complexity. Edit functions are used to
alter system outputs by erasing or inserting events in order
to prevent violations of opacity. We introduce two abstraction
methods, called opaque observation equivalence and opaque
bisimulation, that are used to abstract the original system and
its observer before calculating edit functions. We present a set
of results on abstraction for opacity and its enforcement by
edit functions that prove that edit functions synthesized from
abstracted models are “equivalent” to ones synthesized from
original ones. Our approach leverages the technique of edit
function synthesis using the All Edit Structure from prior works.

Index Terms— Finite-state automata, abstraction, opacity,
edit function.

I. INTRODUCTION

Opacity is a security property that characterizes whether
the integrity of system secrets can be preserved from the
inference of an outside intruder, potentially with malicious
purposes. The intruder is modeled as an observer with
knowledge of the system’s structure. A system is called
opaque if the intruder is unable to infer any of the system’s
secrets from its observations using model-based inferencing.
For systems modeled as finite state automata or Petri nets,
various notions of opacity have been studied and the survey
paper [1] summarizes recent results on opacity in discrete
event systems (DES). In this paper, we consider automata
models and current-state opacity [2].

When opacity does not hold, it is natural to study its
enforcement. Several mechanisms have been considered for
this purpose; see [1]. We consider the technique of opac-
ity enforcement using insertion or edit functions, initially
proposed in [3] and further developed in [4]–[7]. An edit
function works as an interface between the system’s output
and the intruder’s observations; it may manipulate the output
of the system by erasing events of by inserting fictitious
events to obfuscate the intruder.

Recently, the work [8] revisited the synthesis of edit func-
tions using a three-player game-like discrete structure called
the All Edit Structure (AES), which provably embeds all
opacity-enforcing edit functions. This structure is constructed
as a so-called “three-player observer” from the system model

The work of the first author was supported by the Swedish Research
Council. The work of the second and third authors was supported in part
by US NSF grant CNS-1421122 and CNS-1738103.

Sahar Mohajerani, Yiding Ji and Stéphane Lafortune are with
the Department of Electrical Engineering and Computer Science
at the University of Michigan, Ann Arbor, Michigan, USA.
{saharm;jiyiding;stephane@umich.edu}

and the opacity enforcement problem is viewed as a three-
player game and solved within the AES. The AES of [8]
is the structure that we will abstract in this paper, by using
bisimulation-based abstractions of the system model and of
its observer.

To construct the AES, the observer and the desired ob-
server of the system need be calculated [3]. The desired
observer is obtained by removing the states of the observer
that are subsets of secret states. Calculating the observer can
potentially be computationally costly. To mitigate this issue,
we investigate abstraction methods that can be used to reduce
the size of the system before calculating its observer and
before calculating the AES. Bisimulation and observation
equivalence [9] are well-known abstraction methods to ab-
stract the state space of an automaton. Bisimulation and ob-
servation equivalence in general cannot be used in an opacity
setting; some adjustments must be made. Abstraction-based
bisimulation was used in [10] to reduce the state space of
the system when verifying infinite-step opacity, a property
that is different from current-state opacity. We introduce
special versions of bisimulation called opaque observation
equivalence and opaque bisimulation, which consider the
secrecy status of states in the bisimulation setting.

In our methodology, the system is first abstracted by
merging some states or removing some transitions using
opaque observation equivalence. Next, the observer of the
abstracted system is calculated. Since the abstraction pro-
cedure reduces the size of the system, the computational
complexity of calculating the observer can potentially be
reduced significantly. In addition, the observer of the system
can be abstracted further using opaque bisimulation, before
calculating the desired observer. We show that the abstracted
observer and the abstracted desired observer are bisimilar
to their original counterparts and that they can be used to
obtain an abstracted AES. We prove that the abstracted AES
calculated in this manner still contains all the edit functions
that can be used to enforce opacity. Therefore, the performed
abstractions preserve the full generality of the AES for the
purpose of edit function synthesis.

The presentation of our results is organized as follows.
Sect. II gives a brief background about edit function and
the AES. Next, Sect. III explains how the abstraction-based
AES can be obtained. Then, Sect. IV defines the abstraction
methods that are used and shows how they are leveraged for
AES synthesis. Finally, some concluding remarks are given
in Sect. V. The proof of Theorems 2 and 4 have been omitted
due to space constraints.

II. OPACITY ENFORCEMENT BY EDIT
FUNCTIONS

We need to introduce a good amount of material about
opacity enforcement before we can present our contributions
in the following sections. We consider discrete event systems
modeled by deterministic or nondeterministic automata.

Definition 1: A (nondeterministic) finite-state automaton
is a tuple G = 〈Σtot ,Q,→,Q◦〉, where Σtot is a finite set
of events, Q is a finite set of states, → ⊆ Q×Σtot ×Q is
the state transition relation, and Q◦ ⊆ Q is the set of initial
states. G is deterministic, if |Q◦| ≤ 1 and x σ→ y1 and x σ→ y2
always implies y1 = y2.
We assume that the intruder can only partially observe G.
Thus, Σtot is partitioned into two disjoint subsets: Σ the set
of observable events and Σuo the set of unobservable events,
Σtot = Σ ∪̇ Σuo. Moreover, in opacity problems, the set of
states is also partitioned into two disjoint subset: QS the set
of secret states and QNS =Q\QS the set of non-secret states.

Σ∗ is the set of all finite traces of events from Σ, including
the empty trace ε . The natural projection P : Σ∗tot→ Σ∗ is the
operation that removes from traces t ∈Σ∗tot all events not in Σ,
which means unobservable events. The transition relation is
written in infix notation x σ→ y, and is extended to strings in
Σ∗tot by letting x ε→ x for all x ∈ Q, and x tσ→ z if x t→ y and
y σ→ z for some y∈Q. Furthermore, x t→ means that x t→ y for
some y ∈ Q, and x→ y means that x t→ y for some t ∈ Σ∗tot .
These notations also apply to state sets, X t→Y for X ,Y ⊆Q
means that x t→ y for some x∈ X and y∈Y , and to automata,
G t→ means that Q◦ t→, etc. For brevity, p s⇒ q, with s ∈ Σ∗,
denotes the existence of a string t ∈ Σ∗tot such that P(t) = s
and p t→ q. Similarly, p⇒ q means that there exists t ∈ Σuo

such that p t→ q.
The language of an automaton G is L (G)= {s∈Σ∗ |G s⇒
} and the language generated by G from q∈Q is L (G,q) =
{s ∈ Σ∗ | q s⇒}. For nondeterministic automaton G = 〈Σtot ,
Q,→,Q◦〉, the set of unobservably reached states of B∈ 2Q,
is UR(B) =

⋃
{C ⊆ Q | B⇒ C}. The observer automaton

det(G) = 〈Σ,Xobs,→obs,X◦obs〉 is a deterministic automaton,
where X◦obs =UR(Qo) and Xobs ⊆ 2Q, and X →obs Y , where
X ,Y ⊆Xobs, if and only if Y =

⋃
{UR(y) | x σ→ y for some x∈

X and y ∈ Q}. By convention, in this paper, only reachable
states from X◦obs under →obs are considered in Xobs.

One common automaton operation is the quotient modulo
an equivalence relation on the state set.

Definition 2: Let Z be a set. A relation ∼⊆ Z×Z is called
an equivalence relation on Z if it is reflexive, symmetric,
and transitive. Given an equivalence relation ∼ on Z, the
equivalence class of z ∈ Z is [z] = {z′ ∈ Z | z∼ z′ }, and Z̃ =
{ [z] | z ∈ Z } is the set of all equivalence classes modulo ∼.

Definition 3: Let G = 〈Σtot ,Q,→,Q◦〉 be an automaton
and let ∼⊆ Q×Q be an equivalence relation. The quotient
automaton of G modulo ∼ is

G̃ = 〈Σtot , Q̃,→/∼, Q̃◦〉 , (1)

where →/∼ = {([x],σ , [y]) | x σ→ y} and Q̃◦ = { [x◦] | x◦ ∈
Q◦ }.

Bisimulation is a widely-used notion of abstraction that
merges states with the same future behaviour.

Definition 4: [9] Assume G1 = 〈Σtot,1,Q1,→1,Q
◦
1〉 and

G2 = 〈Σtot,2,Q2,→2,Q
◦
2〉 are two automata. A relation

≈ ⊆ Q1×Q2 is called a bisimulation between G1 and G2
if, for all x1 ∈ Q1 and x2 ∈ Q2 and for all σ ∈ Σ such that
x1 ≈ x2,

if x1
σ→ y1 then ∃y2 ∈ Q2 such that x2

σ→ y2 and y1 ≈ y2,

if x2
σ→ y2 then ∃y1 ∈ Q1 such that x1

σ→ y1 and y1 ≈ y2.

G1 and G2 are bisimilar if there exists a bisimulation ≈
between G1 and G2 such that Q◦1 ≈ Q◦2.

When def. 4 is applied on a single automaton (i.e., over
state space Q×Q), the bisimulation seeks to merge sates
with the same outgoing transitions into equivalence classes,
including outgoing unobservable events. If the unobservable
events are disregarded in bisimulation, a more general ab-
straction method called weak bisimulation or observation
equivalence is obtained.

Definition 5: [9] Let G = 〈Σtot ,Q,→,Q◦〉, where Σtot =
Σ ∪̇ Σuo, be a nondeterministic automaton. An equivalence
relation ∼ ⊆ Q×Q is called an observation equivalence
on G, if the following holds for all x1,x2 ∈Q such that x1 ∼
x2: if x1

s⇒ y1 for some s ∈ Σ∗, then there exists y2 ∈Q such
that x2

s⇒ y2, and y1 ∼ y2.
A system is opaque if an intruder cannot determine with

certainty, from the observed behavior, if the system has
entered a secret state. Different notions of opacity have been
introduced in literature [1]. In this paper only current-state
opacity is considered [2].

Definition 6: A nondeterminitic automaton G with set of
observable events Σtot = Σ ∪̇ Σuo and set of secret states QS

is current-state opaque with respect to QS if and only if

(∀q0 ∈ Qo,∀s ∈L (G,q◦) : q◦ s⇒ QS)

then (∃q′◦ ∈ Qo) such that [q′◦ s⇒ QNS]
The system is current-state opaque if for any string reaching
a secret state, there is a string with the same sequence of
observable event reaching a non-secret state.

It is well-known [1] that current-state opacity can be
verified by building the observer automaton of G.

Definition 7: Let G = 〈Σtot ,Q,→,Q◦〉 be a nondetermin-
istic automaton with set of secret state QS. Let det(G) =
〈Σ,Xobs,→obs,X◦obs〉 be the observer of G. Then G is current-
state opaque with respect to QS if and only if [det(G)→obs
[s]X implies that X 6⊆ QS].
If all the states of the observer det(G) that are violating
current-state opacity are removed, the accessible part of
the resulting subautomaton of det(G) is called the desired
observer, denoted by detd(G). The language generated by
the desired observer is referred to as safe language (w.r.t.
opacity): Lsa f e = L (detd(G)). Accordingly, we define the
unsafe language, Lunsa f e = L (G)\Lsa f e.

If a system is not current-state opaque, then it is possible
to add an output interface called an edit function to enforce
opacity [4], [5], [8]. An edit function can both insert and
erase events and the intruder cannot distinguish between

inserted events and their genuine counterparts. We denote
by Σε = {σ → ε : σ ∈ Σ} the set of “event-erasure” events.

Definition 8: A deterministic edit function is defined as
fe : Σ∗×Σ→ Σ∗Σ∪{ε}. Given s ∈L (G), σ ∈ Σ,

fe(s,σ) =


sIσ if sI is inserted before σ

ε if σ is erased
sI if sI is inserted and σ is erased

In [5] private safety for an edit function is defined,
when the intruder does not know about the edit function’s
implementation.

Definition 9 (Private Safety): [5] Given G and its ob-
server detd(G), an edit function fe is privately safe if ∀s ∈
L (G), fe(s) ∈ Lsa f e, i.e. fe(L (G))⊆ Lsa f e.

Recently, an approach to calculate the All Edit Structure,
or AES, which contains all the opacity-enforcing edit func-
tions, was investigated in [8], building on the work in [3],
[5]. In this approach, a so-called three-player observer of the
system is first calculated, then pruned to obtain the AES. In
this paper, we will follow the approach of the three-player
observer (TPO) to obtain the AES.

Definition 10 (Three-Player Observer): [8] Given a sys-
tem G, its observer det(G) and desired observer detd(G),
let I ⊆ Xobsd × Xobs be the set of information states.
A three-player observer is a tuple of the form T =
(QY ,QZ ,QW ,Σ,Σε ,Θ,→yz,→zz,→zw,→wy,y0), where:

• QY ⊆ I is the set of Y states.
• QZ ⊆ I×Σ is the set of Z states. Let I(z), E(z) denote

the information state component and observable event
component of a Z state z respectively, so that z =
(I(z),E(z)).

• QW ⊆ I × (Σ ∪ Σε) is the set of W -states. Let I(w),
A(w) denote the information state component and action
component of a W state w respectively, so that w =
(I(w),A(w)).

• Σ⊆ Σtot is the set of observable events.
• Σε is the set of event-erasure events.
• Θ⊆ Σ∪{ε}∪Σε is the set of edit decisions at Z states.
(i) →yz: QY ×Σ×QZ is the transition function from Y

states to Z states. For y = (xd ,x f) ∈ QY , eo ∈ Σ, we
have: y eo→yz z⇒ [x f

eo→obs]∧ [I(z) = y]∧ [E(z) = eo].
(ii) →zz: QZ ×Θ×QZ is the transition function from Z

states to Z states. For z = ((xd ,x f),eo) ∈ QZ , θ ∈ Θ,
we have: z θ→zz z′ ⇒ [θ ∈ Σ] ∧ [I(z′) = (x′d ,x f)] ∧
[xd

θ→detd x′d]∧ [E(z′) = eo].
(iii) →zw1: QZ×Θ×QW is the ε insertion transition func-

tion from Z states to W states. For z = ((xd ,x f),eo)∈
QZ , θ ∈ Θ we have: z θ→zw1 w⇒ [θ = ε]∧ [I(w) =
I(z)]∧ [A(w) = eo]∧ [xd

eo→detd]∧ [x f
eo→obs].

(iv) →zw2: QZ × Θ × QW is the event erasure transi-
tion function from Z states to W states. For z =

((xd ,x f),eo)∈QZ , θ ∈Θ, we have: z θ→zw2 w⇒ [θ =

eo→ ε]∧ [I(w) = I(z)]∧ [A(w) = eo→ ε]∧ [x f
eo→obs].

(v) →wy1: QW ×Σ×QY is the transition function from W
states whose action component is in Σ to Y states. For

w = ((xd ,x f),eo) ∈ QW , we have: w eo→wy1 y⇒ [y =

(x′d ,x
′
f)]∧ [xd

eo→detd x′d]∧ [x f
eo→obs x′f].

(vi) →wy2: QW ×Σ×QY is the transition function from W
states whose action component is in Σε to Y states.
For w = ((xd ,x f),eo → ε) ∈ QW , we have: w eo→wy2

y⇒ [y = (xd ,x′f)]∧ [x f
eo→obs x′f].

• y0 ∈QY is the initial Y state where y0 = (xobsd,0,xobs,0).
xobsd,0 and xobs,0 are initial states of detd(G) and det(G),
respectively.

In order to characterize the information flow in a TPO,
the notion of run is defined [8].

Definition 11 (Run): [8] In a three-player observer T , a

run is defined as: ω = y0
e0−→ z1

0
θ 1

0−→ z2
0

θ 2
0−→ ·· ·

θ
m0−1
0−−−→ zm0

0
θ

m0
0−−→

w0
e0−→ y1

e1−→ z1
1

θ 1
1−→ z2

1
θ 2

1−→ ·· ·zm1
1

θ
m1
1−−→ w1

e1−→ y2 · · ·
en−→ z1

n
θ 1

n−→
·· ·zmn

n
θ

mn
n−−→ wn

en−→ yn+1, where y0 is the initial state of T ,
ei ∈Σ, θ

j
i ∈Θ(z j

i), ∀0≤ i≤ n, 1≤ j≤mi and n∈N, mi ∈N+.
For simplicity, similar notation as for automata are used

for TPOs and thus T ω→ x denotes existence of a run in T .
Next, we need to define edit projection and string generated
by a run before we can state the key results we will leverage.

Definition 12 (Edit Projection): [8] Given a run ω =

y0
e0−→ z1

0
θ 1

0−→ z2
0

θ 2
0−→ ·· ·

θ
m0−1
0−−−→ zm0

0
θ

m0
0−−→ w0

e0−→ y1
e1−→ z1

1
θ 1

1−→

z2
1

θ 2
1−→ ·· ·zm1

1
θ

m1
1−−→ w1

e1−→ y2 · · ·
en−→ z1

n
θ 1

n−→ ·· ·zmn
n

θ
mn
n−−→ wn

en−→
yn+1, edit projection Pe : Ω→ P[L (G)] is defined such that
Pe(ω) = e0e1 · · ·en.

Definition 13 (String Generated by a Run): [8] Given a

run ω = y0
e0−→ z1

0
θ 1

0−→ z2
0

θ 2
0−→ ·· ·

θ
m0−1
0−−−→ zm0

0
θ

m0
0−−→ w0

e0−→ y1
e1−→

z1
1

θ 1
1−→ z2

1
θ 2

1−→ ·· ·zm1
1

θ
m1
1−−→ w1

e1−→ y2 · · ·
en−→ z1

n
θ 1

n−→ ·· ·zmn
n

θ
mn
n−−→

wn
en−→ yn+1, the string generated by ω is defined as:

l(ω) = θ 1
0 θ 2

0 · · ·θ
m0−1
0 θ

m0
0 e0θ 1

1 · · ·θ
m1
1 e1 · · ·en−1θ 1

n · · ·θ mn
n en,

where ∀i≤ n, θ
mi
i ei = ε if θ

mi
i = ei→ ε .

Definition 14 (Edit Function Embedded in TPO): [8]
Given TPO T , a deterministic edit function fe is embedded
in T , denoted by fe ∈ T , if ∀s ∈ P[L (G)], ∃ω ∈ ΩT , s.t.
Pe(ω) = s and l(ω) = fe(s).

In this sequel, the only TPO T we will consider is the
largest TPO that satisfies the above definition; i.e., all defined
transitions are included at each state. This structure is well
defined in terms of graph union [8]. After calculating the
largest three-player observer T , the next step is to remove
deadlocking Z-states and W -states, where no transition is
defined [8]. Those deadlocking states are due to infeasible
insertion choices as well as edit decisions that are not allowed
by edit constraints [8]. The three-player observer with no
deadlocking W or Z states is called complete. Since in this
paper we do not have any constraint and the edit function is
always allowed to erase events in its operation, there are no
deadlocking states in the largest three-player observer, which
is identical to the All Edit Structure.

Definition 15 (All Edit Structure): [8] Given system G,
observer det(G), desired estimator detd(G), the All Edit
Structure (AES) is the largest complete three-player observer.

It is shown in [8] that all the edit functions that satisfy private
safety are embedded in the AES. This is analogous to the
result in [3] for insertion functions (i.e., no erasures).

Theorem 1: [4], [5] Given a system and its observer, an
edit function fe is privately safe if and only if fe ∈ AES.
Henceforth, our goal is to build the AES starting from
suitable abstractions of G and det(G).

III. ABSTRACTED ALL EDIT STRUCTURE

This section describes the abstraction-based All Edit Struc-
ture. We show in Corollary 3 below that AESs of bisim-
ilar observers and desired observers embed the same edit
functions. To establish this, Theorem 2 first establishes that
bisimilar observers and desired observers have AESs with
the same runs.

Theorem 2: Let G = 〈Σtot ,Q,→,Q◦〉, where Σtot =
Σ ∪̇ Σuo, be a nondeterministic automaton with set of secret
states QS ⊆ Q and set of non-secret states QNS = Q \QS.
Let Hdet and Hdes be two deterministic automata such that
det(G)≈Hdet and detd(G)≈Hdes, where ≈ is a bisimulation
relation. Let AES be the All Edit Structure of G and let AES′

be the All Edit Structure of Hdet and Hdes. Then AES ω→ q
if and only if AES′ ω→ q̃.

As was reviewed earlier, the AES is the largest three-
player observer under our assumption, and it contains all the
edit functions that can be used to enforce opacity. The fol-
lowing corollary shows that AESs of bisimilar observers and
bisimilar desired observer contain the same edit functions.

Corollary 3: Let G = 〈Σtot ,Q,→,Q◦〉, where Σtot =
Σ ∪̇ Σuo, be a nondeterministic automaton with set of secret
states QS ⊆ Q and set of non-secret states QNS = Q \QS.
Let Hdet and Hdes be two deterministic automata such that
det(G)≈Hdet and detd(G)≈Hdes, where ≈ is a bisimulation
relation. Let AES be the All Edit Structure obtained from
det(G) and detd(G) and let and AES′ be the All Edit
Structure obtained from Hdet and Hdes. Then fe ∈ AES if
and only if fe ∈ AES′.

Proof (⇒) Assume fe ∈ AES. From fe ∈ AES it holds
that ∃s ∈L (G), ∃ω ∈ AES such that Pe(ω) = s and l(ω) =
fe(s). Then based on Theorem 2 it holds that ω ∈ AES′ and
Pe(ω) = s and l(ω) = fe(s). Thus, fe ∈ AES′.
(⇐) The same argument as (⇒) holds. �
The following example is provided to clarify how the AES

is calculated. It will be re-used later.
Example 1: Consider automaton G with secret state QS =

2, Σ = {α,β ,γ} and Σuo = {τ}. Automaton G and its
observer are shown in Fig. 1. The system is not current-state
opaque as by executing event γ the intruder will know that
system is in the secret state 2. Thus, an edit function needs to
be calculated to enforce opacity. State 2 in det(G) is violating
current-state opacity, {2} ⊆ QS, and it is removed when
calculating the desired observer, detd(G). After removing
{2} state {4} becomes unreachable and should also be
removed. The desired observer is shown in Fig. 1. The next
step is to calculate the largest three-player observer, which is
shown in Fig. 1. In the figure Y , Z and W states are shown by
rectangular, oval and diamond, respectively. For simplicity

G

S3S5

S1

S4

S0

S2

b

tau

c

b

a

det(G)

S4

S1

S5

S0

S2

b

c a

b

detd(G)

S13

S0

S5

a

b

(0,0)(0,0),γ

(0,0),
γ → ε

(0,2)

(0,2),β

(13,2),β(0,2),
β → ε

(13,2),β (13,2),
β → ε

(0,4)

(5,4)

(0,0),α

(0,0),
α → ε

(0,13)

(0,13),β

(0,13),
β → ε

(0,5)

(0,0),α

(13,13)

(13,13),β

(13,13),
β → ε

(13,5)

(13,13),β

(5,5)

γ → ε

γ α

β

γ

β → ε

α
α

β
ε

β

β → ε

α → ε

α

β

β → ε

β

ε

α

β

β → ε

β

ε

β

β

Fig. 1. Automata of Example 1 and its corresponding AES.

the observer states in the three-player observer are shown
by their elements, i.e, 0 refers to the state {0}, 13 refers
{1,3}, etc. The initial state of the three-player observer is
y0 = (0,0). At (0,0) the dummy player execute event γ or
α . After executing α , Z state ((0,0),α) is reached. At state
((0,0),α) the edit function can either erase event α , where
the W state ((0,0),α→ ε) can be reached, or take no action,
where the W state ((0,0),α) is reached. When the system
executes event α at the W state ((0,0),α) the Y state (13,13)
is reached. The whole structure is interpreted in a similar
way. The AES is the same as the calculated largest three-
player observer T and can be observed that all the Z and W
states have outgoing transitions.

IV. OPAQUE OBSERVATION EQUIVALENCE

In the previous section it was shown that bisimilar
observers and desired observers produce AESs with the same
edit functions. Following the results of Sect. III, in this
section abstraction methods are introduced to abstract the
system such that the observer and the desired observer of the
abstracted system are bisimilar to their original counterparts.
The abstraction methods are based on bisimulation and
observation equivalence, which are computationally efficient
and can be calculated in polynomial-time. In order to use
observation equivalence for abstraction in the setting of
opacity, the secrecy status of states needs to be considered. In
the following, a restricted version of observation equivalence
called opaque observation equivalence is defined.

Definition 16: Let G = 〈Σtot ,Q,→,Q◦〉, where Σtot =

input : G

G̃

det(G̃)

Hob Hb

Hobd

AESabs

opaque observation
equivalence, Theorem 4

observer

opaque bisimulation,
Theorem 4 and 5 bisimulation

desired observer

AES of Hb and Hobd , Theo-
rem 2, 6 and Corollary 3

Fig. 2. The steps of calculating an abstracted AES of system G.

Σ ∪̇ Σuo, be a nondeterministic automaton with set of secret
states QS ⊆ Q and set of non-secret states QNS = Q \QS.
An equivalence relation ∼o ⊆ Q×Q is called an opaque
observation equivalence on G with respect to QS, if the
following holds for all x1,x2 ∈ Q such that x1 ∼o x2:

(i) if x1
s⇒ y1 for some s∈ Σ∗, then there exists y2 ∈Q such

that x2
s⇒ y2, and y1 ∼o y2,

(ii) x1 ∈ QS if and only if x2 ∈ QS.
In this paper bisimulation is used to abstract the observer

of a nondeterministic system. Similarly to opaque observa-
tion equivalence, opaque bisimulation is defined.

Definition 17: Let G = 〈Σtot ,Q,→,Q◦〉, where Σtot =
Σ ∪̇ Σuo, be a nondeterministic automaton with set of secret
states QS ⊆ Q and set of non-secret states QNS = Q \QS.
Let det(G) = 〈Σ,Xobs,→obs,X◦obs〉 be the observer of G. An
equivalence relation ≈o⊆ Xobs × Xobs is called an opaque
bisimulation equivalence on det(G) with respect to QS, if
the following holds for all X1,X2 ∈ Xobs such that X1 ≈o X2:

(i) if X1
s→obs Y1 for some s∈ Σ∗, then there exists Y2 ∈Xobs

such that X2
s→obs X2, and Y1 ≈o Y2,

(ii) X1 ⊆ QS if and only if X2 ⊆ QS.
Fig. 2 gives an overview of the methodology to construct

an abstraction-based AES. The input to the algorithm is a
nondetermistic automaton G. The algorithm first abstracts
G using opaque observation equivalence. This results in
G̃, which has fewer (or the same) states and transitions
as compared with G. Since the computational complexity
of calculating the observer of G is 2Q, merging states can
potentially reduce the complexity significantly. Next, opaque
bisimulation and bisimulation are applied to the observer
of G̃, det(G̃), resulting in abstracted deterministic automata
Hob and Hb, respectively. Next, Hob is used to calculate the

G̃

S45

S2

S0

S13

b

c

b

a

Hd

S13

S0

S5

a

b

Hb

S13

S0

S45

a

b

c

(A,A)(A,A),γ

(A,A),
γ → ε

(A,B)

(A,B),β

(A,B),
β → ε

(B,B),β

(B,B),β (B,B),
β → ε

(A,C)

(C,C)

(A,A),α

(A,A),
α → ε

(A,A),
α

(B,B)

(B,C)

γ α

β β

γ → ε

γ

β → ε

β

α

α → ε α

α

ε β → ε

β β

α

Fig. 3. Automata of Examples 2-3.

desired observer of the abstracted system, Hobd . The final
step is to calculate the AES from the abstracted observer Hb
and the abstracted desired observer Hobd . It will be shown
that the abstracted AES embeds all the possible edit functions
that enforce opacity of the system.

The first step of the abstraction-based AES algorithm is to
abstract the system using opaque observation equivalence. It
has been shown in [11] that if two automata are bisimilar,
then their observers are also bisimilar. In this paper this result
is extended: abstracting a nondeterministic automaton using
opaque observation equivalence results in an observer and a
desired observer which are bisimilar to the original system’s
observer and the desired observer, respectively.

Theorem 4: Let G = 〈Σtot ,Q,→,Q◦〉, where Σtot =
Σ ∪̇ Σuo, be a nondeterministic automaton with set of secret
states QS ⊆Q and set of non-secret states QNS = Q\QS. Let
∼0 be an opaque observation equivalence on G resulting in
G̃ and let ≈ be a bisimulation. Let detd(G) and detd(G̃) be
the desired observer of G and G̃. Then det(G)≈ det(G̃) and
detd(G)≈ detd(G̃).

The need for using opaque observation equivalence and
considering the secrecy status of the merged states is essen-
tial to guarantee bisimilarity between the abstracted desired
observer and the original desired observer.

Example 2: Consider automaton G with set of secret
states QS = {2} and Σ = {α,β ,γ} and Σuo = {τ}, shown
in Fig. 1. States 1 and 3 are opaque observation equivalent
as they are both non-secret states and state 5 can be reached
from both by ignoring the unobservable event τ . Thus, 1
and 3 can be merged. A similar argument holds for states 4
and 5. Merging the equivalent states results in G̃ shown in
Fig. 3. Since G̃ is deterministic, then det(G̃) is isomorphic to
G̃. Since {2} ⊆ Q̃S it should be removed when calculating

detd(G̃). The desired observer detd(G̃) is shown in Fig. 3
as Hd . It can be observed that Hd is bisimilar, in fact
isomorphic, to detd(G), shown in Fig. 1.

Opaque observation equivalence seeks to merge the states
of a nondeterministc automaton before the construction of
the observer. After calculating the observer it is possible
to abstract the observer further using opaque bisimulation.
This can guarantee construction of the smallest observer that
generates the same language as the original observer. Then
Theorem 5 shows that if opaque bisimulation is used to
abstract the observer of an automaton then the abstracted
desired observer is bisimilar to the original desired observer.

Theorem 5: Let G = 〈Σtot ,Q,→,Q◦〉, where Σtot =
Σ ∪̇ Σuo, be a nondeterministic automaton with set of secret
states QS ⊆ Q and set of non-secret states QNS = Q \QS.
Let ≈o be an opaque bisimulation on det(G) resulting in
d̃et(G). Let detd(G) and Hd be the desired observers of
det(G) and d̃et(G), respectively. Then detd(G)≈Hd , where
≈ is a bisimulation relation.

Proof Since det(G)≈o d̃et(G), based on Def. 17 it holds
that det(G)

s→obs X if and only if d̃et(G)
s→ [X ′] and X ∈ [X ′].

Thus, it is enough show that X 6∈ Xobs,detd(G) if and only if
[X ′] 6∈ Xobs,Hd , where X ∈ [X ′].

First assume X ⊆ QS, which mean X 6∈ Xobs,detd(G). Then
since X ∈ [X ′] based on Def. 17 it holds that ∀X ′ ∈ [X ′], X ′ ⊆
QS. This means [X ′]⊆ QS and consequently [X ′] 6∈ Xobs,Hd .

Now assume [X ′] ⊆ QS, which mean [X ′] 6∈ Xobs,Hd . Then
since X ∈ [X ′] based on Def. 17 it holds that X ⊆ QS. This
means X 6∈ Xobs,detd(G). �

So far, we have shown that after opaque observation
equivalence, the resulting observer and desired observer
are bisimilar to the original observer and desired observer,
respectively. Moreover, in Theorem 5, it was proven that
opaque bisimulation can be used to abstract an observer and
then the abstracted desired observer will be bisimilar to the
original desired observer. Therefore, based on Corollary 3,
it can be established that opaque observation equivalence
and opaque bisimulation can be used to abstract a nonde-
terministic system and its observer to reduce computational
complexity. This result is shown in the following theorem.

Theorem 6: Let G be a nondeterministic automaton with
set of secret states QS. Let det(G) and detd(G) be the
observer and the desired observer of G, respectively, and
let AES be the All Edit Structure of G. Let ∼o be an opaque
observation equivalence on G resulting in G̃. Let ≈o and ≈
be opaque bisimulation and bisimulation on det(G̃), resulting
in Hob and Hb, respectively, such that Hob ≈o det(G̃) and
Hb ≈ det(G̃). Let Hobd be the desired observer obtained from
Hob and let AESabs be the All Edit Structure obtained from
Hobd and Hb. Then fe ∈ AES if and only if fe ∈ AESabs.

Proof The proof follows directly from Theorem 4 and 5
in combination with Corollary 3.

Example 3: Consider automaton G with set of secret
states Q̃S = {2}, Σ = {α,β ,γ} and Σuo = {τ}, shown in
Fig. 1. As it was shown in Example 2, G can be ab-
stracted using opaque observation equivalence. The resulting

abstracted automaton G̃ is shown in Fig. 3. The next step
is to calculate the observer of G̃. Since G̃ is determinisitic
det(G̃) is isomorphic to G̃. Next, opaque bisimulation is
applied to det(G̃), resulting in automaton Hob. States 2 and
[3] are bisimilar but not opaque bisimilar as [3] 6⊆ Q̃S and
2 ⊆ Q̃S. Thus, Hob and det(G̃) are the same. Next, the
desired observer Hobd is obtained by removing state 2 from
Hob. Hobd is shown in Fig. 3 as Hd . After calculating the
desired observer automaton, det(G̃) can be abstracted further
using bisimulation, resulting in Hb, shown in Fig. 3. The
final step is to calculate AESabs from Hobd and Hb. Fig. 3
shows AESabs, and Fig. 1 shows AES, which is the All Edit
Structure of the original system. Comparing AES and AESabs,
it can be observed that AESabs and AES embed the same edit
functions while AES has 24 states and AESabs has 16 states.

V. CONCLUSION
We investigated abstraction-based synthesis of edit func-

tions for opacity enforcement based on the All Edit Structure.
The AES is a game-like structure that embeds all valid
edit functions that can be used to make a non-opaque
system opaque. To mitigate the computational complexity
of constructing the AES, we defined two bisimulation-based
abstractions that account for the secrecy status of states:
opaque observation equivalence and opaque bisimulation.
We presented a methodology that employs these abstractions
to reduce the size of the original system model and of its
observer, in the process of synthesizing a reduced AES that
still embeds all valid edit functions. It would be of interest to
investigate in the future how abstraction methods should be
adapted when there are constraints on edit functions that arise
when synthesizing the AES. Moreover, developing scalable
benchmarks to quantify the performance gains from these
abstraction methods is also of interest.

REFERENCES

[1] R. Jacob, J.-J. Lesage, and J.-M. Faure, “Overview of discrete event
systems opacity: Models, validation, and quantification,” Annual Re-
views in Control, 2016.

[2] A. Saboori and C. Hadjicostis, “Notions of security and opacity in
discrete event systems,” in Decision and Control, 2007 46th IEEE
Conference on. IEEE, 2007, pp. 5056–5061.

[3] Y.-C. Wu and S. Lafortune, “Synthesis of insertion functions for
enforcement of opacity security properties,” Automatica, vol. 50, no. 5,
pp. 1336–1348, 2014.

[4] Y. Ji and S. Lafortune, “Enforcing opacity by publicly known edit
functions,” in 56th ’17, Dec. 2017, pp. 4866–4871.

[5] Y.-C. Wu, V. Raman, B. C. Rawlings, S. Lafortune, and S. A. Seshia,
“Synthesis of obfuscation policies to ensure privacy and utility,”
Journal of Automated Reasoning, vol. 60, pp. 107–131, 2018.

[6] Y. Ji, Y.-C. Wu, and S. Lafortune, “Enforcement of opacity by public
and private insertion functions,” Automatica, vol. 93, pp. 369–378,
2018.

[7] Y. Ji, X. Yin, and S. Lafortune, “Opacity enforcement by insertion
functions under energy constraints,” in Proceedings of the 14th Inter-
national Workshop on Discrete Event Systems, 2018, pp. 291–297.

[8] ——, “Opacity enforcement using nondeterministic publicly-known
edit functions,” IEEE Trans. on Auto. Control, under review, 2018.

[9] R. Milner, Communication and concurrency, 1989.
[10] K. Zhang and M. Zamani, “Infinite-step opacity of nondeterministic

finite transition systems: A bisimulation relation approach,” in 56st
2017, Dec. 2017, pp. 5615–5619.

[11] J. Rutten, “Automata and coinduction (an exercise in coalgebra),” in
9th ’98, vol. 1466, 1998, pp. 194–218.

