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Abstract

Degradation-with-jump measures are time series data sets containing the information of both

continuous and randomly jumping degradation evolution of a system. Traditional maximum

likelihood estimation and Bayesian estimation are not convenient for such general jump processes

without closed-form distributions. Based on general degradation models derived using Lévy driven

non-Gaussian Ornstein-Uhlenbeck (OU) processes, we propose a systematic statistical method

using linear programing estimators and empirical characteristic functions. The point estimates of

reliability function and lifetime moments are obtained by deriving their explicit expressions. We

also construct bootstrap procedures for the confidence intervals. Simulation studies for a stable

process and a stable driven OU process are performed. In the case study, we use a general Lévy

process to fit the Li-ion battery life data, and then estimate the reliability and lifetime moments

of the battery. By integrally analyzing degradation data series embedded with jump measures, our

work provides the efficient and precise estimation for life characteristics.

Keywords: Non-Gaussian Ornstein-Uhlenbeck, Autoregression (AR) models, Jump measures,

Linear programing estimators, Empirical characteristic functions, Bootstrap, Li-ion battery
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1. Introduction

Unavoidable degradation is one of the major failure mechanisms of many systems. Such

degradation in critical engineering systems (e.g., wind turbines, drilling equipments, power/smart

grids, and mechanical devices) takes the form of aging, corrosion, erosion, fatigue crack,

deterioration or wear that may lead to the loss of structural integrity and catastrophic failure

when it hits a boundary. With advanced measurement tools such as sensors, degradation data

can be measured and collected effectively and economically, e.g., the Li-ion battery capacity data

[8, 23, 44], the integrated circuit propagation delay data [9], the metal fatigue-crack-growth data

[26], and the transistor gain data [42]. The degradation data series over the life cycle reflect the

evolution of the system’s health state that contain more information than the sparse failure time data

for reliable systems. Recently, the reliability estimation/prediction based on degradation measures

[35–38] has gained popularity and become an effective approach, especially when it is costly and

time-consuming to test and collect the failure time data for highly-reliable systems with advanced

and evolving technologies.

In practice, a continuous degradation process commonly experiences complex jumps due

to random damages caused by internal changes (physical, mechanical, thermal, electrical, or

chemical) and external influences (temperature, pressure, humidity, or vibration). For example,

the capacity loss and resistance increase of Li-ion batteries due to aging exhibit random jumps

caused by thermal, electrical, and/or chemical changes. The complex jumps can be consecutive

or sporadic, small or large, or their mixture. Observed from such degradation phenomena,

degradation-with-jump measures are time series data sets containing the information of both

continuous and randomly jumping degradation evolution of a system. In this paper, we develop a
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systematic approach to estimate the parameters in the degradation process using degradation-with-

jump measures, which can then be used to estimate reliability characteristics.

To analyze the degradation data, degradation models using appropriate stochastic processes

need to be developed that can capture the temporal variability property in degradation. A Wiener

process has been used for modeling the degradation without jumps that changes non-monotonically

according to Gaussian laws [24, 43]. Some other degradation models without considering jumps

were studied in [13, 41]. A compound Poisson process has been applied to model a finite number

of jumps that occur according to Poisson laws [18, 32]. A gamma process or an inverse Gaussian

process has been widely used for modeling degradation processes that progress in one direction

with an infinite number of jumps in any finite time interval, assuming the increments follow a

gamma or an inverse Gaussian distribution [39, 40, 45–47]. These existing models, however,

are limited in their assumptions on the certain-distributed and independent increments of the

degradation process of interests.

To relax the assumption on certain-distributed increments, Lévy processes are appropriate to

be used to construct degradation models. They form a broad class of jump processes represented

by a general jump measure called Lévy measure [2, 29]. This measure can model many different

jump mechanisms being of either finite activity (a finite number of jumps in any time interval) or

infinite activity (an infinite number of small jumps in any time interval) [7]. [14] is the first study

to use Lévy processes in degradation analysis. Evolving by independent and stationary increments,

Lévy processes have linear mean paths, i.e., the mean of a Lévy process is linear with respect to

time. Thus they are suitable to model a class of stochastically continuous linear degradation paths

with sporadic jumps that occur at random times and have random sizes [30].

To relax the assumption on independent increments, a functional extension of Lévy processes,
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non-Gaussian Ornstein-Uhlenbeck (OU) processes, can be used in degradation modeling. Non-

Gaussian OU processes (OU processes driven by Lévy processes) are generalisation of ordinary

OU processes by replacing the background driving Wiener processes with non-Gaussian Lévy

processes (i.e., Lévy processes without Gaussian part; e.g., positive tempered stable processes) [3–

5]. With the autoregressive structure, non-Gaussian OU processes evolve by dependent increments,

resulting in nonlinear mean paths, which enables them to model a class of nonlinear degradation

with random jumps [31].

To utilize the degradation models constructed using Lévy or non-Gaussian OU processes

in [31], it is important to estimate the parameters of the underlying stochastic process using

degradation data series, in order to further estimate/predict the reliability characteristics. The

certain distribution of independent increments in existing models (Gaussian, Poisson, gamma,

or inverse Gaussian) makes the statistical inference straightforward by using the likelihood

function or Bayesian approach. For general Lévy and non-Gaussian OU processes, however,

the traditional maximum likelihood estimation and Bayesian estimation are not convenient as

the closed-form distributions are not available for such general jump processes. [15] provided a

highly comprehensive and thorough treatment of Lévy processes in finance, covering Lévy models,

simulation and estimation. [3] showed that it is not straightforward to implement traditional

likelihood-based estimation procedures for the non-Gaussian OU-based model, although various

moment-based methods are simple to use. [33] developed an efficient and explicit estimation

procedure for non-Gaussian OU processes based on their characteristic functions, assuming that

the marginal law belongs to a parametric family indexed by a parameter vector. The approach can

deal with a general class of processes having both positive and negative jumps. The peculiar

form of the characteristic functions of non-Gaussian OU processes and its relation with the
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characteristic functions of the underlying Lévy process were exploited in [34]. Based on the

inversion of the characteristic function, they provided fast and reliable simulation procedures

for OU processes. Simulation-based estimation procedures for non-Gaussian OU processes were

discussed in [21, 22, 28]. The approximate results were often implemented since it is difficult to

accurately simulate the jumps in the corresponding Lévy processes.

In this paper, we propose a systematic statistical inference method using linear programming

estimators and empirical characteristic functions to estimate the parameters in the stochastic

degradation models. The point estimates of reliability function and lifetime moments are then

obtained by deriving their explicit expressions. Bootstrap procedures are also constructed for

estimating the confidence intervals. To demonstrate the effectiveness of our proposed inference

procedures, we use the capacity loss data of Li-ion batteries from randomized battery usage tests

[8]. Our results are expected to provide accurate reliability estimation by constructing general

stochastic models and providing systematic inference procedures.

The organization of this paper is as follows. In Section 2, we introduce our degradation and

reliability models based on Lévy and non-Gaussian OU processes, respectively. In Section 3, we

construct estimation procedures for the corresponding processes, including both point estimates

and confidence intervals. Simulation studies are performed in Section 4 to demonstrate the

advantages of the proposed method. Case study for battery degradation data is illustrated in Section

5. Finally, concluding remarks are made in Section 6.

2. Stochastic Models

We consider a system subject to degradation with random jumps, which is a process of

stochastically continuous degradation with jumps that occur at random times and have random
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sizes. The scenarios of jumps include 1) consecutive small, 2) sporadic big/small, and 3) their

mixture. We handle this complexity using a general random jump measure, instead of a certain

probability measure that is used in the literature.

Lévy subordinators are the class of Lévy processes with nondecreasing sample paths. Based

on Lévy-Itô decomposition [2], a Lévy subordinator Xs (t) can be expressed as

Xs(t) = bt+

∫
0<y<1

y
(
J (t, dy)− ν (dy) t

)
+

∫
y≥1

yJ (t, dy), (1)

where b is a constant on R+, and J (t, dy) is a Poisson random measure with an intensity measure

(Lévy measure) ν (dy) t, satisfying ν({0}) = 0,
∫
R+min{1, y}ν (dy) <∞. In (1), the continuous

degradation is modeled by
(
b−

∫
0<y<1

yν (dy)
)
t ≥ 0, and the random jumps are modeled by the

Poisson random measure
∫
R+ yJ (t, dy).

We can specify different forms of Lévy measures to model different complex jump

mechanisms. If we specify ν(dx) = αx−1e−βxdx for small jumps in an infinitesimal time interval,

then the Lévy subordinator in (1) is a temporally homogeneous gamma process (a gamma process

with stationary increments) G (t), with a density fG(t) = Ga (x|αt, β) = βαtxαt−1e−βx

Γ(αt)
, x > 0, t >

0. G (t) has an infinite number of small jumps in a finite time interval, thus having infinite activity.

The inverse Gaussian process has the similar feature, but with more very small jumps than G (t),

since its Lévy density ν(dx)/dx approaches to infinity faster than the gamma process does as x

goes to zero. Another case is the positive stable process whose probability distribution does not

have a closed-form expression. For big jumps occurring according to the Poisson law, we can

specify ν(dx) = λµJ (dx), and then the Lévy subordinator is a compound Poisson process C (t)

with a jump density λ and a jump size distribution µJ . C (t) has a finite number of jumps over a
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finite time interval, i.e., finite activity. Another example of Lévy subordinators with finite activity is

the negative binomial process. In the negative binomial process, however, the interarrival times of

jumps are not exponentially distributed and the variance of the number of jumps in a time interval

is larger than the corresponding mean [7].
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Figure 1: Sample paths of Lévy subordinators

To demonstrate Lévy subordinators, Figure 1 shows three sample paths of the positive stable

process, the compound Poisson process, and the mixture of both, respectively, where the time

interval length is 1/1000. Notice that the increments of the positive stable process are due to

consecutive infinite small jumps, while the increments of the compound Poisson process are due

to sporadic jumps.

A system fails when the degradation process Xs(t) exceeds a failure threshold x. Using Xs(t),

the lifetime of the system and its moments are defined respectively as Tx = inf{t : Xs(t) >

x}, M(TmX , x) = E(Tmx ). The reliability function is defined as RX (x, t) = P (Tx ≥ t) =

P (Xs (t) ≤ x) = FXs(t) (x). The Laplace transform of RX(x, t) with respect to (w.r.t.) t is

defined to be RL
X(x, ω) =

∫
R+ e

−ωtRX (x, t) dt, ω > 0. And the Laplace transform of RL
X(x, ω)

w.r.t. x is RLL
X (u, ω) =

∫
R+ e

−uxRL
X (x, ω)dx, u > 0. The explicit expressions of RX (x, t) and
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lifetime moments M(TmX , x) in terms of Laplace transform are

RLL
X (u, ω) = u−1

{
ω + b∗u−

∫
R+

(e−uy − 1)ν (dy)

}−1

, (2)

ML(TmX , u) = m!u−1

{
b∗u−

∫
R+

(
e−uy − 1

)
ν (dy)

}−m
, (3)

where b∗ = b−
∫

0<y<1
yν (dy) is a constant on R+, and ν is the Lévy measure [31].

A non-Gaussian OU process Y (t) is the solution of a stochastic differential equation driven by

Xs(t):

dY (t) = αY (t) dt+ dXs (t) . (4)

The increment of Y (t) depends on the current state, reflecting many degradation phenomena.

As a functional extension of Lévy subordinator, the non-Gaussian OU process can be expressed as

Y (t) = eαtY (0) +

∫ t

0

eα(t−ξ)dXs(ξ).

Y (0) represents the initial state of the degradation, and we assume Y (0) = 0 as many new

systems have not accumulated degradation when they are firstly operated. We assume α > 0,

which guarantees that the degradation process is non-decreasing [31].

Y (t) =

∫ t

0

eα(t−ξ)dXs(ξ)

=

∫ t

0

eα(t−ξ)
(
bdξ +

∫
0<y<1

y
(
J(dξ, dy)− ν(dξ, dy)

)
+

∫
y≥1

yJ (dξ, dy)

)
=

1

α
(eαt − 1)

(
b−

∫
0<y<1

yν (dy)

)
+

∫ t

0

eα(t−ξ)
∫
R+

yJ (dξ, dy).

(5)
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In (5), the continuous degradation part is modeled by 1
α

(eαt − 1)
(
b−

∫
0<y<1

yν (dy)
)

, and

the random jumps are modeled by the Poisson random measure
∫ t

0
eα(t−ξ) ∫

R+ yJ (dξ, dy). As

illustrated in Figure 2, the mean degradation path of Y (t) is exponential w.r.t t, while the mean

path of Xs(t) is linear shown in Figure 1.
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Figure 2: Sample paths of Lévy driven OU processes

Based on Y (t), the definitions of lifetime, moments and reliability function are Ty = inf{t :

Y (t) > y}, M(TmY , y) = E(Tmy ), and RY (y, t) = P (Ty ≥ t) = P (Y (t) ≤ y) = FY (t) (y). The

explicit expressions of RY (y, t) and lifetime moments M(TmY , y) in terms of Laplace transform,

represented by Lévy measures, are presented in (6) and (7). The detailed proofs are provided in

[31].

RLL
Y (u, ω) = −u−1

∫ ∞
u

eF (v,u,ω)g(v)dv, (6)

ML(TmY , u) = (−1)mu−1mα1−m
∫ ∞
u

(lnu− lnv)m−1 eF (v,u)g(v)dv, (7)

where F (v, u, ω) =
∫ u
v
f(v′, ω)dv′, f(v, ω) =

(
ω + b∗v −

∫
R+ (e−vz − 1)ν (dz)

)
/αv, F (v, u) =∫ u

v
f(v′)dv′, f(v) =

(
b∗v −

∫
R+ (e−vz − 1)ν (dz)

)
/αv, and g(v) = −1/αv. In addition, b∗ =

b−
∫

0<z<1
zν (dz) is a constant on R+, and ν is the Lévy measure.
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3. Estimation

The explicit formulae in (2) (3) (6) (7) provide a convenient tool to estimate the reliability

function and lifetime moments for degradation processes with random jumps. In this section, we

present the estimation methods for the parameters in Xs(t) and Y (t) using degradation-with-jump

measures.

The probability density function of a general Lévy subordinator is not available in a closed-

form. Thus the traditional maximum likelihood estimation and Bayesian estimation are not

convenient for such general jump processes and their functional extensions. Based on the

characteristic function of Lévy subordinator, we propose to use the cumulant M-estimator (CME)

[25] and bootstrap method to construct the point estimates and confidence intervals for life

characteristics.

3.1. Estimation for Lévy Degradation Processes

Based on Lévy Khintchine formula, a Lévy subordinator Xs (t) has the characteristic function:

φXs(t) (u) = E
(
eiuXs(t)

)
= etηs(u),

where

ηs (u) = ib∗u+

∫
R+

(
eiux − 1

)
ν (dx)

is the Lévy symbol.

3.1.1. Point Estimates

Due to the property of independent and identically distributed increments, the CME can achieve

a consistent estimator using a single degradation path with enough data points. When multiple
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degradation paths are available from the same population, all the paths can be used to do estimation

for more accurate results.

A degradation path can be discretized as ~xn = (x1∆, x2∆, . . . , xn∆), where ∆ is the step of

the discretely measured data series. We denote Θ as the parameter vector in ηs (u), i.e., ηs (u) ≡

ηs (u; Θ), φXs(1) (u) ≡ φXs(1) (u; Θ). The Lévy symbol ηs (u) = logφXs(1) (u), is also called the

cumulant function.

We choose a preliminary estimator φ̂Xs(∆) (u; ~xn), either almost surely

φ̂Xs(∆) (u; ~xn)
a.s.−−→ φXs(∆) (u; Θ) ,

or in probability

φ̂Xs(∆) (u; ~xn)
P−−→ φXs(∆) (u; Θ) ,

as n→∞.

Definew() as an integrable weight function with compact support. w() is symmetric around the

origin and is strictly positive on a neighbourhood of the origin. For example, w(u) = Iu∈[−l,l], l >

0, or w(u) = e−u
2 .

The space of square integrable functions w.r.t w is

z2(w) =
{
f : R→ C|f is measurable and

∫
|f(u)|2w(u)du <∞

}
,

where C is the complex space.
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The semi-inner product (f1, f2)w on z2(w) is defined as

(f1, f2)w = <
∫
f1(u)f2(u)w(u)du,

where f2(u) is the complex conjugate of f2(u), and <f is the real part of f . The semi-norm on

z2(w) is defined as ||f ||w = (f, f)
1
2
w.

The CME is

Θ̂n = argmin
Θ

D(Θ; ~xn), (8)

where D(Θ; ~xn) is the weighted difference between cumulants:

D(Θ; ~xn) = ||logφ̂Xs(∆) (u; ~xn)− logφXs(∆) (u; Θ) ||2w

=

∫
|logφ̂Xs(∆) (u; ~xn)− logφXs(∆) (u; Θ) |2w(u)du

=

∫
∆2|η̂s (u; ~xn)− ηs (u; Θ) |2w(u)du.

With Θ̂n, the point estimators of reliability function and lifetime moments in (2) and (3),

R̂X(x, t) and M̂(TmX , x), can be obtained by inverting R̂LL
X (u, ω; Θ̂n) and M̂L(TmX , u; Θ̂n),

respectively.

When we have multipe sample paths ~xjnj = (xj1∆, x
j
2∆, . . . , x

j
nj∆

), j ∈ {1, 2, · · · ,M}, the

CME is

Θ̂ M∑
j=1

nj
= argmin

Θ
D(Θ; ~x1

n1
, ~x2

n2
, · · · , ~xMnM ), (9)

where D(Θ; ~x1
n1
, ~x2

n2
, · · · , ~xMnM ) = ||logφ̂Xs(∆)

(
u; ~x1

n1
, ~x2

n2
, · · · , ~xMnM

)
− logφXs(∆) (u; Θ) ||2w.
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3.1.2. Bootstrap Confidence Intervals

We construct confidence intervals for RX(x, t) and M(TmX , x) based on bootstrap simulation

with the following steps:

1. Obtain Θ̂n or Θ̂ M∑
j=1

nj
by using the CME for one or M sample paths in (8) or (9). The sample

paths can be the real data in practice or the simulated data from Xs(t; Θ) by setting an initial

value for Θ.

2. Generate one sample path ~̈xn = (ẍ1∆, ẍ2∆, . . . , ẍn∆) from Xs(t; Θ̂n), or M sample paths

~̈xjnj = (ẍj1∆, ẍ
j
2∆, . . . , ẍ

j
nj∆

), j ∈ {1, 2, · · · ,M} from Xs(t; Θ̂ M∑
j=1

nj
).

3. Get the bootstrap estimates ˆ̈Θn or ˆ̈Θ M∑
j=1

nj
using the CME, based on ~̈xn = (ẍ1∆, ẍ2∆, . . . , ẍn∆)

or ~̈xjnj = (ẍj1∆, ẍ
j
2∆, . . . , ẍ

j
nj∆

), j ∈ {1, 2, · · · ,M}.

4. Obtain the bootstrap estimates ˆ̈RLL
X (u, ω; ˆ̈Θn) and ˆ̈ML(TmX , u; ˆ̈Θn), or ˆ̈RLL

X

u, ω; ˆ̈Θ M∑
j=1

nj


and ˆ̈ML

TmX , u; ˆ̈Θ M∑
j=1

nj

.

5. Repeat Steps 2-4K times to obtain ˆ̈RLL
X;k(u, ω; ˆ̈Θn) and ˆ̈ML

k (TmX , u; ˆ̈Θn), or ˆ̈RLL
X;k

u, ω; ˆ̈Θ M∑
j=1

nj


and ˆ̈ML

k

TmX , u; ˆ̈Θ M∑
j=1

nj

 , 1 ≤ k ≤ K.

6. Implement the inversion algorithm for Laplace transform to invert ˆ̈RLL
X;k and ˆ̈ML

k , obtaining

ˆ̈RX;k(x, t) and ˆ̈Mk(T
m
X , x), 1 ≤ k ≤ K.

7. Sort ˆ̈RX;k(x, t), 1 ≤ k ≤ K in ascending order for each x and t, obtaining ˆ̈RX;[k](x, t), 1 ≤

k ≤ K. Sort ˆ̈Mk(T
m
X , x), 1 ≤ k ≤ K in ascending order for each x, obtaining

ˆ̈M[k](T
m
X , x), 1 ≤ k ≤ K.

8. Compute the 100(1 − δ)% confidence intervals for RX(x, t): [ ˆ̈RX;[l̇](x, t),
ˆ̈RX;[u̇](x, t)] and
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for M(TmX , x): [ ˆ̈M[l̇](T
m
X , x), ˆ̈M[u̇](T

m
X , x)], where l̇ = Φ(2Φ−1(χ) + Φ−1(δ/2))K, u̇ =

Φ(2Φ−1(χ) + Φ−1(1− δ/2))K , for RX(x, t)

χ =

∑
k

I ˆ̈RX;k(x,t)≤R̂X(x,t)

K
,

for M(TmX , x),

χ =

∑
k

I ˆ̈Mk(TmX ,x)≤M̂(TmX ,x)

K
,

and Φ is the standard normal distribution function used in [26]. ˆ̈RX;[l̇](x, t) and

ˆ̈RX;[u̇](x, t) are approximate pointwise lower and upper one-sided 100(1 − δ/2)% biased-

corrected confidence bounds forRX(x, t); and ˆ̈M[l̇](T
m
X , x) and ˆ̈M[u̇](T

m
X , x) are approximate

pointwise lower and upper one-sided 100(1−δ/2)% biased-corrected confidence bounds for

M(TmX , x) [17].

3.2. Estimation for OU Degradation Processes

3.2.1. Point Estimates

An OU degradation path can be discretized as ~yn = (y1∆, y2∆, . . . , yn∆), where ∆ is the step

of the discretely measured data series. Since the OU process driven by a Lévy subordinator has

dependent increments, the CME cannot be directly used to estimate the parameters (α,Θ) in Y (t).

Three steps are proposed to obtain the point estimates of (α,Θ): (1) estimate α, (2) estimate the

increments of the background driving process, Lévy subordinator, using the estimator of α [11],

and (3) the CME is activated to estimate Θ using the estimated increments. When multipe OU

degradation paths are available from the same population, all the paths can be used to do estimation

following the same procedure.
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The discrete OU process can be expressed as

Yi∆ = eα∆Y(i−1)∆ +

∫ i∆

(i−1)∆

eα(i∆−ξ)dXs(ξ), 1 ≤ i ≤ n,

which is an analogue of the discrete-time first-order autoregression processes (AR(1)) with

nonnegative innovations:

Yi∆ = ρY(i−1)∆ + Zi∆, 1 ≤ i ≤ n,

by setting ρ = eα∆ > 1, and Zi∆ =
∫ i∆

(i−1)∆
eα(i∆−ξ)dXs(ξ). Since Xs(t) is a Lévy subordinator,

Zi∆ is nonnegatively independent and identically distributed. Taking the advantage of the

nonnegativity of the increments of the background driving process, Lévy subordinator, we choose

the following linear programming estimator for ρ:

ρ̂n = min
1≤i≤n

yi∆/y(i−1)∆.

The estimator for α is

α̂n = logρ̂n/∆. (10)

Assuming ρ > 0 and the distribution function F of Zi∆ is regularly varying at zero with

exponent ϑ, (i.e., there exists ϑ > 0 such that lim
a→0

F (ax)
F (x)

= xϑ, x > 0), [16] showed that ρ̂n
a.s.−−→

ρ and developed the asymptotic distributions for both stationary and nonstationary cases. This

estimator has been further studied for the stationary case of autoregressive processes (when 0 <

ρ < 1) [11]. In another way, ρ̂n can be viewed as the solution to the linear programming problem of

maximizing the objective function g(ρ) = ρ subject to n linear constraints yi∆−ρy(i−1)∆ ≥ 0, 1 ≤
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i ≤ n, and therefore, it is called the linear programming estimator [19, 20]. ρ̂n is equal to the

maximum likelihood estimator conditioned on Y0 if Zi∆ is exponentially distributed. [27] showed

that ρ̂n is strongly consistent for a broad range of F , including both light-tailed and heavy-tailed

distributions.

Based on (4), the increment of the Lévy subordinator is

Xi∆ −X(i−1)∆ = Yi∆ − Y(i−1)∆ − α
∫ i∆

(i−1)∆

Y (ξ) dξ.

The estimated increments by the trapezoidal approximation for the integral can be valued as

xi∆ − x(i−1)∆ = yi∆ − y(i−1)∆ − α̂n∆
yi∆ + y(i−1)∆

2
, 1 ≤ i ≤ n.

Then we can estimate Θ in Xs(t) by the CME in (8) using xi∆ − x(i−1)∆, 1 ≤ i ≤ n. With α̂n

and Θ̂n, the point estimators of reliability function and lifetime moments in (6) and (7) are R̂Y (y, t)

and M̂(TmY , y) by inverting R̂LL
Y (u, ω; α̂n, Θ̂n) and M̂L(TmY , u; α̂n, Θ̂n), respectively.

When we have multiple sample paths ~yjnj = (yj1∆, y
j
2∆, . . . , y

j
nj∆

), j ∈ {1, 2, · · · ,M}, we have:

α̂ M∑
j=1

nj
=

log

 min
1≤j≤M
1≤i≤nj

yji∆/y
j
(i−1)∆


∆

, (11)

xji∆ − x
j
(i−1)∆ = yji∆ − y

j
(i−1)∆ − α̂ M∑

j=1
nj

∆
yji∆ + yj(i−1)∆

2
, 1 ≤ j ≤M, 1 ≤ i ≤ nj,

and Θ in Xs(t) can be estimated by the CME in (9).
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3.2.2. Bootstrap Confidence Intervals

We construct confidence intervals for RY (y, t) and M(TmY , y) based on bootstrap simulation.

The steps are:

1. Obtain α̂n or α̂ M∑
j=1

nj
using the linear programming estimator for one or M sample paths in

(10) or (11). The sample paths can be the real data in practice or the simulated data from

Y (t;α,Θ) by setting a value for (α,Θ).

2. Estimate the increments of the background driving Lévy subordinator, obtaining Θ̂n or

Θ̂ M∑
j=1

nj
using the CME in (8) or (9).

3. Generate one sample path ~̈yn = (ÿ1∆, ÿ2∆, . . . , ÿn∆) from Y (t; α̂n, Θ̂n) or M sample paths

~̈yjnj = (ÿj1∆, ÿ
j
2∆, . . . , ÿ

j
nj∆

), j ∈ {1, 2, · · · ,M} from Y (t; α̂ M∑
j=1

nj
, Θ̂ M∑

j=1
nj

).

4. Obtain the bootstrap estimates ( ˆ̈αn,
ˆ̈Θn) or

 ˆ̈α M∑
j=1

nj
, ˆ̈Θ M∑

j=1
nj

 using the CME, based on

~̈yn = (ÿ1∆, ÿ2∆, . . . , ÿn∆) or ~̈yjnj = (ÿj1∆, ÿ
j
2∆, . . . , ÿ

j
nj∆

), j ∈ {1, 2, · · · ,M}.

5. Get the bootstrap estimates ˆ̈RLL
Y (u, ω; ˆ̈αn,

ˆ̈Θn) and ˆ̈ML(TmY , u; ˆ̈αn,
ˆ̈Θn), or ˆ̈RLL

Y

u, ω; ˆ̈α M∑
j=1

nj
, ˆ̈Θ M∑

j=1
nj


and ˆ̈ML

TmY , u; ˆ̈α M∑
j=1

nj
, ˆ̈Θ M∑

j=1
nj

.

6. Repeat Steps 3-5 K times to obtain ˆ̈RLL
Y ;k(u, ω; ˆ̈αn,

ˆ̈Θn) and ˆ̈ML
k (TmY , u; ˆ̈αn,

ˆ̈Θn), or

ˆ̈RLL
Y ;k

u, ω; ˆ̈α M∑
j=1

nj
, ˆ̈Θ M∑

j=1
nj

 and ˆ̈ML
k

TmY , u; ˆ̈α M∑
j=1

nj
, ˆ̈Θ M∑

j=1
nj

 , 1 ≤ k ≤ K.

7. Implement the inversion algorithm for Laplace transform to invert ˆ̈RLL
Y ;k and ˆ̈ML

k , obtaining

ˆ̈RY ;k(y, t) and ˆ̈Mk(T
m
Y , y), 1 ≤ k ≤ K.

8. Sort ˆ̈RY ;k(y, t), 1 ≤ k ≤ K in ascending order for each y and t, obtaining ˆ̈RY ;[k](y, t), 1 ≤

k ≤ K. Sort ˆ̈Mk(T
m
Y , y), 1 ≤ k ≤ K in ascending order for each y, obtaining

ˆ̈M[k](T
m
Y , y), 1 ≤ k ≤ K.
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9. Compute the 100(1 − δ)% confidence intervals for RY (y, t): [ ˆ̈RY ;[l̇](y, t),
ˆ̈RY ;[u̇](y, t)] and

for M(TmY , y): [ ˆ̈M[l̇](T
m
Y , y), ˆ̈M[u̇](T

m
Y , y)], where l̇ = Φ(2Φ−1(χ) + Φ−1(δ/2))K, u̇ =

Φ(2Φ−1(χ) + Φ−1(1− δ/2))K , for RY (y, t)

χ =

∑
k

I ˆ̈RY ;k(y,t)≤R̂Y (y,t)

K
,

for M(TmY , y),

χ =

∑
k

I ˆ̈Mk(TmY ,y)≤M̂(TmY ,y)

K
.

ˆ̈RY ;[l̇](y, t) and ˆ̈RY ;[u̇](y, t) are approximate pointwise lower and upper one-sided 100(1 −

δ/2)% biased-corrected confidence bounds for RY (y, t); and ˆ̈M[l̇](T
m
Y , y) and ˆ̈M[u̇](T

m
Y , y)

are approximate pointwise lower and upper one-sided 100(1 − δ/2)% biased-corrected

confidence bounds for M(TmY , y).

4. Simulation Study

To illustrate our proposed method, we use an interesting Lévy measure

ν(dx) =
κ

Γ(1− κ)

1

xκ+1
dx,

where x > 0, 0 < κ < 1, which represents a positive stable process PS(κ) whose distribution is

in general unknown in closed-form [7]. Notice that if κ is close to 0, the process propagates with

big jumps; and if κ is close to 1, the process evolves with small jumps. The distribution of this

variable is asymmetry and heavy-tailed, i.e., it does not have moments of order κ and above.
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Proposition 1. The characteristic function of PS(κ) is

φX(u) = exp
(
−tcosπκ

2
|u|κ

(
1− itanπκ

2
sgn(u)

))
,

where sgn(u) is the sign function.

Proof.

ηs (u) =

∫
R+

(
eiux − 1

) κ

Γ(1− κ)

1

xκ+1
dx =

κ

Γ(1− κ)

∫
R+

x−κdx
(
−x−1 + x−1eiux

)
=

κ

Γ(1− κ)

∫
R+

x−κdx

∫ 0

−iu
e−yxdy =

κ

Γ(1− κ)

∫ 0

−iu
dy

∫
R+

x−κe−yxdx

= κ

∫ 0

−iu
yκ−1dy = −(−iu)κ =


−(−u)κe

iπκ
2 u < 0

−uκe
−iπκ

2 u > 0

=


−(−u)κ

(
cos

πκ

2
+ isin

πκ

2

)
u < 0

−uκ
(
cos

πκ

2
− isinπκ

2

)
u > 0

= −cosπκ
2
|u|κ

(
1− itanπκ

2
sgn(u)

)

Remark 1. PS(κ) is a class of general stable processes S(κ, β, γ, δ), where κ ∈ (0, 2] is the index

parameter, β ∈ [−1, 1] is the skewness parameter, γ > 0 is the scale parameter, and δ is the shift

parameter. The Lévy symbol of S(κ, β, γ, δ) is ηs (u) = −γκ|u|κ
(
1− iβtanπκ

2
sgnu

)
+ iuδ. Thus

by setting 0 < κ < 1, β = 1, γκ = cosπκ
2

= |1− itanπκ
2
|−1, and δ = 0, we get PS(κ).

In the simulation study, one degradation path is used to illustrate the proposed procedure that

can be also applied for multiple degradation paths. We choose ∆ = 1 without losing the generality.
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The empirical characteristic function φ̂Xs(1) (u; ~xn) = 1
n

n∑
i=1

eiu(xi−xi−1) is used as the preliminary

estimator in (8). The CME of κ is

κ̂ = argmin
κ

||log(
1

n

n∑
i=1

eiu(xi−xi−1))−
−
(
1− itanπκ

2
sgnu

)
|1− itanπκ

2
|

|u|κ||2w,

where w(u) = Iu∈[−L,L] for L > 0.

Table 1: Results of κ̂ for PS(κ)

n mean mean squared error
20 0.8912641 0.003706321
50 0.9029252 0.001141654
100 0.8987184 0.0007026813
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Figure 3: Lévy density of PS(κ); dashed line: estimated values when n=25; solid line: true values

We simulate one path with n data points from PS(κ) by setting κ=0.9, and perform estimation

to obtain κ̂. The optimization problem is solved numerically using a quasi-Newton method. We

repeat the estimation 1000 times to calculate the mean and the mean squared error (MSE) of κ̂.

Table 1 shows the results of κ̂ for PS(κ) based on the simulated data. The mean is closed to 0.9

and the MSE is small. Figure 3 shows the estimated Lévy density, compared with the true Lévy

density of PS(κ).
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Proposition 2. The characteristic function of the OU process driven by PS(κ) is

φY (u) = −(ακ)−1(eακt − 1)cos
πκ

2
|u|κ

(
1− itanπκ

2
sgn(u)

)
.

Proof. For the OU process driven by a general Lévy subordinator, the characteristic function can

be expressed as

E
[
eiuY (t)

]
= exp

{∫ t

0

[
ib∗ueαr +

∫
R+

(
eiue

αry − 1
)
ν (dy)

]
dr

}
.

Then for the OU process driven by PS(κ),

φY (u) = exp

{∫ t

0

∫
R+

(
eiue

αrx − 1
) κ

Γ(1− κ)

1

xκ+1
dr

}
= exp

{∫ t

0

−cosπκ
2
|ueαr|κ

(
1− itanπκ

2
sgn(ueαr)

)
dr

}
= −cosπκ

2

(
1− itanπκ

2
sgn(u)

)
|u|κ

∫ t

0

eαrκdr

= −(ακ)−1(eακt − 1)cos
πκ

2
|u|κ

(
1− itanπκ

2
sgn(u)

)
.

The simulation study is performed using the procedures in Section 3.2. We simulate one path

with n data points from the OU process driven by PS(κ), by setting α = 0.1, κ = 0.9, and perform

estimation to obtain α̂ and κ̂. The estimation is repeated 1000 times to calculate the mean and the

mean squared error (MSE) of α̂ and κ̂, respectively. Table 2 shows the results of α̂ and κ̂ for the OU

driven by PS(κ) based on the simulated data. Figure 4 shows the estimated increments compared

with the true increments of PS(κ). Figure 5 shows the estimated Lévy density compared with the
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true Lévy density of OU driven by PS(κ).

Table 2: Results of α̂ and κ̂ for the OU driven by PS(κ)

α̂ κ̂

n mean mean squared error mean mean squared error
20 0.1101515 0.0001279552 0.8915346 0.006616674
50 0.1087836 9.227509e-05 0.9078137 0.001910659
100 0.1081567 7.684354e-05 0.9060823 0.001126384
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Figure 4: Increments of the background driving PS(κ); dashed line: estimated values when n=50; solid line: true

values
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Figure 5: Marginal Lévy density of OU driven by PS(κ); dashed line: estimated values when n=50; solid line: true

values

When the degradation evolution can be described by this positive stable process, the Laplace
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expression of reliability function based on (2) is

RLL
X (u, ω) = u−1{ω + uκ}−1.

Based on (3), the Laplace expression of lifetime moments is

ML(TmX , u) = m!u−mκ−1.

When the evolution of the degradation can be described by the non-Gaussian OU process driven

by PS(κ), the Laplace expression of reliability function based on (6), is

RLL
Y (u, ω) = α−1uα

−1ω−1eα
−1 1

κ
uκ
∫ ∞
u

v−(α−1ω+1)e−α
−1 1

κ
vκdv.

Based on (7), the Laplace expression of lifetime moments is

ML(TmY , u) = u−1mα−m
m−1∑
a=0

Ca
m−1

(−1)a(lnu)aeα
−1 1

κ
uκ
∫ ∞
u

(lnv)m−1−av−1e−α
−1 1

κ
vκdv.

The inversion algorithms for Laplace transform [1, 10] were implemented to invert Laplace

expressions in order to compute the values of reliability and lifetime moments. Figure 6 and

Figure 7 show the confidence intervals for reliability function at a given failure threshold based on

the bootstrap simulation, in which the sample size is set to be 500. Besides the Lévy measure used

in this example, we can specify different Lévy measures to fit the corresponding degradation data,

in order to analyze reliability and lifetime characteristics.
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Figure 6: 90% confidence interval of reliability function for Xs(t)
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Figure 7: 90% confidence interval of reliability function for Y (t)

5. Case Study

In this section, the proposed method is applied to analyze the degradation data of lithium-ion

batteries from the randomized battery usage test [8]. We choose the capacity data of four 18650
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lithium-ion batteries, which were tested under the room temperature with random charging and

discharging current and time (Figure 8). Statistical test is performed for the presence of jumps

using the bipower variation [6]. The p-value is close to zero, which indicates that there are

significant jumps in the capacity loss processes of such batteries. In other words, a jump process

is suitable to fit these degradation data series.

Figure 8: The capacity losing processes of four 18650 Li-ion batteries

We use a general Lévy process to fit the data that appear to have a linear trend. The

corresponding Lévy measure is

ν(dy) =
δγ−2κκy−κ−1 exp(−1

2
γ2y)

Γ(κ)Γ(1− κ)
dy,

which can cover: (1) the positive tempered stable process, when y, δ > 0, 0 < κ < 1, γ ≥ 0; (2)
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the positive stable process, when y, δ > 0, 0 < κ < 1, γ = 0; (3) the inverse Gaussian process,

when y, δ > 0, 0 < κ < 1, γ = 0.5; and (4) the gamma process, when y, δ > 0, κ → 0, γ > 0.

Using the CME in (9), we obtain δ̂ = 2.9884776, γ̂ = 2.0335391 and κ̂ = 0.1511678. The Laplace

expression of reliability estimator based on (2) is

R̂LL(u, ω) = u−1
{
ω − δ̂γ̂ + δ̂(γ̂

1
κ̂ + 2u)κ̂

}−1

.

Based on (3), the Laplace expression of lifetime moments’ estimator is

M̂L(T n, u) = n!u−1
{
−δ̂γ̂ + δ̂(γ̂

1
κ̂ + 2u)κ̂

}−n
.
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Figure 9: Estimation of reliability function when failure threshold is 0.9
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Figure 10: Estimation of first moments of lifetime w.r.t. failure threshold
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Figure 11: Estimation of standard deviation of lifetime w.r.t. failure threshold
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Figure 13: Comparison result between our method and a regression method without considering the jumps on the

mean failure time prediction
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Figure 9 and 12 show the estimation of reliability function and pdf for the Li-ion batteries,

assuming the failure threshold is 0.9, respectively. In Figure 10, the solid line is the estimated

mean failure time w.r.t. the failure threshold; when the failure threshold is 0.9, the estimated mean

failure time is 53.9719, while the average of failure times of four batteries is 53.5; when the failure

threshold is 1, the estimated mean failure time is 60.068, while the the average of failure times of

four batteries is 62.75. Figure 11 illustrates the estimation of standard deviation of failure time

w.r.t. the failure threshold. Figure 13 shows the comparison result between our method and a

regression method without considering the jumps on the mean failure time prediction, based on the

first 40 data points. The Lévy based prediction is more accurate.

6. Conclusions

In this paper, we construct general stochastic models to integrally handle uncertainties and

jumps using Lévy and non-Gaussian OU processes. Our model can fit a great deal of degradation

data with jumps (e.g., linear/nonlinear, light/heavy-tailed). We developed systematic procedures

for estimating reliability characteristics based on the CME and bootstrap simulation. Our proposed

method provides explicit results for precise reliability analysis.

Lévy processes with non-monotonic paths are suitable to model degradation processes in

systems that have self-healing properties and/or undergo random maintenance actions. These Lévy

processes may contain Gaussian part and/or negative jumps with Lévy measures defined on the

whole R domain, due to which the first passage time of such processes is analytically intractable.

Subsequently, the reliability analysis based on such non-monotonic Lévy processes is interesting

and challenging to be explored.
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[23] K. Hasilová, and D. Vališ, Non-parametric estimates of the first hitting time of Li-ion battery,

Measurement, 2018, 113, 82-91.

[24] G. Jin, and D. Matthews, Reliability demonstration for long-life products based on

degradation testing and a Wiener process model. IEEE Transactions on Reliability 2014,

63(3), 781-797.

32



[25] G. Jongbloed and F.H. van der Meulen, Parametric estimation for subordinators and induced

OU processes, Scandinavian Journal of Statistics, 2006, 33(4), 825-847.

[26] C.J. Lu and W.Q. Meeker, Using degradation measures to estimate a time-to-failure

distribution, Technometrics 1993, 35(2), 161-174.

[27] D. Preve, Linear programming-based estimators in nonnegative autoregression, Journal of

Banking & Finance 2015, 61(2), S225-S234.

[28] G.O. Roberts, O. Papaspiliopoulos, and P. Dellaportas, Bayesian inference for non-Gaussian

Ornstein-Uhlenbeck stochastic volatility processes. J. Roy. Statist. Soc. Ser. B Statist.

Methodol. 2004, 66(2), 369-393.
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[38] D. Vališ, L. Žák, O. Pokora, and P. Lánský, Perspective analysis outcomes of selected

tribodiagnostic data used as input for condition based maintenance, Reliability Engineering

and System Safety 2016, 145(1), 231-242.

[39] J.M. Van Noortwijk, A survey of the application of gamma processes in maintenance,

Reliability Engineering and System Safety 2009, 94, 2-21.

[40] X. Wang and D. Xu, An inverse Gaussian process model for degradation data, Technometrics

2010, 52(2), 188-197.

34



[41] Z. Wang, Y. Zhang, Q. Wu, H. Fu, C. Liu, and S. Krishnaswamy, Degradation reliability

modeling based on an independent increment process with quadratic variance. Mechanical

Systems and Signal Processing 2016, 70-71, 467-483.

[42] G.A. Whitmore, Estimating degradation by a Wiener diffusion process subject to

measurement error, Lifetime Data Analysis 1995, 1, 307-319.

[43] G.A. Whitmore, M.J. Crowder, and J.F. Lawless, Failure inference from a marker process

based on a bivariate Wiener model, Lifetime Data Analysis 1998, 4, 229-251.

[44] B. Xu, A. Oudalov, A. Ulbig, G. Andersson, and D.S. Kirschen, Modeling of Lithium-Ion

Battery Degradation for Cell Life Assessment, IEEE Transactions on Smart Grid 2018, 9(2),

1131-1140.

[45] Z. Ye, M. Xie, L. Tang, and N. Chen, Semiparametric estimation of gamma processes for

deteriorating products, Technometrics 2014, 56(4), 504-513.

[46] Z. Ye, M. Xie, L. Tang, and Y. Shen, Degradation-based burn-in planning under competing

risks, Technometrics 2012, 54(2), 159-168.

[47] Z. Ye, and N. Chen, The inverse Gaussian process as a degradation model, Technometrics

2014, 56(3), 302-311.

35


	Introduction
	Stochastic Models
	Estimation
	Estimation for Lévy Degradation Processes
	Point Estimates
	Bootstrap Confidence Intervals

	Estimation for OU Degradation Processes
	Point Estimates
	Bootstrap Confidence Intervals


	Simulation Study
	Case Study
	Conclusions

