Mean Payoff Supervisory Control under Partial Observation

Yiding Ji, Xiang Yin and Stéphane Lafortune

Abstract— The problem under investigation is mean payoff
supervisory control on a partially observed quantitative discrete
event system modeled by a finite state weighted automaton. We
intend to design a partial-observation supervisor such that the
limit-average weights of all infinite sequences in the supervised
system remain nonnegative. This problem may be viewed as a
two-player quantitative game between the supervisor and the
environment, with asymmetric information and a mean payoff
objective. To cope with partial observation of the supervisor,
we introduce the energy information state which incorporates
information about both state estimate and energy change for
supervisor’s decision making. Based on that, we transfer the
supervisory control problem into a two-player reachability
game under full observation and propose a finite bipartite struc-
ture called First Cycle Energy Inclusive Controller (FCEIC).
Further analysis demonstrates that winning strategies in the
FCEIC lead to solutions to the original control problem.

I. INTRODUCTION

Supervisory control under the framework of discrete event
systems (DES) has been a classic problem since initiated
in [18]. The supervisor is designed to restrict the original be-
havior of the system so that a given specification is achieved.
Ever since that, supervisory control has been thoroughly
studied for various DES models, such as finite state automata,
see, e.g., [18], Petri nets, see, e.g., [7], networked systems,
see, e.g., [21] and other classes of systems.

In the context of DES, due to the limited sensing capabil-
ities, the plant is usually partially observed which gives rise
to supervisory control under partial observation [12]. Many
works fall in this category, see, e.g., [2], [10], [23]. Recently,
a novel approach was developed in [24] and extended in [25]
to synthesize maximal permissive partial-observation super-
visors for enforcing a series of qualitative properties in DES
without assumptions on the relation between controllable
events and observable events.

Besides logical properties, supervisory control of quanti-
tative DES has also been investigated by introducing some
performance measures. Optimal supervisory control is one
problem of particular interest, starting with [15]. Since that,
different frameworks of optimal supervisory control have
been discussed. The work [20] defined event enablement
and disablement costs, then finds a minimum cost controller
by a dynamic programming approach. This framework was
extended in [13] by considering partial observation of the
system. Furthermore, the work [14] studied optimal supervi-
sory control in probabilistic DES and the work [22] proposed

Research supported in part by the US National Science Foundation under
grants CNS-1446298 and CNS-1738103.

Y. Ji and S. Lafortune are with the Department of Electrical Engineering
and Computer Science at the University of Michigan, Ann Arbor, Michigan,
USA. {jiyiding; stephane}@umich.edu

X. Yin is with the Department of Automation, Shanghai Jiao Tong
University, Shanghai, China. {yinxiang}@sjtu.edu.cn

a timed optimal supervisor. All the above works evaluate the
supervisor’s performance for finite behaviors of the system.
In contrast, the work [17] considered optimizing the worst
case limit average weight of the infinite sequences generated
by the controlled system. The problem was formulated and
solved as a mean payoff game between the supervisor and
the environment, under full observation.

In many practical situations, the operation of the system
may generate or consume some resources, €.g., energy. The
specification may be to design a controller such that the long
run average rate of resource gain/cost is above or below
a certain threshold. Also it may not be feasible to sense
every step of the system’s execution thus the designer only
has partial information of the system. Motivated by these
considerations, we investigate supervisory control with a
mean payoff objective under partial observation. To the best
of our knowledge, there is no prior research on this topic.

In this work, the goal of the supervisor is to prevent
all infinite behaviors of the system that violate the mean
payoff objective. Besides, the supervised system should be
non-terminating so that it may execute events perpetually.
To achieve these goals, we define energy information states,
which incorporate necessary information about the system’s
state and payoff for supervisor’s decision making. Then we
transfer the proposed problem into a two-player reachability
game [1] between the supervisor and the “environment” (aka
system) on a finite information structure. The structure is
called First Cycle Energy Inclusive Controller (FCEIC) and
by construction, we show that the winning strategies for
the supervisor in the FCEIC correspond to solutions for our
problem. The FCEIC is inspired by the information structure
in [9] for the different problem of opacity enforcement.

Our work is also inspired by quantitative game theory
in theoretical computer science, especially mean payoff
games [6]. A mean payoff game is an infinite-duration turn-
based two-player game on a weighted graph. The two players
take turns to play by selecting an outgoing edge at their
positions, resulting in an infinite path. The objective of the
first player is to enforce the limit average weight of the
traversed edges above a given threshold while the second
player is to do the opposite, thus the game is zero sum
in general. Well structured solutions were proposed with
complexity analyzed for mean payoff games of perfect in-
formation [6], where both players have complete knowledge
of their opponent’s moves and positions up to the current
state. What is more challenging is a mean payoff game with
imperfect information where one player may be absent from
the complete decision history of the other player [4]. Such
games are in general undecidable [5] and some decidable
classes are presented in [8], which motivates our restrictions

on the system in this work. Finally, the work [16] also
discussed supervisory control in a game framework, namely
fixed-initial-credit energy game under partial observation.

The following sections are organized as follows. Section II
describes the system model. In Section III, we make some
assumptions on the system and formulate the mean pay-
off supervisory control problem under partial observation.
Section IV introduces energy information states and the
First Cycle Energy Inclusive Controller (FCEIC). Section V
analyzes some properties of the FCEIC and shows that the
winning control strategies in the FCEIC lead to solutions
of the proposed problem in Section III. Finally, Section VI
concludes the paper.

II. SYSTEM MODEL

We consider supervisory control in a quantitative discrete
event system modeled as a weighted finite-state automaton:

G=(X,E,f,x,0) (D

where X is the finite state space, E is the finite set of events,
f:X xE — X is the partial transition function, xy € X is the
initial state, @ : E — Z is the weight function that assigns
an integer to each event. We view the weight of an event
as the energy payoff in this work. A positive number stands
for energy gain while a negative number stands for energy
cost. For the sake of calculation in the following discussion,
we assume the system’s initial energy is 0. The transition
function is extended to X x E* in the standard manner and
we still denote the extended function by f. The language
generated by G is defined as £(G) = {s € E* : f(xo0,5)!}
where | means “is defined”. We denote by s < u if string s
is a prefix string u, and s < u if s < u,s # u. The function @
is additive and its domain can be extended to E* by letting
w(e) =0, w(se,) = w(s)+w(e,) for s € E* and e € E. Given
astring s=ejey---e, € Z(G), the payoff of s is just the sum
of the weight of each event, i.e. @(s), which is also called
the energy level of the system by s.

In this work, we assume that the safety property is
always satisfied and we do not consider the non-blockingness
property, thus no marked states are included in the system
model. Instead, we discuss the (weak) liveness property: a
system G is live if its generated language .Z(G) is live,
ie., Vs € Z(G), Ju € E, st. su € £(G). That is, there
is a transition defined at each state in the system, which
thus never terminates. The liveness requirement on G is
without loss of generality since it can be relaxed by adding
observable self-loops at terminal states where no active
events are defined, as is done in [19].

Given automaton G, for x;,x, € X and e € E, we denote
by x; 5 xp if f(x1,€) =x2. A run in G is a sequence of
states and events: r = x; a, X 2 ... e"—fl>x,, and it may be
infinitely long. Denote by Run(G) the set of runs in G. A run
is initial if its initial state is the initial state of the system.
We say a run forms a cycle if x; = x, and a cycle is simple if
Vi, je{l,2,---n—1}, i# j=x; #x;. If ris a cycle, there is
a corresponding loop eje;---e,_1 starting from and ending
in x;. We further call the loop simple if the cycle is simple.

. e e (4 . .
For a finite run x; — xp —» -+ —% Xx,41, its payoff is

n l n
Zw(ei) and its mean payoff is — Zw(ei). Furthermore,
i=1 =
we let Run;,r(G) be the set of infinite runs in G and define
Viim : Runinr(G) — R as limit mean payoff where for an

1 n
infinite run r = x; <5 xy 2 -, Vigu(r) = limjnf ~ Y o(e).

The system is controlled by a supervisor [3] that (liynam—
ically enables/disables events of the system so that some
specification is achieved. The event set E is partitioned as
E =E.UE,., where E,. is the set of controllable events and
E,. is the set of uncontrollable events. A control decision
y € 2F by the supervisor is admissible if E,. C 7, i.e., the
supervisor never disables uncontrollable events. We define
= {yec2f:E,. Cy} as the set of admissible control
decisions. The system is also partially observable and E is
partitioned as E = E,UE,,, where E, is the set of observable
events and E,, is the set of unobservable events. Given a
string ¢ € E*, its natural projection P : E* — E; is recursively
defined as P(r) = P(t'e) = P(t')P(e) where ' € E* and e € E.
The projection of an event is P(e) =e if e € E, and P(e) = ¢
if e € E,,U{¢e}, where € is the empty string.

A supervisor is a function S: P[.Z(G)] — T and we denote
by S the set of supervisors. A supervisor makes decisions
only based on the projected behavior of the system. We use
S/G to represent the controlled system under S. Accordingly,
we denote by .Z(S/G) the language generated in S/G and
Run(S/G) the set of runs in S/G, respectively.

We define some operators in G. Given a set of states
g C X, the unobservable reach, denoted by UR(q), is de-
fined as: UR(q) = {x¥' € X : Ix € q,Is € E},, s.t. f(x,s) =
x'}. Specifically, the unobservable reach under a set of
events Y C E, denoted as URy(q), is defined as: UR,(q) =
{¥eX:3IxeqIse (Enwny)*, st f(x,s) =x'}. Besides,
the observable reach under observable event e,, denoted
by Next,,(q), is defined as: Next,,(q) = {x¥ € X : Ix €
g st f(x,e,) =x'}. Then we define the observer of G:
Obs(G) = (Xops, Eo, 8,%0ps0) Where X,ps C 2% is the state
space, Xop50 = UR(x0) is the initial state and Vxops € Xops,
€0 € Eyy 6 (Xops,€0) = UR(Next,, (x,p5)). The weight function
is omitted in the definition of observer.

III. PROBLEM FORMULATION

In this section, we formulate the mean payoff supervisory
control problem studied in this work. Before introducing the
problem, we make some assumptions on the system.

In the observer of the system, given a state x,ps € X,ps,
let Loop(xops) = {l € EX \{€} : 6(xops;1) = xops and VI’ <
I st I # €,8(xpps,I") # xops} be the set of simple loops
starting from x,ps. Also let SimLp(xyps,1) = {t € E*\ {€} :
Ax € Xpps, I € Loop(xpps) st. f(x,1) =x,P(t) =1 and V¥ <
t,f(x,1") # x} be the set of non-¢ simple loops with the same
projection /, starting from some states in X,p;.

Assumption 1: Given automaton G and its observer,
VXobs € Xops> VI € Loop(xops), and Vs, s" € SimLp(xops,1), we
have either @(s) < 0= o(s') <0 or (s) > 0= w(s') > 0.

In other words, for two simple loops with the same pro-
jection, their payoffs are both nonnegative or both negative.

This assumption is inspired by the decidable classes of mean
payoff games with partial observation in [8]. Later on, we
will see how this assumption helps us solve the mean payoff
supervisory control problem. We say the system is with
unambiguous cycle payoffs if Assumption 1 is satisfied. We
also assume that there are no unobservable loops in G.

Assumption 2: Given an automaton G, Vx € X, Vs € E*\
(e}, [f(x.5) =] = [P(s) # €].

We consider both qualitative and quantitative objectives
and want to design a supervisor satisfying two conditions:
(1) the supervised system is live; (2) the limit mean payoff of
any infinite run in the supervised system is above a threshold
v. Given v, we can construct a system by letting all the
weights of the original system minus v and equivalently
require the limit mean payoff be above 0. So we assume v =0
and formulate the mean payoff supervisory control problem.

Problem 1 (Mean Payoff Supervisory Control Problem):
Given system G, design a supervisor S € S such that:
Z(S/G) is live and for all r € Runiur(S/G), Viim(r) > 0.

Since the limit mean payoff only depends on the mean
payoff of cycles, the key task is to ensure all cycles have
nonnegative payoffs in the supervised system. The main
challenge concerning this problem is that the supervisor only
has partial observation of the system. Thus it is essential to
construct proper estimates for both the system’s current state
and the energy level for supervisor’s decision making. We
will discuss this issue in the following section.

IV. FIRST CYCLE ENERGY INCLUSIVE CONTROLLER

In this section, we define the First Cycle Energy Inclusive
Controller (FCEIC), which is a two-player game structure
between the supervisor and the environment. The FCEIC
characterizes the change of system’s current state and energy
level under control decisions of the supervisor. This struc-
ture is inspired by the Bipartite Transition System and All
Inclusive Structure in [24], [25], which include supervisors
enforcing several logical properties in discrete event systems.

A. Energy Information States

We first define some orders of vectors. Given two vectors
vi = [i(1),v1(2),-,vi(n)], va = [v2(1),v2(2),--- ,va(n)] €
7", we denote by vi < vy (respectively vy > vp) if V1 <i <
n,v1 (i) < vy (i) (respectively vy (i) > v2(i)). We also denote by
vy <vp if V1 <i<nvi(i) <v(i) and 31 < j <n, vi(j) <

va(j) (respectively V1 <i <n, vi(i) > v2(i) and 31 < j <
n, v1(j) > v2())), i.e., at least one element in v; is strictly
smaller or larger than an element in v;.

Problem 1 requires that a supervisor be synthesized such
that every infinite run in the supervised system has a non-
negative limit mean payoff. The supervisor only has partial
observation and we hope to transform this problem into a
problem under full observation. In order to track both the
unobservable reach of states and the payoff of enabled events
under control decisions, we give the definition of the Energy
Information State as follows where we let I = 2% be the set
of (current) state estimates and |-| be the cardinality of a set.

Definition 1 (Energy Information State): An energy in-
formation state is: ¢¢ = (g,[v(1),---v(|g|)]) € 2X x Zl4. Let

I(¢°) and Er(¢°) denote the state estimate and energy level
components of ¢¢; hence, ¢¢ = (I(¢°),EL(¢°)).

Denote by QF the set of energy information states. Each
g° € QF induces a belief function hge : X — Z. Specifically,
for g¢ € QF where I(¢°) = q € 2%, EL(¢°) = {hye(x) : x € g}
We usually put E7(¢°) in a vector form: [hge (x1),- - hge (xq))]
and by convention in this work, elements in Ey (¢¢) are placed
in an increasing order w.r.t. state names in I(g°).

We define an order < over QF: for ¢¢,q5 € OF, ¢ < ¢5
if 1(q5) =1(q5) and Er(q5) < Er(¢5). We also say that ¢§
subsumes qf if q{ < ¢5. In other words, g5 shares the same
state estimate with ¢{ and the energy level vector of g5 is no
less than that of ¢{ in a point-wise sense. We define another
order < over Qg: for ¢{,q5 € OF, ¢ < ¢5 if I(¢5) =1(45),
Er(q5) < Er(g5). That is to say, ¢ and ¢§ have the same
state estimate and there exists Ey (¢f)(i) < Er(¢5)(i) at some
state I(¢§)(i) for some i > 1.

We call ¢% € QF xT" an augmented energy information
state and let Ig(¢g*), I'(¢“) denote the energy information
state and control decision components of g“, so g% =
(Ie(¢*),T(¢")). An augmented energy information state
is an energy information state augmented with a control
decision. With a slight abuse of notation, we use A to stand
for hye where ¢¢ = Ig(¢“¢). Then we give two concepts

For yeT, ¢% € QF xT is a y-successor of ¢° € QF if

« 1(g*) = URy(I(¢%));

LW € I). (V) = minfh () + 0(8)

I(q°),€ € (EwoNY)" sit. f(x,&) =x'};
Overall, ¢* = (Ig(¢“), 7). Its state estimate component is
the unobservable reach of I(g°) under y. We also use the
belief function to track the minimum energy level by some
unobservable string & reaching a possible state in I(Ig(g™)).
Besides, for ¢, € E,, ¢° is an e,-successor of g* if:
o I(¢°) = Next,, (I(Ig(q"))):
o Vx € I(q°), hge(x) = m;n{hque(x’) + w(e,) : I €
X
I(I(g%)), s.t. f(X,e,) =x};
So the state estimate component of g° is the observable reach
of I(Ig(¢*)) under e,. Meanwhile, we use the belief function
to track the minimum energy level by observable event e,
reaching a possible state in 7(g“¢).
A control-observation sequence is a sequence of states,
events and control decisions in the form of p = y{ KN 5 — T

cdx €

)2 Y1 N 72
y§—>z2 —>z,‘;1—>y,,orp—y§—>zl—>y§
y"—>z "—1>ye y”z where Vi <n, v €T, ¢; € E,,

yl €Qf, e QE x T, z{ is a y-successor of y¢ and yf |
is an e;-successor of z{. This sequence just characterizes the
update of both information state and energy under Control de-

cisions. By conventlon we denote by p; = yl UR Z] “, ¥5 — 2,

et d o N Ve
B ">Zk1 '—Wkan Pk*y1'>11'>y2'>12 L=

% AN Vi LN zg, for 1 <k < n. With the supervisor making
decisions, strings are generated in the supervised system and
we define strings generated by control-observation sequence.

Definition 2: Given a control- observation sequence p =

N €] Vo) Y/ 71
W Sy B e Ty or p =yt Iy

e —
% 5y 2, 5 Sty ye By oze define the set of gen-

erated strings recursively: V1 < k < n, let Str(p;) = {€},
Str(py) = {&1 € Eyp : Ix € 10]),x € I(Ie(27)),6 € (n N
Ew)* st f(x,&) = x'}, then Str(prr1) = {spex @ Ix €
1(y]),x € I(Ig(z)), X" € 1(y;..), s, € Str(pp), st. f(x,5;) =
X f(xex) =x"} and Str(py,) = {sk16p1 2 I €I1(5), X €
1(e, 1) X" € IIE(z5y))sske1 € Str(pre1), &1 € (1 N
Euo)", st f(x,s0401) =2, f(¥, &) =x"}.

Then we show belief functions always return the minimum
payoff of strings reaching a state in the state estimate of an
energy (or augmented energy) information state.

Theorem 1: For a control-observation sequence p = y{ A,

€] ?’2 Y1 €n—1 N €]
Koy T — Yo pl =y S =

¥ 2, 5 BN ¥ LN 7, we have Vx € I(y;), hy(x) =
r;nr(l {o(s):Ix€1(y]), s.t. f(X,5) =x} and V' € I(Ig(25)),

seStr(p)

hee (x) = m1n {a)(): AR I(Y]), st f(x,5) =x"}.

seStr(
The idea for this theorem is that since we count the

minimum string payoff in obtaining a single e,-successor
or y-successor, we can show by induction that the belief
function returns the minimum payoff along strings generated
in a control-observation sequence. The detailed proof is
omitted here due to space limitations. Since strings generated
by such a sequence have the same observation, the minimum
payoff is actually due to the unobservable substrings.

B. Build the First Cycle Energy Inclusive Controller

To consider both energy flow and information flow under
control, we propose the first cycle energy inclusive controller
(FCEIC), defined by construction in Algorithm 1. It is of the
form (QF, 0% E, yz, zw ,yO,QF) where OF C OF is the set
of energy information states (Y-states for short); QF C QF x
I is the set of augmented energy information states (Z-states
for short) and for z¢ € 0%, ¢ = (Ig(2%), F(z); QY xT —
Qz is the transition function from QF states to QZ states;

QZ x E, — QY is the transition function from QZ states
to Q‘; states; I' is the set of admissible control decisions;
y§ € OF is the initial energy information state where /(y§) =
xo and Ez(y§) =0; Qf is the set of leaf states.

A Z-state z¢ is deadlock free if Vx € I(Ig(z°)), Je € T'(z°),
s.t. f(x,e)!, i.e., there is an event enabled at every state in
its state estimate. Otherwise, z¢ is deadlocking. As there are
no unobservable cycles in G by Assumption 2, a deadlock
free Z-state always has 5 transitions defined out of it.

Algorithm 1 builds the FCEIC recursively by adding
feasible e,-successors and ?y-successors. The FCEIC de-
scribes a reachability game between the supervisor and the
environment in a general manner. A Y-state is an energy
information state where the supervisor issues control deci-
sions. If the supervisor issues an admissible control decision
v, a fy’Z transition is defined out of a Y-state, which follows
the definition of y-successor. While a Z-state is an energy
information state augmented with a control decision, where
the environment plays by selecting observable events to
occur within the enabled events by the supervisor. When
a particular observable event e, is selected to occur by the
environment, a trans1t10n is defined out of a Z-state, which

Algorithm 1: Construction of the FCEIC
Input : G
Output : FCEIC = (0F,0% E, yz, z},l“ v6,0F)
107 ={¥}, 0 =0, 0 =0;
2 FirstCycle(y(, FCEIC);
Procedure: FirstCycle(y*,FCEIC)
for yeI do
let z¢ be a y-successor of y°;
if z¢ is deadlock free then

3
4
5
6 add transition y* 1 1o
7
8
9

s
if 2% ¢ Of then

0 = 0;U{z'};

for ¢, € YNE, do
10 let ¢ be an e,-successor of ze;
11 add transition z¢ <% 3 M Z},
12 if 7 ¢ Of then
13 0y =0y U{7}:
14 if there exists a run from yg:

yf)&zge—%yf 7/"—>Z Lo
and 3j <n, s.t. yj-<y then

15 stop searching from j°,
Sub(5) = %, OF = OF U5},
0, = 0, U{F)

16 if there exists a run from y§: y§ *,

2y Mg Il e Gy
and 3j <n, s.t. ¥ < yj then
17 stop searching from j°,
OF =0y Uiy},
O, = Qpp, U5}
18 else
19 || FirstCycle(5*

,FCEIC);

follows the definition of e,-successor. In this manner, the two
players take turns to play and a game is formed.

The procedure FirstCycle constructs the state space of the
FCEIC by a depth-first search like process. In this process,
we only add deadlock free Z-states to the structure. Then
we make sure that there are events enabled at every state
in the state estimate of any Z-state and the system keeps
operating until we stop searching. In Lines 14 and 16, if
the newly added state ¢ subsumes or is subsumed by an
existing state on the run from the initial state, then the two
energy information states share the same state estimate but
the new state may have nondecreasing or decreasing energy
level vectors compared with the existing state. We also know
that some simple cycles with nonnegative or negative payoffs
are formed in the system for the first time. Then we terminate
searching and add the new state as a leaf state of the FCEIC.

We partition the leaf states as: QF = Qfg UQf, where Qf;
represents good leaf states and Qﬁ, represents bad leaf states.
If a good leaf state is reached, we know there exist simple
cycles with a nonnegative payoff in the system; while if a bad
leaf state is reached, there exist simple cycles with a negative
payoff. We use Sub(y°) to store the state subsumed by good

leaf state y°. The goal of the supervisor is to reach good leaf
states but to avoid bad ones in the game, which indicates the
limit mean payoff of runs in the supervised system remain
nonnegative. Finally, if no state subsumes another, we call
FirstCycle in line 19 recursively until no new states are
added to the FCEIC. Furthermore, Algorithm 1 converges
in finite steps and returns a finite and acyclic structure.
Theorem 2: Algorithm 1 returns a finite structure.

Proof: Prove by contradiction. Assume that the FCEIC
is infinite. Since E, I' C 2F and E, are finite, the number of
transitions defined at each state in the structure is finite. Then
by Konig’s lemma (see, e.g., [11]), there exists an infinite
run y§ o, 25y n, z{--- in the FCEIC such that it is
neither the case that 3y, yj-, i< j, sty < y; nor the case
that y$ < y¢. Therefore, there exist y¢, y$ (i < j) s.t. I()f) =
165, EL(6$)(K) < EL(65)(K) and EL($)(1) > EL()(1) for
some k # I. Therefore, there are two simple cycles in G:

e en ’ e / e, / / e
xp —xp--- —>xp and X; — x5-- =5 X s.toxg,x) € 10%),
Ple;---e,) =P(e|---e€,), w(e;---e,) >0 and w(e]---€,) <
0. However, this contradicts with Assumption 1 that G is
with unambiguous cycle payoffs. []
Example 1: We construct the FCEIC w.r.t. to the system
G in Figure 1. Let G be with E, = {01,02,03,04}, E,p =
{a1,a2,a3,a4,b1,by,c1,¢2,¢3,¢8.¢5}, E. = {c1,¢2,¢3,¢4,05}
and E,. = {ay,a2,a3,a4,b1,by,01,02,03,04}. The weight of
each event is shown in the figure. We let {uc} represent the
set of uncontrollable events and use subscripts to distinguish
different sets of uncontrollable events that occur from certain
states. Notice that some uncontrollable events are not defined
at some states in G, thus cannot occur even if always enabled.
It is easy to see that G satisfies both Assumptions 1 and 2.
Then we follow Algorithm 1 to build the FCEIC in
Figure 2. All admissible control decisions 7 through 7y are
shown in Figure 2. For simplicity of the graph, we do not
put energy level vectors in the figure but list them in the
next paragraph. The elements in each energy level vector are
placed in the same order as the states in the state estimate.
Here we have the following states: y§ = {{x0},0}, z{ =
{{x07x1>x2}7 [07 =2, *3}"}/0}’ y‘i) = {{X3,X4}, [*17 *2}}’ Z? =
{{)637)647)657)667)67,)68,)69,)61()}7 [—1, —-2,2,—1,4, —1,3,2],’)/1},
¥s = {{xa},6}, 5 = {{xn}.6,0} ¥, = {{x12}.8}.
Z§ = {{X9,X12,X14}, [276’5}),}/2/}’ y§—3 = {{Xu},S},
Yo—q = {{xn2},8} 3§ = {{ws} 1} 5 = {{xsh L)
Yoo = {{xsh3h & = {{xo.x3,x15},00,1,0], 3},

¥ooa = sk -1k 5, = {{ash3)h 4 =
{{X37X47X57X7}, [_17_27274]7}/4}’ yi72 = {{X3,X4}, [07_1]}’
Zg = {{X3,x4,x6,xg},[—1,—2,—1,—1],75},)7?_3 =
{{X3,X4},[0,—1]}, Zg = {{X3,X4},[—1,—2L’)/6},

yeile = {{X3,X4}, [07 71]}7 y61)75 = {{x3,x4}, [O’ 71]}

In the FCEIC, the game is initiated from y{ where
the only feasible control decision is . If the supervisor
plays Y, a Z-state zj is reached where the environment
can select observable event oy to occur. The rest of the
structure is interpreted in a similar way. Notice that at y§,
the supervisor cannot issue control decision 7, to enable c3
but to disable cs. Otherwise, a deadlocking Z-state z5 is
reached since no event can occur at x4 if cs5 is disabled.

Fig. 1. The automaton G in Example 2

Fig. 2.

The First Cycle Energy Inclusive Controller (without z%)

Thus z% is not included in the FCEIC. Meanwhile, we
calculate the energy level vector of each state. For example,
1(y§) = {x0}, EL(y§) = 0; then since z{ is Jp-successor
of ¥, I(Ie(z5)) = URy(1(35)) = {x0,x1,x2}, hyg(x1) =
min{®(a1), w(a3)} = =2, hy(x2) = min{w(az), w(as)} =
—3 and z§ = {{x0,x1,x2},[0,—2,-3],0}; next since y{ is
or-successor of z§, I(y]) = Next,, ({{x0,x1,%2}) = {x3,x4},
hye (x3) = hg (x1) + @(01) = =1, hye (x4) = heg (x2) + @(01) =
=2, 80)’? = {{X3,X4}, [_17 _2}}

From the table, we find that y{ < y{_,, ¥{ < ¥{_3. ¥ =
Yicar Y1 S Yis: Y2 Y500 V3 S V540)5 S V55 and 35 <
¥5_4 by evaluating their energy level vectors. We also find
Y5 3 < y5 and y§_5 <5 since Er(y5_5) =5 < EL()5) =6
and Er(y5_3) = —1 < Er(y§) = 1. We stop searching from
the leaf states in Figure 2, then collect good leaf states
Of, = {01 20 3% 40X 5295 205 4:)5 2,5 4} and bad
leaf states Qﬁ, = {¥5_3,)5_3}. For example, when we reach
¥{_,, we find there are three simple cycles with nonnegative

payoffs in automaton G: x3 A xs LN x7 2 x3 with payoft 6,
x3 2 x3 with payoff 1 and x4 2y x4 with payoff 1. The bad
leaf states come from the two simple cycles with negative
payoffs in G: x9 2 xS xS x9 with payoff —1 and
X10 SN X13 N X15 b—2> x10 with payoff —2. Those two cycles
should be avoided if we want to solve Problem 1.

V. SOLVING THE MEAN PAYOFF CONTROL PROBLEM

In this section, we first discuss some properties of the
FCEIC and then solve Problem 1 based on it. We will also
illustrate how “winning strategies” in the FCEIC lead to
sound solutions for Problem 1.

By definition, the runs in the FCEIC are just finite control-
observation sequences discussed in the last section. We

denote by Run(F) the set of runs in the FCEIC. Given ry €
Run(F), we denote by y° € ry and z¢ € ry if ¥ (respectively
%) is a Y-state (respectively Z-state) in ry. Let Lasty (ry) and
Lastz(ry) be the last Y-state and Z-state of r; and we denote
by Runy(F) (respectively Run.(F)) the set of runs whose last
states are Y-states (respectively Z-states).

Then we discuss the strategies of both players in the
FCEIC. We define the supervisor’s strategy (control strategy)
as 7, : Runy(F) — I' and environment’s strategy as T, :
Run,(F) — E,. Both players select a transition according
to their strategies when it is their turn to play. Since the
supervisor only has partial observation of the system and
makes decisions from state estimates, we call its strategy
observation based. Denote the set of all supervisor’s strate-
gies by Il and the set of all environment’s strategies by Il,.
If the supervisor plays 7, while the environment plays 7,
from the initial state yg, then a unique initial run, denoted by

rf(ms,), is generated. We also define Run(m,,y¢) = {y° UR
2 s hzﬁ_l Sl ye Vi< n g = m(y° 7/—1>z‘{ 4
AR LaN % SN ¥$)} as the set of runs starting from
¢ and consistent with control strategy 7, i.e., the control
decisions in the run are just specified by 7.

In the FCEIC, we say the supervisor wins the game if
only good leaf states are reached, otherwise, the environment
wins the game if bad leaf states are reached. So the game
on the FCEIC is a zero sum reachability game. From the
construction of the FCEIC, the game is of full observation
after introducing the energy information states, so either the
supervisor or the environment has a winning strategy [1].

We define the supervisor’s winning region Wing as the set
of states from which the supervisor has a strategy to reach
good leaf states for sure regardless of the environment’s
strategy. Then we present Algorithm 2 to compute it.

Algorithm 2: Compute the winning region of the FCEIC

Input : FCEIC
Output : Wing
1 while 3y¢ € 0\ Q{;, s.t. ¥° has no successor do
2 Remove y* and all z¢ € 0%, s.t. 5(16,6,,) =y* for
some e, € E,;
3 Take the accessible part of the structure;

4 Denote the remaining structure by FCEIC,, and return
the states in it;

In Algorithm 2, bad leaf states as well as their preceding
Z-states are removed. Then we further prune away Y -states
that have no successors and their preceding Z-states in an
iterative manner until no more states are to be removed. This
process is similar to calculating the supremal controllable
sublanguage in nonblocking supervisory control problem
under full observation [3]: the bad leaf states are viewed
as undesirable marked states while the good leaf states are
viewed as desirable ones; besides, ylz transitions are viewed
as controllable while fg transitions are viewed as uncontrol-
lable. In this way, we make sure that only good leaf states are
reached under certain control strategy. In other words, any
control strategy in the FCEIC,, is a winning control strategy
in the FCEIC, and vice versa. It is possible that Algorithm 2

returns an empty set thus the environment always wins the
game regardless of the supervisor’s strategies.

Then we argue that if there exists a winning strategy
for the supervisor in the FCEIC, i.e., its winning region
is not empty, then there always exists a supervisor solving
Problem 1. The idea behind this result is quite straightfor-
ward. If a good leaf state y° is reached under a wining
control strategy 7, in the FCEIC, then for any state x €
I(y°), there forms a simple cycle from x in the supervised
system with nonnegative payoff. Since a belief function in an
energy information state returns the minimum string payoff
by Theorem 1, the payoffs of all strings with the same
observation and reaching the same state are nonnegative if
the minimum string payoff is nonnegative.

We let the supervisor make the same control decision
whenever the state estimate of a good leaf state is reached
again. Intuitively speaking, the supervisor “ignores” the
actual energy level of the system and just views the game
starting from the good leaf state as the same game that
starts from the state subsumed by the good leaf state. We
can imagine that every good leaf state y° is “merged” with
Sub(y°) by letting all transitions going to y¢ lead to Sub(y°)
instead. In that way, the supervisor perpetually completes cy-
cles with nonnegative payoffs in the supervised system since
every simple cycle has a nonnegative payoff. So the limit
mean payoff of every infinite run in the supervised system
is also nonnegative. Furthermore, we can follow a similar
argument as in [25] to show that the supervised system by
any control strategy in the FCEIC,, is live since there are
no deadlocking Z-states in the FCEIC,, and the supervisor
can issue decisions indefinitely. Overall, any winning control
strategy in the FCEIC solves Problem 1.

Theorem 3: If the supervisor has a winning strategy in the
FCEIC, then there exists a supervisor solving Problem 1.

Proof: Suppose 7, is a winning control strategy in
the FCEIC. We follow Algorithm 2 and obtain Wing; and
FCEIC,,, so m, is also in the FCEIC,,. In the following
discussion, we assume that all transitions leading to a leaf
state y¢ in the FCEIC,, lead to Sub(y¢) so that the game on

the FCEIC,, becomes infinite-duration. That is, Vr; = y§ o,

14 Yn—1 €n—1 .
260y T 28 oy € Run(m,y§) where y§ is the

initial state of the FCEIC, if y¢ € Qfg, we extend the domain

of m, by letting my(ry) = ms(y§ o, 25 ye Ly ve) for
some m < n and y¢, = ¥¢. In the logical sense, whenever 1(y%)
is reached again, the control strategy (supervisor) makes the
same decision as I(y%) is reached for the first time.

First, the supervised system under 7, is live following a
similar argument as [25]. Then we show that the limit mean
payoff of any infinite run in the supervised system is non-
negative. By perpetually making the same decision whenever
a state estimate is reached, the supervisor guarantee that the
payoff of any run in the supervised system never goes to
negative infinity since every simple cycle in the supervised
system has a nonnegative payoff. Therefore, the limit mean
payoff of any infinite run in the supervised system under 7
is also nonnegative, which means 7; solves Problem 1. M

Therefore, we have transfered Problem 1 into a reachabil-

ity game and solved it based on the FCEIC. The soundness
of our approach is proven in Theorem 3. However, complete-
ness still remains open, i.e., we do not know yet whether no
solution exists for Problem 1 if we cannot find any winning
control strategy in the FCEIC.

Example 2: We revisit Example 2 and find the winning
region of the FCEIC following Algorithm 2. The FCEIC,,
is shown in Figure 3, where we use green lines to connect
each good leaf state with the state subsumed by it, indicating
that the supervisor will always make the same decision from
them. So the game is extended to be infinite-duration. In
building the FCEIC,,, red states y5_; and y§_5 in Figure 2
are bad leaf states, thus they are pruned by Algorithm 2.
Meanwhile, good leaf states y§_, and y§_, are also removed
as they become no longer accessible from the initial state y{
after their preceding Z-states zg and zg are removed. That
means the supervisor should not choose % at y° or 7 at y5,
otherwise, the environment can choose 0, at z§ or o3 at z§
to reach a bad leaf state and wins the game.

Then we locate a winning control strategy indicated by
blue lines in Figure 3. The supervisor S issues }y at y§, ¥ at
¥{, v» at y5 and 5 at y§. If the supervisor plays this strategy
infinitely often, then only cycles with nonnegative payoffs
are formed in the supervised system shown in Figure 4.
Compared with the original system in Figure 1, the cycles
with a negative payoff are broken. Then it is easy to verify
that the supervised system is live and all infinite runs have
a positive limit mean payoff. Therefore S solves Problem 1.

S
e

Y1i-3

Fig. 3. The FCEIC,, with dashed green lines connecting good leaf states
with their subsumed states, Win; is the set of all states

Fig. 4. A supervised system that satisfies the requirements of Problem 1

VI. CONCLUSION

We presented an approach for synthesizing partial observa-
tion supervisors that enforce nonnegative limit mean payoff
of the system’s long run behaviors. This work is the first
one to investigate such a problem. To this end, we defined

the energy information state and a novel bipartite informa-
tion structure called First Cycle Energy Inclusive Controller
(FCEIC). Based on the FCEIC, the problem was transformed
into a finite reachability game with perfect information. We
showed that the winning strategies for the supervisor in the
FCEIC lead to valid solutions for the proposed problem.

REFERENCES

[11 K. R. Apt and E. Gridel. Lectures in game theory for computer
scientists. Cambridge University Press, 2011.

[2] K. Cai, R. Zhang, and W. M. Wonham. Relative observability
of discrete-event systems and its supremal sublanguages. I[EEE
Transactions on Automatic Control, 60(3):659-670, 2015.

[3] C. G. Cassandras and S. Lafortune. Introduction to discrete event
systems — 2nd Edition. Springer, 2008.

[4] K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Algorithms
for omega-regular games with imperfect information. In Inter. Work.
on Comp. Sci. Logic, volume 6, pages 287-302. Springer, 2006.

[5] A. Degorre, L. Doyen, R. Gentilini, J.-F. Raskin, and S. Torusiczyk.
Energy and mean-payoff games with imperfect information. In
Computer Science Logic, pages 260-274. Springer, 2010.

[6] A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff
games. International Journal of Game Theory, 8(2):109-113, 1979.

[7]1 A. Giua and C. Seatzu. A systems theory view of Petri nets. In
Advances in control theory and application. Springer, 2007.

[8] P. Hunter, A. Pauly, G. A. Pérez, and J.-F. Raskin. Mean-payoff games
with partial observation. Theore. Computer Sci., 735:82-110, 2018.

[91 Y. Ji, X. Yin, and S. Lafortune. Opacity enforcement by insertion
functions under energy constraints. In Proc. of the 14th International
Workshop on Discrete Event Systems, pages 302-308, 2018.

[10] J. Komenda and T. Masopust. Computation of controllable and
coobservable sublanguages in decentralized supervisory control via
communication. Discrete Event Dynamic Systems: Theory and Appli-
cation, 27(4):585-608, 2017.

[11] A. Levy. Basic set theory, volume 13. Courier Corporation, 2002.

[12] F. Lin and W. M. Wonham. On observability of discrete-event systems.
Information sciences, 44(3):173-198, 1988.

[13] H. Marchand, O. Boivineau, and S. Lafortune. On optimal control
of a class of partially observed discrete event systems. Automatica,
38(11):1935-1943, 2002.

[14] V. Pantelic and M. Lawford. Optimal supervisory control of probabilis-
tic discrete event systems. IEEE Transactions on Automatic Control,
57(5):1110-1124, 2012.

[15] K.M. Passino and P.J. Antsaklis. On the optimal control of discrete
event systems. In Proceedings of the 28th IEEE Conference on
Decision and Control, pages 2713-2718. IEEE, 1989.

[16] S. Pruekprasert and T. Ushio. Supervisory control of partially observed
quantitative discrete event systems for fixed-initial-credit energy prob-
lem. IEICE trans. on Info. and Systems, 100(6):1166-1171, 2017.

[17] S. Pruekprasert, T. Ushio, and T. Kanazawa. Quantitative supervisory
control game for discrete event systems. [EEE Transactions on
Automatic Control, 61(10):2987-3000, 2016.

[18] P.J. Ramadge and W. M. Wonham. Supervisory control of a class of
discrete event processes. SIAM journal on control and optimization,
25(1):206-230, 1987.

[19] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis. Diagnosability of discrete-event systems. I[EEE
Transactions on automatic control, 40(9):1555-1575, 1995.

[20] R. Sengupta and S. Lafortune. An optimal control theory for discrete
event systems. SIAM Journal on con. and opt., 36(2):488-541, 1998.

[21] S. Shu and F. Lin. Supervisor synthesis for networked discrete event
systems with communication delays. IEEE Transactions on Automatic
Control, 60(8):2183-2188, 2015.

[22] R. Su, J. H. Van Schuppen, and J. E. Rooda. The synthesis of time
optimal supervisors by using heaps-of-pieces. IEEE Transactions on
Automatic Control, 57(1):105-118, 2012.

[23] S. Takai and T. Ushio. Effective computation of an L,, (G)-closed,
controllable, and observable sublanguage arising in supervisory con-
trol. Systems & Control Letters, 49(3):191-200, 2003.

[24] X. Yin and S. Lafortune. Synthesis of maximally permissive supervi-
sors for partially-observed discrete-event systems. I[EEE Transactions
on Automatic Control, 61(5):1239-1254, 2016.

[25] X. Yin and S. Lafortune. A uniform approach for synthesizing
property-enforcing supervisors for partially-observed discrete-event
systems. IEEE Trans. on Automatic Control, 61(8):2140-2154, 2016.

