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Abstract— The problem under investigation is mean payoff
supervisory control on a partially observed quantitative discrete
event system modeled by a finite state weighted automaton. We
intend to design a partial-observation supervisor such that the
limit-average weights of all infinite sequences in the supervised
system remain nonnegative. This problem may be viewed as a
two-player quantitative game between the supervisor and the
environment, with asymmetric information and a mean payoff
objective. To cope with partial observation of the supervisor,
we introduce the energy information state which incorporates
information about both state estimate and energy change for
supervisor’s decision making. Based on that, we transfer the
supervisory control problem into a two-player reachability
game under full observation and propose a finite bipartite struc-
ture called First Cycle Energy Inclusive Controller (FCEIC).
Further analysis demonstrates that winning strategies in the
FCEIC lead to solutions to the original control problem.

I. INTRODUCTION

Supervisory control under the framework of discrete event
systems (DES) has been a classic problem since initiated
in [18]. The supervisor is designed to restrict the original be-
havior of the system so that a given specification is achieved.
Ever since that, supervisory control has been thoroughly
studied for various DES models, such as finite state automata,
see, e.g., [18], Petri nets, see, e.g., [7], networked systems,
see, e.g., [21] and other classes of systems.

In the context of DES, due to the limited sensing capabil-
ities, the plant is usually partially observed which gives rise
to supervisory control under partial observation [12]. Many
works fall in this category, see, e.g., [2], [10], [23]. Recently,
a novel approach was developed in [24] and extended in [25]
to synthesize maximal permissive partial-observation super-
visors for enforcing a series of qualitative properties in DES
without assumptions on the relation between controllable
events and observable events.

Besides logical properties, supervisory control of quanti-
tative DES has also been investigated by introducing some
performance measures. Optimal supervisory control is one
problem of particular interest, starting with [15]. Since that,
different frameworks of optimal supervisory control have
been discussed. The work [20] defined event enablement
and disablement costs, then finds a minimum cost controller
by a dynamic programming approach. This framework was
extended in [13] by considering partial observation of the
system. Furthermore, the work [14] studied optimal supervi-
sory control in probabilistic DES and the work [22] proposed
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a timed optimal supervisor. All the above works evaluate the
supervisor’s performance for finite behaviors of the system.
In contrast, the work [17] considered optimizing the worst
case limit average weight of the infinite sequences generated
by the controlled system. The problem was formulated and
solved as a mean payoff game between the supervisor and
the environment, under full observation.

In many practical situations, the operation of the system
may generate or consume some resources, e.g., energy. The
specification may be to design a controller such that the long
run average rate of resource gain/cost is above or below
a certain threshold. Also it may not be feasible to sense
every step of the system’s execution thus the designer only
has partial information of the system. Motivated by these
considerations, we investigate supervisory control with a
mean payoff objective under partial observation. To the best
of our knowledge, there is no prior research on this topic.

In this work, the goal of the supervisor is to prevent
all infinite behaviors of the system that violate the mean
payoff objective. Besides, the supervised system should be
non-terminating so that it may execute events perpetually.
To achieve these goals, we define energy information states,
which incorporate necessary information about the system’s
state and payoff for supervisor’s decision making. Then we
transfer the proposed problem into a two-player reachability
game [1] between the supervisor and the “environment” (aka
system) on a finite information structure. The structure is
called First Cycle Energy Inclusive Controller (FCEIC) and
by construction, we show that the winning strategies for
the supervisor in the FCEIC correspond to solutions for our
problem. The FCEIC is inspired by the information structure
in [9] for the different problem of opacity enforcement.

Our work is also inspired by quantitative game theory
in theoretical computer science, especially mean payoff
games [6]. A mean payoff game is an infinite-duration turn-
based two-player game on a weighted graph. The two players
take turns to play by selecting an outgoing edge at their
positions, resulting in an infinite path. The objective of the
first player is to enforce the limit average weight of the
traversed edges above a given threshold while the second
player is to do the opposite, thus the game is zero sum
in general. Well structured solutions were proposed with
complexity analyzed for mean payoff games of perfect in-
formation [6], where both players have complete knowledge
of their opponent’s moves and positions up to the current
state. What is more challenging is a mean payoff game with
imperfect information where one player may be absent from
the complete decision history of the other player [4]. Such
games are in general undecidable [5] and some decidable
classes are presented in [8], which motivates our restrictions



on the system in this work. Finally, the work [16] also
discussed supervisory control in a game framework, namely
fixed-initial-credit energy game under partial observation.

The following sections are organized as follows. Section II
describes the system model. In Section III, we make some
assumptions on the system and formulate the mean pay-
off supervisory control problem under partial observation.
Section IV introduces energy information states and the
First Cycle Energy Inclusive Controller (FCEIC). Section V
analyzes some properties of the FCEIC and shows that the
winning control strategies in the FCEIC lead to solutions
of the proposed problem in Section III. Finally, Section VI
concludes the paper.

II. SYSTEM MODEL

We consider supervisory control in a quantitative discrete
event system modeled as a weighted finite-state automaton:

G = (X ,E, f ,x0,ω) (1)

where X is the finite state space, E is the finite set of events,
f : X×E→ X is the partial transition function, x0 ∈ X is the
initial state, ω : E → Z is the weight function that assigns
an integer to each event. We view the weight of an event
as the energy payoff in this work. A positive number stands
for energy gain while a negative number stands for energy
cost. For the sake of calculation in the following discussion,
we assume the system’s initial energy is 0. The transition
function is extended to X ×E∗ in the standard manner and
we still denote the extended function by f . The language
generated by G is defined as L (G) = {s ∈ E∗ : f (x0,s)!}
where ! means “is defined”. We denote by s ≤ u if string s
is a prefix string u, and s < u if s≤ u,s 6= u. The function ω

is additive and its domain can be extended to E∗ by letting
ω(ε)= 0, ω(seo)=ω(s)+ω(eo) for s∈E∗ and e∈E. Given
a string s= e1e2 · · ·en ∈L (G), the payoff of s is just the sum
of the weight of each event, i.e. ω(s), which is also called
the energy level of the system by s.

In this work, we assume that the safety property is
always satisfied and we do not consider the non-blockingness
property, thus no marked states are included in the system
model. Instead, we discuss the (weak) liveness property: a
system G is live if its generated language L (G) is live,
i.e., ∀s ∈ L (G), ∃u ∈ E, s.t. su ∈ L (G). That is, there
is a transition defined at each state in the system, which
thus never terminates. The liveness requirement on G is
without loss of generality since it can be relaxed by adding
observable self-loops at terminal states where no active
events are defined, as is done in [19].

Given automaton G, for x1,x2 ∈ X and e ∈ E, we denote
by x1

e−→ x2 if f (x1,e) = x2. A run in G is a sequence of
states and events: r = x1

e1−→ x2
e2−→ ·· · en−1−−→ xn and it may be

infinitely long. Denote by Run(G) the set of runs in G. A run
is initial if its initial state is the initial state of the system.
We say a run forms a cycle if x1 = xn and a cycle is simple if
∀i, j ∈ {1,2, · · ·n−1}, i 6= j⇒ xi 6= x j. If r is a cycle, there is
a corresponding loop e1e2 · · ·en−1 starting from and ending
in x1. We further call the loop simple if the cycle is simple.

For a finite run x1
e1−→ x2

e2−→ ·· · en−→ xn+1, its payoff is
n

∑
i=1

ω(ei) and its mean payoff is
1
n

n

∑
i=1

ω(ei). Furthermore,

we let Runin f (G) be the set of infinite runs in G and define
Vlim : Runin f (G) → R as limit mean payoff where for an

infinite run r = x1
e1−→ x2

e2−→ ·· · , Vlim(r) = liminf
n→∞

1
n

n

∑
i=1

ω(ei).

The system is controlled by a supervisor [3] that dynam-
ically enables/disables events of the system so that some
specification is achieved. The event set E is partitioned as
E = Ec∪Euc, where Ec is the set of controllable events and
Euc is the set of uncontrollable events. A control decision
γ ∈ 2E by the supervisor is admissible if Euc ⊆ γ , i.e., the
supervisor never disables uncontrollable events. We define
Γ = {γ ∈ 2E : Euc ⊆ γ} as the set of admissible control
decisions. The system is also partially observable and E is
partitioned as E = Eo∪Euo, where Eo is the set of observable
events and Euo is the set of unobservable events. Given a
string t ∈ E∗, its natural projection P : E∗→ E∗o is recursively
defined as P(t) = P(t ′e) = P(t ′)P(e) where t ′ ∈E∗ and e∈E.
The projection of an event is P(e) = e if e∈ Eo and P(e) = ε

if e ∈ Euo∪{ε}, where ε is the empty string.
A supervisor is a function S : P[L (G)]→ Γ and we denote

by S the set of supervisors. A supervisor makes decisions
only based on the projected behavior of the system. We use
S/G to represent the controlled system under S. Accordingly,
we denote by L (S/G) the language generated in S/G and
Run(S/G) the set of runs in S/G, respectively.

We define some operators in G. Given a set of states
q ⊆ X , the unobservable reach, denoted by UR(q), is de-
fined as: UR(q) = {x′ ∈ X : ∃x ∈ q,∃s ∈ E∗uo, s.t. f (x,s) =
x′}. Specifically, the unobservable reach under a set of
events γ ⊆ E, denoted as URγ(q), is defined as: URγ(q) =
{x′ ∈ X : ∃x ∈ q,∃s ∈ (Euo ∩ γ)∗, s.t. f (x,s) = x′}. Besides,
the observable reach under observable event eo, denoted
by Nexteo(q), is defined as: Nexteo(q) = {x′ ∈ X : ∃x ∈
q s.t. f (x,eo) = x′}. Then we define the observer of G:
Obs(G) = (Xobs,Eo,δ ,xobs,0) where Xobs ⊆ 2X is the state
space, xobs,0 = UR(x0) is the initial state and ∀xobs ∈ Xobs,
eo ∈ Eo, δ (xobs,eo) =UR(Nexteo(xobs)). The weight function
is omitted in the definition of observer.

III. PROBLEM FORMULATION

In this section, we formulate the mean payoff supervisory
control problem studied in this work. Before introducing the
problem, we make some assumptions on the system.

In the observer of the system, given a state xobs ∈ Xobs,
let Loop(xobs) = {l ∈ E∗o \ {ε} : δ (xobs, l) = xobs and ∀l′ <
l s.t. l′ 6= ε,δ (xobs, l′) 6= xobs} be the set of simple loops
starting from xobs. Also let SimLp(xobs, l) = {t ∈ E∗ \ {ε} :
∃x ∈ Xobs,∃l ∈ Loop(xobs) s.t. f (x, t) = x,P(t) = l and ∀t ′ <
t, f (x, t ′) 6= x} be the set of non-ε simple loops with the same
projection l, starting from some states in xobs.

Assumption 1: Given automaton G and its observer,
∀xobs ∈ Xobs, ∀l ∈ Loop(xobs), and ∀s,s′ ∈ SimLp(xobs, l), we
have either ω(s)< 0⇒ ω(s′)< 0 or ω(s)≥ 0⇒ ω(s′)≥ 0.

In other words, for two simple loops with the same pro-
jection, their payoffs are both nonnegative or both negative.



This assumption is inspired by the decidable classes of mean
payoff games with partial observation in [8]. Later on, we
will see how this assumption helps us solve the mean payoff
supervisory control problem. We say the system is with
unambiguous cycle payoffs if Assumption 1 is satisfied. We
also assume that there are no unobservable loops in G.

Assumption 2: Given an automaton G, ∀x ∈ X , ∀s ∈ E∗ \
{ε}, [ f (x,s) = x]⇒ [P(s) 6= ε].

We consider both qualitative and quantitative objectives
and want to design a supervisor satisfying two conditions:
(1) the supervised system is live; (2) the limit mean payoff of
any infinite run in the supervised system is above a threshold
v. Given v, we can construct a system by letting all the
weights of the original system minus v and equivalently
require the limit mean payoff be above 0. So we assume v= 0
and formulate the mean payoff supervisory control problem.

Problem 1 (Mean Payoff Supervisory Control Problem):
Given system G, design a supervisor S ∈ S such that:
L (S/G) is live and for all r ∈ Runin f (S/G), Vlim(r)≥ 0.

Since the limit mean payoff only depends on the mean
payoff of cycles, the key task is to ensure all cycles have
nonnegative payoffs in the supervised system. The main
challenge concerning this problem is that the supervisor only
has partial observation of the system. Thus it is essential to
construct proper estimates for both the system’s current state
and the energy level for supervisor’s decision making. We
will discuss this issue in the following section.

IV. FIRST CYCLE ENERGY INCLUSIVE CONTROLLER

In this section, we define the First Cycle Energy Inclusive
Controller (FCEIC), which is a two-player game structure
between the supervisor and the environment. The FCEIC
characterizes the change of system’s current state and energy
level under control decisions of the supervisor. This struc-
ture is inspired by the Bipartite Transition System and All
Inclusive Structure in [24], [25], which include supervisors
enforcing several logical properties in discrete event systems.

A. Energy Information States

We first define some orders of vectors. Given two vectors
v1 = [v1(1),v1(2), · · · ,v1(n)], v2 = [v2(1),v2(2), · · · ,v2(n)] ∈
Zn, we denote by v1 ≤ v2 (respectively v1 ≥ v2) if ∀1≤ i≤
n,v1(i)≤ v2(i) (respectively v1(i)≥ v2(i)). We also denote by
v1 < v2 if ∀1 ≤ i ≤ n,v1(i) ≤ v2(i) and ∃1 ≤ j ≤ n, v1( j) <
v2( j) (respectively ∀1 ≤ i ≤ n, v1(i) ≥ v2(i) and ∃1 ≤ j ≤
n, v1( j) > v2( j)), i.e., at least one element in v1 is strictly
smaller or larger than an element in v2.

Problem 1 requires that a supervisor be synthesized such
that every infinite run in the supervised system has a non-
negative limit mean payoff. The supervisor only has partial
observation and we hope to transform this problem into a
problem under full observation. In order to track both the
unobservable reach of states and the payoff of enabled events
under control decisions, we give the definition of the Energy
Information State as follows where we let I = 2X be the set
of (current) state estimates and |·| be the cardinality of a set.

Definition 1 (Energy Information State): An energy in-
formation state is: qe = (q, [v(1), · · ·v(|q|)]) ∈ 2X ×Z|q|. Let

I(qe) and EL(qe) denote the state estimate and energy level
components of qe; hence, qe = (I(qe),EL(qe)).

Denote by QE the set of energy information states. Each
qe ∈ QE induces a belief function hqe : X → Z. Specifically,
for qe ∈QE where I(qe) = q ∈ 2X , EL(qe) = {hqe(x) : x ∈ q}.
We usually put EL(qe) in a vector form: [hqe(x1), · · ·hqe(x|q|)]
and by convention in this work, elements in EL(qe) are placed
in an increasing order w.r.t. state names in I(qe).

We define an order 4 over QE : for qe
1,q

e
2 ∈ QE , qe

1 4 qe
2

if I(qe
1) = I(qe

2) and EL(qe
1) ≤ EL(qe

2). We also say that qe
2

subsumes qe
1 if qe

1 4 qe
2. In other words, qe

2 shares the same
state estimate with qe

1 and the energy level vector of qe
2 is no

less than that of qe
1 in a point-wise sense. We define another

order ≺ over QE : for qe
1,q

e
2 ∈ QE , qe

1 ≺ qe
2 if I(qe

1) = I(qe
2),

EL(qe
1) < EL(qe

2). That is to say, qe
1 and qe

2 have the same
state estimate and there exists EL(qe

1)(i)< EL(qe
2)(i) at some

state I(qe
1)(i) for some i≥ 1.

We call qae ∈ QE ×Γ an augmented energy information
state and let IE(qae), Γ(qae) denote the energy information
state and control decision components of qae, so qae =
(IE(qae),Γ(qae)). An augmented energy information state
is an energy information state augmented with a control
decision. With a slight abuse of notation, we use hqae to stand
for hqe where qe = IE(qae). Then we give two concepts:

For γ ∈ Γ, qae ∈ QE ×Γ is a γ-successor of qe ∈ QE if:

• I(qae) =URγ(I(qe));
• ∀x′ ∈ I(qae), hqae(x′) = min

ξ

{hqe(x) + ω(ξ ) : ∃x ∈

I(qe),ξ ∈ (Euo∩ γ)∗ s.t. f (x,ξ ) = x′};
Overall, qae = (IE(qae),γ). Its state estimate component is
the unobservable reach of I(qe) under γ . We also use the
belief function to track the minimum energy level by some
unobservable string ξ reaching a possible state in I(IE(qae)).

Besides, for eo ∈ Eo, qe is an eo-successor of qae if:

• I(qe) = Nexteo(I(IE(qae)));
• ∀x ∈ I(qe), hqe(x) = min

x′
{hqae(x′) + ω(eo) : ∃x′ ∈

I(IE(qae)), s.t. f (x′,eo) = x};
So the state estimate component of qe is the observable reach
of I(IE(qae)) under eo. Meanwhile, we use the belief function
to track the minimum energy level by observable event eo
reaching a possible state in I(qae).

A control-observation sequence is a sequence of states,
events and control decisions in the form of ρ = ye

1
γ1−→ ze

1
e1−→

ye
2

γ2−→ ze
2 · · ·

γn−1−−→ ze
n−1

en−1−−→ ye
n or ρ ′ = ye

1
γ1−→ ze

1
e1−→ ye

2
γ2−→

ze
2 · · ·

γn−1−−→ ze
n−1

en−1−−→ ye
n

γn−→ ze
n where ∀i ≤ n, γi ∈ Γ, ei ∈ Eo,

ye
i ∈ QE , ze

i ∈ QE × Γ, ze
i is a γ-successor of ye

i and ye
i+1

is an ei-successor of ze
i . This sequence just characterizes the

update of both information state and energy under control de-
cisions. By convention, we denote by ρk = ye

1
γ1−→ ze

1
e1−→ ye

2
γ2−→

ze
2 · · ·

γk−1−−→ ze
k−1

ek−1−−→ ye
k and ρ ′k = ye

1
γ1−→ ze

1
e1−→ ye

2
γ2−→ ze

2 · · ·
γk−1−−→

ze
k−1

ek−1−−→ ye
k

γk−→ ze
k, for 1≤ k≤ n. With the supervisor making

decisions, strings are generated in the supervised system and
we define strings generated by control-observation sequence.

Definition 2: Given a control-observation sequence ρ =

ye
1

γ1−→ ze
1

e1−→ ye
2

γ2−→ ze
2 · · ·

γn−1−−→ ze
n−1

en−1−−→ ye
n or ρ ′ = ye

1
γ1−→



ze
1

e1−→ ye
2

γ2−→ ze
2 · · ·

en−1−−→ ye
n

γn−→ ze
n, define the set of gen-

erated strings recursively: ∀1 ≤ k ≤ n, let Str(ρ1) = {ε},
Str(ρ ′1) = {ξ1 ∈ E∗uo : ∃x ∈ I(ye

1),x
′ ∈ I(IE(ze

1)),ξ1 ∈ (γ1 ∩
Euo)

∗ s.t. f (x,ξ1) = x′}, then Str(ρk+1) = {s′kek : ∃x ∈
I(ye

1),x
′ ∈ I(IE(ze

k)),x
′′ ∈ I(ye

k+1),s
′
k ∈ Str(ρ ′k), s.t. f (x,s′k) =

x′, f (x′,ek) = x′′} and Str(ρ ′k+1) = {sk+1ξk+1 : ∃x∈ I(ye
1),x

′ ∈
I(ye

k+1),x
′′ ∈ I(IE(ze

k+1)),sk+1 ∈ Str(ρk+1),ξk+1 ∈ (γk+1 ∩
Euo)

∗, s.t. f (x,sk+1) = x′, f (x′,ξk+1) = x′′}.
Then we show belief functions always return the minimum

payoff of strings reaching a state in the state estimate of an
energy (or augmented energy) information state.

Theorem 1: For a control-observation sequence ρ = ye
1

γ1−→
ze

1
e1−→ ye

2
γ2−→ ze

2 · · ·
γn−1−−→ ze

n−1
en−1−−→ ye

n or ρ ′ = ye
1

γ1−→ ze
1

e1−→
ye

2
γ2−→ ze

2 · · ·
en−1−−→ ye

n
γn−→ ze

n, we have ∀x ∈ I(ye
n), hye

n(x) =
min

s∈Str(ρ)
{ω(s) : ∃x̃∈ I(ye

1), s.t. f (x̃,s)= x} and ∀x′ ∈ I(IE(ze
n)),

hze
n(x
′) = min

s∈Str(ρ ′)
{ω(s) : ∃x̃ ∈ I(ye

1), s.t. f (x̃,s) = x′}.

The idea for this theorem is that since we count the
minimum string payoff in obtaining a single eo-successor
or γ-successor, we can show by induction that the belief
function returns the minimum payoff along strings generated
in a control-observation sequence. The detailed proof is
omitted here due to space limitations. Since strings generated
by such a sequence have the same observation, the minimum
payoff is actually due to the unobservable substrings.

B. Build the First Cycle Energy Inclusive Controller

To consider both energy flow and information flow under
control, we propose the first cycle energy inclusive controller
(FCEIC), defined by construction in Algorithm 1. It is of the
form (QF

Y ,Q
F
Z ,E, f F

yz, f F
zy,Γ,y

e
0,Q

F
l ) where QF

Y ⊆QE is the set
of energy information states (Y -states for short); QF

Z ⊆QE×
Γ is the set of augmented energy information states (Z-states
for short) and for ze ∈QF

Z , ze =(IE(ze),Γ(ze)); f F
yz : QF

Y ×Γ→
QF

Z is the transition function from QF
Y states to QF

Z states;
f F
zy : QF

Z ×Eo→QF
Y is the transition function from QF

Z states
to QF

Y states; Γ is the set of admissible control decisions;
ye

0 ∈QF
Y is the initial energy information state where I(ye

0) =
x0 and EL(ye

0) = 0; QF
l is the set of leaf states.

A Z-state ze is deadlock free if ∀x ∈ I(IE(ze)), ∃e ∈ Γ(ze),
s.t. f (x,e)!, i.e., there is an event enabled at every state in
its state estimate. Otherwise, ze is deadlocking. As there are
no unobservable cycles in G by Assumption 2, a deadlock
free Z-state always has f F

zy transitions defined out of it.
Algorithm 1 builds the FCEIC recursively by adding

feasible eo-successors and γ-successors. The FCEIC de-
scribes a reachability game between the supervisor and the
environment in a general manner. A Y -state is an energy
information state where the supervisor issues control deci-
sions. If the supervisor issues an admissible control decision
γ , a f F

yz transition is defined out of a Y -state, which follows
the definition of γ-successor. While a Z-state is an energy
information state augmented with a control decision, where
the environment plays by selecting observable events to
occur within the enabled events by the supervisor. When
a particular observable event eo is selected to occur by the
environment, a f F

zy transition is defined out of a Z-state, which

Algorithm 1: Construction of the FCEIC
Input : G
Output : FCEIC = (QF

Y ,Q
F
Z ,E, f F

yz, f F
zy,Γ,y

e
0,Q

F
l )

1 QF
Y = {ye

0}, QF
Z = /0, QF

l = /0;
2 FirstCycle(ye

0,FCEIC);
Procedure: FirstCycle(ye,FCEIC)

3 for γ ∈ Γ do
4 let ze be a γ-successor of ye;
5 if ze is deadlock free then
6 add transition ye γ−→ ze to f F

yz;
7 if ze /∈ QF

Z then
8 QF

Z = QF
Z ∪{ze};

9 for eo ∈ γ ∩Eo do
10 let ỹe be an eo-successor of ze;
11 add transition ze eo−→ ỹe to f F

zy;
12 if ỹe /∈ QA

Y then
13 QF

Y = QF
Y ∪{ỹe};

14 if there exists a run from ye
0:

ye
0

γ0−→ ze
0

e0−→ ye
1 · · ·

γn−1−−→ ze
n−1

e−→ ỹe

and ∃ j < n, s.t. ye
j 4 ỹe then

15 stop searching from ỹe,
Sub(ỹe) = ye

j, QF
l = QF

l ∪{ỹe},
QF

lg = QF
lg∪{ỹe};

16 if there exists a run from ye
0: ye

0
γ0−→

ze
0

e0−→ ye
1

γ1−→ ze
1 · · ·

γn−1−−→ ze
n−1

e−→ ỹe

and ∃ j < n, s.t. ỹe ≺ ye
j then

17 stop searching from ỹe,
QF

l = QF
l ∪{ỹe},

QF
lb = QF

lb∪{ỹe};
18 else
19 FirstCycle(ỹe,FCEIC);

follows the definition of eo-successor. In this manner, the two
players take turns to play and a game is formed.

The procedure FirstCycle constructs the state space of the
FCEIC by a depth-first search like process. In this process,
we only add deadlock free Z-states to the structure. Then
we make sure that there are events enabled at every state
in the state estimate of any Z-state and the system keeps
operating until we stop searching. In Lines 14 and 16, if
the newly added state ỹe subsumes or is subsumed by an
existing state on the run from the initial state, then the two
energy information states share the same state estimate but
the new state may have nondecreasing or decreasing energy
level vectors compared with the existing state. We also know
that some simple cycles with nonnegative or negative payoffs
are formed in the system for the first time. Then we terminate
searching and add the new state as a leaf state of the FCEIC.

We partition the leaf states as: QF
l = QF

lg∪QF
lb where QF

lg
represents good leaf states and QF

lb represents bad leaf states.
If a good leaf state is reached, we know there exist simple
cycles with a nonnegative payoff in the system; while if a bad
leaf state is reached, there exist simple cycles with a negative
payoff. We use Sub(ye) to store the state subsumed by good



leaf state ye. The goal of the supervisor is to reach good leaf
states but to avoid bad ones in the game, which indicates the
limit mean payoff of runs in the supervised system remain
nonnegative. Finally, if no state subsumes another, we call
FirstCycle in line 19 recursively until no new states are
added to the FCEIC. Furthermore, Algorithm 1 converges
in finite steps and returns a finite and acyclic structure.

Theorem 2: Algorithm 1 returns a finite structure.
Proof: Prove by contradiction. Assume that the FCEIC

is infinite. Since E, Γ⊆ 2E and Eo are finite, the number of
transitions defined at each state in the structure is finite. Then
by König’s lemma (see, e.g., [11]), there exists an infinite
run ye

0
γ0−→ ze

0
e0−→ ye

1
γ1−→ ze

1 · · · in the FCEIC such that it is
neither the case that ∃ye

i ,y
e
j, i < j, s.t. ye

i 4 ye
j nor the case

that ye
j ≺ ye

i . Therefore, there exist ye
i , ye

j (i < j) s.t. I(ye
i ) =

I(ye
j), EL(ye

i )(k) ≤ EL(ye
j)(k) and EL(ye

i )(l) > EL(ye
j)(l) for

some k 6= l. Therefore, there are two simple cycles in G:

x1
e1−→ x2 · · ·

en−→ x1 and x′1
e′1−→ x′2 · · ·

e′n−→ x′1 s.t. x1,x′1 ∈ I(ye
i ),

P(e1 · · ·en) = P(e′1 · · ·e′n), ω(e1 · · ·en)≥ 0 and ω(e′1 · · ·e′n)<
0. However, this contradicts with Assumption 1 that G is
with unambiguous cycle payoffs.

Example 1: We construct the FCEIC w.r.t. to the system
G in Figure 1. Let G be with Eo = {o1,o2,o3,o4}, Euo =
{a1,a2,a3,a4,b1,b2,c1,c2,c3,c4.c5}, Ec = {c1,c2,c3,c4,c5}
and Euc = {a1,a2,a3,a4,b1,b2,o1,o2,o3,o4}. The weight of
each event is shown in the figure. We let {uc} represent the
set of uncontrollable events and use subscripts to distinguish
different sets of uncontrollable events that occur from certain
states. Notice that some uncontrollable events are not defined
at some states in G, thus cannot occur even if always enabled.
It is easy to see that G satisfies both Assumptions 1 and 2.

Then we follow Algorithm 1 to build the FCEIC in
Figure 2. All admissible control decisions γ0 through γ6 are
shown in Figure 2. For simplicity of the graph, we do not
put energy level vectors in the figure but list them in the
next paragraph. The elements in each energy level vector are
placed in the same order as the states in the state estimate.

Here we have the following states: ye
0 = {{x0},0}, ze

0 =
{{x0,x1,x2}, [0,−2,−3],γ0}, ye

1 = {{x3,x4}, [−1,−2]}, ze
1 =

{{x3,x4,x5,x6,x7,x8,x9,x10}, [−1,−2,2,−1,4,−1,3,2],γ1},
ye

2 = {{x12},6}, ze
2 = {{x12},6,γ2}, ye

2−2 = {{x12},8},
ze

8 = {{x9,x12,x14}, [2,6,5],γ ′′2 }, ye
2−3 = {{x12},5},

ye
2−4 = {{x12},8}, ye

3 = {{x13},1}, ze
3 = {{x13},1,γ3},

ye
3−2 = {{x13},3}, ze

9 = {{x10,x13,x15}, [0,1,0],γ ′3},
ye

3−3 = {{x13},−1}, ye
3−4 = {{x13},3}, ze

4 =
{{x3,x4,x5,x7}, [−1,−2,2,4],γ4}, ye

1−2 = {{x3,x4}, [0,−1]},
ze

5 = {{x3,x4,x6,x8}, [−1,−2,−1,−1],γ5}, ye
1−3 =

{{x3,x4}, [0,−1]}, ze
6 = {{x3,x4}, [−1,−2],γ6},

ye
1−4 = {{x3,x4}, [0,−1]}, ye

1−5 = {{x3,x4}, [0,−1]}.
In the FCEIC, the game is initiated from ye

0 where
the only feasible control decision is γ0. If the supervisor
plays γ0, a Z-state ze

0 is reached where the environment
can select observable event o1 to occur. The rest of the
structure is interpreted in a similar way. Notice that at ye

2,
the supervisor cannot issue control decision γ ′2 to enable c3
but to disable c5. Otherwise, a deadlocking Z-state ze

7 is
reached since no event can occur at x14 if c5 is disabled.
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Fig. 1. The automaton G in Example 2
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Fig. 2. The First Cycle Energy Inclusive Controller (without ze
7)

Thus ze
7 is not included in the FCEIC. Meanwhile, we

calculate the energy level vector of each state. For example,
I(ye

0) = {x0}, EL(ye
0) = 0; then since ze

0 is γ0-successor
of ye

0, I(IE(ze
0)) = URγ0(I(y

e
0)) = {x0,x1,x2}, hze

0
(x1) =

min{ω(a1),ω(a3)} = −2, hze
0
(x2) = min{ω(a2),ω(a4)} =

−3 and ze
0 = {{x0,x1,x2}, [0,−2,−3],γ0}; next since ye

1 is
o1-successor of ze

1, I(ye
1) = Nexto1({{x0,x1,x2}) = {x3,x4},

hye
1
(x3) = hze

0
(x1)+ω(o1) =−1, hye

1
(x4) = hze

0
(x2)+ω(o1) =

−2, so ye
1 = {{x3,x4}, [−1,−2]}.

From the table, we find that ye
1 4 ye

1−2, ye
1 4 ye

1−3, ye
1 4

ye
1−4, ye

1 4 ye
1−5, ye

2 4 ye
2−2, ye

2 4 ye
2−4, ye

3 4 ye
3−2 and ye

3 4
ye

3−4 by evaluating their energy level vectors. We also find
ye

2−3 ≺ ye
2 and ye

3−3 ≺ ye
3 since EL(ye

2−3) = 5 < EL(ye
2) = 6

and EL(ye
3−3) = −1 < EL(ye

3) = 1. We stop searching from
the leaf states in Figure 2, then collect good leaf states
QF

lg = {ye
1−2,y

e
1−3,y

e
1−4,y

e
1−5,y

e
2−2,y

e
2−4,y

e
3−2,y

e
3−4} and bad

leaf states QF
lb = {ye

2−3,y
e
3−3}. For example, when we reach

ye
1−2, we find there are three simple cycles with nonnegative

payoffs in automaton G: x3
c1−→ x5

b1−→ x7
o1−→ x3 with payoff 6,

x3
o1−→ x3 with payoff 1 and x4

o1−→ x4 with payoff 1. The bad
leaf states come from the two simple cycles with negative
payoffs in G: x9

o2−→ x12
c3−→ x14

c5−→ x9 with payoff −1 and
x10

o3−→ x13
c4−→ x15

b2−→ x10 with payoff −2. Those two cycles
should be avoided if we want to solve Problem 1.

V. SOLVING THE MEAN PAYOFF CONTROL PROBLEM

In this section, we first discuss some properties of the
FCEIC and then solve Problem 1 based on it. We will also
illustrate how “winning strategies” in the FCEIC lead to
sound solutions for Problem 1.

By definition, the runs in the FCEIC are just finite control-
observation sequences discussed in the last section. We



denote by Run(F) the set of runs in the FCEIC. Given r f ∈
Run(F), we denote by ye ∈ r f and ze ∈ r f if ye (respectively
ze) is a Y -state (respectively Z-state) in r f . Let LastY (r f ) and
LastZ(r f ) be the last Y -state and Z-state of r f and we denote
by Runy(F) (respectively Runz(F)) the set of runs whose last
states are Y -states (respectively Z-states).

Then we discuss the strategies of both players in the
FCEIC. We define the supervisor’s strategy (control strategy)
as πs : Runy(F) → Γ and environment’s strategy as πe :
Runz(F) → Eo. Both players select a transition according
to their strategies when it is their turn to play. Since the
supervisor only has partial observation of the system and
makes decisions from state estimates, we call its strategy
observation based. Denote the set of all supervisor’s strate-
gies by Πs and the set of all environment’s strategies by Πe.
If the supervisor plays πs while the environment plays πe
from the initial state ye

0, then a unique initial run, denoted by
r f (πs,πe), is generated. We also define Run(πs,ye) = {ye γ1−→
ze

1
e1−→ ye

2 · · ·
γn−1−−→ ze

n−1
en−1−−→ ye

n : ∀i < n,γi = πs(ye γ1−→ ze
1

e1−→
ye

2 · · ·
γi−1−−→ ze

i−1
ei−1−−→ ye

i )} as the set of runs starting from
ye and consistent with control strategy πs, i.e., the control
decisions in the run are just specified by πs.

In the FCEIC, we say the supervisor wins the game if
only good leaf states are reached, otherwise, the environment
wins the game if bad leaf states are reached. So the game
on the FCEIC is a zero sum reachability game. From the
construction of the FCEIC, the game is of full observation
after introducing the energy information states, so either the
supervisor or the environment has a winning strategy [1].

We define the supervisor’s winning region Wins as the set
of states from which the supervisor has a strategy to reach
good leaf states for sure regardless of the environment’s
strategy. Then we present Algorithm 2 to compute it.

Algorithm 2: Compute the winning region of the FCEIC
Input : FCEIC
Output : Wins

1 while ∃ye ∈ QF
Y \QF

lg, s.t. ye has no successor do
2 Remove ye and all ze ∈ QF

Z , s.t. f F
zy(z

e,eo) = ye for
some eo ∈ Eo;

3 Take the accessible part of the structure;
4 Denote the remaining structure by FCEICw and return

the states in it;

In Algorithm 2, bad leaf states as well as their preceding
Z-states are removed. Then we further prune away Y -states
that have no successors and their preceding Z-states in an
iterative manner until no more states are to be removed. This
process is similar to calculating the supremal controllable
sublanguage in nonblocking supervisory control problem
under full observation [3]: the bad leaf states are viewed
as undesirable marked states while the good leaf states are
viewed as desirable ones; besides, f F

yz transitions are viewed
as controllable while f F

zy transitions are viewed as uncontrol-
lable. In this way, we make sure that only good leaf states are
reached under certain control strategy. In other words, any
control strategy in the FCEICw is a winning control strategy
in the FCEIC, and vice versa. It is possible that Algorithm 2

returns an empty set thus the environment always wins the
game regardless of the supervisor’s strategies.

Then we argue that if there exists a winning strategy
for the supervisor in the FCEIC, i.e., its winning region
is not empty, then there always exists a supervisor solving
Problem 1. The idea behind this result is quite straightfor-
ward. If a good leaf state ye is reached under a wining
control strategy πs in the FCEIC, then for any state x ∈
I(ye), there forms a simple cycle from x in the supervised
system with nonnegative payoff. Since a belief function in an
energy information state returns the minimum string payoff
by Theorem 1, the payoffs of all strings with the same
observation and reaching the same state are nonnegative if
the minimum string payoff is nonnegative.

We let the supervisor make the same control decision
whenever the state estimate of a good leaf state is reached
again. Intuitively speaking, the supervisor “ignores” the
actual energy level of the system and just views the game
starting from the good leaf state as the same game that
starts from the state subsumed by the good leaf state. We
can imagine that every good leaf state ye is “merged” with
Sub(ye) by letting all transitions going to ye lead to Sub(ye)
instead. In that way, the supervisor perpetually completes cy-
cles with nonnegative payoffs in the supervised system since
every simple cycle has a nonnegative payoff. So the limit
mean payoff of every infinite run in the supervised system
is also nonnegative. Furthermore, we can follow a similar
argument as in [25] to show that the supervised system by
any control strategy in the FCEICw is live since there are
no deadlocking Z-states in the FCEICw and the supervisor
can issue decisions indefinitely. Overall, any winning control
strategy in the FCEIC solves Problem 1.

Theorem 3: If the supervisor has a winning strategy in the
FCEIC, then there exists a supervisor solving Problem 1.

Proof: Suppose πs is a winning control strategy in
the FCEIC. We follow Algorithm 2 and obtain Wins and
FCEICw, so πs is also in the FCEICw. In the following
discussion, we assume that all transitions leading to a leaf
state ye in the FCEICw lead to Sub(ye) so that the game on
the FCEICw becomes infinite-duration. That is, ∀r f = ye

0
γ0−→

ze
0

e0−→ ye
i · · ·

γn−1−−→ ze
n−1

en−1−−→ ye
n ∈ Run(πs,ye

0) where ye
0 is the

initial state of the FCEIC, if ye
n ∈QF

lg, we extend the domain

of πs by letting πs(r f ) = πs(ye
0

γ0−→ ze
0

e0−→ ye
i · · ·

em−1−−−→ ye
m) for

some m< n and ye
m� ye

n. In the logical sense, whenever I(ye
n)

is reached again, the control strategy (supervisor) makes the
same decision as I(ye

n) is reached for the first time.
First, the supervised system under πs is live following a

similar argument as [25]. Then we show that the limit mean
payoff of any infinite run in the supervised system is non-
negative. By perpetually making the same decision whenever
a state estimate is reached, the supervisor guarantee that the
payoff of any run in the supervised system never goes to
negative infinity since every simple cycle in the supervised
system has a nonnegative payoff. Therefore, the limit mean
payoff of any infinite run in the supervised system under πs
is also nonnegative, which means πs solves Problem 1.

Therefore, we have transfered Problem 1 into a reachabil-



ity game and solved it based on the FCEIC. The soundness
of our approach is proven in Theorem 3. However, complete-
ness still remains open, i.e., we do not know yet whether no
solution exists for Problem 1 if we cannot find any winning
control strategy in the FCEIC.

Example 2: We revisit Example 2 and find the winning
region of the FCEIC following Algorithm 2. The FCEICw
is shown in Figure 3, where we use green lines to connect
each good leaf state with the state subsumed by it, indicating
that the supervisor will always make the same decision from
them. So the game is extended to be infinite-duration. In
building the FCEICw, red states ye

2−3 and ye
3−3 in Figure 2

are bad leaf states, thus they are pruned by Algorithm 2.
Meanwhile, good leaf states ye

2−4 and ye
3−4 are also removed

as they become no longer accessible from the initial state ye
0

after their preceding Z-states ze
8 and ze

9 are removed. That
means the supervisor should not choose γ ′′2 at ye or γ ′3 at ye

2,
otherwise, the environment can choose o2 at ze

8 or o3 at ze
9

to reach a bad leaf state and wins the game.
Then we locate a winning control strategy indicated by

blue lines in Figure 3. The supervisor S issues γ0 at ye
0, γ1 at

ye
1, γ2 at ye

2 and γ3 at ye
3. If the supervisor plays this strategy

infinitely often, then only cycles with nonnegative payoffs
are formed in the supervised system shown in Figure 4.
Compared with the original system in Figure 1, the cycles
with a negative payoff are broken. Then it is easy to verify
that the supervised system is live and all infinite runs have
a positive limit mean payoff. Therefore S solves Problem 1.
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Fig. 3. The FCEICw with dashed green lines connecting good leaf states
with their subsumed states, Wins is the set of all states
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Fig. 4. A supervised system that satisfies the requirements of Problem 1

VI. CONCLUSION

We presented an approach for synthesizing partial observa-
tion supervisors that enforce nonnegative limit mean payoff
of the system’s long run behaviors. This work is the first
one to investigate such a problem. To this end, we defined

the energy information state and a novel bipartite informa-
tion structure called First Cycle Energy Inclusive Controller
(FCEIC). Based on the FCEIC, the problem was transformed
into a finite reachability game with perfect information. We
showed that the winning strategies for the supervisor in the
FCEIC lead to valid solutions for the proposed problem.
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