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ALGEBRAIC AND GEOMETRIC ASPECTS OF RATIONAL
-INNER FUNCTIONS

JIM AGLER, ZINAIDA A. LYKOVA AND N. J. YOUNG

ABSTRACT. The set
& {(z+w,2w) : |2| < 1,|w| <1} C C?

has intriguing complex-geometric properties; it has a 3-parameter group of au-
tomorphisms, its distinguished boundary is a ruled surface homeomorphic to the
Mobius band and it has a special subvariety which is the only complex geodesic
that is invariant under all automorphisms. We exploit this geometry to develop
an explicit and detailed structure theory for the rational maps from the unit disc
to I' that map the boundary of the disc to the distinguished boundary of T'.

1. INTRODUCTION

Recall that a rational inner function is a rational map h from the open unit
disc I in the complex plane C to its closure D~ with the property that A maps
the unit circle T into itself. A basic unsolved problem in H* control theory led
us to consider “inner mappings”’ from I to certain domains in C? with d > 1.
For example, a special case of the problem of robust stabilization under structured
uncertainty, or the p-synthesis problem [11, 12, 1], leads naturally to a class of
domains of which a typical member is

(1.1) gdg{(z%—w,zw) cz,w € DY C C?

the open symmetrized bidisc. It would be useful for the control community if one
could develop a theory of analytic maps from ID to G and its generalizations parallel
to the rich function theory of D, created by such masters as Stieltjes, F. and M.
Riesz, Carathéodory, Herglotz, Pick and Nevanlinna, which has been so effective in
circuits and systems engineering and in statistical prediction theory, among other
applications. The appropriate analog of rational inner functions is likely to play a
significant role in such a theory. A number of recent papers [13, 9, 2, 3, 15] and
the present one provide evidence that a detailed analysis is indeed possible.

We denote the closure of G by I' and we define a rational I'-inner function to
be a rational analytic map h : D — I' with the property that h maps T into the
distinguished boundary bI' of I'. Here, bI' is the smallest closed subset of I' on
which every continuous function on I' that is analytic in G attains its maximum
modulus. Rational [-inner functions have many similarities with rational inner
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functions, but also have some striking differences, which stem from the fact that G
has a more subtle complex geometry than other well-studied domains in C2, such
as the bidisc D? and the Euclidean ball B,.

Here are three points of difference between D? and B, on the one hand and G on
the other. Firstly, whereas D? and By are homogeneous (so that the holomorphic
automorphisms of these domains act transitively), G is inhomogeneous. The orbit
of (0,0) under the group of automorphisms of G is the intersection of G with the
variety

R {(22,2%) : z€C}
which we call the royal variety. R NG is a complex geodesic in G and is the only
complex geodesic that is left invariant by all automorphisms of G. The variety R
plays a central role in the function theory of G.

Secondly, the distinguished boundary of G differs markedly in its topological
properties from those of D? and B,. The distinguished boundaries of D? and B,
are the 2-torus and the 3-sphere respectively, which are smooth manifolds without
boundary. In contrast, the distinguished boundary bI" of G is homeomorphic to a
Mobius band together with its boundary, which is a circle. For a rational I'-inner
function h the curve h(e"),0 < t < 27, lies in bI' and may or may not touch the
edge, with consequences for the algebraic and geometric properties of h.

Thirdly, neither the 2-torus nor the 3-sphere contains any line segments, and
therefore strict convex combinations of their inner functions can never be inner.
bI', on the other hand, is a ruled surface, and so it can happen that a strict convex
combination of rational I'-inner functions is a function of the same type. There is
thus a notion of non-extremal [-inner function.

These three geometric properties of G lead to dramatic phenomena in the theory
of rational I'-inner functions that have no analog for classical inner functions. The
first of our three main theorems, a corollary of Theorem 3.8, is as follows.

Theorem 1.1. If h is a nonconstant rational I'-inner function then either h(D™) =
RNOTL or h(D™) meets R exactly deg(h) times.

Here deg(h) is the degree of h, defined in a natural way by means of fundamental
groups (Section 3). In Proposition 3.3 we show that, for any rational I'-inner
function h = (s,p), deg(h) is equal to the degree deg(p) (in the usual sense) of the
finite Blaschke product p. The precise way of counting the number of times that
h(D~) meets R is also described in Section 3. We call the points A € D~ such that
h(A\) € R the royal nodes of h and, for such A, we call h()\) a royal point of h.

The second main result describes the construction of rational I'-inner functions
of prescribed degree from certain interpolation data; one can think of this result
as an analog of the expression for a finite Blaschke product in terms of its zeros.
Concretely, the following result is a corollary of Theorem 4.8.

Theorem 1.2. Let n be a positive integer and suppose given

(1) points aq, ... 00, €D and 1,79, ..., 7, € T, where 2ky + k1 = n;

(2) points o1,...,0, in D™ distinct from 11, ..., Tx, .
There exists a rational I'-inner function h = (s,p) of degree n such that the zeros
of s are aq, g, ..., Oy, T1, Tay - . ., Tk, and the royal nodes of h are o4,...,0,.
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The proof is constructive: it gives a prescription for the construction of a 2-
parameter family of such functions h, subject to the computation of Fejér-Riesz
factorizations of certain non-negative functions on the circle.

The third main result of the paper is as follows.

Theorem 1.3. A I'-inner function of degree n having k royal nodes in T, counted
with multiplicity, is an extreme point of the set of rational I'-inner functions if and
only if 2k > n.

Thus a I'-inner function A is an extreme point of the set of rational I'-inner
functions if and only if the curve h(e) touches the edge of the Mdbius band b
more than 1 deg(h) times, counted with multiplicity.

2. PROPERTIES OF I' AND ['-INNER FUNCTIONS

We shall often use the co-ordinates (s, p) for points in the symmetrized bidisc T,
chosen to suggest ‘sum’ and ‘product’. The following results afford useful criteria
for membership of I', ' and bI' [4].

Proposition 2.1. Let (s,p) € C2. The point (s, p) lies in T if and only if
|s| <2 and|s —3p| <1— |p|~
The point (s,p) lies in bL if and only if
|s| <2, |p| =1, and s —3sp = 0.
The point (s,p) lies in OT' if and only if
|s| <2, and [s —3p| =1~ p|*,
which is so if and only if there exist z € T andw € D™ such that s = z+w, p = zw.

For any domain G and any set X C D? we shall denote by Hol(G, X) the set of
holomorphic maps from G to X. A I'-inner function is defined to be a function
h € Hol(D,T") such that

Tlg{l h(rX) € bI"

for almost all A € T with respect to Lebesgue measure. Fatou’s theorem implies
that the radial limit above exists for almost all A € T. In this paper we focus on
rational I'-inner functions h, that is, h is [-inner and s and p are rational.

Proposition 2.1 implies that if h = (s,p) € Hol(D,C?) is rational then h is
[-inner if and only if p is inner, |s| is bounded by 2 on D and s(7) — s(7)p(7) =0
for almost all 7 € T with respect to Lebesgue measure. The following proposition
captures the algebra of this special case.

For any positive integer n and polynomial f of degree less than or equal to n,
we define the polynomial f~" by the formula,

F7HA) = AMF(L/A).
Recall that p is a rational inner function on D of degree n (that is, a Blaschke
product with n factors) if and only if there exists a polynomial D of degree less
than or equal to n such that D(A) # 0 for all A € D™ and

p(A) = Dl;zS)-
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As an analog of this description of rational inner functions on D we have the
following description of rational ['-inner functions.

Proposition 2.2. If h = (s,p) is a rational T'-inner function of degree n then
there exist polynomials E and D such that

(i) deg(E), deg(D) <n,
(ii) E~™ =
(iii) D(N) ;é O on D7,

(iv) |EN)] < 2[DV)] on D,

(v) s=%onD", and

(vi) p=2" onD".
Furthermore, E1 and Dy is a second pair of polynomials satisfying (i)-(vi) if and
only if there exists a nonzero t € R such that £y =tFE and Dy =tD.
Conversely, if E and D are polynomials satisfying (1), (ii), (iv) above, D(X) # 0
on D, and s and p are defined by (v) and (vi), then h = (s,p) is a rational '-inner
function of degree less than or equal to n.

~—

b@lm

Proof. Let h = (s,p) be a rational I-inner function of degree n. By [2, Corollary
6.10], s and p can be written as ratios of polynomials with the same denominators.
More precisely, let

XDy ()

Dy(A)
where |¢| = 1, 0 < k < n and D, is a polynomial of degree n — k such that
D,(0) = 1. Then s is expressible in the form

NN (M)
(2.2) s(A) =
Dy(A)
where 0 < ¢ < %n = %deg(p), and Ny is a polynomial of degree deg(p) — 2¢ such
that N(0) # 0. Moreover, for all A € C,

(2.3) MNNG(A) = A" N(1/N).

Note that p is inner, and so one can choose D, such that D,(\) # 0 on D~.
Take D = wD,, where w € T such that w?c = 1, and E(\) = wA*N,(\). It is easy
to see that deg(E) < n and deg(D) < n. One can check that E~" = E, p = 222,
s =%. Since |s| <2 on D~ we have |E()\)] < 2|/D()\)] on D~.

If there exists a nonzero t € R such that £y = tE and D; = tD then it is clear

that the polynomials £ and D, satisfy (i)-(vi). Conversely, let E; and D; be a
second pair of polynomials satisfying (i)-(vi). Therefore

(2.1) p(\) = ¢

E E
2.4 == = — D~.
(2.4) s=5=p oo
and
D~ D
2. = = L D.
Let

D(A\) = ag + a;A+ -+ ap\”
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for some k < n and ag # 0. Then
D™"(\) = A"D(1/))

Therefore, for all A € D™,
D™(A)
\) =
p(A) DO

CATHR@ghE a4 )
B ap + a A+ - - 4 apAF '
Thus p has k poles in C, counting multiplicity, has a zero of multiplicity n— k& at 0,
and has degree n. Hence n, k and the poles of pin {z € C : |z| > 1} are determined
by p. Therefore, D and D; have the same degree k£ and the same finite number of
zeros in {z € C: |z| > 1}, counting multiplicity. Thus there exists ¢ € C such that
t # 0 and Dy =tD. By the equality (2.5),

D~ Dy D™

D Dy tD’

Thus t = t. By the equality (2.4), E; = tE. Therefore there exists a nonzero t € R
such that £y = tE and D, = tD.

Let us prove the converse result. Let £ and D be polynomials satisfying (i), (ii),
(iv) above, D(X) # 0 on D, and let s and p be defined by (v) and (vi).
Suppose D has no zero on T. Then D and D™~ have no common factor. Hence

. DNTL . .
p = =5 Is inner and
deg(p) = deg ( i3 ) = max{deg(D), deg(D~")} = n.
If D has zeros oq,...,00 on T then D and D~ have the common factor
Hle(A — 0;). Thus p = 5= is inner and

deg(p) = deg <DD ) <n-—/.

By (iv), |s| is bounded by 2 on D~. Let us show that Sp = s almost everywhere
on T. That is,

Lpr _E Imost h T
= — = — = S allnost everywnere on .
DD D Y

For all A € T\ {oy,...,00}, we have
E(\) =E""(\) < E(\) =\"E()\)
(A)

Sp
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Thus s(A) —s(A)p(A) for all but finitely many A € T. By Proposition 2.1, h = (s, p)
is a rational [-inner function of deg(h) < n — ¢.

Remark 2.3. For fixed D of degree n, the set of polynomials F satisfying (i) and
(ii) of the previous proposition is a real vector space of dimension n + 1.

3. ROYAL NODES AND THE ROYAL POLYNOMIAL

The royal variety
R ={(2AN): A€ T} = {(s,p) € C?: & = dp)

plays a prominent role in the geometry and function theory of G. Its intersection
with G is a complex geodesic of G, it is invariant under all automorphisms of G, and
it is the only complex geodesic of G with this invariance property [7, Lemma 4.3].
In this section we describe rational I'-inner functions in terms of their intersections

with R.
Let us clarify the notion of the degree of a rational I'-inner function h.

Definition 3.1. The degree deg(h) of a rational T'-inner function h is defined to
be h.(1), where h, : Z = m(T) — m(b]") is the homomorphism of fundamental
groups induced by h when it is regarded as a continuous map from T to bI'.

This definition only defines deg(h) as an integer up to multiplication by +1, as
is shown by the following lemma. We shall adopt the convention that deg(h) is a
non-negative integer.

Lemma 3.2. bI' is homotopic to the circle T and m (b') = Z.

Proof. This is a consequence of the fact that if (s,p) € bI' and 0 < t < 1 then
also (ts,p) € bI'. Thus the maps

f:o' =T, g: T — bl
given by
f(s;p)=p, 9(z) =(0,2)
satisfy (go f)(s,p) = (0,p) and f o g=idy. Thus go f ~ idyr since
(t,s,p) — (ts,p)

defines a homotopy between g o f and id,r. It follows that 7 (bI') = m (T) = Z.
Thus 7 (bl") = Z, and so deg(h) is an integer, which we can take to be nonneg-
ative.

Proposition 3.3. For any rational T-inner function h = (s,p), deg(h) is the
degree deg(p) (in the usual sense) of the finite Blaschke product p.

Proof. Indeed, if
he(A) = (ts(A),p(N)) for t € [0,1],
then since (ts(A),p(A)) € bl for A € T, h; is a homotopy between h = h; and

ho = (0,p(A)). It follows that the homomorphism h, : 7 (T) = Z — m (bl') = Z
coincides with (hg)., and it is easy to see that (0,p).(1) is the degree of p.
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Clearly the degree is a homotopy invariant in the class of rational I'-inner func-
tions with the topology of uniform convergence. Indeed, the degree provides a
complete homotopy invariant, in view of the fact that a Blaschke product of de-
gree n is homotopic in the class of all finite Blaschke products to the Blaschke
product A — A™.

An interesting and surprising fact is that if A has degree n, then there are always
exactly n royal points of A (Theorem 3.8 below). This fact, however, requires that
the royal points be counted with the proper multiplicity. Consider a rational
[-inner function h = (s, p) of degree n, let E and D be as in Proposition 2.2, and
let R be the polynomial defined by

(3.1) R(\) =4D(\)D™"(\) — E(\)2.
We see using (iv) and (v) that
R(A) = D(A)*(4p(A) = s(V)?)

for all A € D~. Hence, Condition (iii) in Proposition 2.2 implies that the royal
nodes of h exactly correspond to the zeros of R in D~. For this reason we refer to
R as the royal polynomial of h. As Proposition 2.2 states that F and D are only
determined by s and p up to multiplication by a nonzero real scalar, “the” royal
polynomial is only determined by s and p up to multiplication by a positive scalar.
We shall tolerate this slight abuse of language.

Definition 3.4. We say that a polynomial f is n-symmetric if deg(f) < n and
f~™ = f. For any set E C C, ordg(f) will denote the number of zeros of f in E,
counted with multiplicity, and ordy(f) will mean the same as ordo(f).

Two simple facts are that, for any n-symmetric polynomial f,

(3.2) deg(f) =n —ordy(f)
and
(3.3) ordo(f) + 2ordp\ {0y (f) + ordr(f) = deg(f).

Proposition 3.5. Let h be a rational U'-inner function and let R be the royal
polynomial of h as defined by equation (3.1). Then R is 2n-symmetric and the
zeros of R that lie on T have even order.

Proof. Clearly DD™" is 2n-symmetric. Condition (ii) in Proposition 2.2 implies
that E? is 2n-symmetric. Hence, R is 2n-symmetric.

Note that if A € T, then D~"(\) = A"D()A) and E(\) = E™™(\) = \"E(A
Hence, if A € T,

(34)  AT"R(A) =AT"ADD(N) — E(N)?) = 4DV = [EN)|*.

~—

As Condition (iv) in Proposition 2.2 guarantees that 4|D|?> — |E|* > 0 on T, it
follows that the zeros of R that lie in T have even order.

Proposition 3.5 shows that the rule for counting royal points introduced in the
following definition always produces an integer.
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Definition 3.6. Let h be a rational I'-inner function with royal polynomial R. If
o is a zero of R of order ¢, we define the multiplicity #0 of o (as a royal node of
h) by
l ifoeD
#o =
1 .
A ifoeT.

We define the type of h to be the ordered pair (n,k) where n is the sum of the
multiplicities of the royal nodes of h that lie in D™ and k s the sum of the multi-
plicities of the royal nodes of h that lie in T. We let R™* denote the collection of
rational T'-inner functions h of type (n, k).

The following example of rational I-inner functions from R™* for even n > 2
can be found in [2, Proposition 12.1]

Example 3.7. For all v > 0 and 0 < r < 1, the function

>\1/+1 >\()\21/+1 +,,,)
(3.5) hu(\) = (2(1 e e ) , AeD,

belongs to R**22v+1  The royal nodes of h, that lie in T, being the points at
which |s| = 2, are the (2v 4 1)th roots of —1, that is,

w; = 2D/ i — L 2w,
They are all of multiplicity 1. Note that there is a simple royal node at 0.

The following proposition clarifies the statement in the introduction that, with
correct counting, a rational I'-inner function has exactly deg(h) royal points.

Theorem 3.8. If h € R™* then n = deg(h).

Proof. Let R be the royal polynomial of h. As Proposition 3.5 implies that R is
2 deg(h)-symmetric, it follows from equations (3.2) and (3.3) that

deg(R) = 2deg(h) — ordg(R)
and
ordo(R) + 2ordp 03 (R) + ordr(R) = deg(R),
which imply that
(3.6) 20rdy(R) + 2ordp 103 (R) + ordy(R) = 2deg(h).
Hence
n = ordy(R) + ordp (0} (R) + sordr(R) = deg(h).
Note that the number of royal nodes of h is equal to
ordo(R) + ordp 0 (R) + 3ordr(R).

Therefore, as a corollary of Theorem 3.8 we get Theorem 1.1, that is, for a noncon-
stant rational I'-inner function h, either h(D~) = RNTI or h(ID™) meets R exactly
deg(h) times.
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Example 3.9. Let ¢ and ¢ be inner functions on . Then

(3.7) h=(p+v,p0)
is [-inner. In particular, h = (2¢p, ©?) is [-inner; this example has the property
that h(D) lies in the royal variety V.

4. PRESCRIBING THE ROYAL NODES OF h AND ZEROS OF s

In this section we shall show how to construct a rational [-inner function h =
(s,p) with the royal nodes of h and the zeros of s prescribed. Recall from the
previous section that if R denotes the royal polynomial of h then the royal nodes
are the zeros of R that lie in D~. In addition, if deg(h) = n then R is 2n-symmetric,
has zeros of even order on T and, by equation (3.4), satisfies A™"R(\) > 0 for all
A € T. We formalize these properties in the following definition.

Definition 4.1. A nonzero polynomial R is n-balanced if deg(R) < 2n, R is
2n-symmetric and A""R(\) > 0 for all A € T.

We have shown the following.

Lemma 4.2. Let h be a rational I'-inner function h of degree n. Then the royal
polynomial R of h is n-balanced.

To construct a rational ['-inner function h = (s, p) with the royal nodes of h and
the zeros of s prescribed we require the following well-known result of Fejér and
Riesz ([17, Chapter 6], [16, Section 53]).

Lemma 4.3. If f(\) =1 a;\ is a trigonometric polynomial of degree n such

that f(A\) > 0 for all X\ € T then there exists an analytic polynomial D(X\) =
Yoi o biX of degree n such that D is outer (that is, D(X) # 0 for all A € D) and

f) =D
forall N € T.

Let us give brief proofs of the following elementary lemmas, which can be used
to build n-balanced polynomials from their zero sets.

Lemma 4.4. For o € D™, let the polynomial Q, be defined by the formula
Qo(X) = (A= 0)(1—=TA).

Let n be a positive integer and let R be a nonzero polynomial. R is n-balanced if
and only if there exist points oq,09,...,0, € D™ and ty > 0 such that

(4.1) R\ =t, H Q. (), AeC.

Note that there may be repetitions among the o;.
Proof. It is easy to show that R is n-balanced if (4.1) holds.
Conversely, let R be n-balanced; then R is 2n-symmetric. We have
R(A) = 1o+ 1A+ -+ TIA T+ A

and B I
FoN A A+ TN 4 TgA > 0 for all A € T.
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By Lemma 4.4 there exists an outer polynomial
PA\) =ap+aA+ -+ a,\"
such that
XN'R(\) = |P(\))* forall A\ € T
and P has all its zeros (; in C\ D. Say
PA) =cA=¢) ... (A=C).
Therefore, for all A € T,
X'R(N) = [P
="M =)A= Q). (A= G) (A = Ca)
=[P =) =GN (A= G =GN
=N (lellG] -+ 16D Qo (V) -+ Qo (V)
where 0; =1/ € D™, i =1,...,n. Thus
RA\) =t:Qs (N)...Q,, (A) for all X € C,

where ¢t = (|c||¢1] - .. [Ca])2
The royal polynomial of a rational I'-inner function A is determined by the royal
nodes of h, with their multiplicities.

Proposition 4.5. Let the royal nodes of a rational I'-inner function h be oy, ..., 0,,
with repetitions according to multiplicity of the nodes as described in Definition 3.6.
The royal polynomial R of h, up to a positive multiple, is

(4.2) R(A) = H Qo; (A)-

Proof. By Lemma 4.2, the royal polynomial R of h is n-balanced. By Lemma
4.4, there exists t; > 0 and (3,...,(, € D™ such that

RO =t [] Q4 (V).

Since the royal nodes of h and their multiplicities are defined in terms of the zeros
of R in D™ and their multiplicities, it follows that the list (1, ..., (, coincides, up to
a permutation, with the list oy, ..., 0,. Hence R is given, up to a positive multiple,
by equation (4.2).

Our next lemma summarizes an elementary procedure for building an n-symmetric
polynomial from its roots. For 7 = e 0 < § < 27, we define L, by

L(\) =ie '2(\— 7).
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We note that L, is 1-symmetric:

LT A) = AL (1/X)
= NieT (A — 1)
— —ie" 7T (T — \)

- LT()‘)a
and that L? = Q,:

L2(N) = (i (A = 7))’

=—TA=7)(A—1)
=A=7)1-=7N\)
— Q. (V).
Lemma 4.6. Let n be a positive integer. A polynomial E is n-symmetric if and
only if there exist points oy, o, ..., o € D, points 71, 72,...,7, € T andt € R
such that
]{?0 = 01'd0(E> + OI'd]D)\{()} (E),
ki = ordr(FE),
(43) 2]{30 + ]{31 =N and
ko k1
(4.4) EN) =t ][] Qa,(N) [ L, (V)
j=1 j=1

Proof. Let E be n-symmetric, that is,

AN'E(1/X) = E(\) for all A € C\ {0}.
Let
EXN)=cA—ay) ... A=ag ) A=m1) ... A=) ) A=P1) - .. (A= P, for all A € C,

where aq, ..., a5, €D, m,... mk, € Tand By,..., 0k, € C\D.
Note that if « € D\ {0} is a zero of E then 1/@ is also a zero of E since

oa"E(1/a) = E(a) = 0.
Hence, for some v, v < ky,
E) = XA = ava) . (A= o) A=) - (A= 1) A — /@) ... (A — 1/aizy)
for all A € C. Thus

EQA) = wiX"(A = ) (1 =amA) - (A= g ) (T = @A) (A =) - (A = 1)
= wiwa @G (M) Qo iy (V) -+ Qay N Ly (A) -+ Ly (A)
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for all A € C, where wy = ¢(—1/a,77)...(—1/a,) and wy = i % . et

Recall that F is n-symmetric, L is 1-symmetric and @) is 2-symmetric; therefore
E(A) = w102Qf (M) Qay i (A) -+ Qo () Ly, (A) - Ly, (A)
= \"E(1/))
= N'w3Q4(1/ M) Qayiy (1/A) -+ Quy (1/N) Ly (1/X) .. Ly, (1/3)
= X" MGERQE (N Qay iy (A) -+ Qayy (N Ly (A) -+ Ly (V)

for all A € C\ {0}. Hence, n = 2kq + k; and wyws € R.
The converse result is easy.
Note that there may be repetitions in the lists a4, ..., oy, and 7, ..., 7, above.

Remark 4.7. If h = (s,p) is a rational [-inner function then no zero of s on T
can be a royal node of h. For if s = 0 = s> — 4p then p = 0, whereas |p| = 1 at
every point of T at which p is defined, including every royal node of h on T.

We can now elucidate Theorem 1.2 on the existence of rational I-inner functions
of prescribed degree with a given nodal set and a given zero set of s. The following
result not only asserts the existence of the desired function, but also describes how
to construct all such functions.

Theorem 4.8. Letn be a positive integer and suppose given points oy, t, . .., Qk, €
D and
T, Toy .-, Tk, € T, where 2ky + k1 = n, and points oy, ...,0, in D™ distinct from
Ty ooy Thy-

There exists a rational U'-inner function h = (s,p) of degree n such that

(1) the zeros of s, repeated according to multiplicity, are aq, g, . .., gy, T1, Ta, - -

and
(2) the royal nodes of h are oy, ...,0,.

Such a function h can be constructed as follows. Let t, > 0 and let t € R\ {0}.
Let R and E be defined by

R(A) =t H(A —0;)(1 =7;)
and
ko k1 '
E(\) = tH(A — o)1 —a;\) Hz’e_wﬂﬂ()\ —7)

where 7; = €, 0 < 0; < 2.
(i) There exists an outer polynomial D of degree at most n such that

(4.5) AT'R(N) + [E(VP = 4DV

for all A € T.
(ii) The function h defined by

h=(sp)= <%,%)

<5 Thy



RATIONAL TI'-INNER FUNCTIONS 13

is a rational T'-inner function such that deg(h) = n and conditions (1) and (2)
hold. The royal polynomial of h is R.

Proof. (i) By Lemma 4.4, R is n-balanced, and so A™"R(\) > 0 for all A € T.
Therefore
AT"R(N) + [E(V)]? >0

for all A € T. By Lemma 4.3, there exists an outer polynomial D of degree at most
n such that the equality (4.5) holds.

(ii) By Lemma 4.6, the polynomial E is n-symmetric. Let D be an outer poly-
nomial of degree at most n such that the equality (4.5) holds for all A € T. By
hypothesis

{o; :1<j<nin{r :1<j<k}=0.

Then A™"R(\) and |E(\)|? are non-negative trigonometric polynomials on T with
no common zero. Thus

A"R(N) + [E(A)]?>0onT.

By the equality (4.5), D has no zero on T, and so D and D~ have no common
factor. Hence

~n

deg(p) = deg < B
Since A™"R(A) > 0 for all A € T,
4D = AR + [EV)* = [E(V)
for all A € T. Thus

) = max{deg(D),deg(D~")} = n.

[E(N)] < 2[D(N)]
for all A € T. Since D(A) # 0 on D™, we have

'%' <2 forall AeD".

By the converse of Proposition 2.2,

_ (B D)
0= (505 o)

is a rational I'-inner function with deg(h) = n.
The royal polynomial of h is defined in equation (3.2) by

Rp(\) = 4D(\)D~"(\) — E(\)2.
By equation (3.4), for all A € T,

A"Ru(A\) = 4D(A\)D(\) — E(A)E()).
By equation (4.5), for all A € T,
AT"RL(AN) = AT"R(A).
Thus the royal polynomial of & is equal to R.
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For large n the task of finding an outer polynomial D satisfying equation (4.5)
cannot be solved algebraically. It can, however, be efficiently solved numerically;
engineers call this the problem of spectral factorization, and they have elaborated
effective algorithms for it — see for example [14].

The solution D of the spectral factorization (4.5) is only determined up to mul-
tiplication by a unimodular constant w. If we replace D by wD then we obtain a

new solution
FE D~
h = — w? .
(5 %)

It appears at first sight that the construction in Theorem 4.8 gives us a 3-parameter
family of rational I'-inner functions with prescribed royal nodes and prescribed zero
set of s, since we may choose ¢, t and w independently. However, the choice of
1,t//t+, D/\/t+ and w leads to the same h as ty, t, D and w. The following
statement tells us that the construction yields all solutions of the problem, and
so the family of functions h with the required properties is indeed a 2-parameter
family.

Proposition 4.9. Let h = (s,p) be a rational T'-inner function of degree n such
that

(1) the zeros of s, repeated according to multiplicity, are oy, s, ..., ax, €D,
T, T2y Tk, € T, where 2ky + k1 = n, and
(2) the royal nodes of h are oq,...,0,.

There exists some choice of t; >0, t € R\ {0} and w € T such that the recipe in
Theorem 4.8 with these choices produces the function h.

Proof. By Proposition 2.2, there exist polynomials E; and D; such that
deg(Ey),deg(Dy) < n, Ej is n-symmetric, D;(\) # 0 on D™, and

B Dyn

s=— andp= onD™.
D, T,

By hypothesis, the zeros of s, repeated according to multiplicity, are oy, as, . . ., oy,
Ti, T2y - .., Tk, Where 2k + k1 = n. Since Ej is n-symmetric, by Lemma 4.6, there
exists t € R\ {0} such that

ko kl

Ei(\) =t [N = ap)(@ —a)) [ [ ie (A = )

7=1 7=1

The royal nodes of h are assumed to be oy,...,0,. By Proposition 4.5, for the

royal polynomial Ry of h, there exists ¢, > 0 such that
R () =t ][ Qs, (V)
j=1

By the equality (3.4), for the royal polynomial R; of h, we have
AT RI(A) = ATMAD (AN DY () = Er(V)?) = AIDi(V)[F = [Ed(A) P,

for A € T. Since E; and R; coincide with £ and R in the construction of Theorem
4.8, for a suitable choice of of ¢, > 0 and t € R\ {0}, D, is a permissible choice for
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wD for some w € T, as a solution of the equation (4.5). Hence the construction of
Theorem 4.8 yields h for the appropriate choices of t, >0, ¢t € R\ {0} and w.

5. s-CONVEXITY AND $-EXTREMITY

The distinguished boundaries of the bidisc ID? and the ball B, contain no line
segments. Every inner function in Hol(ID,D?) is therefore an extreme point of
Hol(ID, D?), and likewise for Hol(ID,B,). This property contrasts sharply with the
situation in the symmetrized bidisc.

I' is not a convex set, but it is convex in s for fixed p € D~. That is, the set

(51)  TN(Cx{p}) = {(s:p) € C*: |s —5p| < 1 — |p| and |s| < 2}

is convex for every p € D7, as is easily seen from the expression on the right
hand side of equation (5.1). In consequence, some associated sets have a similar

property.

Proposition 5.1. The following sets are convex.

(1) TN (C x {p}) for any p e D~;
(2) bI'N (C x {p}) for anyp € T;
(3) the set of T'-inner functions (s,p) for a fized inner function p.

To prove (2) observe that bI' N (C x {p}) = {(s,p) : s = spand |s| < 2}.
Statement (3) follows easily from the first two.

We shall summarize these properties by saying that I', bI" and the set of I'-inner
functions are s-convex.

In the light of the phenomenon of s-convexity it is natural to ask about the
extreme points of the set (3) in Proposition 5.1.

Definition 5.2. A rational I'-inner function h is s-extreme if whenever h has a
representation of the form h = thy+ (1 —t)he with t € (0,1) and hy and hs rational
['-inner functions, hy = ho.

Thus h is s-extreme if and only if it is an extreme point of the set of rational I'-
inner functions in the usual sense; however, one customarily only speaks of extreme
points of conver sets, and the rational I'-inner functions do not constitute a convex
set. It is thus safer to use the term s-extreme.

We show in this section that whether or not a rational I'-inner function is s-
extreme depends entirely on how many royal nodes it has in T (Theorem 1.3).

It follows from the lemma below that a I'-inner function is s-extreme if and only
if it is an extreme point of the set in (3) of Proposition 5.1 for some inner function

p.

Lemma 5.3. Let h = (s,p), hy = (s1,p1) and hy = (s2,p2) be I'-inner functions.
If h =thy + (1 — t)hy for some t such that 0 <t <1 then p = p; = ps.

Proof. Since h = th; + (1 — t)hy we have p = tp; + (1 — t)pa. Hence, at any
point A € T, p(A) = tp1(A) + (1 — ¢)pa(N). Since the functions p, py, pe are inner,
p(A) € T and both p;(A) and po(A) are in D~. Since every point of T is an extreme
point of D we have p(A\) = p1(A\) = pa(A) for almost all A € T.
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Lemma 5.4. Let h = (s,p) be a rational I'-inner function. For v € T, |s(7)| = 2
if and only if X is a royal node of h. Moreover, T = €' is a royal node of h of
multiplicity v if and only if |s(e®)| = 2 to order 2v at t = t,.

Here a (real or complex-valued) function f on a real interval I is said to take a
value y to order m > 1 at a point ty € I if f € C™(I), f(to) =y, f9(ts) = 0 for
j=1,...,m—1and f™(ty) # 0. Note that if y # 0 then f2(t;) = y? to order
m implies that f(ty) = y to order m. We say that f vanishes to order m > 1 at a
point tg € I if f take the value 0 to order m at t.

Proof. By Definition 3.6, to say that 7 € T is a royal node of h of multiplicity v
means that

(s =4p)(\) = (A = 7)™ F())

for some rational function F' that is analytic on T and does not vanish at 7.
Since h is ['-inner, s = sp on T, and hence

1 1
4 —|s]> = =(4p — s5p) = —=(s*> —4p
5] p( ) p( )

on T. Tt is immediate that, for any 7 € T, |s(7)| = 2 if and only if s(7)* = 4p(7),
that is, if and only if 7 is a royal node of h.

Now suppose that 7 = e is a royal node of h of multiplicity » > 1. On
combining the last two displayed formulae one finds that, for all t € R,

4 — ‘8(6“)‘2 — (eit - 7_)21/G(eit)

where G = —F/p is a rational function that is analytic on T and does not vanish
at ¢ = 7. Since h is rational and |s(e'®)| = 2, the function f(t) = 4 — |s(e')|?
is C* on a neighbourhood of t,. It is routine to show that f)(ty) is zero for
j =0,...,2v — 1 and nonzero when j = 2v. Thus f(t) = 0 to order 2v at t,.
Hence |s(e)|? = 4 to order 2v at ty, and so |s(e')| = 2 to order 2v at t.

Lemma 5.5. Any h = (s,p) € R™° is not s-extreme.

Proof. As the royal nodes of h all lie in D, by Lemma 5.4, |s| < 2 on T. Hence,
there exists € > 0 such that |s+¢es| < 2 on T. It follows from Proposition 2.1 that
if we define hy and hy by hy = (s +¢€s,p) and hy = (s — es,p), then hy and hy are
rational I'-inner functions. Furthermore, an application of Lemma 5.4 to h; and
ho shows that both h;, he € R™". Finally, since by construction, h = %hl + %hg,
the proof of Lemma 5.5 is complete.

Recall from the introduction that a superficial ['-inner function A is one such
that A(DD) C T and that they are all of the form (w+wp, p) for some inner function
p and some w € T [2, Proposition 8.3].

Proposition 5.6. (i) Let h = (s, p) be superficial and h = thy + (1 —t)hy for some
0 <t <1, where hy = (s1,p1) and hy = (s2,pa) are rational G-inner functions.
Then hy and hy are superficial and p = p; = po.

(ii) Superficial I'-inner functions are s-extreme.

(i) Suppose hy = (wy + wWip,p) and hy = (wa + wop, p) are superficial I'-inner
functions of degree n such that wy # wy and h = thy + (1 —t)hy for some 0 <t < 1.
Then h € R™° and is not s-extreme.
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Proof. (i) Suppose h; is not superficial. Then there exists Ay € D such that
hi(Xo) € G. Let us show that in this case h(\g) € G. By Lemma 5.3, p = p; = p».
By Proposition 2.1, it is enough to show that

s(Ao) = s(Aa)p(Aa)| < 1= [p(Xo)|*.
Note that
s(Ao) = 5(A0)p(Xo)| = t](s1(Aa) = s1(Aa)p(Aa))| + (1 = £)](s2(Ao) — s2(Ao)p(No))]
<1—|p(ho)|*.

(i) By [2, Proposition 8.3], a superficial rational I'-inner function h = (w+wp, p)
for some inner function p and some w € T. If h is not s-extreme, by Part(i), we
have h = thy + (1 — t)hy for some ¢ such that 0 < ¢ < 1, where hy = (s1,p) and
ho = (s9,p) are superficial rational G-inner functions. Let h; = (w; + w;p, p) for
some w; € T, 7 =1,2. Thus

h = (w+wp,p) = (twy + torp + (1 — t)wa + (1 — t)wap, p).
Therefore, for w € T and w; € T, i =1, 2,
w=twy + (1 — t)ws.
Since every point of T is an extreme point of D we have
Ww=w; =W

and h = hy = hy. Hence h is s-extreme.

(iii) Suppose hy = (w1 + W1p,p) and hy = (wy + Wop, p) are superficial T-inner
functions of degree n such that wy # wye and h = thy + (1 —t)hs for some 0 < ¢t < 1.
Thus

h = (w+@p,p)

where w = twy + (1 — t)wy. Since w; # wy we have |w| < 1 and h has no royal
nodes on T. Therefore h € R™” and, by Lemma 5.5, h is not s-extreme.

Proposition 5.7. Let h be the I'-inner function
h(A) = (B + BA, )

where || < 1.
(i) If |B] < 1 then h € R™Y and h is not s-extreme.
(ii) If |B| =1 then h € RY" and h is s-extreme.

Note that if |5| < 1 then h is a complex geodesic of G (it has the analytic left
inverse (s,p) — p). If || = 1 then h is superficial, and so is not a complex geodesic
of G.

Proof. (i) If |5| < 1 then, for all A € T, |s(\)| < 2|8] < 2. By Lemma 5.4, h has
no royal node on T and so h € R'Y. By Lemma 5.5, h is not s-extreme.

(i) Let || = 1. Then |s(\)| = 2 if and only if A = 32. Hence the royal node of
his at 3% € T. Hence h € R"'. By Proposition 5.6(ii), h is s-extreme.

For p an inner function of degree n and k= 0,1,...,n, let

(5.2) RpP ={(s,p1) € R™ : p; =p}
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and let R} be the set of I'-inner functions with second component p, so that
(5.3) Ry = Rrp*.

k=0
Proposition 5.8. If p is an inner function of degree n then R} is convex. Let C
be a collection of rational I'-inner functions. C' is convex if and only if there exists
an inner function p such that C is a convexr subset of R} .

Proof. It follows from Proposition 5.1 and Lemma 5.3.

Proposition 5.9. If h is a rational I'-inner function of degree n then h is a convex
combination of at most n+2 s-extreme rational I'-inner functions of degree at most
n.

Proof. For the given rational I'-inner function h = (s,p) of degree n, p is an
inner function of degree n and h € R;. By Remark 2.3, the convex set R} is a
subset of an (n 4 1)-dimensional real subspace of the rational functions. Thus, by
a theorem of Carathéodory [8, 18], h is a convex combination of at most n + 2
s-extreme rational ['-inner functions of degree at most n.

Lemma 5.10. Let h = (s,p) € R;“k and let 7, 79,..., 7 € T be royal nodes of h.
Suppose h = thy + (1 — t)hy for some t such that 0 < t < 1, where hy = (s1,p1)
and hy = (s2,p2) are rational G-inner functions. Then p = p; = ps and

si(m;) = s(r;) for j=1,...kandi=1,2.

Proof. By Lemma 5.3, p = p; = po. By Lemma 5.4, |s(7;)| = 2 at each royal
node 7; € T. Note that s(7;) = ts1(7;) + (1 —1t)s2(7;) for some ¢ such that 0 <t < 1
and |s;(7;)] <2 for j=1,...,k and i = 1,2. Since every point on the circle 2T is
an extreme point of 2D we have |s;(7;)| = 2 and s;(7;) = s(7;) for j =1,...,k and
i=1,2.

The following observation follows easily from a consideration of Taylor expan-
sions.

Lemma 5.11. Letty < t; in R, let v > 1 be an integer and let f, g be nonnegative
real-valued C* functions on [t,t1). If f vanishes to order 2v at ty and 0 < g < f
on [to, t1) then g vanishes to order at least 2v at ty.

Lemma 5.12. If h, hy and hy are rational I'-inner functions, h is a convex com-
bination of hy and hy and T € T is a royal node of h of multiplicity v > 0 then T
1s also a royal node of multiplicity at least v for hy and hs.

Proof. Let h = (s,p), hy = (s1,p1), ho = (S2,p2). Suppose that h = %hl + %hg.
By Lemma 5.3, p;1 = p =ps, s= %sl + %sz and we can assume that s, s; and s,
are distinct rational functions.

The argument can be pictured as follows. Imagine the closed curve h(e®),0 <
t < 27, lying in the Mdbius band bI. Tt touches the boundary {(2w,w?) : w € T}
of bI" at the points where e’ is a royal node of h lying in T, and by Lemma 5.4, it
touches to order 2v, where v is the multiplicity of the royal node in question. For
each t, the three points h(e), hy(e”) and hy(e) lie on the line segment

Lo = {(2ze"? ) : —1 <z <1} c I
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where p(e) = e, and furthermore the first of these three points is the midpoint
of the other two. The three curves intersect only finitely many times, for otherwise
they coincide. Hence, for ¢ in a small enough one-sided neighbourhood of ¢,, one of
the curves, say hi(e), is sandwiched between h(e) and the appropriate endpoint
(426972 %) of Ly. We shall show with the aid of Lemma 5.11 that hy(e") and
ho(e) = (2h — hy)(e) also touch the boundary to order at least 2v. Hence hy, hy
have royal nodes at 7, and (again by Lemma 5.4) with multiplicities at least v.

Let us formalise this geometric argument. Suppose that 7 = ef® and p(7) = e'%.
Let I be an open interval in R containing ¢y, and such that exp(i/) has length less
than 27; thus there is an analytic branch of log on the arc exp(il). Define a chart
(U, ) in bI" by taking U to be the set bI' N (C x exp(il)) and

a=(X,0):U — R?

to be defined by

afs,e?) = (%se_w/z, 0)

where of course the map e — 0 is —ilog. Observe four properties of a:
(1) the image a(U) is the rectangle [—1, 1] x I;
(2) « is real affine linear on every line segment Ly;
(3) X is real-valued on U and so, for (s,e”) € U,

X(s,e”) = £|X(s,e”)| = ﬂ:|%se_i9/2| = +1s].

(4)
afs,p) = (% —i logp)

is the restriction to U of an analytic map on an open set in C2. Thus X is
real-analytic in U.

The point h(7) lies the boundary of b and is therefore of the form (2w, w?) for
some w € T. Here w? = p(7) = ¢ and so w = +e/2. If I is replaced by I + 27
then U is unchanged and the sign of the first component of « is reversed; we may
therefore assume that w = ¢/2 and a o h(7) = (1,6,). On replacement of I by a
smaller neighbourhood of ¢, if necessary, we can also assume that X o h(e") > 0

1

and so X o h(e") = 3|s(e”)| for t € I. Similarly we can assume that X o h;(e") =

Xsj(e)| for t € I and j = 1,2. Let
f(t) =1—=Xoh(e") =1 g|s(e")|

for t € I. Likewise let f;(t) = 1 — X o hj(e) =1 — L]s;(e")| for j = 1,2. Then
f, fi and fy are all nonnegative on I and, by the affine linearity property of «,
= %f 1+ %f 2-

By hypothesis 7 is a royal node of h of multiplicity v, and so, by Lemma 5.4,
|s(e™)| = 2 to order 2v at to, which is to say that f vanishes to order 2v at t.
Now f, fi, fo are distinct at all but finitely many points. Hence there is a t; > tg
contained in I such that 0 < f;(t) < f(t) for tp <t < t; and j = 1 or 2 — say
7 = 1. By Lemma 5.11, it follows that f; and also fo = 2f — f; vanish to order

at least 2v at t. Consequently |s;(e™)| = 2 to order at least 2v at ty. Again by
Lemma 5.4, h; has a royal node of multiplicity at least v at 7.
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We are ready to prove Theorem 1.3. Recall the statement:

Theorem 5.13. A I'-inner function of degree n having k royal nodes in T, counted
with multiplicity, is s-extreme if and only if 2k > n.

In other words, h € R™" is s-extreme if and only if 2k > n.
Proof. (=) Let h € R™*. Suppose that 2k < n; we must show that & is not s-
extreme. Write A in polynomial form: h = (E, D~")/D where E is an n-symmetric
polynomial and D is a polynomial of degree at most n having no zeros in D™. Let
the royal nodes of hin D~ be 7q,..., 7 € T and agy1, ..., a, € D (with repetitions
according to multiplicity). The royal polynomial of A is then

R= HQTJ H Qa, .

j=k+1

and consequently

H|>‘_TJ‘2 H |>‘_O‘J‘2

j=k+1
for all A € T. By Theorem 4.8,
(5.4) 4D~ |EP = rH A—nf ] h-af
j=k+1

for some r > 0 and all A € T.
Assume first that n is even, say n = 2m. Thus k < m. Let

g =7 w0 - 7)™

j=1

This polynomial has degree m + k£ < n and is n-symmetric. Let E; = E + tg for
t € R. Then E; is n-symmetric of degree at most n, and

(5.5) AID* — |E* = AID|* — |E|* — £*|g|* — 2Re(tEg)

on T. Let ||F||» denote the supremum of |E| on T; then
Re(tEg(N)) < [tEg(\)| = [tE(X |H A =7

< |t|||E||ooH A =7

Jj=1
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for A € T. Combine this inequality with equations (5.4) and (5.5) to deduce that
k

4|DJ? - |E\2>rH\A—TJ|2 H Q5 (N = £[g* = 2t[|E]loe [T 1A = 75
J=1 Jj=k+1 j=1
k
=111 —Talz{ H |Qay (M) = ( t2+2|t|||E||oo)}
=1 j=k+1

A= {rM — (8 + 2/t][| E]l ) }

AV
=Pl

on T, where M = infr[]|Qq,| > 0. It follows that for |¢| sufficiently small,
4|DJ? — |E;|* > 0 on T. Hence, by Theorem 4.8, the functions

det (B D™
=D

are rational I'-inner functions, and clearly h = %ht+ %h_t. Thus h is not s-extreme.
The case of odd n, say n = 2m + 1, requires a slight modification. Since 2k <
n =2m + 1, we have £ < m. Choose w € T such that

k
W =-n ]
j=1
and let
k
g \) = wA™"FN =1y H —7)%

Then ¢ is an n-symmetric polynomial of degree m+k+1 < n. As in the even
case we define F; to be E +tg for real ¢, and a similar calculation to the foregoing
shows that 4|DJ* — |Ey|*> > 0 on T for small enough [¢|. The argument concludes
as before to show that h is not s-extreme.

(<) Let 2k > n and suppose that h = (s,p) = (E/D, D~"/D) is not s-extreme,
so that there exist n-symmetric polynomials F, of degree at most n, different from
E such that h = %h+ + %h_ where

EL D~
h:l: - (S:t7p) ( D:t D )
are ['-inner functions. Let the royal nodes of hin T be 7, ..., 7, with multiplicities

vy, ..., respectively. Thus vy +---+1v, = k. Let g = Ey — E; then g is a nonzero
n-symmetric polynomial and £ = E — g.
Let the royal polynomials of h and hy be R and R4 respectively. Then
Ri: =4DD™" — (E+g)* =R — ¢* F2Eg.
Hence
R_ - R+ == 4Eg

By Lemma 5.12, hy have royal nodes of multiplicity at least v; at 7;, and so Ry
vanish to order 2v; at 7;. Hence g vanishes to order at least 2v; at 7;. The degree
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of g is therefore at least 2v; + --- 4+ 21y = 2k > n. This is a contradiction since
deg(g) <n, and so h is s-extreme.
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