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Global Holomorphic Functions in Several
Non-Commuting Variables Il

Jim Agler and John McCarthy

Abstract. 'We give a new proof that bounded non-commutative functions on polynomial polyhedra
can be represented by a realization formula, a generalization of the transfer function realization
formula for bounded analytic functions on the unit disk.

Introduction

Let M, denote the n x n matrices with complex entries, and let M4 = (J°2, M¢
be the set of all d-tuples of matrices of the same size. A non-commutative function
(nc-function) on a set E € M is a function ¢: E — M that satisfies

* ¢ is graded, which means that if x € E n M¢, then ¢(x) € M,;
* ¢ is intertwining preserving, which means that if x, y € E and S is a linear operator

satisfying Sx = yS, then S¢(x) = ¢(»)S.

The points x and y are d-tuples, so we write x = (x%,...,x%) and y = (y',..., y%).
By Sx = yS, we mean that Sx” = y"S for each 1 < r < d. See [9] for a general reference
to nc-functions.

The principal result of [2] was a realization formula for nc-functions that are boun-
ded on polynomial polyhedra; the object of this note is to give a simpler proof of this
formula, (see Theorem 1.2).

Let & be an I x J matrix whose entries are non-commutative polynomials in d
variables. If x ¢ M?, then §(x) can be naturally thought of as an element of B(C’ ®
C",C'® C"), where B denotes the bounded linear operators, and all norms we use
are operator norms on the appropriate spaces. We define

(11) Bs:={xeM*:|8(x)| <1}.
Any set of the form (1.1) is called a polynomial polyhedron. Let H* (Bs) denote the

nc-functions on By that are bounded, and let H;°(Bs) denote the closed unit ball,
those nc-functions that are bounded by 1 for every x € Bs.
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Definition 1.1 A free realization for ¢ consists of an auxiliary Hilbert space M and
an isometry

C MeCT
C A B
MeC \C D
such that for all x € Bs, we have

A B 1 p 1 1'c¢
= ® - ®
(12) o(x) ®+ e [1 ® 2, ] e .

The 1s need to be interpreted appropriately. If x € M9, then (1.2) means

-1

A B idae ® D idae C
dp(x)= © + ©® ® idgy — ® ® ® .
iden iden  8(x) ® iden  8(x) idgn
iden

We adopt the convention of [11] and write tensors vertically to enhance legibility. The
bottom-most entry corresponds to the space on which x originally acts; the top cor-
responds to the intrinsic part of the model on M.

The following theorem was proved in [2]; another proof appears in [6].

Theorem 1.2 The function ¢ is in Hy° (Bs) if and only if it has a free realization.

It is a straightforward calculation that any function of the form (1.2) is in H° (Bs).
We wish to prove the converse. We shall use two other results: Theorems 1.4 and 1.5.
If E c M?, welet E,, denote EnM¢. If K and £ are Hilbert spaces, a B(XK, £)-val-
ued nc function on a set E € M? is a function ¢ such that
o ¢ is B(XK, L) graded, which means if x € E,,, then ¢(x) e B(X® C",L ® C");
* ¢ is intertwining preserving, which means if x, y € E and S is a linear operator
satisfying Sx = yS, then

EE RO

Definition 1.3 Annc-model for ¢ € Hi°(B;) consists of an auxiliary Hilbert space
M and a B(C, M ® C’)-valued nc-function u on B such that, for all pairs x, y € Bs
that are on the same level, i.e., both in B n M for some 1,

13) 1600 80 =u0)" ||y Sy |1

Again, the 1s have to be interpreted appropriately. If x, y € By n M¢, then (1.3)
means

ides=9()" () = ()" | u(x).

oo
idc/@,cn _6(}’)* 6(")

Theorem 1.4 A graded function on Bs has an nc-model if and only if it has a free
realization.
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Theorem 1.4 was proved in [2], but a simpler proof was given by Balasubramanian
[5]. Let us note for future reference that the functions u in (1.3) are locally bounded,
and therefore holomorphic [2, Theorem. 4.6].

The finite topology on M“ (also called the disjoint union topology) is the topology
in which a set Q) is open if and only if for every n, Q,, is open in the Euclidean topology
on M. If I is a Hilbert space, and Q is finitely open, we shall let Hol5{ (Q) denote the
B(C, H) graded nc-functions on Q) that are holomorphic on each Q,,. (A function u
is holomorphic in this context if for each n, each x € Q,,, and each h € M4, the limit
lim; o 1/t(u(x+th)—u(x)) exists.) A sequence of functions u* on Q is finitely locally
uniformly bounded if for each point A € Q, there is a finitely open neighborhood of
A inside Q) on which the sequence is uniformly bounded.

The following wandering Montel theorem was proved in [1]. If u is in Holj¢(Q)

and V is a unitary operator on J, define V * u by (V * u)|q, = _d® u
1den

Q, Vn-

Theorem 1.5  Let Q be finitely open, 3 a Hilbert space, and {u*} a finitely locally
uniformly bounded sequence in Hol3{ (Q)). Then there exists a sequence { U* } of unitary
operators on I such that {U* * u*} has a subsequence that converges finitely locally
uniformly to a function in Hol5¢(Bs).

Let ¢ € Hy°(Bs). We shall prove Theorem 1.2 in the following steps.

[  Forevery z € Bg, show that ¢(z) is in Alg(z), the unital algebra generated by the
elements of z.

IT  Prove that for every finite set F C By, there is an nc-model for a function y that
agrees with ¢ on F.

III Show that these nc-models have a cluster point that gives an nc-model for ¢.

IV Use Theorem 1.4 to get a free realization for ¢.

Remarks 1.6  Step I is noted in [2] as a corollary of Theorem 1.2; proving it inde-
pendently allows us to streamline the proof of Theorem 1.2.

To prove Step II, we use one direction of [3, Theorem 1.3] that gives necessary and
sufficient conditions to solve a finite interpolation problem on B;s. The proof of ne-
cessity of this theorem used Theorem 1.2, but for Step II we only need the sufficiency
of the condition, and the proof of this in [3] did not use Theorem 1.2.

All three known proofs of Theorem 1.2 start by proving a realization on finite sets,
and then somehow taking a limit. In [2], this was done by considering partial nc-
functions; in [6], it was done by using non-commutative kernels to get a compact set
in which limit points must exist. In the current paper, we use the wandering Montel
theorem.

Step |

Let {ej};'zl be the standard basis for C". For x in M, or M%, let x(¥) denote the

direct sum of k copies of x. If x € M? and s is invertible in M,,, then s'xs denotes
the d-tuple (s7'x's, ..., s 1x%s).
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Lemma 2.1 Letz e MY, with ||z|| < 1. Assumew ¢ Alg(z). Then there is an invertible
s € Ml,» such that |s7'z(s| < Land |s7'w(s| > 1.

Proof Let A = Alg(z). Since w ¢ A, and A is finite dimensional and therefore
closed, the Hahn-Banach theorem says that there is a matrix K € M, such that
tr(aK) = 0 for all a € A and tr(wK) # 0. Let u € C" ® C" be the direct sum of
the columns of K, and v = ¢; ® e, @ - - - ,,. Then for any b € M,, we have

tr(bK) = (b u,v).

Let A ® id denote {a(™ : a ¢ A}. We have (a™u,v) = 0, for all a € A and
(wMu,v) 4 0.

Let N = (A®id)u. This is an A ® id-invariant subspace, but it is not w") invariant
(since v L N, but v is not perpendicular to w("u). So decomposing C" ® C" as
N @ N*, every matrix in A ® id has 0 in the (2,1) entry, and w(") does not.

Let s = aly + BIn:, with a > > 0. Then

e el 7]
C D %C D |

If the ratio o/ is large enough, then for each of the d matrices z", the correspond-
ing s™' (2" ®id)s will have strict contractions in the (1,1) and (2,2) slots, and each (1, 2)
entry will be small enough so that the whole thing is a contraction.

For w, however, as the (2,1) entry is non-zero, the norm of s Iw(™s can be made
arbitrarily large. ]

Lemma 2.2 Letze Bsn MY, and w € M, not be in A := Alg(z). Then there is an
invertible s € Ml,.» such that s'z(") s € Bs and ||s"'w("s| > 1.

Proof Asin the proof of Lemma 2.1, we can find an invariant subspace N for A ® id
that is not w-invariant. Decompose 8(z(")) as a map from (N®C/) & (N* ®C/) into
(N®Ch @ (N* ® C!). With s as in Lemma 2.1, and & > f8 > 0, and P the projection
from C" ® C" onto N, we get

6o(zmy e B gsm

-1_(n)\ _| id id ® id id

(2.1) 0(s7z\"s) = o oL
0 ] 8(z(M) ]

The matrix is upper triangular because every entry of § is a polynomial, and N is
A-invariant. For a/f large enough, every matrix of the form (2.1) with z € Bs is a
contraction, so s'z(")s € Bs. But s'w(")s will contain a non-zero entry multiplied
by %, so we achieve the claim. [ |

Theorem 2.3 If ¢ isin H (Bs), then for all z € Bs, we have ¢(z) € Alg(z).

Proof We can assume that z € By and that ||¢| < 1on Bs. Let w = ¢(z). If w ¢
Alg(z), then by Lemma 2.2, there is an s such that s7'z(")s € Bs and |[¢(s7'2(")s)| =
|s7'w("s|| > 1, a contradiction. [ |
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Note that Theorem 2.3 does not hold for all nc-functions. In [4] it was shown that
there is a class of nc functions, called fat functions, for which the implicit function
theorem holds, but Theorem 2.3 fails.

Step II

LetF = {x1,...,xn}. Defined = x; ®---@®xy, and definew = ¢(x;) d---® p(xn). As

nc functions preserve direct sums (a consequence of being intertwining preserving)

we need to find a function v in H;® (By) that has an nc model, and satisfies w(1) = w.
Let P; denote the nc polynomials in d variables, and define

I,\Z{qéfpdiq(/l):()}.

Let V} = {x e M : g(x) = 0 whenever q € I, }. We will need the following theorem
from [3].

Theorem 3.1 Let A € By n M% and w € M.,,. There exists a function v in the closed
unit ball of H* (Bs) such that w(1) = w if

(i) weAlg(L), so there exists p € Py such that p(1) = w.
(i) sup{[p(x)]:xeVanBs} <l
Moreover, if the conditions are satisfied, y can be chosen to have a free realization.

Since ¢(1A) = w, by Theorem 2.3, there is a free polynomial p such that p(1) = w;
so condition (i) is satisfied. To see condition (ii), note that for all x € V) n Bs, we have
p(x) = ¢(x). Indeed, by Theorem 2.3, there is a polynomial g so that g(A @ x) =
¢(A ® x). Therefore g(1) = p(1), so, since x € V), we also have g(x) = p(x), and
hence p(x) = ¢(x). But ¢ is in the unit ball of H;°(Bs), so |¢(x)| < 1for every x
in B§.

So we can apply Theorem 3.1 to conclude that there is a function y in H* (Bj) that
has a free realization, and that agrees with ¢ on the finite set F.

We note that the converse of Theorem 3.1 is also true. Given Theorem 2.3, the
converse is almost immediate.

Steps Il and IV

Let A = {x;}; be a countable dense set in B;. For each k, let F = {xi,...,x¢}. By
Step II, there is a function y* € H*(Bj) that has a free realization and agrees with ¢
on Fi. By Theorem 1.4, there exists a Hilbert space M* and a B(C, M* ® C/) valued
nc function u* on By so that, for all #, for all x, y € Bs n M%, we have

(41 VOV @) = 00| S

Embed each M* in a common Hilbert space J{. Since the left-hand side of (4.1) is
bounded, it follows that u* are locally bounded, so we can apply Theorem 1.5 to find a

sequence of unitaries U* such that, after passing to a subsequence, U* * u* converges
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to a function v in Hol5¢(Q). We have therefore that

1
12) 1-600°66) =v0)" [y oy |7

holds for all pairs (x, y) that are both in A n M? for any n. So by continuity, we get
that (4.2) is an nc model for ¢ on all Bs, completing Step III.
Finally, Step IV follows by applying Theorem 1.4.

Closing Remarks

One can modify the argument to get a realization formula for B(X, £)-valued boun-
ded nc functions on Bg, or to prove Leech theorems (also called Toeplitz-corona
theorems [8,10]. For finite-dimensional X and £, this was done in [2]; for infinite-
dimensional X and £, the formula was proved in [6] using results from [7].
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