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Global Holomorphic Functions in Several
Non-Commuting Variables II

Jim Agler and John McCarthy

Abstract. We give a new proof that bounded non-commutative functions on polynomial polyhedra
can be represented by a realization formula, a generalization of the transfer function realization
formula for bounded analytic functions on the unit disk.

1 Introduction

Let Mn denote the n × n matrices with complex entries, and let Md = ⋃∞n=1 Md
n

be the set of all d-tuples of matrices of the same size. A non-commutative function
(nc-function) on a set E ⊆Md is a function ϕ∶ E →M1 that satisûes

● ϕ is graded, which means that if x ∈ E ∩Md
n , then ϕ(x) ∈Mn ;

● ϕ is intertwining preserving, which means that if x , y ∈ E and S is a linear operator
satisfying Sx = yS, then Sϕ(x) = ϕ(y)S.

_e points x and y are d-tuples, so we write x = (x 1 , . . . , xd) and y = (y1 , . . . , yd).
By Sx = yS, wemean that Sx r = yrS for each 1 ≤ r ≤ d. See [9] for a general reference
to nc-functions.

_e principal result of [2]was a realization formula for nc-functions that are boun-
ded on polynomial polyhedra; the object of this note is to give a simpler proof of this
formula, (see_eorem 1.2).

Let δ be an I × J matrix whose entries are non-commutative polynomials in d
variables. If x ∈ Md

n , then δ(x) can be naturally thought of as an element of B(CJ ⊗
Cn ,CI ⊗Cn), where B denotes the bounded linear operators, and all norms we use
are operator norms on the appropriate spaces. We deûne

(1.1) Bδ ∶= {x ∈Md ∶ ∥δ(x)∥ < 1}.

Any set of the form (1.1) is called a polynomial polyhedron. Let H∞(Bδ) denote the
nc-functions on Bδ that are bounded, and let H∞

1 (Bδ) denote the closed unit ball,
those nc-functions that are bounded by 1 for every x ∈ Bδ .
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Deûnition 1.1 A free realization for ϕ consists of an auxiliary Hilbert spaceM and
an isometry

(
C M⊗CI

C A B
M⊗CJ C D

)

such that for all x ∈ Bδ , we have

(1.2) ϕ(x) = A
⊗
1
+ B

⊗
1

1
⊗
δ(x)

[1 − D
⊗
1

1
⊗
δ(x)

]
−1 C

⊗
1
.

_e 1s need to be interpreted appropriately. If x ∈Md
n , then (1.2) means

ϕ(x) = A
⊗

idCn
+ B

⊗
idCn

idM
⊗
δ(x)

⎡⎢⎢⎢⎢⎣

idM
⊗

idCI
⊗

idCn

− D
⊗

idCn

idM
⊗
δ(x)

⎤⎥⎥⎥⎥⎦

−1
C
⊗

idCn
.

We adopt the convention of [11] and write tensors vertically to enhance legibility. _e
bottom-most entry corresponds to the space on which x originally acts; the top cor-
responds to the intrinsic part of themodel on M.

_e following theorem was proved in [2]; another proof appears in [6].

_eorem 1.2 _e function ϕ is in H∞
1 (Bδ) if and only if it has a free realization.

It is a straightforward calculation that any function of the form (1.2) is in H∞
1 (Bδ).

We wish to prove the converse. We shall use two other results: _eorems 1.4 and 1.5.
If E ⊂Md ,we let En denote E∩Md

n . IfK andL areHilbert spaces, aB(K,L)-val-
ued nc function on a set E ⊆Md is a function ϕ such that
● ϕ is B(K,L) graded, which means if x ∈ En , then ϕ(x) ∈ B(K⊗Cn ,L⊗Cn);
● ϕ is intertwining preserving, which means if x , y ∈ E and S is a linear operator

satisfying Sx = yS, then
idL
⊗
S

ϕ(x) = ϕ(y) idK
⊗
S

.

Deûnition 1.3 An nc-model for ϕ ∈ H∞
1 (Bδ) consists of an auxiliaryHilbert space

M and a B(C,M⊗CJ)-valued nc-function u on Bδ such that, for all pairs x , y ∈ Bδ
that are on the same level, i.e., both in Bδ ∩Md

n for some n,

(1.3) 1 − ϕ(y)∗ϕ(x) = u(y)∗ [ 1
⊗

1−δ(y)∗δ(x)
]u(x).

Again, the 1s have to be interpreted appropriately. If x , y ∈ Bδ ∩Md
n , then (1.3)

means

idCn −ϕ(y)∗ϕ(x) = u(y)∗ [
idM
⊗

idCJ⊗Cn −δ(y)∗δ(x)
]u(x).

_eorem 1.4 A graded function on Bδ has an nc-model if and only if it has a free
realization.
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_eorem 1.4 was proved in [2], but a simpler proof was given by Balasubramanian
[5]. Let us note for future reference that the functions u in (1.3) are locally bounded,
and therefore holomorphic [2,_eorem. 4.6].

_e ûnite topology onMd (also called the disjoint union topology) is the topology
inwhich a setΩ is open if and only if for every n,Ωn is open in the Euclidean topology
onMd

n . IfH is aHilbert space, andΩ is ûnitely open,we shall letHolncH(Ω) denote the
B(C,H) graded nc-functions on Ω that are holomorphic on each Ωn . (A function u
is holomorphic in this context if for each n, each x ∈ Ωn , and each h ∈ Md

n , the limit
limt→0 1/t(u(x+th)−u(x)) exists.) A sequence of functions uk onΩ is ûnitely locally
uniformly bounded if for each point λ ∈ Ω, there is a ûnitely open neighborhood of
λ inside Ω on which the sequence is uniformly bounded.

_e following wandering Montel theorem was proved in [1]. If u is in HolncH(Ω)
and V is a unitary operator on H, deûne V ∗ u by (V ∗ u)∣Ωn =

V
⊗

idCn
u∣Ωn ∀n .

_eorem 1.5 Let Ω be ûnitely open, H a Hilbert space, and {uk} a ûnitely locally
uniformly bounded sequence inHolncH(Ω). _en there exists a sequence {U k} of unitary
operators on H such that {U k ∗ uk} has a subsequence that converges ûnitely locally
uniformly to a function in HolncH(Bδ).

Let ϕ ∈ H∞
1 (Bδ). We shall prove_eorem 1.2 in the following steps.

I For every z ∈ Bδ , show that ϕ(z) is inAlg(z), the unital algebra generated by the
elements of z.

II Prove that for every ûnite set F ⊆ Bδ , there is an nc-model for a function ψ that
agrees with ϕ on F.

III Show that these nc-models have a cluster point that gives an nc-model for ϕ.
IV Use_eorem 1.4 to get a free realization for ϕ.

Remarks 1.6 Step I is noted in [2] as a corollary of _eorem 1.2; proving it inde-
pendently allows us to streamline the proof of_eorem 1.2.

To prove Step II, we use one direction of [3,_eorem 1.3] that gives necessary and
suõcient conditions to solve a ûnite interpolation problem on Bδ . _e proof of ne-
cessity of this theorem used_eorem 1.2, but for Step II we only need the suõciency
of the condition, and the proof of this in [3] did not use_eorem 1.2.
All three known proofs of_eorem 1.2 start by proving a realization on ûnite sets,

and then somehow taking a limit. In [2], this was done by considering partial nc-
functions; in [6], it was done by using non-commutative kernels to get a compact set
in which limit points must exist. In the current paper, we use the wandering Montel
theorem.

2 Step I

Let {e j}n
j=1 be the standard basis for Cn . For x in Mn or Md

n , let x
(k) denote the

direct sum of k copies of x. If x ∈ Md
n and s is invertible in Mn , then s−1xs denotes

the d-tuple (s−1x 1s, . . . , s−1xd s).
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Lemma 2.1 Let z ∈Md
n ,with ∥z∥ < 1. Assumew ∉ Alg(z). _en there is an invertible

s ∈Mn2 such that ∥s−1z(n)s∥ < 1 and ∥s−1w(n)s∥ > 1.

Proof Let A = Alg(z). Since w ∉ A, and A is ûnite dimensional and therefore
closed, the Hahn–Banach theorem says that there is a matrix K ∈ Mn such that
tr(aK) = 0 for all a ∈ A and tr(wK) /= 0. Let u ∈ Cn ⊗ Cn be the direct sum of
the columns of K, and v = e1 ⊕ e2 ⊕ ⋅ ⋅ ⋅ en . _en for any b ∈Mn we have

tr(bK) = ⟨b(n)u, v⟩.
Let A ⊗ id denote {a(n) ∶ a ∈ A}. We have ⟨a(n)u, v⟩ = 0, for all a ∈ A and
⟨w(n)u, v⟩ /= 0.

LetN = (A⊗ id)u. _is is anA⊗ id-invariant subspace, but it is notw(n) invariant
(since v ⊥ N, but v is not perpendicular to w(n)u). So decomposing Cn ⊗ Cn as
N ⊕N⊥, every matrix in A⊗ id has 0 in the (2, 1) entry, and w(n) does not.

Let s = αIN + βIN⊥ , with α ≫ β > 0. _en

s−1 [A B
C D] s = [ A

β
α Bα

βC D ] .

If the ratio α/β is large enough, then for each of the d matrices zr , the correspond-
ing s−1(zr⊗ id)s will have strict contractions in the (1,1) and (2,2) slots, and each (1, 2)
entry will be small enough so that the whole thing is a contraction.
For w, however, as the (2, 1) entry is non-zero, the norm of s−1w(n)s can bemade

arbitrarily large.

Lemma 2.2 Let z ∈ Bδ ∩Md
n , and w ∈ Mn not be in A ∶= Alg(z). _en there is an

invertible s ∈Mn2 such that s−1z(n)s ∈ Bδ and ∥s−1w(n)s∥ > 1.

Proof As in the proof of Lemma 2.1, we can ûnd an invariant subspaceN forA⊗ id
that is notw-invariant. Decompose δ(z(n)) as amap from (N⊗CJ)⊕(N⊥⊗CJ) into
(N⊗CI)⊕ (N⊥ ⊗CI). With s as in Lemma 2.1, and α ≫ β > 0, and P the projection
from Cn ⊗Cn onto N, we get

(2.1) δ(s−1z(n)s) =
⎡⎢⎢⎢⎢⎢⎣

P
⊗
id
δ(z(n)) P

⊗
id

β
α

P
⊗
id
δ(z(n)) P⊥

⊗
id

0 P⊥
⊗
id
δ(z(n)) P⊥

⊗
id

⎤⎥⎥⎥⎥⎥⎦
.

_e matrix is upper triangular because every entry of δ is a polynomial, and N is
A-invariant. For α/β large enough, every matrix of the form (2.1) with z ∈ Bδ is a
contraction, so s−1z(n)s ∈ Bδ . But s−1w(n)s will contain a non-zero entry multiplied
by α

β , so we achieve the claim.

_eorem 2.3 If ϕ is in H∞(Bδ), then for all z ∈ Bδ , we have ϕ(z) ∈ Alg(z).

Proof We can assume that z ∈ Bδ and that ∥ϕ∥ ≤ 1 on Bδ . Let w = ϕ(z). If w ∉
Alg(z), then by Lemma 2.2, there is an s such that s−1z(n)s ∈ Bδ and ∥ϕ(s−1z(n)s)∥ =
∥s−1w(n)s∥ > 1, a contradiction.
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Note that _eorem 2.3 does not hold for all nc-functions. In [4] it was shown that
there is a class of nc functions, called fat functions, for which the implicit function
theorem holds, but _eorem 2.3 fails.

3 Step II

Let F = {x1 , . . . , xN}. Deûne λ = x1⊕⋅ ⋅ ⋅⊕xN , and deûnew = ϕ(x1)⊕⋅ ⋅ ⋅⊕ϕ(xN). As
nc functions preserve direct sums (a consequence of being intertwining preserving)
we need to ûnd a function ψ in H∞

1 (Bδ) that has an ncmodel, and satisûes ψ(λ) = w.
Let Pd denote the nc polynomials in d variables, and deûne

Iλ = {q ∈ Pd ∶ q(λ) = 0}.

Let Vλ = {x ∈ Md ∶ q(x) = 0 whenever q ∈ Iλ}. We will need the following theorem
from [3].

_eorem 3.1 Let λ ∈ Bδ ∩Md
n and w ∈ Mn . _ere exists a function ψ in the closed

unit ball of H∞(Bδ) such that ψ(λ) = w if
(i) w ∈ Alg(λ), so there exists p ∈ Pd such that p(λ) = w.
(ii) sup{∥p(x)∥ ∶ x ∈ Vλ ∩ Bδ} ≤ 1.
Moreover, if the conditions are satisûed, ψ can be chosen to have a free realization.

Since ϕ(λ) = w, by _eorem 2.3, there is a free polynomial p such that p(λ) = w;
so condition (i) is satisûed. To see condition (ii), note that for all x ∈ Vλ ∩Bδ , we have
p(x) = ϕ(x). Indeed, by _eorem 2.3, there is a polynomial q so that q(λ ⊕ x) =
ϕ(λ ⊕ x). _erefore q(λ) = p(λ), so, since x ∈ Vλ , we also have q(x) = p(x), and
hence p(x) = ϕ(x). But ϕ is in the unit ball of H∞

1 (Bδ), so ∥ϕ(x)∥ ≤ 1 for every x
in Bδ .

Sowe can apply_eorem 3.1 to conclude that there is a function ψ in H∞(Bδ) that
has a free realization, and that agrees with ϕ on the ûnite set F.

We note that the converse of _eorem 3.1 is also true. Given _eorem 2.3, the
converse is almost immediate.

4 Steps III and IV

Let Λ = {x j}∞j=1 be a countable dense set in Bδ . For each k, let Fk = {x1 , . . . , xk}. By
Step II, there is a function ψk ∈ H∞

1 (Bδ) that has a free realization and agrees with ϕ
on Fk . By _eorem 1.4, there exists aHilbert spaceMk and aB(C,Mk ⊗CJ) valued
nc function uk on Bδ so that, for all n, for all x , y ∈ Bδ ∩Md

n , we have

(4.1) 1 − ψk(y)∗ψk(x) = uk(y)∗ [ 1
⊗

1−δ(y)∗δ(x)
]uk(x).

Embed each Mk in a common Hilbert space H. Since the le�-hand side of (4.1) is
bounded, it follows that uk are locally bounded, sowe can apply_eorem 1.5 to ûnd a
sequence of unitaries U k such that, a�er passing to a subsequence,U k ∗uk converges



Global Holomorphic Functions in Several Non-Commuting Variables II 463

to a function v in HolncH(Ω). We have therefore that

(4.2) 1 − ϕ(y)∗ϕ(x) = v(y)∗ [ 1
⊗

1−δ(y)∗δ(x)
] v(x)

holds for all pairs (x , y) that are both in Λ ∩Md
n for any n. So by continuity, we get

that (4.2) is an ncmodel for ϕ on all Bδ , completing Step III.
Finally, Step IV follows by applying _eorem 1.4.

5 Closing Remarks

One canmodify the argument to get a realization formula forB(K,L)-valued boun-
ded nc functions on Bδ , or to prove Leech theorems (also called Toeplitz-corona
theorems [8, 10]. For ûnite-dimensional K and L, this was done in [2]; for inûnite-
dimensional K and L, the formula was proved in [6] using results from [7].
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