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ABSTRACT. We prove that if {u*} is a sequence of holomorphic functions that
takes values in an infinite dimensional Hilbert space H, there are unitaries
{U*} on H so that U*u* has a subsequence that converges locally uniformly.
We also prove a non-commutative version of this result.

1. INTRODUCTION

1.1. Commutative theory. Let {2 be an open set in C? and assume that {u*}
is a sequence in Hol(f2), the algebra of holomorphic functions on Q equipped with
the topology of uniform convergence on compact subsets. The classical Montel
Theorem asserts that if {u*} is locally uniformly bounded on €2, then there exists
a subsequence {u*'} that converges in Hol(f2).

It is well known that if X" is an infinite dimensional Banach space, then Montel’s
Theorem breaks down for Holx(€2), the space of X-valued holomorphic functions;
see e.g. [5,14]. For example, if X = ¢2 and {f*} is a locally uniformly bounded
sequence of holomorphic functions on €2, then the sequence

1O 0 0
0 7200 0

0 R 0 R f3(A) g

is a locally uniformly bounded sequence that will have a convergent subsequence
only if there exists a subsequence {f*} that converges uniformly to 0 on €.
Observe that the problem in the example given above is that while for all A € Q,
uF converges weakly to 0, it needn’t be the case that u*()\) converges in norm for
any A € ). However, just as in the case of the classical proof of Montel’s theorem
that uses the Arzela-Ascoli Theorem, if one assumes that {u*} is well behaved
pointwise on a large enough set, then one can conclude uniform convergence in
norm on compact sets. For example, consider the following theorem by Arendt and

Nikolski [5, Cor. 2.3].
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4354 JIM AGLER AND JOHN E. MCCARTHY

Theorem 1.1. Let 2 be an open connected set in C, and let u* be a sequence in
Holx () that is locally bounded. Assume that

Qo :={z€Q:{u"(2): k € N} is relatively compact in X}

has an accumulation point in . Then there exists a subsequence which converges
to a holomorphic function uniformly on compact subsets of 2.

Theorem 1.1 deals with the difficulty by making strong additional assumptions
about the pointwise behavior of {u*}, assumptions that may not hold in desirable
applications. The central idea of this paper, for Hilbert space valued functions, is
instead to use a sequence of unitaries to push (most of) the range of the functions
into a finite dimensional space. Here is our first main result.

Theorem 1.2. If Q is an open set in C¢, H is a Hilbert space, and {u*} is a
locally uniformly bounded sequence in Holy (), then there exists a sequence {U*}
of unitary operators on H such that {U*u*} has a subsequence that converges in
HOIH(Q)

We prove Theorem 1.2 in Section 2. In Sections 3 and 4 we consider versions
for non-commutative functions. These functions have been extensively studied re-
cently; see e.g. [4,6,8-13,15,17]. Before stating our results, we must spend a little
time explaining some definitions.

1.2. Non-commutative theory. In commutative analysis, one studies holomor-
phic functions defined on domains in C?. In non-commutative analysis one studies
holomorphic functions defined on domains in M¢, the d-dimensional nc universe.
For each n we let M¢ denote the set of d-tuples of n x n matrices. We then let

MY = [j M.
n=1

When E is a subset of M?, for each n, we adopt the notation
E,=EnM<.

In non-commutative analysis one studies graded functions, i.e., functions f de-
fined on subsets E of M, that satisfy

(13) vn VAEEW, f()‘) € Mn

M carries a topology, the so-called finite topology," wherein a set € is deemed
to be open precisely when

V., €1, is open in Mi.

With this definition, note that a graded function f : E — M is finitely continuous
if and only if f|FE,, is continuous for each n and also that a set K C MY is finitely
compact if and only if there exists n such that E,, = @ when m > n and E,, is
compact when m < n.

If © is finitely open in M, then for each n, €, can be identified with an open
set in C9"” in an obvious way. If, in addition, f is a graded function on 2, then we
say that f is holomorphic on Q if for each n, f|Q,, is a holomorphic mapping of Q,,
into M,,. We let Hol(Q2) denote the collection of graded holomorphic functions.

LSubsequently, we shall consider other topologies as well.
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HILBERT SPACE VALUED HOLOMORPHIC FUNCTIONS 4355

It is also possible to consider H-valued holomorphic functions in the non-comm-
utative setting. One particularly concrete way to do this is to realize in the scalar
case just considered that (1.3) is equivalent to asserting that

Vo VYaer, f(A)e€B(C",C").

We therefore replace the former definition (that f be graded) with the requirement
that f be a graded H-valued function, i.e., that

Vo Yaer, f(A) € B(C"C"®™H).

Just as before, we declare a graded H-valued function defined on a finitely open
set Q in M? to be holomorphic if for each n, f|Q, is a holomorphic mapping of
Q,, into B(C",C" @ H). We let Holy () denote the collection of graded H-valued
functions and view Holy (£2) as a complete metric space endowed with the topology
of uniform convergence on finitely compact subsets of 2.

A special class of graded functions arise by formalizing certain algebraic proper-
ties of free polynomials. If £ C M? we say that E is an nc-set if E is closed with
respect to direct sums. We define the class of nc-functions as follows.

Definition 1.4. Let H be a Hilbert space, let E be an nc-set, and assume that f
is a function defined on E. We say that f is an H-valued nc-function on E if the
following conditions hold.

(i) fis H-graded, i.e.,
Vo Vaeenm, f(A) € B(C"C"eH).
(ii) f preserves direct sums, i.e.,
Vauee A@peE = f(Aep) =f(A)a f(u).
In this formula, if A\ € E,, and u € E,,, we identify C™ ® C* and C™*"
and identify (C" @ H) & (C" @ H) and C"" @ H.
(iii) f preserves similarity, i.e.,
FSAS™) = (S @idy) fF(N)S™
whenever n > 1, S € M,, is invertible, and both A and SAS~! are in E,,.
When f : E — M!'®%H is an nc-function and E is a finitely open nc-set condition
(iii) above becomes very strong and yields the following proposition, which lies at
the heart of nc analysis (see [10] or [13, Thm. 7.2]). We say a function f is bounded
on E if supycg | f(A)]] < oo.

Proposition 1.5. Let Q be a finitely open nc-set. If f is a bounded nc-function
defined on Q, then f is holomorphic on €.

Proposition 1.5 suggests the following terminology. We say that a set  C M?
is an nc-domain if  is a finitely open nc-set and we say that a topology 7 on M?
is an nc-topology if T has a basis consisting of nc-domains. We then define special
classes of functions in non-commuting variables as follows.

Definition 1.6. Let 2 C M¢, 7 be an ne-topology, and assume that f : Q — M'@H
is an H-valued function. We say that f is 7-holomorphic if f is a T-locally bounded
nc function on .2 We let Holj, (2) denote the collection of 7-holomorphic H-valued
functions defined on €.

2That is, f is an nc-function on € in the sense of Definition 1.4 and for each A € Q, there
exists B C Q such that A € B € 7 and f|B is bounded.
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4356 JIM AGLER AND JOHN E. MCCARTHY

Evidently, Proposition 1.5 guarantees that if 7 is an nc-topology and f is a
7-holomorphic function in the sense of Definition 1.6, then f is holomorphic, i.e.,

Hol7, (2) C Hol3/(2) C Holy (),

where Hol3; () denotes the set of functions in Holy (2) that are nc.
We can now state our second main result, the non-commutative version of The-
orem 1.2.

Theorem 1.7. Assume that 7 is an nc-topology, Q € 7, H is a Hilbert space,
and {u*} is a T-locally uniformly bounded sequence in Hol},(Q2). There exist u €
Hol}, (), a sequence {U*} of unitary operators on H, and an increasing sequence

of indices {k;} such that (id,, @U*) u¥ — u in Hol(12).
As an application of Theorem 1.7, in Section 5 we prove that the cones
P = {u(p)*u(N) : v € Holy () for some Hilbert space H}

and

C ={ ldg (id— 5(H)®6()\) ) ld@%J : u € Holy(Bs) and w is nc}
idy u(A)
are closed. In this last formula, § is a J-by-J matrix of free polynomials, and
Bs = {z : ||6(z)|| < 1} is a non-commutative polynomial polyhedron. (We adopt
the convention of [16] and write the tensors vertically for legibility.)

Proving that the cones are closed is the key step in proving realization formulas
for free holomorphic functions; see [1,2,7].

In Section 6 we show that the assumptions in Proposition 3.2 below can be
weakened to just requiring convergence on a set of uniqueness, which yields a graded
version of the Arendt-Nikolski theorem.

2. A MONTEL THEOREM FOR HILBERT SPACE VALUED HOLOMORPHIC
FUNCTIONS

In this section we prove Theorem 1.2 from the introduction.

2.1. Notation and definitions. If  is an open set in C? and H is a Hilbert
space, we let Holy () denote the space of holomorphic H-valued functions on Q.
If u € Holy(Q2) and E C Q, we let

[ull 2 = sup [lu(A)]|5-
A\EE

If ||ul|q < oo, then we say that u is bounded on Q. If {u*} is a sequence in Holy (Q2),
we say that {u*} is uniformly bounded on € if

sup [|lu¥|lq < oo,
k

and we say that {u*} is locally uniformly bounded on Q if for each A € Q there
exists a neighborhood B of A such that {u*} is uniformly bounded on B. Recall
that if such a neighborhood exists, then a Cauchy estimate implies that {u*} is
equicontinuous at \; i.e., for each € > 0 there exists a ball By such that A € By C B
and

Vueso Vi [lut(p) —u* (V)] <e.

Licensed to Univ of Calif, San Diego. Prepared on Tue Jul 16 14:01:52 EDT 2019 for download from IP 137.110.39.165.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HILBERT SPACE VALUED HOLOMORPHIC FUNCTIONS 4357

We equip Holy (2) with the usual topology of uniform convergence on compacta.
Thus, a sequence {u*} in Holy () is convergent precisely when there is a function
u € Holy (€2) such that

lim [|uf —ul|p =0
k—o0

for every compact E C . We say that a sequence {u*} in Holy/(Q) is a Cauchy
sequence if for each compact E C Q, {u*} is uniformly Cauchy on E; i.e., for each
€ > 0, there exists IV such that

k>N = |uf —ul||p <e.

It is well known that Holy (Q2) is complete; i.e., every Cauchy sequence in Holy (£2)
converges. The following result is proved in [5, Thm. 2.1]; we include a proof that
easily generalizes to Proposition 3.2.

Proposition 2.1. Assume that Q is an open set in C¢, {\;} is a dense sequence
in Q, and H is a Hilbert space. If {u*} is a sequence in Holy(Q) that is locally
uniformly bounded on Q0 and for each fired i, {u*(\;)} is a convergent sequence in
H, then {u*} is a convergent sequence in Holy ().

Proof. Fix a compact set E C Q and € > 0. Note that as {u*} is assumed to be
locally uniformly bounded on €, {u*} is equicontinuous at each point of 2. Hence,

as F is compact, we may construct a finite collection {B,. : r =1,...,m} of open
balls in C¢ such that

m
(2.2) Ec|JB.cQ
r=1
and
(2.3) Ve Vurmeen, Vi llu"(un) = u*(ua)l < /3.
As {\;} is assumed dense in 2,
(24) V. EliT /\ir € B,.

Consequently, as for each fixed i we assume that {u®()\;)} is a convergent (and
hence Cauchy) sequence in H, there exists N such that

(2.5) Y, k>N = |u*(\,) -/ (N < e/3.

Now, fix A € E. Use (2.2) to choose r such that A € B,. Use (2.4) to choose i,
such that A\; € B,. As XA and \;_ are both in B,, we see from (2.3) that

Ve fluF(N) —uF(\)| < e/3.
Hence, using (2.5), we have that if k, 7 > N, then
[t () = u? (V)]

< ) = wt )+ () = @ )+ [l (h,) = o (V)]
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4358 JIM AGLER AND JOHN E. MCCARTHY

Since the concluding estimate in the previous paragraph holds for an arbitrary
point A € E, {uF} is uniformly Cauchy on E. Since E is an arbitrary compact

subset of 2, {u*} is a Cauchy sequence in Holy(Q2). Therefore, {u*} converges in
HOIH(Q)

2.2. The proof of Theorem 1.2. Theorem 1.2 follows quickly from Proposition
2.1 and the following lemma.

Lemma 2.6 (Wandering Isometry Lemma). Assume that ) is an open set in C?,
{\i} is a sequence in Q, and H is a Hilbert space. If {u*} is a sequence in Holy (Q)
that is locally uniformly bounded on Q, then there exists a subsequence {u*'} and a
sequence {V'} of unitary operators on H such that for each fived i, {V'u* 1 (\;)} is
a convergent sequence in H.

Proof. If H is finite dimensional, one can let each unitary be the identity, and
the result is the regular Montel theorem. So we shall assume that H is infinite
dimensional. Let {e;} be an orthonormal basis for H. For each fixed k let

H* = span {e, ea,...,ex},

MP = span {u* (A1), uF(N2), ..., u*(\)}, i=1,...,k.
For each k choose a unitary U* € B(H) satisfying
UrMEF Cc 1, i=1,...,k.
Observe that with this construction, for each fixed i,
{UR " ()17

is a bounded sequence in H?, a finite dimensional Hilbert space. Therefore, there
exist v; € H and an increasing sequence of indices {k;} such that

U’”ukl()\i)—>vi in H as [ — oo.

Applying this fact successively with ¢ = 1, i = 2, and so on, at each stage taking a
subsequence of the previously selected subsequence, leads to a sequence {v;} in H
and an increasing sequence of indices {k;} such that

Ukt (\) = v in H as [ — o0

for all i. The lemma then follows if we let V! = Uk, O

Proof of Theorem 1.2. Assume that Q is an open set in C?%, # is a Hilbert space, and
{u*} is a locally uniformly bounded sequence in Holy (D). The theorem follows from
the classical Montel theorem (with U* = idy for all k) if dimH < oco. Therefore,
we may assume that dim H = oc.

Fix a dense sequence {)\;} in Q. By Lemma 2.6, there exists a subsequence
{uF} and a sequence {V'} of unitary operators on H such that for each fixed 1,
{Vtuki()\;)} is a convergent sequence in H. Furthermore, as {u*} is locally uni-
formly bounded, so also {V!u*'} is locally uniformly bounded. Therefore, Propo-
sition 2.1 implies that {V'u*} is a convergent sequence in Holy (2). The theorem
then follows by choosing {U*} to be any sequence of unitaries in B(#) such that
Ukt = V! for all 1. O
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HILBERT SPACE VALUED HOLOMORPHIC FUNCTIONS 4359

3. HOLOMORPHIC FUNCTIONS IN NON-COMMUTING VARIABLES

If Q is finitely open in M?, we may construct a finitely compact-open exhaustion
of Q, i.e., an increasing sequence of compact sets {K;} that satisfy

K, C int(Kg) C Ky C int(Kg) C...
and with Q = (J, K;. For a set £ C Q and f € Hol(Q2) we let
[flle = sup | f(A)]
AEE

and then in the usual way define a metric d on Hol(Q2) with the formula

o0

&0 | gl
W)= 2 5 Ty T - gl

It then follows that fi — f in the metric space (€2, d) if and only if for each finitely
compact set K in Q, {fi} converges uniformly to f on K, i.e.,

n=1

lim ||f — fillx = 0.
k—o0

Furthermore, Hol(Q)) is a complete metric space when endowed with this topology
of uniform convergence on finitely compact subsets of 2.

It is a straightforward exercise to extend Montel’s theorem to the space Holy ()
when dim # is finite.

Proposition 3.1. If Q is a finitely open set in M¢, H is a Hilbert space with
dimH < oo, and {u*} is a finitely locally uniformly bounded sequence in Holy (2),
then {u*} has a convergent subsequence.

Also, with the setup we have just described, mere notational changes to the proof
of Proposition 2.1 yield a proof of the following proposition.

Proposition 3.2. Assume that Q is a finitely open set in M?, {\;} is a dense
sequence in ) with \; € Mii for each i, and H is a Hilbert space. If {u*} is a se-
quence in Holy () that is finitely locally uniformly bounded on 2 and for each fized
i, {uF(\;)} is a convergent sequence in B(C"i,C™ @ H), then {u*} is a convergent
sequence in Holy (2).

Just as was the case for Proposition 2.1 in [5], it is possible to relax the assump-
tion in Proposition 3.2 that {A;} be a dense sequence in €2 to the assumption that
{Ai} merely be a set of uniqueness for Holy (£2) (see Proposition 6.2).

We now turn to an analog of Theorem 1.2 in the non-commutative setting.

Lemma 3.3 (Wandering Isometry Lemma (non-commutative case)). Assume that
Q is a finitely open set in M? and {\;} is a sequence in Q2 (where, for each i,
Ai € MZ ). If H is an infinite dimensional Hilbert space and {u*} is a sequence
in Holy () with the property that {u*(X\;)} is bounded for each i, then there erists
a subsequence {uF'} and a sequence {V'} of unitary operators on H such that for
each fized i, {(id,, @V!) u* 1 (\;)} is a convergent sequence in B(C™,C™ @ H).

Proof. Choose an increasing sequence {#;} of subspaces of H with the property
that
dimH; =n? and Vi>1 dim(H; 41 © Hi) = nfﬂ,

and for each n, let {ej,...,e,} denote the standard basis of C".
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4360 JIM AGLER AND JOHN E. MCCARTHY

Fix k. For each i = 1,...,k, as u*()\;) : C" — C™ ® H, there exist n? vectors

xff; eH,r,s=1,...,n4, such that
n;
(3.4) uF(\)e, = Zes ® xf;, r=1,...,n;
s=1
For each i = 1,...k, define M¥ by
M = span{zf;é cros=1,...,n}

and then define a sequence of spaces {N}} by setting NF = M¥ and
NF =M+ ME+. .+ ME) o (ME+ ME+...+ ML),

for i =2,...,k. Asfor each i = 1,...,k, dimM¥ < n? soalso fori =1,...,k,

79

dika < n?. Consequently, as the spaces {./\/f} are also pairwise orthogonal, it

follows that there exists a unitary U* € B(H) such that
UMNFYCHy and UWNF)CH, oMy fori=2,... k.
With this construction it follows using (3.4) that
(3.5) (id,, UM uF\)(CY) CC @ Hy,  i=1,..., k.
Now observe that as (3.5) holds for each k, for each fixed i,
(id,,, @UF)uk (\)(C™) € C™ @ H;, k=idi+1,...;
i.e.,
{(idn, ®UF)u* (X))},

is a bounded sequence in B(C™ C" ® H;), a finite dimensional Hilbert space.
Therefore, for each fixed ¢, there exist L € H and an increasing sequence of indices
{k;} such that

Uk (\) = L in B(C",C" ®%M;) as | — oo.

Applying this fact successively with ¢ = 1, ¢ = 2, and so on, at each stage taking a
subsequence of the previously selected subsequence leads to a sequence {L;} with
L; € B(C™,C" ® H;) for each ¢ and an increasing sequence of indices {k;} such
that

v, UFabi(\) = L; in B(C™,C™ @H;) as | — .
The lemma then follows if we let V! = U*. ]

Lemma 3.3 suggests the following notation. Let Q be a finitely open set in M?
and let H be a Hilbert space. If U is a unitary acting on H and f € Holy (), then
we may define U x f € Holy (92) by the formula

Yo (U )] = (idn @ U)f| Q.

With this notation we may formulate a non-commutative analog of Theorem 1.2 in
the non-commutative setting.

Theorem 3.6. IfQ is a finitely open set in M¢, H is a Hilbert space, and {u*} is a
finitely locally uniformly bounded sequence in Holy (QY), then there exists a sequence
{U*Y} of unitary operators on H such that {U* xu*} has a convergent subsequence.
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Proof. Assume that Q is an open set in M¢, H is a Hilbert space, and {u*} is a
finitely locally uniformly bounded sequence in Holy (). If dimH < oo, then the
theorem follows from Proposition 3.1 if we choose U* = idy for all k. Therefore,
we assume that dim H = oo.

Fix a dense sequence {)\;} in Q. By Lemma 3.3, there exists a subsequence
{u*} and a sequence {V'} of unitary operators on H such that for each fixed 4,
{Viuki()\;)} is a convergent sequence in B(C™,C" ® H). Furthermore, as {u"*} is
locally uniformly bounded, so also {V'u*'} is locally uniformly bounded. Therefore,
Proposition 2.1 implies that {V'u*'} is a convergent sequence in Holy (). The
theorem then follows by choosing {U*} to be any sequence of unitaries in B(H)
such that U* = V! for all [. |

4. LOCALLY BOUNDED NC FUNCTIONS

Properties of 7-holomorphic functions can be very sensitive to the choice of nc-
topology 7. For example, if 7 is the fat topology studied in [3], then 7-holomorphic
functions satisfy a version of the Implicit Function Theorem. On the other hand,
if 7 is the free topology, studied in [2], then 7-holomorphic functions satisfy the
Oka-Weil Approximation Theorem. Remarkably, neither of these theorems holds
for the other topology.

Also notice that if f is 7-holomorphic in the sense of Definition 1.6, then neces-
sarily €2, the domain of f, is an open set in the 7 topology: for each A € ) there
exists By C € such that A € By € 7; hence, Q = J, By € 7.

There are no such subtleties between the nc-topologies when it comes to under-
standing the implications of local boundedness.

Definition 4.1. Assume that 7 is an nc-topology and Q € 7. If {u*} is a sequence
in Hol}, (2), we say that {u*} is 7-locally uniformly bounded on € if for each \ € €,
there exists a 7-open B C 2 such that A € B and

stép |u*|| g < 0.

Lemma 4.2. Assume that 7 is an nc-topology and 2 € 7. Let u € Hol(Q2) and let
{uk} be a sequence in Hol}, (). If {uF} is T-locally uniformly bounded on Q@ and
uk — u in Holy (), then u € Holy, ().

Proof. Under the assumptions of the lemma, we need to prove the following two

assertions:
(4.3) u is an nc-function on Q.
(4.4) u is 7-locally bounded on €.

To prove (4.3), note first that as u € Holy (), condition (i) in Definition 1.4
holds. To verify condition (ii), assume that A\, u, A @ p € Q. Then, as u¥ — u in
Holy () and u* € Holj, for all £,

u AP p) = kli_>nolo uF (N @ p)
T (u () &0 ()

= lim «*(\) @ lim u*(p)
k—o0 k—o0

=u(\) ® u(p).
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4362 JIM AGLER AND JOHN E. MCCARTHY

Finally, note that if n > 1, S € M, is invertible, and both A and SAS~! are in €,
then
u(SAS™Y) = lim uF(SAS™Y)

k—o0

(S @idy) uF(N)S™*

lim
k—o0
— (S @idu)u(n) 57,
which proves condition (iii).
To prove (4.4), fix A € Q. As {u*} is 7-locally uniformly bounded on €, Definition
4.1 implies that there exist B C (2 and a constant p such that A € B € 7 and

SngukHB <p.

Fix 1 € B. As we assume that u* — u in Holy (Q), it follows that
lu()ll = Tim [lu® ()] < p.
—00

But then,
[ulls < p.
As B € 7, this proves that u is 7-locally bounded on €. O

Definition 4.1 and Lemma 4.2 allow one to easily deduce Theorem 1.7 as a
corollary of Theorem 3.6.

Proof of Theorem 1.7. As we assume that {u*} is a 7-locally uniformly bounded
sequence in Hol%, (), {u*} is finitely locally uniformly bounded in Holy (€2). There-
fore, Theorem 3.6 implies that there exists a sequence {U*} of unitary operators on
H such that {U**u*} has a subsequence that converges in Holy (). Consequently,
we may choose u € Holy () and an increasing sequence of indices {k;} such that
Uk % u* — v in Hol(R2). The proof is completed by observing that Lemma 4.2
implies that u € Holj,(£2). O

Let us emphasize that Theorem 1.7 asserts that U* % u* converges to u, which
is in Hol%,(€2), uniformly on sets that are compact in the finite topology; it does
not say that it converges uniformly on compact sets in the 7 topology.

Note that the proofs of Lemma 4.2 and Theorem 1.7 work identically if u* are
just assumed to be in Holy; (€2), so we get

Theorem 4.5. Let Q be a finitely open set in M?, let H be a Hilbert space, and let
{uk} be a finitely locally uniformly bounded sequence in Holjy (2). Then there exists
a sequence {U*} of unitary operators on H such that {U* x u*} has a subsequence
that converges finitely locally uniformly to an element of Holy; (£2).

5. SOME APPLICATIONS

A useful construct in the study of 7-holomorphic functions is the duality con-
struction. If Q is a finitely open set it is natural to consider the algebraic tensor
product Hol(2)* ® Hol(€2). This space can concretely be realized as the set of
functions A defined on

ORQ= [ (@nM) x (QnM)

n=1
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and such that there exist a finite dimensional Hilbert space H and u,v € Holy (£2)
such that

Ap) = o) u(y,  (p) €QEQ.

As the functions in Hol(Q2)* ® Hol(€2) are holomorphic in A for each fixed p and
anti-holomorphic in u for each fixed A, we may complete Hol(2)* ® Hol(Q2) in the
topology of uniform convergence on finitely compact subsets of QX to obtain the
space of hereditary holomorphic functions on Q, Her(Q2). Inside Her(Q2), we may
define a cone P by

P = {u(pw)*u(A) : v € Holy () for some Hilbert space H}.
Theorem 5.1. P is closed in Her(Q).

Proof. Assume that {v*} is a sequence with v* € Holy, (Q) for each k and with
v¥(p)*vkF(\) — A in Her(2). We may assume that H;, is separable for each k. Fix
a separable infinite dimensional Hilbert space H and for each k choose an isometry
VE: Hy — H. If for each k we let u* = V¥ %o then {u*} is a sequence in Holy (Q)
and u*(p)*uk(\) — A in Her(9).

Now, as u®(u)*u¥(\) — A in Her(Q) it follows that {u*} is a finitely locally
uniformly bounded sequence in Holy(f2). Hence, by Theorem 3.6, there exists
a sequence U* of unitary operators on H such that {U* % u*} has a convergent
subsequence; i.e., there exists u € Holy () and an increasing sequence of indices
{k;} such that U* x u* — . But then, for each (A, u) € QX Q,

A\ ) = lim () ut (V)
—00
= lim ™ (p)*u (\)
l—o00
= llim (UF s ) (p)* (U 5 uF1)(N)
— 00
= u(p) u(A),
ie, AeP. O

We also may use wandering Montel theorems to study sums of 7-holomorphic
dyads. We let Her” (©2) denote the closure of

{v(u)*u(X) : u,v € Holy () for some finite dimensional Hilbert space H}
inside Her(Q2) and define P7 in Her" (Q2) by
PT = {u(p)*u(N) : v € Holj, () for some Hilbert space H}.

Theorem 5.2. Let 7 be an nc-topology, and let @ € 7. Then P7 is closed in
Her" (Q).

Proof. Assume that u*(u)*u*(\) — A in Her(Q2), where, as in the proof of Theorem
5.1, we may assume that u* € Hol},(Q2) for each k. By Theorem 1.7, there exist
u € Hol%, (2), a sequence U* of unitary operators on H, and an increasing sequence
of indices {k;} such that U* x u* — u. But then as in the proof of Theorem 5.1,
A, p) = u(p)*u(X) for all (A, p) € QRQ, ie., AecPT. O

Finally, we shall prove that the model cone is closed; this is the key ingredient
in the proof of the realization formula for free holomorphic functions [1,2,7]. Let
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6 be a J-by-L matrix whose entries are free polynomials in d variables. We define
Bs to be the polynomial polyhedron

Bs == {zeM?: |§(z)] < 1}.

The free topology is the nc-topology generated by the sets Bg, as d ranges over all
matrices of polynomials. The model cone C is the set of hereditary functions on By
of the form

id.s

(53) C={ & <id—

S(p)*8(A id,
&) (H)® » ) 5 ue Holy (Bs) and w is nc,
u(p

for some Hilbert space H}.

We write the tensors vertically just to enhance readability.

Theorem 5.4. The model cone C, defined in (5.3), is closed in Her(Bs).

Proof. Suppose u* is a sequence of nc functions in Holy (Bs) (we may assume the

space H is the same for each u*, as in the proof of Theorem 5.1), so that
ides S(p)*8(\ idgs

(5.5) & (id— g ™ ) &
uk () idy uk (N

converges in Her(Bs) to A(A, ). On any finitely compact set, ||§(z)| will be

bounded by a constant that is strictly less than one. Since (5.5) converges uni-

formly on finitely compact subsets of Bs X Bj, this means that u” is a finitely

locally uniformly bounded sequence. Therefore by Theorem 3.6, there exist uni-

taries U” such that U” % u* has a convergent subsequence which converges to some
nc function w € Holy (Bs). Then

idey . S(p)*8(N) ) ides
A\ p) = ® id — ®
A ) u(p)” ( u(A)
as desired. O

idy

6. SETS OF UNIQUENESS

In this section we shall show that the assumption in Propositions 2.1 and 3.2
that {\;} is a dense sequence in 2 can be relaxed to the assumption that {\;} is a
set of uniqueness for Hol(Q)). We remark that it is an elementary fact that if H is
a Hilbert space, then {\;} is a set of uniqueness for Holy () if and only if {\;} is
a set of uniqueness for Hol(f2).

The following proposition is essentially the same as the Arendt-Nikolski Theo-
rem 1.1, so we shall omit the proof.

Proposition 6.1. Assume that Q is an open set in C¢, {\;} is a sequence in Q
that is a set of uniqueness for Holy(Q),®> and H is a Hilbert space. If {u*} is a
sequence in Holy (Q) that is locally uniformly bounded on 2 and for each fized i,
{uk(\;)} is a convergent sequence in H, then {u*} converges in Holy (€2).

Here is the graded version.

Proposition 6.2. Assume that Q is a finitely open set in M?, {\;} is a sequence
in Q (with \; € M2 for each i) that is a set of uniqueness for Holy (Q), and H is
a Hilbert space. If {u*} is a sequence in Holy(Q) that is finitely locally uniformly

3That is, if f € Hol(R2) and f()\;) = 0 for all 4, then f(\) =0 for all X\ € Q.
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bounded on Q and for each fized i, {u*(\;)} is a convergent sequence in H, then
{u*} converges in Holy(9).

Proof. The theorem will follow if we can show that {u*|€2,,} is a convergent sequence
for each n. Accordingly, fix n and adopt the notation H,, for the holomorphic
B(C", C"®@H)-valued functions defined on €2,,. Thus, {u*|Q,} is a locally uniformly
bounded sequence in H,,. Furthermore, if {n,;} is an enumeration of {\; : ¢ >
1} N Q,, as {\;} is a set of uniqueness for Hol(f2), {n;} is a set of uniqueness for
both Hol($2,,) and H,,. Finally, let u*(n;) — u; as k — oo for each j.

For fixed & € C™ and 8 € C", define fi,ﬁ € Hol(2,,) by

(6.3) fhsN) = (W Na, B)engn, A e
Noting that
(6.4) [fa sV = [N, B)] < [l N[l BII;

it follows that { fc’f ,6’} is locally uniformly bounded on €2,,. Therefore by Montel’s
theorem, {fgﬁ} has compact closure in Hol(£,).

We claim that {fgfﬂ} has a unique cluster point, for assume that {f;“ﬁ} and
{fgﬁ} are subsequences of {fgfﬂ} with {firﬁ} — f and {fisﬁ} — ¢g. Then, as we
assume for each j, u*(n;) — u; as k — oo,

Flmi) = Tim fors(m)

= Tim (u (7)o, )

Hence, as {n;} is a set of uniqueness, f = g. Since { fg 5} has a unique cluster point,
we have shown that for each o € C™ and 8 € C" ® H, there exists fo g € Hol({,)

such that

(6.5) f(]j?B — fa,p in Hol(£2,) as k — oo.
Now fix A € ,, and define Ly by

(6.6) Lx(, B) = fap(N), aeCh feC*"®H.

Observe that (6.3) and (6.5) imply that L, is a sesquilinear functional on C™ x
(C™ ® H). Furthermore, (6.4) and (6.5) imply that Ly is bounded. Therefore, by
the Riesz Representation Theorem, there exists u(\) € B(C™,C™ ® H) such that

Vaecr Vgecron La(a,B) = (u(N)a, B)
or, equivalently,
Vaecer Vpecnon (uw(A)a, B) = fa,p(A).
The function u constructed in the previous paragraph has the following proper-
ties: it is holomorphic,

(6.7) Vaea, uF(\) = u()\) weakly in B(C",C"®H) as k— oo,
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and
(6.8) V; u®(n;) = u(n;) in norm in B(C",C" ®@H) as k — oo.
Claim 6.9. Let

uF () uF(N) = w(p)*u(\) in  Her(Q,) as k— oo.

To prove this claim, first note that as we are assuming {u*} is a locally uniformly
bounded sequence in Holy (£2,), {u*(u)*uF(\)} is a locally uniformly bounded se-
quence in Her(£2,,). Therefore, the claim follows from Montel’s theorem if we can

show that

(6.10) A1) = ul) u(N)

whenever {k,} is a sequence of indices such that

(6.11) uFr () ufr(N) — A\, p) in Her(Q,) as 7 — oo.

But if (6.11) holds, then (6.8) implies that for each independently chosen ¢ and j,
Alng,mi) = i b () ul (ng) = ub () u" (n;).

Since both sides of (6.10) are holomorphic in A and anti-holomorphic in p and {n;}
is a set of uniqueness, it follows that (6.10) holds for all A, u € Q. This completes
the proof of Claim 6.9.

Finally, fix A € Q. By (6.7), {u*(\)} converges weakly in B(C",C" ®H) to u(\),
and by Claim 6.9, u®(A\)*u¥(\) — u(\)*u()\). Therefore, u*(\) — u()\) is norm in
B(C",C™ ® H). Since this holds for all A € Q, the proof of Proposition 6.2 may be
completed by an application of Proposition 3.2. O
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