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A B S T R A C T

An optimization model has been formulated and solved to determine on-condition failure thresholds and in-
spection intervals for multi-component systems with each component experiencing multiple failure processes
due to simultaneous exposure to degradation and shock loads. In this new model, we consider on-condition
maintenance optimization for systems of degrading components, which offers cost benefits over time-based
preventive maintenance or replace-on-failure policies. For systems of degrading components, this can be a
particularly difficult problem because of the dependent degradation and dependent failure times. In previous
research, preventive maintenance and periodic inspection models have been considered; however, for systems
whose costs due to failure are high, it is prudent to avoid the event of failure, i.e., the components or system
should be repaired or replaced the before the failure happens. The determination of optimal on-condition
thresholds for all components is effective to avoid failure and to minimize cost. Low on-condition thresholds can
be inefficient because they waste component's life, and high on-condition thresholds are risky because the
components are prone to costly failure. In this paper, we formulated and solved a new optimization model to
determine optimal on-condition thresholds and inspection intervals. In our model, when the system is inspected,
all components are inspected at that time. An inspection interval may be optimal for one component, but might
be undesirable for another component, so the optimization requires a compromise. The on-condition main-
tenance optimization model is demonstrated on several examples.

1. Introduction

An effective maintenance policy maintains the system by achieving
high safety and low cost, both of which are critical concerns in many
modern industries [1]. Due to the inevitable deterioration of many
components, systems may fail. To restore a failed system is often time-
consuming and costly. Periodic and frequent inspection and repair/re-
placement can reduce the probability of deterioration and failure;
however, it also incurs potentially expensive maintenance cost [2].
High quality operational performance and low maintenance cost can
then become two conflicting objectives.

There has been much noteworthy research on reliability analysis for
system subject to dependent failure processes, and accordingly, dif-
ferent maintenance policies have been considered [3–8]. For systems
whose penalty cost due to downtime is high, detecting the component
status and facilitating repair/replacement decision-making before
system failure, leads to low risk of failure, and subsequently, lower

maintenance cost. There have been previous studies on developing
periodic inspection models for a degrading system with components
sharing dependent degradation and dependent failure time [9–11];
however, those maintenance models are generally not combined with
on-condition thresholds for components. In this paper, we formulate
and solve an optimization model to determine on-condition thresholds
and inspection intervals for multi-component systems with each com-
ponent experiencing multiple failure processes.

We initially present a reliability model for systems in which failure
processes for each component are dependent and failure times for all
components are dependent [6]. Second, we introduce working princi-
ples for defining the on-condition thresholds and system status. A per-
iodic inspection maintenance policy is selected so that the decision-
making depends on the on-condition thresholds for all components.
Finally, a maintenance cost rate model is developed and minimized for
two different cases of replacement cost. In this model, system inspection
interval and component on-condition thresholds are the decision
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variables. The new model offers cost benefits and performance im-
provement over time-based preventive maintenance or replace-on-
failure policies.

The paper is organized as follows. Section 2 introduces and sum-
marizes the relevant research previously done on reliability and
maintenance policies for multi-component systems with multiple
failure processes and provides the details of two failure processes. After
presenting the system reliability model, Section 3 introduces on-con-
dition thresholds and defines system status related to the on-condition
thresholds. Section 4 describes the maintenance policy and cost rate
optimization model based on system inspection interval and component
on-condition thresholds. System examples are shown in Section 5 to
illustrate the reliability and maintenance models.

The notation used in formulating the reliability and maintenance
models is listed as follows:

N(t) number of shock loads that have arrived by time t;
n number of components in a series or parallel system;
λ arrival rate of random shocks;
Di threshold for catastrophic/hard failure of ith component;
Wij size/magnitude of the jth shock load on the ith component;
FWi(w) cumulative distribution function (cdf) of Wi;
Hi1 critical wear degradation failure threshold of the ith com-

ponent (a fixed parameter);
Hi2 on-condition threshold of the ith component (a decision

variable);
Xi(t) wear volume of the ith component due to continuous de-

gradation at t;
XSi(t) total wear volume of the ith component at t due to both

continual wear and instantaneous damage from shocks;
Yij damage size contributing to soft failure of the ith component

caused by the jth shock load;
Si(t) cumulative shock damage size of the ith component at t;
αi(t), βi shape and scale parameter for gamma degradation process

for component i;
Gi(xi,t) cumulative distribution function (cdf) of Xi(t);
FXi(xi,t) cdf of XSi(t);
fYi(y) probability density function (pdf) of Yi;
fYi
<k>(y) pdf of the sum of k independent and identically distributed

(i.i.d.) Yi variables
fT(t), FT(t)pdf and cdf of the failure time, T;
F t( )T
H1

cdf of the failure time T for the whole system considering
critical failure threshold;

F t( )T
H2

cdf of the time when an on-condition threshold is reached;
C(t) cumulative maintenance cost by time t;
E[TC] expected value of the total maintenance cost of the renewal

cycle, TC;
τ periodic inspection interval;
CR(τ) average long-run maintenance cost rate of the maintenance

policy;
E[K] expected renewal cycle length, K of the maintenance policy;
E[NI] expected number of inspections NI;
E[ρ] expected system downtime (the expected time from a system

failure to the next inspection when the failure is detected);
CR replacement cost per unit;
CRf fixed replacement cost per unit;
CRl variable replacement cost per component cost per unit;
CI cost associated with each inspection;
Cρ penalty cost rate during downtime per unit of time;

2. Component and system reliability based on degradation
analysis

Significant and meaningful prior research has been done on relia-
bility and maintenance policies for systems with degradation, shocks

and independent or dependent failure processes. In this new system
model, we extend previously developed models and research to develop
a new maintenance optimization model to determine optimal compo-
nent on-condition thresholds and system inspection interval.

2.1. Research of reliability and maintenance for degrading systems

There is related literature and research work already dedicated to
reliability analysis for systems subject to multiple failure processes.
Song et al. [6] studied the reliability of multi-component systems with
each component experiencing multiple failure processes. Chatwatta-
nasiri et al. [12] then proposed a reliability model for a system of
components with multiple competing and dependent failure processes
when the future conditions are uncertain. Jiang et al. [13] further
studied reliability of systems subjected to multiple competing depen-
dent failure processes with changing dependent failure thresholds.

There have been other studies for systems experiencing degradation
processes and external random shocks. Wang and Pham [14] developed
a model considering the dependent relationship between random
shocks and degradation processes by a time-scaled covariate factor.
Rafiee et al. [15] studied reliability for systems subject to dependent
competing failure processes with a changing degradation rate according
to particular random shock patterns. Jiang et al. [16] developed relia-
bility model for systems experiencing stochastic degradation processes
and a random shock process, with shock effects falling into distinct
zones.

Different maintenance policies for degrading systems with a single
component or multiple components have also been extensively studied
in the literature [17]. Bian and Gebraeel [18] proposed a stochastic
model for the degradation processes of components and estimated re-
sidual lifetime distribution of each component. Levitin and Lisnianski
[19] studied a preventive maintenance optimization problem for multi-
state systems, which have a range of performance levels. Tsai [20]
proposed a preventive maintenance model for systems with deterior-
ating components. A simple preventive maintenance task is to restore
the degraded component to some level of the original condition and a
preventive replacement task is to replace the aged component with a
new one or to restore it to an as-new state. Li and Pham [21] developed
a generalized condition-based maintenance model subject to multiple
competing failure processes including two degradation processes and
random shocks, in which the preventive maintenance thresholds for
degradation processes and inspection sequences are the decision vari-
ables. Grall et al. [22] focused on the analytical modeling of a condi-
tion-based inspection/replacement policy for a stochastically and con-
tinuously deteriorating single-unit system, in which both the
replacement threshold and the inspection schedule are considered as
decision variables for this maintenance problem. Tian and Liao [23]
investigated condition-based maintenance policies of multi-component
systems based on a proportional hazards model, where economic de-
pendency exists among different components subject to condition
monitoring. Perez et al. [24] proposed a method for scheduling the
maintenance in a wind farm with multiple turbines each having mul-
tiple components.

Jardine et al. [25] has performed important research considering
diagnostics of mechanical systems implementing condition-based
maintenance with an emphasis on models, algorithms and technologies
for data processing and maintenance decision-making. Optimizing
condition-based maintenance for equipment subject to vibration has
been studied by Jardine et al. [26]. Zhu et al. [27] considered a
maintenance model for systems with degradation which are con-
tinuously monitored, and units are immediately repaired when failure
happened. This process was repeated until a predetermined time was
reached for preventive maintenance to be performed. Wang and Pham
[28] studied a multiple objective maintenance optimization problem
for systems subject to dependent competing risks of degradation wear
and random shocks. The number of preventive maintenance actions
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until replacement and the initial preventive maintenance interval were
determined by simultaneously maximizing the asymptotic system
availability, and minimizing the system cost rate using the fast elitist
Non-dominated Sorting Genetic Algorithm (NSGA).

Ko and Byon [29] used asymptotic theory to analytically solve the
large scale maintenance optimization problem when the maintenance
set up cost is higher than repair cost. Abdul-Malak and Kharoufeh [30]
developed a Markov decision process model to find the optimal re-
placement strategy for a system of multiple components in a shared
environment. Wang et al. [31] considered a multi-phase inspection
schedule for a system with degradation processes divided into more
than two stages. Interaction between failure rates of units are con-
sidered for a two-unit system which is subjected to external shocks by
Sung et al. [32].

2.2. Review of gamma process models

In this paper, it is considered that each component degrades so that
irreversible damage gradually occurs, and the degradation model is
monotonically increasing. In this case, it is appropriate to use the
gamma process to model the degradation path. A thorough review of
the gamma process model and its applications can be found in Van
Noortwijk [33]. For our applications, the gamma process with a shape
parameter and a scale parameter β is a continuous time stochastic
process with the following properties:

• It starts from 0 at time 0, i.e., =X (0) 0
• X(t) has independent increment
• for t>0 and s>0, X t X s gamma t s( ) ( ) ( ( ), ).

In fact, the probability density function of degradation process for
each component X t X s( ) ( )i i is given by:

=g x t s
x x

t s
( ; ( ), )

exp( )
( ( ))i i

i
t s t s

i

i

( ) ( ) 1i i

(1)

where αi(t) and βi are the shape parameter and scale parameter for
component i.

Caballé et al. [34] proposed a condition-based maintenance strategy
for a system that its degradation process follows a nonhomogenous
Poisson process and its growth is modeled by gamma process. Yousefi
and Coit [35] used gamma process to model the component degrada-
tion process, where each component subject to mutually dependent
competing failure processes.

2.3. Component reliability with competing dependent failure processes

In this paper, we consider systems where each component can fail
due to two competing dependent failure processes that share the same
shock process; a soft failure process and a hard failure process [1,2], as
depicted in Fig. 1. Each component in the system degrades with time,
and when a shock arrives, if damage is greater than a hard failure
threshold, catastrophic failure occurs. For components that survive the
shocks, if total degradation which includes both pure degradation and
additional incremental degradation caused by shock damage is greater
than a defined soft failure threshold level, then soft failure occurs. The
two failure processes are competing and dependent.

Specific assumptions used for the reliability and maintenance
modeling in this paper are as follows [1,2]:

1 Soft failure occurs for the ith component when the total degradation
of that component exceeds its critical threshold level Hi1.
Component degradation is accumulated by both continuous de-
gradation over time and cumulative incremental damage due to
random shocks.

2 When the shock size exceeds the hard failure threshold of any

component i (Di), hard failure occurs of that component.
3 Random shocks arrive as a Poisson process.
4 The model is for systems that are packaged and sealed together,
making it impossible or impractical to repair or replace individual
components within the system, e.g., MEMS.

5 For the maintenance policy, the system is inspected at periodic in-
tervals and no continuous monitoring is performed. Replacements
are assumed to be instantaneous and perfect.

6 At any inspection time, if the degradation of any component i is
lower than its own on-condition threshold Hi2, component i is in the
safety level; hence, the system is within the high safety level area if
all the components are in their own safety level areas. It should be
noted that each component has its own unique on-condition
threshold which can be distinctly different from the other compo-
nents.

7 Upon an inspection, if the degradation of any component i is be-
tween its own failure threshold Hi1 and its on-condition threshold
Hi2, it has not failed but it can be anticipated to fail, and for a series
system, failure of any component causes system failure. Therefore, it
is advantageous to replace the system to avoid downtime when any
(or possibly more than one) component i exceeds Hi2 for an in-
creasing degradation path.

8 If the system fails, that is, the total degradation of any component i
in a series system is higher than Hi1 before the specified inspection
interval, it is not immediately detected and not replaced until the
next inspection. There is penalty cost per time associated with the
failure of system during downtime, e.g., cost associated with loss of
production, opportunity costs, etc.

We develop an optimization model to determine on-condition
failure thresholds and inspection intervals for complex multi-compo-
nent systems with each component experiencing multiple failure pro-
cesses due to simultaneous exposure to degradation and shock loads.
Two failure processes for each component are dependent, and failure
times for all components are also dependent. Component hard failures
occur when a shock load exceeds thresholds. Fig. 1(b) shows that
component i may fail when damage from a shock exceeds Di. Wij is the
shock size and it is an i.i.d. random variable with some defined dis-
tribution which is assumed in this paper as a normal distribution, Wij

∼N(μWi, σWi2), with parameters µwi and wi such that the probability of
having negative Wij is insignificant. This is not a restriction for our
model and depending on µwi and wi, considering a truncated normal
distribution is also an effective way to avoid having negative Wij. The
probability density function of truncated normal distribution is shown
in Eq. (2)

=

<

f w

w

w

( )

0, for 0

, for 0
W e

F1 (0)

i
Wi

w µWi
Wi

Wi

1
2 2

( )2

2 2

(2)

We can obtain the probability that the ith component survives a
shock [3]:

= < = = = …P P W D F D
D µ

i n( ) ( ) for 1, 2, , ,Li ij i Wi i
i W

W

i

i (3)

where Φ(.) is the cdf of a standard normal random variable.
As shown in Fig. 1(a), total degradation of the ith component can be

accumulated as XSi(t) = Xi(t) + Si(t), and when XSi(t) > Hi1, soft failure
occurs. Conditioning on the number of shocks and using a convolu-
tional integral of XSi(t), we can obtain the probability that component i
does not experience soft failure before time t as follow:
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m
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m
H
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m
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1 exp( )( )
!

0 0
1 exp( )( )

!

i i
m

i
i

m1

(4)

Xi(t) follows a gamma process, so Gi(•) is the cdf for a gamma dis-
tribution. It is convenient for Yi to be gamma or normal distributed
because the sum of m iid gamma random variables is also gamma, and
the sum of m iid normal random variables is normal. In Song et al. [6],
the assumption was made that Yi was normally distributed, while in this
paper, we assume Yi is gamma distributed, but this is not a restriction.

2.4. Reliability analysis for multiple components system with MDCFP

We initially consider a series system, in which a component fails
when either of the two dependent and competing failure modes occurs,
and all components in the system behave similarly. Song at al. [6]
developed a multi-component system reliability model when each
component experiencing multiple failure processes. The reliability of
this series system can be obtained, since the system fails when the first
component fails. The concepts described in this paper can be extended
to other system configurations, which is explained in more detail in
Section 4.1.2.

Fig. 2 shows a series system with n components. The reliability of
this series system at time t is the probability that each component
survives each of the N(t) shock loads (Wij< Di for j=1, 2, …) and the
total degradation of each component is less than the soft failure
threshold level (XSi(t) < Hi1 for all i) .

In this model, shocks arriving at random time intervals are modeled
as a Poisson process. When the system receives a shock (at rate λ), all
components experience a shock. If we consider the component survival
probabilities conditioned on the number of shocks, then the failure
processes for all components become independent for a fixed number of
shocks. The system reliability function can be derived for the general
case for a series system as follows [6]:

= < + <
= = =

R t P W D P X t Y H t t
m

( ) ( ) ( ) exp( )( )
!m i

n

i i
m

i
j

m

ij i
m

0 1 1

1

(5)

Using a convolution integral, the reliability model can be obtained
as follow [6]:

= <
= =

< >R t P W D G H u t f u du t t
m

( ) ( ) ( , ) ( ) exp( )( )
!m i

n

i i m Hi
i i Yi

m
m

0 1
0

1
1

(6)

3. Operational principle of the on-condition rule

For systems whose costs associated with failure are high, it is ad-
vantageous to repair or replace the components or system before a
failure occurs. The concept of condition monitoring and on-condition
thresholds for the components is used to evaluate and measure system
status. This can be an effective way to improve opportunities to detect
the component critical and degraded status and to avoid costly failures.
The maintenance optimization is challenging because of the dependent
degradation and dependent failure times among all components.

3.1. Definition of system status related to on-condition threshold

For some systems, the cost and consequence of failure are excessive
compared to comparable preventive repair cost, replacement cost or
other kinds of cost. Therefore, it is prudent to prevent failure from

Fig. 1. Two dependent and competing failure processes for a component
(a) soft failure process and (b) hard failure process [2].

Fig. 2. Series system example.
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occurring and replace the system after it has sufficiently aged, rather
than allowing to fail and possibly cause more severe consequences. For
the multi-component system considered in this research, the compo-
nents are packaged and/or sealed together and it is reasonable or ne-
cessary to replace the whole system before the critical degradation
thresholds are reached. On-condition rules provide the capability to
measure system status and replace the system before failure to avoid
system downtime. Based on the defined rules, the implementation of a
lower degradation threshold can be useful to avoid failure by providing
criteria to detect the degradation status of the components.

As depicted in Fig. 3, Hi
1 is defined as the soft failure threshold for

component i and Hi
2 is the on-condition threshold for component i, with

H Hi i
2 1. At each inspection time, we determine component condition

for each component by inspection and compare it to the corresponding
threshold. The action taken depends on a selection of condition-based
operational status and the defined maintenance condition rules. We
adopt rules related to this on-condition degradation threshold to define
the component degradation state.

At each inspection interval, if no hard failure occurs, and at the
same time, total degradation of the ith component is less than Hi2, we
then consider the component is in the safe region. The safe region is
defined as the combination of soft failure process and hard failure
process both below their respective thresholds and this status is defined
as event A shown in Table 1. If no hard or soft failure occurs and total
degradation is between Hi2 and Hi1 for any component i, this compo-
nent has not failed; however, probabilistically it may fail within a short
period of time. This status can be described by the combination of soft
failure process area between Hi2 and Hi1, and hard failure process area
below the hard failure threshold, which is defined as event B in Table 1.
If there has been a hard failure or the total degradation of any com-
ponent i is greater than Hi1, the system has failed. The status can be
defined as the union of the soft failure process area above the red da-
shed line, and hard failure process area above black dashed line, and
this status is defined as event C.

Considering the safe region for example, conditioning on m shocks

arriving to the system by time t with probability t t
m

exp( )( )
!

m
, the prob-

ability of no hard failure is P(Wi< Di)m, and the probability that total
degradation is less than Hi2 is < >G H u t f u du( , ) ( )H

i i Y
m

0
2i

i

2
. Combining

both soft failure process and hard failure process, the probability for
event A, i.e., the component i is in safe region, is:

= <
=

< >P A P W D G H u t f u du t t
m

( ) ( ) ( , ) ( ) exp( )( )
!i

m
i i m Hi

i i Yi
m

m

0
0

2
2

(7)

Similarly, for event B, component i is still working, but it is prob-
abilistically more likely to fail within the next inspection interval. The
probability of no hard failure considering m shocks is P(Wi<Di)m and
the probability that total degradation is between Hi1 and Hi2 is

< >G H u t f u du( , ) ( )H
H

i i Y
m1

i
i

i2
1

. Combining both the soft failure process
and hard failure process; we can obtain the probability for event B. For
event C, either a soft failure or a hard failure occurs, with probability
which equals to one minus the probability that neither of these two
failure happens. The policy is summarized in Table 1.

Given this reliability model for systems with each component ex-
periencing multiple failure processes due to simultaneous exposure to
degradation and shock loads, we can then define a maintenance cost
optimization objective function. The system is inspected periodically,
and the condition of each component is observed and compared to a
threshold. Upon an inspection, we replace the system with a new one
when we observe that a hard failure has occurred or total degradation is
greater than the on-condition threshold for any component i.

The expected number of inspections NI, for a vector of on-condition
thresholds H2= (H H H, , ..., n1

2
2
2 2) is given by,

=
=

E N k F k F k( ) ( ( ) (( 1) ))I
k

T T
H H

1

2 2

(8)

F t( )T
H2

is the probability that the degradation of at least one component
is above its own on-condition threshold by time t. F t( )T

H2
can be calcu-

lated using Eq. (9)

Fig. 3. Two thresholds divide system status into three regions.
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= <
= =

< >F t P W D G H u t f u du t t
m

( ) 1 ( ) ( , ) ( ) exp( )( )
!T

m i

n

i i m Hi
i i Yi

m
m

H2

0 1
0

2
2

(9)

From Fig. 4, we can observe that system downtime is the time
duration between when a failure occurs and the next time an inspection
is performed, and the failure is detected. Conditioning on the event that
there is a failure at time t between the (k-1)th and kth inspection [(k-
1)τ, kτ] with probability F k F k( ) (( 1) )T T

H H2 2
, and defining the

failure time as t, the system downtime is kτ - t. The expected value of
system downtime or the expected time from a system failure to the next
inspection when the failure is detected, can then be determined as

k t dF t( ) ( )
k

k

T
H

( 1)

1
. Summing over the probability that failure can

occur in any inspection interval, we can obtain expected system
downtime as follows:

= = =

=

=

=

E E N k P N k

F k F k k t dF t

[ ] [ | ] ( )

( ( ) (( 1) )) ( ) ( )

k
I I

k
T T

k

k

T
H H

1

1 ( 1)

H2 2 1

(10)

= <
= =

< >F t P W D G H u t f u du t t
m

where ( ) 1 ( ) ( , ) ( ) exp( )( )
!T

m i

n
i i m Hi i i Yi

m
m

H1

0 1
0

1
1

(11)

The expected time between two replacements or expected cycle
length is

= = = =
= =

E K E K N k P N k k F k F k[ ] [ | ] ( ) ( ( ) (( 1) ))
k

I I
k

T T
H H

1 1

2 2

(12)

4. Condition-based maintenance modeling and optimization

Condition-based maintenance offers the promise of enhancing the
effectiveness of maintenance programs. For some cases, the penalty cost
due to downtime is relatively higher than the comparable corrective
maintenance costs, so it is cost-effective to replace the whole system
before the wear volumes of components reach their failure thresholds,
However, there are other cases that replacing the system upon failure is
more beneficial because you obtain maximum system life and down-
time costs are small. In this paper, if the optimal on-condition threshold
is the same as failure threshold, i.e., Hi2 = Hi1, we have the case that
implementing preventive maintenance before failure is not necessary or
even beneficial.

4.1. Description of the maintenance model

Effective on-condition degradation thresholds can achieve our goal
of replacing the system before failure by providing the criteria to detect
component degradation beyond the threshold. If the on-condition
threshold is too low and far away from the nominal threshold level,
then we have to replace the whole system more frequently, and it re-
sults in excessive cost. Alternatively, if the threshold is too high, then
the system may fail before the next inspection leading to potentially
expensive downtime cost. Therefore, on-condition degradation thresh-
olds for all components and an inspection interval for the whole system
are chosen to be decision variables in this maintenance optimization
problem.

To evaluate the performance of the condition-based maintenance
policy, we use an average long-run maintenance cost rate model as the
objective function, in which the periodic inspection interval τ for the
whole system and on-condition thresholds Hi

2 for all components are
the decision variables. At time τ, and subsequent inspection intervals of
time τ, the entire assembled system is inspected. If the system is still
operating satisfactorily with no detected component degradation above
the on-condition threshold, nothing is done. If degradation thresholds
for all component are below the fixed critical degradation thresholds Hi

1

but some are above the on-condition threshold Hi
2, the whole system is

replaced preventively. If there is a hard failure or at least one compo-
nent's wear volume is above the critical degradation threshold Hi

1 prior
to inspection, then the system is not replaced with a new one correc-
tively until the next inspection. The average long-run maintenance cost
per unit time can be evaluated by:

=

=

C t t

E TC
E K

lim ( ( )/ ) Expected maintenance cost between two replacements
Expected time between two replacements

[ ]
[ ]

t

(13)

where TC is the total maintenance cost of a renewal cycle, and K is the
length of a cycle that takes a value of a multiple of τ [36]. The expected
total maintenance cost is given as:

= + +E TC C E N C E C[ ] [ ] [ ]I I R (14)

where CI is the cost of each inspection. CR is the replacement cost, Cρ is
the penalty cost incurred during down time, and τ is the time interval
for periodic inspection. In this model CR is a fixed value independent of
the number of components with threshold exceeding Hi

2. However, an
alternate formulation is presented in 4.1.1 with variable replacement
cost. Based on Eqs. (8)–(10), the average long-run maintenance cost
rate is given as

Table 1
Component status defined with two soft failure thresholds and hard failure threshold.

A Component is in safe region = <=
< >( )P A P W D G H u t f u du( ) ( ) ( , ) ( )m i i m Hi i i Yi

m t t m
m0 0

2 2 exp( )( )
!

B Component is working, but probabilistically fails soon = <

×

=
< > < >( )P B P W D G H u t f u du G H u t f u du( ) ( ) ( , ) ( ) ( , ) ( )m i i m Hi i i Yi

m Hi i i Yi
m

t t m
m

0 0
1 1

0
2 2

exp( )( )
!

C Component fails = <=
< >P C P W D G H u t f u du( ) (1 ( ) ( , ) ( ) )m i i m Hi i Y

m t t m
m0 0

1 1 exp( )( )
!

Fig. 4. System downtime under periodic inspection main-
tenance policy.
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4.1.1. Maintenance model considering different replacement costs
Another model has also been developed for cases with different

replacement costs, depending on the number of aged components close
to the failure threshold, i.e., exceeding Hi

2. The applications in this
paper are for systems that are packaged and sealed together, so
whenever system replacement is required, the assembled system should
be replaced with a new one. In the previous sections, it is assumed that
at each inspection time when a replacement is required, the whole
system is replaced with a new one and the replacement cost is fixed
regardless of how many components have conditions above the on-
condition thresholds or failed. However, other systems and applications
behave differently. To consider the dependency of replacement cost on
component's status, a new cost rate model has been derived, where the
expected maintenance cost between two replacements can be calcu-
lated as follow:

= + + +
=

=E TC C E N C E C lC P
P P l H

[ ] [ ] [ ] ( )
( components above )

I I l
n

Rf Rc l

l i

1
2 (16)

CRf includes fixed setup cost for replacement, and CRc is the replacement
cost for each additional component with degradation level above its
own on-condition threshold. It is assumed that the replacement cost is a
function of the number of components affected, but not which specific
components. When the whole system is replaced with a new one in the
previous sections is equivalent to the case that all the components have
degradation level greater than their on-condition threshold in this
section or = +C C nCR Rf Rc.

Case 1: If all components in the system are identical, the probability
of having l aged beyond the on-condition threshold or failed compo-
nents (l component with degradation level greater than its own on-
condition threshold) can be calculated as follow.

=P n
l P A P A(1 ( )) ( )l

l n l

(17a)

P(A) = P(Ai) for all i, with P(Ai) given by Eq. (7).
Case 2: If some or all of the components are different, then com-

putation of Pl is more complex. Define S(l) as a set of all n-dimension
vectors x=(x1, x2, …, xn), whose values sum to l with xi∈{0, 1}, where
xi is 1 if component i has degradation level greater than its own on-
condition threshold, and 0 otherwise. Therefore, Pl for Case 2 can be
computed as:

= = =
= =

P P A P A S l x lx(1 ( )) ( ) , ( ) ;l
S l i

n

i
x

i
x

i

n

i
x ( ) 0

1

1

i i

(17b)

Based on Table 1, P(Ai) for both cases is the probability that de-
gradation level of component i is less than its own on-condition
threshold, and there is no hard failure for component i by time t. P(Ai) is
given by Eq. (7)

So, considering the dependency of replacement cost on number of
aged and failed components the average long-run maintenance cost per
unit is given as:

=

+

+ +

=

=

= =

CR

C k F k F k C

F k F k k t dF t

C lC P k F k F k

H( , )

( ( ) (( 1) ))

( ( ) (( 1) )) ( ) ( )

( ) / ( ( ) (( 1) ))

I
k

T T

k
T T

k

k

T

l

n

Rf Rc l
k

T T

H H

H H H

H H

2

1

1 ( 1)

1 1

2 2

2 2 1

2 2

(18)

4.1.2. Maintenance model for parallel configuration
Song et al. [6] developed reliability models for multi-components

systems subjected to multi-dependent failure processes for different
configurations, such a parallel and series-parallel. Although, the equa-
tions become more complicated, the new proposed model can be ex-
tended to different configurations. For example, for parallel config-
uration we have the following reliability model.

= < + <

= <

= = =

= =

< >

R t P W D P X t Y H t t
m

P W D G H u t f u du t t
m

( ) 1 1 ( ) ( ) exp( )( )
!

1 1 ( ) ( , ) ( ) exp( )( )
!

P
m i

n

i i m i
j

m

ij i
m

m i

n

i i m Hi
i i Yi

m
m

0 1 1

1

0 1 0

1
1

(19)

Consequently, the probability that failure can occur by time t can be
calculated as follow:

=

= <
= =

< >

F t R t

P W D G H u t f u du t t
m

( ) 1 ( )

1 ( ) ( , ) ( ) exp( )( )
!

T
H

P

m i

n

i i m Hi
i i Yi

m
m

1

0 1 0

1
1

(20)

The probability of having no replacement by time t is:

= < + <

= <

= = =

= =

< >

P t P W D P X t Y H t t
m

P W D G H u t f u du t t
m

( ) 1 1 ( ) ( ) exp( )( )
!

1 1 ( ) ( , ) ( ) exp( )( )
!

NR P
m i

n

i i m i
j

m

ij i
m

m i

n

i i m Hi
i i Yi

m
m

0 1 1

2

0 1 0

2
2

(21)

PNR-P(t) refers to the probability of having no replacement for a parallel
system, and the probability of having replacement by time t for parallel
configuration is:

=

= <
= =

< >

F t P t

P W D G H u t f u du t t
m

( ) 1 ( )

1 ( ) ( , ) ( ) exp( )( )
!

T
H

NR P

m i

n

i i m Hi
i i Yi

m
m

2

0 1 0

2
2

(22)

The total cost function presented in Eqs. (15) and (18) can still be
applied, but by substituting these new functions which are specific for a
parallel system. Equations for a series-parallel or other configuration
could also be developed, although they would be highly complex.

4.2. Maintenance cost optimization

For our maintenance optimization problem, if there are n compo-
nents in a series system, there are n+1 decision variables; namely n
on-condition thresholds for all components and the periodic inspection
interval for the whole system. Our objective is to minimize maintenance
cost rate, and constraints are that on-condition thresholds for all
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components should be less than or equal to their critical failure
thresholds, and inspection interval should be a positive value.
Therefore, our maintenance optimization problem can be formulated as
follows:

CR
H H
H H

H H

Hmin ( , )
s.t. 0 ,

0 ,

0 ,
0,

n n

2

1
2

1
1

2
2

2
1

2 1

(23)

It is a difficult non-linear optimization problem but with continuous
decision variables and a convex feasible region. For constrained non-
linear optimization problems, there are many available algorithms to
obtain optimal solutions. Interior point methods have proved to be very
successful in solving many nonlinear problems [37–39]. The interior
point method consists of a self-concordant barrier function used to
encode the convex set. It reaches an optimal solution by traversing the
interior of the feasible region using one of two main types of steps at
each iteration [40]. The algorithm first attempts to take a direct step
within the feasible region to solve the Karush Kuhn Tucker (KKT)
equations for the approximate problem by a linear approximation,
which is also called a Newton step. By solving the KKT equations, we
can obtain the direct step and the solution for the next iteration. If a
direct step cannot be completed, it attempts a conjugate gradient step,
and minimizes a quadratic approximation to the approximate problem
in a trust region, subject to linearized constraints. It does not take a
direct step when the problem is not locally convex near the current
iteration. At each iteration, the algorithm decreases a merit function.
We reach a new solution point after taking the step and start a new
iteration. It continues until a defined stopping criterion is met.

In this paper, to solve the optimization problem, an interior point
method is used (as implemented as the fmincon algorithm in the
MATLAB optimization toolbox). fmincon in Matlab is easy to use, robust
and has wide variety of options. The built-in parallel computing support
in fmincon accelerates the estimation of gradients. There have been
some studies that demonstrate the preference of using fmincon in sol-
ving nonlinear optimization problems. Cohen et al. [41] compared
different algorithms to solve scheduling optimization, and investigated
that interior point using fmincon function in Matlab has the best per-
formance such as fastest optimization time, minimum optimization cost
and the robustness to noise. Chuan et al. [42] showed that the fmincon
function in Matlab is faster than other methods such as genetic algo-
rithm (GA) while they all have the same optimal results for their
radiological worker allocation nonlinear problem. Erentok et al. [43]
shows that using fmincon function has the same accuracy as GA method
to obtain optimal value while it is faster than using GA methods. Sa-
mavati et al. [44] also compared GA and fmincon function in Matlab
optimization toolbox to solve a cooperative grasp planning problem.
They showed that fmincon converged faster than GA.

5. Numerical examples

We consider several numerical examples; the first one is a series
system with four components where component 1 and 2 have the same
parameters and component 3 and 4 have the same parameters. We
conduct the optimization with both a fixed inspection interval, and then
inspection interval as a decision variable. The second example is for a
system with four different components, and the third one is a series
system with four identical components with replacement cost depen-
dent on the number of aged and failed component.

The parameters for reliability analysis of these examples are pro-
vided in Tables 2 and 3. Yij follows gamma distributions andWij follows
normal distributions in both examples. The first example is a conceptual
example to demonstrate the reliability function and maintenance

models. However, although the example is conceptual, Hi1 and Di are
estimated based on documented degradation trends [3]. To provide
some interesting comparisons, we perform maintenance optimization
for the series system and also, all the individual components making up
the system separately, and we discuss the results.

5.1. Example 1

For the first example, we consider the maintenance policy for the
whole series system with four components and a predetermined in-
spection interval, i.e., we inspect the whole system at one interval of τ
and replace the system when the observed degradation is aboveHi

2 for
any component. For some actual applications, there is a fixed or known
inspection interval that is imposed by the decision-maker or availability
of the system for inspection. The system can only be inspected at those
fixed intervals, which could be far from optimal. Therefore, to compare
these cases with proposed model, we selected two fixed values as pos-
sible inspection intervals and the optimal on-condition thresholds and
cost rate functions are found for these cases.

The first case has a very long inspection interval of τ=120 h,
choosing CI = $1, Cρ = $20,000 and CR = $100, we can find the
minimum average long-run maintenance cost rate for system is
$3.054 × 102 and on-condition degradation threshold are
Η1

2* = Η2
2* = 0.0001556, Η3

2* = Η4
2* = 0.0001370. Moreover, by

considering a shorter fixed inspection interval of τ = 24 h, the
minimum average long-run maintenance cost rate for system reduces to
$2.2796 × 102 and on-condition degradation threshold are
Η1

2* = Η2
2* = 0.0004637, Η3

2* = Η4
2* = 0.0004204. When the

system is inspected more frequently, we have higher on-condition de-
gradation thresholds, i.e., closer to the failure threshold. Since the
system status is detected more often, it can be replaced preventively, so
on-condition degradation thresholds are closer to failure thresholds.

The contribution of this paper is to now simultaneously determine
the optimal on condition thresholds and inspection interval. The
minimum average long run maintenance cost rate for the system is
$1.9023 × 102 found after 22 steps of iteration. The inspection interval
is τ* = 44.7129 h, and on-condition degradation thresholds are
Η1

2* = Η2
2* = 0.0003055 and Η3

2* = Η4
2* = 0.0002728. Fig. 5

illustrates the iteration process of decision variables: inspection in-
terval, on-condition degradation threshold for component 1 and 2, and
on-condition degradation threshold for component 3 and 4. Fig. 6
shows the iteration for our objective function, i.e., the system main-
tenance cost rate. From Iteration 10 on Fig. 5 and 6 the optimal values
do not change; however, the algorithm continued to confirm that there
is no additional improvement and the optimal solutions are converged.

To show the preference of the proposed model, the optimal main-
tenance cost rate of this example is compared to optimal cost rate va-
lues for different maintenance policies such as time-based maintenance
and replace-on-failure maintenance. In fact, both these policies are

Table 2
Parameter values for multi-component system reliability analysis for the first
example.

Parameter Component 1 & 2 Component 3 & 4 Sources

Hi
1 0.00125 μm3 0.00127 μm3 Tanner and

Dugger [3]
Di 1.5 Gpa 1.4 Gpa Tanner and

Dugger [3]
αi 0.7 0.8 Assumption
βi 0.3 0.3 Assumption
λ 2.5× 10−5 2.5× 10−5 Assumption
Yij Yij ∼gamma( ,Yi Yi) Yij ∼gamma( ,Yi Yi) Assumption

= 0.4Yi , = 1Yi = 0.5Yi , = 1Yi
Wij Wij ∼N(μWi,σWi2) Wij ∼N(μWi,σWi2) Assumption

μWi=1.2 GPa,
σWi=0.2 GPa

μWi=1.22 GPa,
σWi=0.18 GPa
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special cases of our proposed model. For replace-on-failure model,
failure is detected by inspection, and if failures are not detected
promptly, there is costly downtime. Therefore, replace-on-failure still
requires inspections, but by setting Hi2 = Hi1 for all i, we can generate
the lowest cost replace-on-failure policy by solving an optimization
problem where CR(τ) is the objective function with Hi2 = Hi1, and all
the costs are the same. The optimal inspection interval is found as
τ* = 9.43 and minimum average long run maintenance cost rate is
$3.271 × 102. In this case, the inspection interval is small, because the
only way to avoid costly downtime is to inspect frequently; while, when
we have on-condition thresholds for each component to avoid failure
and downtime, the minimum average long run maintenance cost rate
for the system is $1.902 × 102 which shows the proposed method can
provide a beneficial maintenance policy for cases with high downtime
costs by replacing the system before failure and avoiding system
downtime.

Similarly, time-based preventive maintenance is investigated by
setting Hi2 = 0 for all i, so, the whole system will be replaced on the
first inspection. The optimal inspection interval for this case is
τ* = 52.45 with the minimum average long run maintenance cost rate
of $2.427 × 102 which shows this policy is costly compared to our
proposed model.

To further evaluate the results, we also consider an inspection and
maintenance policy for the individual components. That is, we treat
four components as individual systems, and inspect individual four
components at their own inspection intervals. Since component 1 and 2
share the same parameter, the maintenance optimization for them are
the same. We can find the minimum average long-run maintenance cost
rate for component 1 and 2 as $1.367 × 102 after 20 steps of iteration,
with a solution of the periodic inspection interval τ1,2* = 65.044 h, and

on-condition degradation threshold for components
Η1

2* = Η2
2* = 0.0002465. Fig. 7 illustrates the iteration process of

two decision variables, inspection interval and on-condition degrada-
tion threshold, for component 1 and 2. Fig. 8 shows the iteration for our
objective function, that is, the maintenance cost rate.

Similarly, we inspect individual component 3 or component 4 at
their own inspection intervals. The minimum average long-run main-
tenance cost rate for component 3 and 4 is $1.762 × 102 after 13 steps
of iteration, with the periodic inspection interval τ3,4* = 71.55 h, and

Table 3
Parameter values for multi-component system reliability analysis for a system with four different components.

Parameter Component 1 Component 2 Component 3 Component 4

Hi
1 0.00125 μm3 0.00127 μm3 0.0013 μm3 0.00128 μm3

Di 1.5 Gpa 1.4 Gpa 1.2 Gpa 1.45 Gpa
αi 0.7 0.8 0.6 0.2
βi 0.3 0.3 0.25 0.25
λ 2.5× 10−5

Yij Yij ∼gamma( ,Yi Yi) Yij ∼gamma( ,Yi Yi) Yij ∼gamma( ,Yi Yi) Yij ∼gamma( ,Yi Yi)

= 0.45Yi , = 1Yi = 0.5Yi , = 1Yi = 0.48Yi , = 1Yi = 0.4Yi , = 1Yi
Wij Wij ∼N(μWi,σWi2) Wij ∼N(μWi,σWi2) Wij ∼N(μWi,σWi2) Wij ∼N(μWi,σWi2)

μWi=1.2 GPa, μWi=1.22 GPa, μWi=1.23 GPa, μWi =1.2 GPa,
σWi=0.22 GPa σWi=0.18 GPa σWi=0.15 GPa σWi=0.2 GPa

Fig. 5. Iteration process for these decision variables: inspection interval τ*, and on-condition threshold for all components.

Fig. 6. Iteration process of maintenance cost rate for system with four com-
ponents.
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on-condition degradation threshold for components
Η3

2*= Η4
2* = 0.0002169. Fig. 9 illustrates the iteration process of two

decision variables: inspection interval and on-condition degradation
threshold for component 3 and 4. Fig. 10 shows the iteration for our
objective function, that is, the maintenance cost rate.

We can observe that inspection intervals for either component 1 and
2 or component 3 and 4 are greater than the inspection interval for the
series system, which means we have to compromise to inspect the
system more frequently if we have more components in the system.
Since time to failure for all components are different, and series system
reliability is less than the individual component reliability for all time,
we should inspect system more often to increase probability of avoiding
failure and relative high downtime cost.

5.2. Example 2

The second example is a series system with four different compo-
nents. Table 3 presents the parameters of each component. Given the
same cost CI= $1, Cρ= $20,000 and CR= $100, we find the minimum
average long-run maintenance cost rate for the system as
$1.8356 × 102, which is obtained at periodic inspection interval
τ* = 49.86 h, and on-condition degradation threshold for components
are Η1

2* = 0.0002904, Η2
2* = 0.0002656, Η3

2* = 0.0007362,
Η4

2* = 0.0012359. As the results illustrate, component 4 has the
highest optimal on-condition threshold that is very close to its failure
threshold. This is because the degradation rate and shock load damage
for component 4 is lower than other components which means its re-
liability is higher compared to the other three components. Accord-
ingly, its optimal on-condition threshold is higher.

5.3. Example 3

To evaluate the maintenance model in Section 4.1.1, a series system
is considered with four identical components (Case 1). The parameter
values for reliability analysis of these four components is the same as
component 1 and 2 in Table 2. By using Eq. (18) as the objective
function for the optimization problem and considering CI = $1,
Cρ = $20,000, CRf = $20 and CRc = $20, we can find the minimum
average long-run maintenance cost rate for system is $1.597 × 102 and
on-condition degradation threshold are Η1

2* = Η2
2* =

Η3
2* = Η4

2* = 0.0002125, and the optimal inspection interval is
found as τ* = 68.14

6. Conclusions

In this paper, we propose a maintenance optimization model to
determine on-condition failure thresholds and inspection intervals for
systems with dependent degradation and dependent component failure
times. For systems whose penalty cost due to downtime is high, this on-
condition maintenance policy offers cost benefits over time-based pre-
ventive maintenance or replace-on-failure policies, because on-condi-
tion threshold increases the likelihood to detect system critical status
and prevent failures. In this maintenance policy, the periodic inspection
interval for the whole system and on-condition thresholds for all
components are decision variables, and system maintenance cost rate is
our optimization objective. The average long-run maintenance cost rate
is evaluated and optimized. An interior point algorithm in MATLAB
toolbox fmincon is used to solve the optimization problem. Numerical
examples are provided and the results are discussed.
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