
A Lightweight Model for Right-Sizing
Master-Worker Applications

Nathaniel Kremer-Herman, Benjamin Tovar, and Douglas Thain

{nkremerh,btovar,dthain}@nd.edu

University of Notre Dame

Abstract—When running a parallel application at scale, a
resource provisioning policy should minimize over-commitment
(idle resources) and under-commitment (resource contention).
However, users seldom know the quantity of resources to ap-
propriately execute their application. Even with such knowledge,
over- and under-commitment of resources may still occur because
the application does not run in isolation. It shares resources such
as network and filesystems.

We formally define the capacity of a parallel application as
the quantity of resources that may effectively be provisioned
for the best execution time in an environment. We present a
model to compute an estimate of the capacity of master-worker
applications as they run based on execution and data-transfer
times. We demonstrate this model with two bioinformatics
workflows, a machine learning application, and one synthetic
application. Our results show the model correctly tracks the
known value of capacity in scaling, dynamic task behavior, and
with improvements in task throughput.

I. INTRODUCTION

Researchers today rely on clusters, clouds, and grids to

analyze and collect data on a large scale. However, it is

difficult to know the resource requirements of an application

at scale. Decisions about just how large the application should

be scaled often have to be made by the researcher. This can

lead to cases of requesting too few resources to get their work

done in a timely manner or asking for too many resources and

blocking other researchers from getting their work done.

At the University of Notre Dame, researchers like high en-

ergy physicists and biologists have shared computing resources

available to run their experiments at scale. When executing

their applications, we often find our users under-provisioning

or over-provisioning their work by orders of magnitude. For

example, users request resources on ten cores for an appli-

cation that should be using thousands. This prevents them

from getting their research done as quickly as it should. Users

have also requested a thousand cores when only tens could be

used effectively. This is a problem for the cluster since other

researchers have to wait in the queue while their colleague is

using about a thousand completely idle cores. In this case, the

productivity of the entire campus can grind to a halt without

intervention from a system administrator.

In principle, users could run their application multiple times

with varying resources in order to discover an appropriate

resource provisioning for their application on the given system.

This is not useful in cases where the data from the application

does not need to be processed more than once. It is especially

detrimental when the user is charged for computation such

as infrastructure-as-a-service platforms. Having to re-run the

application to find an appropriate resource allocation can

quickly rack up cost. It also slows down the rate of their

research. It would be preferable to run the parallel application

only once to discover an appropriate number of resources

and dynamically provision them throughout the application’s

lifetime.

We present a method for dynamically calculating the num-

ber of computational nodes which can be effectively utilized

by a master-worker parallel application. This model is called

the capacity of the application. This method provides the

benefit that the application does not have to be rerun, and

approximations of the true value of capacity are easily ob-

tained as tasks are executed. This model prevents waste on idle

resources from over-provisioning which can in turn save users’

money and allocation time in the case of infrastructure-as-a-

service platforms. It also increases throughput if an application

experiences initial under-provisioning.

We evaluate the capacity model by executing four applica-

tions on an active, campus-scale high performance comput-

ing cluster. One application is synthetic and is designed to

demonstrate the potential differences between anticipated and

realized capacity. We also test two different bioinformatics

workflows based on the BWA [1] and HECIL [2] genomic

data analysis tools, respectively. The final application we use

to evaluate the model is a machine learning model search and

hyperparameter optimization application called SHADHO [3].

We provide results showing the accuracy with which a user can

estimate capacity a priori if they know the expected execution

and I/O times of each tasks which was the case of the synthetic

application. We also demonstrate the capability of an execution

engine to utilize the capacity model to dynamically right-size

the number of resources available to an application throughout

its lifetime using BWA, HECIL, and SHADHO, minimizing

the idle time of the workflow management system, scaling up

and down the number of resources available to the application,

and preventing waste of idle machines.

We also present a web-based troubleshooting tool for re-

searchers to diagnose common resource provisioning issues in

their applications with the goal of providing a transparent and

informative interface to help users understand the behavior

of the application at run time. The capacity model, along

with basic performance metrics, provide the basis for simple

visualizations which make resource issues readily apparent.

The capacity model and performance metrics also inform a

SC18, November 11-16, 2018, Dallas, Texas, USA
978 1 5386 8384 2/18/$31 00 c⃝2018 IEEE

Since the master process deals with tasks in a sequential

manner, using more workers than C will not increase the

throughput of the system. The capacity C is in fact the number

of workers at which a speedup curve converges [23].

A. Dynamic Capacity Model

The basic model above makes assumptions that are hard to

meet in practice. For example, not all tasks are identical, and

not all computing nodes have similar resources. To deal with

these issues, we extend the previous computation to derive an

estimate of the capacity as follows:

Let Ci = 1+ tei/tioi be the capacity computed if all tasks

were identical to the ith finished task. Using an exponential

moving average, a parameter α ∈ (0, 1) is used to weight

previous completed tasks against the most recently completed

one. We assume that the most recently completed task will be

more indicative of the application’s current behavior. In our

testing, the value α = 0.05 performed well in practice. With

C0 = 0, for i > 0 and 0 < α < 1, we recursively define:

Ci = α(1 + tei/tioi) + (1− α)Ci−1

Using this dynamic model, we gain better insight into the

application’s resource needs. Seldom are tasks identical for

an entire workload, so weighting the ith finished task greater

than the cumulative capacity of the previous workload allows

us to better adjust when workload changes occur. For example,

consider a master-worker application which has two categories

of tasks: tasks of type A and tasks of type B. There are an

equal number of both types. Assume that both task types have

the same I/O time, but type A tasks run half as long as type

B tasks. Let us also assume the workload submits all the

type A tasks first then submits the B tasks. There will be

a point in the workload when capacity will increase because

B tasks run twice as long as A tasks. Capacity will essentially

double. A more naive model [20] which does not weight the

most recently completed task heavier can take awhile to adjust

to the sudden change in capacity. There may be a long lag

between actual capacity and realized worker acquisition. In

our dynamic model, the added weight α allows our application

to realize the capacity change between A and B faster. This

in turn will reduce that lag and scale the number of workers

quicker if the resources are available. In essence, we present a

model which follows Gustafson-Barsis’ Law [21] to find the

best speedup using an exponential moving average.

B. Cached Inputs

Thus far we have assumed that each task has independent

data transfer with duration tio. However, tasks may share

common inputs which only need to be sent once to each

worker where they are cached. We use tc to refer to the time

it takes to transfer these common inputs and tio − tc as the

time to transfer the remaining inputs and outputs. Since the

task description and exit status are transferred between master

and workers, we have tio > tc.

In a steady state where shared files are cached at current

workers, the capacity is therefore C = 1 + te/(tio − tc).

Suppose that we already have m workers available, and n tasks

remain to be dispatched. When does it become advantageous to

add a new worker? Certainly if m >= C (already at capacity)

or m ≥ n (not enough work to fill the extra worker), an

additional worker would be wasteful. We explore here the

remaining case, m < C, and m < n.

If there are n tasks that remain to be dispatched, it will

take at least ntio time to process all these tasks. Conversely,

it will take at least nte/m+ tio time for the workers to finish

the remaining tasks. Since we assumed that the master was

running under capacity, we have that ntio < nte/m + tio.

Thus, r new workers are advantageous when:

ntio + rtc
︸ ︷︷ ︸

transfer n tasks and r caches

< nte/(m+ r) + tio
︸ ︷︷ ︸

execute and transfer n tasks on m + r workers

Caching increases the overall capacity, but it increases the

cost of initializing a new worker. These two compromises

come into play when a master-worker application has few tasks

left to be processed.

C. Applicability to Generic Workloads and Limitations

Scientific workflows are often broken up into sets of similar

tasks which all run at relatively similar times in the lifetime of

the workflow. This is advantageous for the capacity model as

we can accurately determine when the workflow is advancing

from one set of similar tasks to another. However, it is difficult

to gauge capacity in applications which have no way to

identify similar tasks. In such cases, our model reaches a

capacity which is averaged between the many different tasks.

This can lead to some idle resources if there are very wide

gaps (e.g. orders of magnitude) between the execution to I/O

ratios of different tasks. Our model would have to catch up

with radically changing ratios which will prevent converging

on a stable number until later in the application’s lifetime.

The evaluation of our work consists primarily of scientific

workflows, which are commonly executed using a master-

worker framework, because our users most commonly execute

this type of application. However, we believe this capacity

model is applicable to other styles of master-worker appli-

cations. Bag-of-tasks applications typically do not have a

mechanism to submit waves of similar tasks, so it can be

expected that capacity could vary greatly at the beginning of

the application’s lifetime but smooth to an average value once

a sufficient number of different kinds of tasks have completed.

If all the tasks in the bag are identical (or similar), we can

expect capacity to be a stable number throughout computation.

Bulk synchronous parallel applications have an easier be-

havior to model since they are more uniform. These applica-

tions consist of groups of computation tasks and synchroniza-

tion tasks. These groups are called supersteps. If we exclude

the sync supersteps from affecting capacity, then we would

expect capacity to adjust according to the execution and I/O

time spent during each superstep of computation. However, if

we do consider sync supersteps having an effect on capacity,

then capacity could drop during those supersteps and we could

release unused resources while the remaining nodes finish

synchronizing. During the next computation superstep our

need for more resources would increase, and the application’s

capacity would increase to reflect that.

A parameter sweep application is similar to bag-of-tasks

when it comes to capacity because if structured it can submit

a grouped wave of similar search spaces, but this structure is

not guaranteed (i.e. depth-first search of a parameter space).

If the master process is structured to submit groups of similar

parameter search spaces, we will see capacity change with

the execution and I/O time spent between the tasks of each

group. If, however, the parameter sweep does not have a wave-

of-tasks behavior then capacity could vary greatly until it

eventually smooths to an average value.

Extending the capacity model further, we can envision how

it could apply to other execution frameworks such as Apache

Spark [24], MapReduce [25], and MPI [26]. In Spark, we are

concerned with creating resilient distributed datasets (RDDs)

and performing either transformations or actions on those

RDDs. Spark forms a directed acyclic graph of the RDDs to

establish lineage. This lineage graph informs the application

the order in which to create data and how to re-create it

if necessary. This directed acyclic graph (DAG) structure is

similar to a typical scientific workflow in that we are given

the data to be produced, the dependencies for that produced

data, and the command to create it (a transformation or an

action). One way to model capacity for a Spark application

could be the time to complete the transformation or action

(execution time) and the time spent retrieving dependent RDDs

and storing created RDDs (I/O time). These two time statistics

fit the current form of the capacity model.

Applying capacity to MapReduce is more difficult. We can

consider the map and reduce steps as two separate waves of

similar tasks in an application. This is especially useful if the

application loops on multiple stages of mapping and reducing.

If we apply the capacity model directly, we could expect to

see a capacity for mapping and a capacity for reducing. The

model could be implemented in the back end system to scale

the number of resources (i.e. cores) assigned to a data partition

as the application executes.

Extending the model to MPI is conceptually a bit of a

challenge since MPI applications are not necessarily elastically

scalable. Since MPI is designed to allow for various kinds

of communication interfaces (master-worker, scatter-gather,

point-to-point, broadcast, etc.), it is difficult for one model to

cover all. In the case of a master node being used to facilitate

communication, the capacity model would function similarly

to its current implementation. Some added overhead in the

communications would be needed to send measurements of

execution time to the master node. The master would need to

track its time spent handling messages and I/O from the worker

nodes. Other configurations of MPI would be more difficult

to model. Since many of the configurations are decentralized,

each node would need to track its time spent computing and

its time spent passing messages and data. To compute capacity

with the current assumptions in the model, the nodes would

need to aggregate their execution and I/O time to a dedicated

process which could spawn more processes or kill excess,

idle processes. This may not be ideal for all applications

since it introduces a centralized mechanism in an inherently

decentralized system. The capacity model would need to be

modified to fit decentralized communication configurations.

IV. IMPLEMENTATION

We implemented our capacity model in the Work Queue

master-worker execution engine [27]. The model can be imple-

mented in any framework where task execution time (te) and

task I/O time (tio) are readily available. Our users run Work

Queue applications to scale up their research by breaking up

their analysis pipeline into smaller tasks which can be executed

concurrently. Work Queue is designed to scale from O(10) up

to O(10,000) cores. The largest scale application using Work

Queue has successfully scaled up to approximately 25,000

cores.

The Work Queue master is a process which the user executes

on the their machine or a cluster’s head node. It is responsible

for giving workers tasks to run as well as any input files a

task may require. A worker is a process which runs on a batch

system and claims resources on a machine for a user’s work.

Worker processes persist as long as they are given work to

do, and each worker has a local cache. These workers receive

input files and executables to run the task if they do not have

them in their cache. If the task is completed successfully, the

worker waits for the master to acknowledge its success then

transfers the output of the task.

The master receives a task report from a worker once a task

has finished executing. If the task was completed successfully,

the master uses that task report for determining capacity. This

task report contains the execution time (te) and I/O time (tio)

for that task along with many other performance metrics.

These metrics are measured at the worker process and are

used in the calculation of capacity as shown in the model. The

master also keeps track of its think time during tasks which

is added to the task report. We use these times to calculate

the capacity of the application, weighting the most recently

completed task most heavily as defined in our model. If the

task is not successful, the task report for that failed task is not

included in the capacity calculation.

The master determines the capacity using the stats retrieved

from successful task reports. The most recent task report’s

execution time, I/O time, and master think time are weighted

more heavily than the rest of the application’s history because

we assume that task will be more indicative of the application’s

current behavior. After the capacity is calculated, the master

submits it (and other metrics) to a catalog server which a utility

called Work Queue Factory can access.

In order to request and maintain the appropriate number

of workers for the application, we use a program called

Work Queue Factory to dynamically provision according to

the master’s capacity calculation. Work Queue Factory is

an application which retrieves periodic information about a

master and uses this information to submit new workers for

0.1 seconds. This led to a very high capacity since the master

spent the vast majority of its time waiting for tasks to finish. In

this test, no more than 150 tasks were submitted concurrently.

While the master could theoretically handle magnitudes more

workers, there would never be enough work dispatched to keep

them busy. The spikes in capacity seen in Figure 10 are due

to different machine learning models taking much longer to

execute than others (an order of magnitude difference). When

those tasks return their output, capacity spikes from the long

execution time of those tasks. It then settles back down when

shorter-running machine learning model tasks report back.

Also limiting the model’s contribution is the fact that

SHADHO executed on a full cluster. This cluster has about

25,000 cores available for use. Most were in use at the time

of execution. Of the cores available, about 75% were in use

and 90% of the slots available to submit work were occupied.

Once the factory attempted to match the number of workers to

the number of tasks in the queue, we realized we had reached

our limit of how many resources the batch system was able to

give. SHADHO never acquired all 150 workers it could have

used. We noticed about 25 workers being preempted as other

users’ work, with better priority, entered the batch queue.

Using the capacity model, we learned SHADHO’s perfor-

mance was bottlenecked by its own task queue management

(150 tasks in our test). Due to our implementation of the

model in the factory, we only scaled up to the number

of tasks in the queue as provisioning more workers would

have been wasteful. Assume that SHADHO’s task queue was

infinite, meaning the bottleneck did not exist. Also assume

the factory implementation was different in that we only

considered the capacity model when requesting more workers.

Without these safeguards, we would have flooded the already

strained batch system. If we had been executing SHADHO on

an infrastructure-as-a-service platform, we would have accrued

a very large bill. While the capacity model proved useful in

understanding the behavior of SHADHO, it did little in guiding

the resource provisioning for it due to a confluence of factors.

The user is left knowing that the application will be able to

handle any realistic limit placed on its task queue.

To summarize, the capacity model provides limited use for

applications in which the execution and transfer times are

dissimilar among all tasks. Since capacity is a moving average,

the more variance in instantaneous capacity (te / tio), the worse

the model will behave as seen in Table I. If an application’s

capacity far exceeds their compute site’s resources, the re-

searcher will find limited use for the model’s results at that

time. However, they do glean the fact that their application

would be better run at a larger site. Finally, applications which

have very little input or output as compared to execution time

will have a capacity so large as to be meaningless to the

researcher’s understanding of the application’s behavior.

The capacity model’s simplicity provides straightforward

transparency for researchers to understand their application’s

behavior and prevents overhead which would be incurred for

a more exact measurement of capacity. Utilizing primarily the

task execution and transfer times addresses the two bottlenecks

of a master-worker application. If the master is waiting for

tasks to complete (te), then it has time to send new tasks and

transfer files (tio). The ideal master is always busy starting

new tasks or getting the results of a finished task.

VI. CAPACITY MODEL AS TROUBLESHOOTING TOOL

Although the capacity model provides usefulness for our

users as implemented in Work Queue Factory and as a simple

paper model to gauge an application’s resource provisioning,

we also implemented the model as the basis for a web-based

troubleshooting tool. This is possible by querying a catalog

server which by default every Work Queue master process

communicates with in regular intervals. The catalog server

is used to match workers to masters, but it also stores basic

performance metrics of the master.

Some of the metrics included in the catalog server are

cores, memory, and disk allocated as well as how the master

process is spending its time (e.g. sending input, receiving

output, running application-specific code). We added capacity

to these metrics. We provide these metrics in a dashboard

of simple visualizations of each Work Queue master to give

users insight into the behavior and current resource needs

of their application. Visiting this dashboard is intended to

be the first step when a user is troubleshooting resource

provisioning issues with their application. The visualizations

are implemented in the D3 JavaScript library.

In our experience, this tool has been a good first step

in troubleshooting common resource provisioning issues. To

make the tool more user-friendly, we have added a recommen-

dation system which will briefly analyze a master’s metrics

and provide actionable steps to help the user troubleshoot.

The recommendations are based on the most common factors

which would contribute to a master’s behavior. For example,

a master which is spending much of its time polling workers

(i.e. the master is idle much of the time) is most likely being

under-provisioned. In this case, the recommendation system

will look at how many workers the master has connected as

well as its capacity and inform the user if they would benefit

from asking for more workers (since they currently have none).

VII. CONCLUSIONS

We presented a model for measuring a master-worker

application’s capacity. We implemented the model in Work

Queue Factory which can be used to both scale up from an

under-provisioned start and scale down in the case of being

over-provisioned with workers. This was shown first using a

synthetic application then reinforced with common bioninfor-

matics workflows BWA and HECIL. We then demonstrated

potential limitations of the model with the SHADHO machine

learning application. This model gives the typical user the ca-

pability of harnessing only as many resources as they need on

the first execution of their application. We also demonstrated

the applicability of the model as a troubleshooting tool with

a simple visualization designed for our users. The capacity

model provides two distinct use cases to help researchers

optimize their applications’ resource provisioning.

REFERENCES

[1] N. Hazekamp, J. Sarro, O. Choudhury, S. Gesing, S. Emrich, and
D. Thain, “Scaling up bioinformatics workflows with dynamic job
expansion: A case study using galaxy and makeflow,” in 2015 IEEE

11th International Conference on e-Science, Aug 2015, pp. 332–341.
[2] O. Choudhury, A. Chakrabarty, and S. Emrich, “Hecil: A hybrid error

correction algorithm for long reads with iterative learning,” bioRxiv,
2017. [Online]. Available: https://www.biorxiv.org/content/early/2017/
07/13/162917

[3] J. Kinnison, N. Kremer-Herman, D. Thain, and W. Scheirer, “Shadho:
Massively scalable hardware-aware distributed hyperparameter optimiza-
tion,” arXiv preprint arXiv:1707.01428, 2018.

[4] F. Chirigati, V. Silva, E. Ogasawara, D. de Oliveira, J. Dias, F. Porto,
P. Valduriez, and M. Mattoso, “Evaluating parameter sweep workflows in
high performance computing,” in Proceedings of the 1st ACM SIGMOD

Workshop on Scalable Workflow Execution Engines and Technologies,
ser. SWEET ’12. New York, NY, USA: ACM, 2012, pp. 2:1–2:10.
[Online]. Available: http://doi.acm.org/10.1145/2443416.2443418

[5] L. G. Valiant, “A bridging model for parallel computation,” Commun.

ACM, vol. 33, no. 8, pp. 103–111, Aug. 1990. [Online]. Available:
http://doi.acm.org/10.1145/79173.79181

[6] N. Carriero and D. Gelernter, “How to write parallel programs: A guide
to the perplexed,” ACM Comput. Surv., vol. 21, no. 3, pp. 323–357,
Sep. 1989. [Online]. Available: http://doi.acm.org/10.1145/72551.72553

[7] M. Albrecht, P. Donnelly, P. Bui, and D. Thain, “Makeflow: A
portable abstraction for data intensive computing on clusters, clouds,
and grids,” in Proceedings of the 1st ACM SIGMOD Workshop on

Scalable Workflow Execution Engines and Technologies, ser. SWEET
’12. New York, NY, USA: ACM, 2012, pp. 1:1–1:13. [Online].
Available: http://doi.acm.org/10.1145/2443416.2443417

[8] M. C. Wikstrom and J. L. Gustafson, “The twin bottleneck effect,” in
[1993] Proceedings of the Twenty-sixth Hawaii International Conference

on System Sciences, vol. ii, Jan 1993, pp. 574–583 vol.2.
[9] D. Krol and J. Kitowski, “Self-scalable services in service oriented

software for cost-effective data farming,” Future Generation Computer

Systems, vol. 54, pp. 1 – 15, 2016. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0167739X15002265

[10] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the cloud
using predictive models for workload forecasting,” in 2011 IEEE 4th

International Conference on Cloud Computing, July 2011, pp. 500–507.
[11] A. Y. Nikravesh, S. A. Ajila, and C. H. Lung, “Measuring prediction

sensitivity of a cloud auto-scaling system,” in 2014 IEEE 38th Interna-

tional Computer Software and Applications Conference Workshops, July
2014, pp. 690–695.

[12] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A review of
auto-scaling techniques for elastic applications in cloud environments,”
Journal of Grid Computing, vol. 12, no. 4, pp. 559–592, 2014.
[Online]. Available: http://dx.doi.org/10.1007/s10723-014-9314-7

[13] Z. Tan and S. Babu, “Tempo: Robust and self-tuning resource
management in multi-tenant parallel databases,” Proc. VLDB Endow.,
vol. 9, no. 10, pp. 720–731, Jun. 2016. [Online]. Available:
http://dx.doi.org/10.14778/2977797.2977799

[14] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A. Kozuch,
“Autoscale: Dynamic, robust capacity management for multi-tier data
centers,” ACM Trans. Comput. Syst., vol. 30, no. 4, pp. 14:1–14:26, Nov.
2012. [Online]. Available: http://doi.acm.org/10.1145/2382553.2382556

[15] H. Menon and L. Kalé, “A distributed dynamic load balancer for
iterative applications,” in Proceedings of the International Conference

on High Performance Computing, Networking, Storage and Analysis,
ser. SC ’13. New York, NY, USA: ACM, 2013, pp. 15:1–15:11.
[Online]. Available: http://doi.acm.org/10.1145/2503210.2503284

[16] H. Jordan, R. Prodan, V. Nae, and T. Fahringer, “Dynamic load
management for mmogs in distributed environments,” in Proceedings

of the 7th ACM International Conference on Computing Frontiers, ser.
CF ’10. New York, NY, USA: ACM, 2010, pp. 337–346. [Online].
Available: http://doi.acm.org/10.1145/1787275.1787344

[17] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan, and
M. Zhang, “Duet: Cloud scale load balancing with hardware and
software,” in Proceedings of the 2014 ACM Conference on SIGCOMM,
ser. SIGCOMM ’14. New York, NY, USA: ACM, 2014, pp. 27–38.
[Online]. Available: http://doi.acm.org/10.1145/2619239.2626317

[18] S. Prabhakaran, M. Neumann, S. Rinke, F. Wolf, A. Gupta, and L. V.
Kale, “A batch system with efficient adaptive scheduling for malleable

and evolving applications,” in 2015 IEEE International Parallel and

Distributed Processing Symposium, May 2015, pp. 429–438.
[19] Y. Zhang, Q. Liu, S. Klasky, M. Wolf, K. Schwan, G. Eisenhauer,

J. Choi, and N. Podhorszki, “Active workflow system for near real-time
extreme-scale science,” in Proceedings of the First Workshop on

Parallel Programming for Analytics Applications, ser. PPAA ’14.
New York, NY, USA: ACM, 2014, pp. 53–62. [Online]. Available:
http://doi.acm.org/10.1145/2567634.2567637

[20] L. Yu, “Right-sizing Resource Allocations for Scientific Applications
in Clusters, Grids, and Clouds,” Ph.D. dissertation, University of Notre
Dame, 2013.

[21] J. L. Gustafson, “Reevaluating amdahl’s law,” Commun. ACM,
vol. 31, no. 5, pp. 532–533, May 1988. [Online]. Available:
http://doi.acm.org/10.1145/42411.42415

[22] J. Gustafson, G. Montry, and R. Benner, “Development of parallel
methods for a 1024-processor hypercube,” SIAM J. Sci. Stat. Comput.,
vol. 9, no. 4, 1988.

[23] S. Krishnaprasad, “Uses and abuses of amdahl’s law,” J. Comput. Sci.

Coll., vol. 17, no. 2, pp. 288–293, Dec. 2001. [Online]. Available:
http://dl.acm.org/citation.cfm?id=775339.775386

[24] J. G. Shanahan and L. Dai, “Large scale distributed data science using
apache spark,” in Proceedings of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, ser. KDD ’15.
New York, NY, USA: ACM, 2015, pp. 2323–2324. [Online]. Available:
http://doi.acm.org/10.1145/2783258.2789993

[25] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1327452.1327492

[26] D. W. Walker and J. J. Dongarra, “Mpi: a standard message passing
interface,” Supercomputer, vol. 12, pp. 56–68, 1996.

[27] D. Rajan, A. Thrasher, B. Abdul-Wahid, J. A. Izaguirre, S. Emrich,
and D. Thain, “Case studies in designing elastic applications,” in 2013

13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid

Computing, May 2013, pp. 466–473.
[28] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in

practice: the condor experience.” Concurrency - Practice and Experi-

ence, vol. 17, no. 2-4, pp. 323–356, 2005.

APPENDIX

A. Abstract

This description contains the information needed to run the

experiments of the SC18 paper “A Lightweight Model for

Right-Sizing Master-Worker Applications”. We explain how

to compile and run Work Queue, Work Queue Factory, and

each experiment provided in the paper.

B. Description

1) Check-list (artifact meta information):

• Program: Work Queue, Work Queue Factory, BWA, HECIL,
SHADHO

• Compilation: gcc version 4.8.5 20150623 (Red Hat 4.8.5-16)
(GCC) Flags provided in software Makefiles.

• Data set: Generated .fastq files for BWA and HECIL, MNIST
data set for SHADHO.

• Run-time environment: Redhat 6/7, Centos 6/7.
• Hardware: x86 64 Architecture, 1-16 core machines.
• Output: Runtime statistics to generate graphs, genome output

of BWA and HECIL, hyperparameter output of SHADHO.
• Experiment workflow: git clone projects and install software

dependencies via Makefile. Run experiments from Makefile and
compare with results presented here.

• Experiment customization: Number of workers to provision,
size of generated dataset (data generation tools included), BWA,
HECIL, and SHADHO parameters and inputs.

• Publicly available?: Yes.

2) How software can be obtained (if available): All source

code can be obtained from the following GitHub repository:

github.com/cooperative-computing-lab/cctools

3) Hardware dependencies: We have assumed x86 ar-

chitecture, though all tools are built from source so other

architectures may be feasible.

4) Software dependencies: We rely on GCC to compile our

binaries, Perl 5 to run miscellaneous scripts, Git to download

code repositories, and gnuplot 5.0 for producing our graphs

and visualizing our results. SHADHO relies on Python 2.7,

but it may be reconfigured to run on Python 3.

We also ran all experiments via the HTCondor batch system.

If HTCondor is unavailable, the experiments may be altered

to use a different batch system via their respective Makefiles

and Perl helper scripts.

5) Datasets: The experiments presented in this paper made

use of three datasets:

• BWA Dataset (2GB .fastq reference) -

github.com/cooperative-computing-lab/makeflow-

examples/bwa

• HECIL Dataset (2GB .fastq reference) -

github.com/cooperative-computing-lab/makeflow-

examples/hecil

• SHADHO Dataset (11MB mnist.npz) -

github.com/jeffkinnison/shadho

C. Installation

All software used for this paper is available in GitHub

repositories. To download and install the necessary software,

run:

$ git clone

https://github.com/cooperative-computing-

lab/capacity-paper-data

$ cd ./capacity-paper-data

$ make build

This will download the software used to run Work Queue

Factory as well as the experimentation suite written to produce

this paper’s figures.

D. Running experiments

As there were four applications executed in this paper, we

will break down the experiment workflow into four sections

for clarity. To aid in the simplicity of reproducibility, each

experiment is given its own directory in the Git repository.

Within each of those experiment directories is a Makefile

which outlines each step necessary to reproduce the results

presented in this work. In order to decrease clutter, these

Makefiles have been designed to streamline the execution of

each experiment to a simple call to make.

E. Evaluation and expected results

1) Synthetic results: To produce the capacity measurements

from the synthetic application, first be sure you are in the

capacity-paper-data directory. Then, execute:

$ make ratios

$ make stepped

$ make varied

$ make provisioning

$ make isolation

This will run all the modeling scripts used to generate

synthetic figures presented here as well as all live experiments.

The ratios, stepped, varied, and provisioning directories all

produce modeled data. There are two live application tests

in the provisioning directory as well. Thse are the upward

scaling and downard scaling experiments. The isolation ex-

periment will run two instances of the synthetic application

concurrently. One instance will transfer a 10GB file between

the master process and a worker established by Work Queue

Factory. The other instance will execute as described in the

paper.

The results obtained may be compared to the data and plots

located within the ratios/paper results, stepped/paper results,

varied/paper results, provisioning/paper results, and isola-

tion/paper results directories. Specific steps in generating the

data can be altered in the Makefile for these experiments in

ratios/Makefile, stepped/Makefile, varied/Makefile, provision-

ing/Makefile, and isolation/Makefile respectively.

2) BWA results: To produce the capacity measurements

from BWA, first be sure you are in the capacity-paper-data

directory. Then, execute:

$ make bwa

This will download and compile BWA, generate the input

data set, and execute BWA with Work Queue Factory to gather

capacity metrics. Once execution is finished, the capacity data

is analyzed and plotted using gnuplot. BWA will execute again,

this time without the capacity model turned on, for comparison

to the capacity model as shown in Figure 7. The results

obtained may be compared to the data and plot located within

the bwa/paper results directory. Specific steps in generating

the data can be altered in the Makefile for this experiment in

bwa/Makefile.

3) HECIL results: To produce the capacity measurements

from HECIL, first be sure you are in the capacity-paper-data

directory. Then, execute:

$ make hecil

This will download and compile BWA (a software depen-

dency for HECIL), generate the input data set, execute BWA

locally to prepare the data for HECIL, then execute HECIL

with Work Queue Factory to gather capacity metrics. Once

execution is finished, the capacity data is analyzed and plotted

using gnuplot. The results obtained may be compared to the

data and plot located within the hecil/paper results directory.

Specific steps in generating the data can be altered in the

Makefile for this experiment in hecil/Makefile.

F. SHADHO results

To produce the capacity measurements from SHADHO, first

be sure you are in the capacity-paper-data directory. Then,

execute:

$ make shadho

Ref size Query size Sequences Runtime

20MB 237KB 100 10 sec:1 machine

196MB 20MB 1000 2 min:20 machines

196MB 237MB 1000 6 min:20 machines

2.0GB 237MB 1000 30 min:20 machines

TABLE II
BWA AND HECIL INPUT CONFIGURATION

This will download and compile SHADHO and execute

SHADHO with Work Queue Factory to gather capacity

metrics. Once execution is finished, the capacity data is

analyzed and plotted using gnuplot. The results obtained

may be compared to the data and plot located within the

shadho/paper results directory. Specific steps in generating the

data can be altered in the Makefile for this experiment in

shadho/Makefile.

G. Experiment customization

Each experiment is kept within its own directory with a

corresponding Makefile. Many of the parameters for these

experiments may be tweaked by editing these Makefiles be-

fore running. Example parameters to change include: cores,

memory, and disk per worker, batch system to use, and total

tasks to run (for synthetic tests).

BWA and HECIL rely upon a generated data set. The

size of this data set can be configured in the bwa/Makefile

and hecil/Makefile respectively. The files generated for both

are ref.fastq and query.fastq. Consult Table II for generating

appropriate sizes for both files. Then, use fastq generate.pl

like so (this will produce the 2GB file used in the paper):

$ fastq_generate.pl 1000000 1000

$ fastq_generate.pl 1000000 100 ref.fastq

We also assume that the HTCondor batch system exists.

If this is not the case, the batch system may be changed

when calling Work Queue Factory in the Makefiles and Perl

helper scripts for the experiments. BWA, HECIL, and Scaling

experiments all rely upon a Perl helper script to instantiate

Work Queue Factory properly. The batch system the factory

uses can be reconfigured by changing this helper script. Each

of these helper scripts follow the pattern of [Name of Experi-

ment] test.pl for BWA, HECIL, and Scaling respectively. For

the other experiments, the call to Work Queue Factory can be

found in the Makefile for that experiment and may be modified

there.

H. Notes

Since the majority of the graphs prepared for this paper

rely upon executing an application on a batch system, it may

be difficult to reproduce the exact numbers presented here.

Depending on the quality and quantity of hardware in the

cluster, performance and capacity will be somewhat different.

However, the results produced should be comparable to those

presented here.

The data sets used for BWA and HECIL are generated

locally. Though the capacity behavior should remain very

similar to the behavior presented here, some slight variations

may occur due to how the data is generated.

HECIL generates approximately 450GB of output data dur-

ing execution. BWA produces approximately 50GB of output

data. Ensure your system meets these storage requirements

before running HECIL and BWA.

All tools, programs, and scripts are available from the

following GitHub repositories:

github.com/cooperative-computing-lab/cctools

github.com/cooperative-computing-lab/makeflow-examples

github.com/cooperative-computing-lab/capacity-paper-data

