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ABSTRACT
Scienti�c work�ows are typically expressed as a graph of logical
tasks, each one representing a single program along with its input
and output �les. A conventional work�ow manager transforms
each logical task into a discrete batch job and submits it to an
underlying execution system. However, converting every logical
task into one batch job is not necessarily the most e�cient parti-
tioning of a work�ow. By grouping multiple logical tasks into a
single batch job, we may decrease data transfer, increase system
utilization, and reduce the execution time of a work�ow. This pa-
per presents JX (JSON eXtended), a declarative language that can
express complex workloads as an assembly of sub-graphs that can
be partitioned in �exible ways. We present a case study of using
JX to represent complex work�ows for the Lifemapper biodiver-
sity project. We evaluate partitioning approaches across several
computing environments, including HTCondor at the University
of Notre Dame, TACC Stampede2, and SDSC Comet, and show that
a coarse partitioning results in faster turnaround times, reduced
data transfer, and lower master utilization across all three systems.

CCS CONCEPTS
• Software and its engineering→ Specialized application lan-
guages; Distributed systems organizing principles; • Applied com-
puting→ Computational biology; • Computer systems organi-
zation→Cloud computing;
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1 INTRODUCTION
Work�ows are a widely-used abstraction for representing simula-
tions, data analyses, and other scienti�c computations. A work�ow
is commonly represented as a directed acyclic graph (DAG) which
provides a static description of a complex pipeline of interdepen-
dent steps called tasks. A work�ow management system is used to
parse this complex DAG to submit each task to an execution engine
once that task’s dependencies are met.

The tasks that make up the logical structure of the work�ow,
however, do not necessarily align with the requirements of the phys-
ical infrastructure where the work�ow executes. A straightforward
approach to structuring a work�ow can lead to unexpectedly poor
performance and wasted resources. Grouping tasks into partitions
with coarser granularity can improve the data transfer, overhead,
and other performance characteristics of the work�ow, independent
of the results of the computation. Explicitly partitioning the tasks
of the work�ow allows for precise control over data movement,
execution, and error handling in each logical part of the work�ow.

We developed JX (JSON eXtended) as a language for expressing
work�ows that allows for easy manipulations to the structure and
partitioning of a work�ow. JX extends a JSON representation of
the work�ow by supporting a Python-like syntax for expressions,
allowing for a concise intermediate representation that expands
to a normal JSON document. Using JX, it is easy to treat a subset
of the work�ow as if it were an atomic job that can be dispatched
as part of a higher-level application. Templates in JX can expand
to complicated nested work�ow structures based on parameters,
allowing �exible changes to a work�ow’s partitioning scheme.

We explored schemes for partitioning Lifemapper, a distributed
biodiversity modelling application. As a high-throughput applica-
tion, Lifemapper o�ers signi�cant freedom in organizing computa-
tion beyond simply following data dependency relationships. We
observed that the granularity at which we distribute pieces of the
work�ow has a signi�cant impact on its overall behavior.

We measured the behavior of Lifemapper under two di�erent
partition schemes and ran the application on the TACC Stam-
pede2 [11], HTCondor at the University of Notre Dame [10], and
SDSC Comet [12] execution sites. We observed substantial di�er-
ences in performance in terms of execution time and data transfer
between con�gurations when running on the same execution site.
Across all three computing sites, there were similar trends in re-
duced data transfer and execution time with coarser work�ow
partitioning. There is no single rule for partitioning every work-
load, but expressing Lifemapper in JX provided enough �exibility
to quickly match the partitioning scheme to each environment.

Our contributions are twofold: �rst, we demonstrate how poor
choice of organization for a scienti�c work�ow can result in poor
performance on di�erent execution sites. Second, we introduce
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Figure 1: Fine and coarse partitions of a work�ow.
On the left, a �ne-grained scheme assigns each task to its own partition.
On the right, coarser partitions group multiple tasks together.

JX as a language for �exibly expressing work�ows and illustrate
how we used JX to �t the partitioning of a scienti�c work�ow
to improve performance across several execution sites. Since the
choice of partitioning scheme depends strongly on the particular
application and execution site, JX o�ers researchers a way to easily
make broad structural changes based on knowledge of the applica-
tion. We demonstrate that e�ective partitioning can signi�cantly
reduce the amount of data transfer and wasted resources without
negatively impacting the correctness or run time of the application.

2 WORKFLOW PARTITIONING
Work�ow partitioning is the process of splitting a work�ow graph
into sub-graphs, such that each sub-graph will become a discrete
batch job in the target execution system. The work�ow manager
must dispatch each of these jobs to a batch system in a way that
respects the data and control dependencies in the original work�ow
graph. The most appropriate partitioning depends on many proper-
ties of the work�ow graph, such as the size of data objects and the
execution time of tasks, as well as the performance properties of
the execution system. Partitioning work�ow graphs in the general
case is an active area of research [15]. Without de�ning an “optimal”
strategy, we can approach the problem pragmatically by making
some general observations about the granularity of partitioning.

In principle, a work�ow system could partition the graph au-
tomatically. However, such an approach would require accurate
advance information about task runtimes, �le sizes, network per-
formance, and other system details. In most production situations,
these details are neither static nor known in advance, so a fully
automatic approach is not practical. Moreover, graph partitioning
is an NP-hard problem [3, 7], so the time costs of determining an
optimal schedule might outweigh the cost of the work to be done.

Further, the problem of work�ow partitioning also intersects
with the problems of job placement and scheduling. As work�ow
partitions become more coarse, the jobs they generate require more
resources, which reduces the set of execution nodes available to
satisfy the job, which increases queuing time to run the job. In a
similar way, performance may be a�ected by global system issues
such as peak network capacity, utilization of the master node by
other users, and batch system scheduling e�ciency.

For these reasons, we do not seek to �nd an optimal partitioning
scheme for arbitrary work�ows. Instead, we propose a semi-manual
approach in which the work�ow writer indicates natural partitions
in the graph by grouping related tasks together. The work�ow
manager can then be con�gured at runtime to treat each partition
as an atomic job or decompose it further into individual jobs. In our
experience, the end user does not often know numerical values for
�le sizes and job runtimes but does have some sense of which items
are big vs small or long vs short, which is su�cient to perform a
usable partitioning. This is often robust to changes in work�ow
performance with changing job parameters and new datasets. In
Section 4, we give a case study of a speci�c application, Lifemapper,
in which this semi-manual partitioning is an e�ective approach.

This method maps well to a hierarchical work�ow implementa-
tion. A top-level work�ow manager maintains the entire work�ow
description with the user-indicated partitions. As the work�ow
executes, the top-level manager dispatches either single jobs or sub-
graphs as jobs to the underlying batch system. If a job contains a
single task, then it is executed in the ordinary way. If a job contains
a complex sub-graph, then it is submitted as an invocation of a
work�ow manager, given only the relevant sub-graph to execute.
The job is sent to the execution node, where the work�ow manager
is invoked to execute the sub-graph using only its local resources. If
the sub-graph expresses concurrency, then it can be used to exploit
the available resources on the execution node. When complete,
only the �nal results of the sub-graph are returned to the top-level
manager. From the batch system’s perspective, the sub-graph is a
single node job with internal parallelism.

To accomplish this, we must have a work�ow representation
that can easily express a partitionable workload and a work�ow
management system which is easily invoked in a hierarchical man-
ner. When dealing with an application partitioned in this way, we
expect to repeatedly run work�ows that are variations on the same
pattern. Thus we would like a way to express a work�ow template
with parameters, e.g. the number of times to split a reference �le or
a list of input �les to process. We can then use a small set of tem-
plates to de�ne complex work�ows and quickly adapt to changes.
The next section describes JX, a work�ow language designed to
meet this need that works with the Make�ow [1] work�ow system.

3 JX: JSON EXTENDED
JX is a work�ow description language based on JSON that supports
variable substitution, basic operators, and list comprehensions. JX
also supports structured parameters, making it easy to pass in
more complicated data such as lists or rule speci�cations. JX is not
a general purpose programming language, but rather a compact
representation of nested data structures. When all input parameters
are provided and structures evaluated, the result is a static JSON
document representing a set of jobs describing a work�ow. JX is
inspired by Python syntax with the intention of making it easily
accessible to a wide variety of programmers.

A motivating use case in designing JX was expressing work�ow
speci�cations in Make�ow, a work�ow system for executing large,
complex work�ows on clusters, clouds, and grids. Make�ow was
designed to use a Make-like [6] syntax to describe the rules in
a work�ow. This format is well-known, compact, and easy for
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novices to write, but it has some limitations. Traditional Make is
very particular about the layout of each rule, requiring speci�c
whitespace characters to delimit the �elds. Filenames containing
whitespace or unusual characters are partially supported at best.
It is also di�cult to add additional data or �elds to a rule in a
programmatic way, which is needed to handle partitioning and
other work�ow transformations.

We designed JX as an alternate work�ow representation to be
used in parallel with the traditional Make syntax. Users can write
in either language, or ask Make�ow to automatically convert from
traditional Make into JX. We have found that rather than rewrit-
ing their applications to use a new work�ow manager or runtime
library, users often prefer to start with an existing application in
Make syntax and incrementally change to JX as they add param-
eters and factor out repeated patterns. JSON is used as the basis
for JX because it is widely supported and has straightforward rules
regarding quoting and character encoding. JSON can also easily
express complex and nested structures and allows new �elds be
added as needed. A single task expressed in JSON looks like this:

{
�inputs�: [�japonica.csv�],
�outputs�: [�out/japonica.asc�],
�command�: �./project japonica.csv�

}

An entire work�ow could be expressed as a sequence of plain
JSON records like the above. This might be done if an external script
is used to generate and emit complete work�ows. To facilitate hand-
written work�ows, we de�ned several language features that could
be used to express a single compact JX program that can be evalu-
ated into plain JSON. First, JX supports variable substitutions when
expanding a document. Whereas the traditional Make format uses
shell-style string substitution, JX additionally supports structured
values such as numbers and lists. Several common types of oper-
ators, such as arithmetic, comparison, and Boolean, are available.
These operators function the same as in Python. When writing
work�ow rules, this allows for simple transformations based on
arguments provided to the work�ow speci�cation. We can write
rule patterns that are used with a set of input variables:

{
�inputs�: [SAMPLE + �.csv�],
�outputs�: [�out/� + SAMPLE + �.asc�],
�command�: �./project � + SAMPLE + �.csv�,

}

If the value �japonica� is bound to the variable SAMPLE, this
template expands to the previous JSON rule. It is also possible to
pass in an entire list of inputs, for example, so that an external
program can easily modify the connections in the work�ow. This
program could be a script passing JSON arguments into the work-
�ow, or in the case of nested work�ows in Lifemapper it could
be a higher-level work�ow communicating the details of a parti-
tion. JX parameters give a �exible way to customize a work�ow

speci�cation so that the high-level work�ow uses a common tem-
plate for each partition. The concrete sub-work�ows only need to
be elaborated at runtime according to the chosen partition. If the
higher-level work�ow is also expressed in JX, it becomes possible
to use the same values to both de�ne the high-level work�ow and
to pass into each partition. This eliminates the possibility of the
partitions falling out of sync with the rest of the work�ow.

For some commonly encountered work�ow patterns it is nec-
essary to create a rule for each input �le or to produce a range
of outputs like file.1 . . .file.n. To quickly generate a list of
items, JX supports Python-style list comprehensions. Assuming
that the variable SAMPLES contains the list of strings [�japonica�,
�arboreum�], we can produce a pair of rules, one for each sample:

[{
�inputs�: [s + �.csv�],
�outputs�: [�out/� + s + �.asc�],
�command�: �./project � + s + �.csv�,

} for s in SAMPLES]

Since the connections between tasks in a work�ow (inputs and
outputs) are speci�ed as lists, this gives substantial freedom in
programmatically de�ning the structure of a work�ow. In addition,
the work�ow itself is primarily a list of rules, making it possible
to expand a large number of rules from a single template. Rather
than passing only numbers or strings, structures such as the list of
inputs of a partition can be passed as arguments, with the work�ow
template expanding to create matching rules. As a simple example
of a map-reduce task, consider a work�ow that takes a set of N
input �les, INPUT.0, INPUT.1, . . . , processes each, and combines
the results into INPUT.out. For any value of INPUT and N:

{�define�: {
�TMP�: [�out/� + INPUT + �.� + i

for i in range(N)],
}, �rules�: [{

�outputs�: t,
�inputs�: basename(t),
�command�: �./proj � + basename(t),

} for t in TMP] + [{
�outputs�: [INPUT + �.out�],
�inputs�: TMP,
�command�: �./merge � + join(TMP),

}]}

Here range(), basename(), and join() are built-in functions:
range() returns a list of numbers up to its argument (just as in
Python), basename() strips leading directory components (just as
the shell utility), and join() takes a list of strings and concatenates
them (by default separated by spaces). The �rst part of this template
de�nes the list of N intermediate �les for the work�ow as TMP. Then
for each �le in TMP, we add a rule to run ./proj to create the �le.
We �nally take the entire list TMP as the inputs for the reduce step,
and use that same list to build the command line. This ensures that
the inputs to ./merge always match the outputs of the map rules.
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Combining these features, JX allows us to treat a sub-work�ow
as a job. A JX template serves to de�ne the structure of the sub-
work�ow subject to some parameters. We can reuse the same de�ni-
tion to programmatically produce a large number of rules that �t the
concrete arguments to each invocation. For a two-level work�ow
scheme as with Lifemapper, we need only two templates: one for
the low-level work�ow rules within each partition and one for the
high-level work�ow that connects the partitions. We can pass the
chosen partition into the high-level work�ow which can expand a
list of pieces into a potentially complicated graph of sub-work�ows.
The high-level work�ow can then repeatedly expand the partition
template and produce each sub-work�ow as it is executed. If the
previous JX template for an example map-reduce work�ow is stored
in the �le sub.jx, then we can use a higher-level work�ow to take
a list of input �les, split each into 100 pieces, and process each
group as a sub-work�ow. The number 100 is hard-coded here, but
the number of splits could also be a variable to allow for changes.

{�rules�: [{
�inputs�: [d],
�outputs�: [d + �.� + i

for i in range(100)],
�command�: �./split � + d,

} for d in DATA] + [{
�inputs�: [d + �.� + i

for i in range(100)],
�outputs�: [d + �.out�],
command: �makeflow --jx-define N=100�

+ � --jx-define INPUT=� + d
+ � sub.jx�,

} for d in DATA]}

The list of data �les to be processed, DATA, could be determined
based on the contents of a directory, or it could be passed in from a
tool or work�ow layered above this one. The �rst pattern de�nes
a rule for each piece of input data that runs ./split. A recursive
invocation of Make�ow then expands sub.jx to �t each group of
inputs. A more complete application might submit each group of
input �les to a batch system to carry out bulk processing on remote
workers. We chose features for JX such as variable substitution and
list comprehensions that, based on our experience working with
scienti�c applications in Make�ow, capture commonly encountered
features of work�ows and allow for �exibility in partitioning and
recursive subdivisions. Lifemapper is an example of a scienti�c
workload where the features of JX can be put to e�ective use.

4 LIFEMAPPER
Lifemapper is a biodiversity modelling project based at the Uni-
versity of Kansas. Lifemapper collects geographic and temporal
occurrence data for a large number of species to map biodiversity
across the world. Using climate, terrain, and landcover data, the
project can search for regions where a species is likely to thrive.
Lifemapper also projects future species distributions under di�erent
environmental models. The Lifemapper project o�ers infrastruc-
ture for biodiversity researchers for running models and organizing
parameters and results. Researchers can use the publicly available

species occurrence data or upload their own. Researchers then
choose a climate model and projected environmental conditions
for the model and submit the requested task via a web interface.

The �rst part of Lifemapper’s pipeline provides several funda-
mental algorithms for building species niche models. Other parts
of the pipeline use these modelling plugins by calling into an in-
ternal REST API. This portion of the infrastructure uses the open-
Modeller [4] platform for processing museum data to generate a
geospatial data archive of predicted species distributions across the
globe. Running a complete modelling experiment through Lifemap-
per’s pipeline consists of assembling niche modeling experiments,
dispatching them to the openModeller web service, retrieving the
results, and cataloging them so that clients can later retrieve them.
The infrastructure also includes a number of Python components
for handling data formats and connecting components.

Lifemapper o�ers ample opportunity to parallelize work. Each
modelling experiment is independent, so it is possible to run each
computation pipeline in parallel. Shared reference data is required
at the start of the computation, but there is no communication
among instances during analysis. A modelling experiment consists
of processing a single taxon based on some set of reference data.
The structure of the pipeline for individual taxa is shown in Figure 2.
Since researchers can provide their own queries and occurrence
data, the web frontend needs to be able to generate work�ows dy-
namically and trigger their execution. A single work�ow would
not be su�cient since the scale of the work�ow varies based on
user-provided queries. A simple query might require only a few
tasks, while larger datasets and queries can easily produce tens
of thousands of tasks. Aside from the commands to be executed,
many of the work�ow tasks depend on shared reference data. The
Lifemapper project provides a set of reference layers to use, but re-
searchers can also upload their own. Large queries can use gigabytes
of common reference data, though an individual task might require
only a subset consisting of tens to hundreds of megabytes. Thus
the computational pipeline for Lifemapper must be �exible enough
to handle dynamically generated work�ows and must e�ciently
transfer signi�cant amounts of data among workers.

Lifemapper’s existing infrastructure uses Make�ow as a work-
�ow execution engine. Eachwork�ow iswritten out as aMake�le by
a Python script connected to the frontend. At �rst, these generated
scripts were �nely partitioned, i.e. they included all the individual
tasks associated with each query. The administrators encountered
di�culty with error handling in this con�guration. Some portion
of the tasks in Lifemapper’s pipeline can fail due to mismatched
input data or intermittent problems with the query. Simply retrying
the failed tasks themselves, however, only wastes execution time.
With one large, �nely partitioned work�ow, it was di�cult for the
administrators to identify failing pieces of the work�ow. Removing
these pieces and continuing required manual intervention from
the administrators. This implementation nonetheless worked for
processing queries on their local compute resources.

When moving a portion of the computation to another execution
site to take advantage of an XSEDE resource allocation, however, the
administrators noticed poor performance and limited utilization of
the worker pool. Larger queries were causing resource exhaustion
on the master node, while making poor use of the available compute
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Figure 2: Lifemapper queries at three di�erent scales.
Here boxes represent �les with arrows connecting to programs, repre-
sented as ovals. Q denotes query data, T denotes tools such as Python
scripts and Java JAR �les, R denotes common reference data, and
D denotes output data. The lower work�ow (c) shows a small query
against a single data layer for the Heuchera dataset. The next work-
�ow (b) shows a larger query against the Saxifragales dataset with
three data layers. At the top (a), we duplicated layers to create a
twelve-layered query against Saxifragales.

nodes. Thus the administrators had to restructure their Lifemap-
per implementation to work with this new computing site. This
involved modifying the setup script to partition the work�ow into
multiple pieces and generate a large number of work�ow de�nition
�les. The administrators observed marked improved performance
with the coarser partitions. This also aided in error recovery, since
a failing partition could be removed and retried a a whole.

In adapting to multiple execution sites and varying the structure
of the work�ow, however, the disadvantages of using generator
scripts became apparent. Either a custom generator script is re-
quired for each site (and these scripts must be kept in sync), or a
single, more complex script can generate work�ows for multiple
sites. Adding customizable partitioning and sub-work�ows further
adds to the complexity of the script(s). For large-scale scienti�c
workloads, the size of generated work�ows is often too large to
manually read and validate. Thus debugging tends to start with run-
ning the work�ow and observing failures. With a growing number
of features and variations to generate, it becomes more di�cult to
pinpoint the source of such failures and how they were produced
by the script. The contents of a generator script often bear little re-
semblance to the generated work�ows, so debugging or modifying
them requires a signi�cant investment of time to trace potentially
complex logical �ows. By expressing work�ows in JX, however,

we have templates that directly parallel the structure of the elabo-
rated work�ows. It is straightforward to identify how a particular
generated work�ow aligns with its template and arguments.

5 LIFEMAPPER IN JX
As one of our goals in designing JX was to allow very �exible
control over partitioning strategy, the �rst step in implementing
Lifemapper in JX is to consider the range of possible strategies. The
most �ne-grained partitioning approach is to break every single
node of the work�ow into its own sub-graph and submit that as
a single batch job, as depicted on the left of Figure 1. This is a
conservative con�guration and is the normal mode of operating
for most production work�ow managers, such as Make�ow [1],
Pegasus [5], and Swift [14], which must seek to correctly execute
arbitrary work�ows, often without detailed advance information
about each job. This approach has several advantages: it maximizes
the concurrency of jobs submitted to the target batch system, and it
minimizes the cost of failure, should a single job fail and roll back to
the beginning. On the other hand, it maximizes the amount of data
transfer necessary, because each job must have its data transferred
in and out of the execution node.

A slightly more coarse approach would be to group a small num-
ber of related tasks into one sub-graph, as shown on the right of
Figure 1. Viewing this partition itself as a single batch job, the work-
�ow manager only needs to manage the inputs and outputs of the
sub-graph, with the tasks and intermediate �les comprising this
sub-work�ow handled locally on a worker. This approach would
reduce the concurrency of jobs submitted to the target batch sys-
tem, however each job would e�ectively become a mini-work�ow
with its own internal concurrency that could be exploited on the
execution node. The total amount of data transfer could be reduced
if tasks in the sub-graph shared common input �les or if some �les
internal to the sub-graph were not needed outside of it.

Taking this idea to its limiting case, we might consider a single
large partition containing the entire work�ow in one batch job. A
single large partition results in the absolute minimum amount of
data transfer, while minimizing the concurrency of jobs (in this
case only a single job) submitted to the batch system. Of course,
the single job would be very large, highly concurrent, and very
sensitive to node failures. While this may sound extreme, it may
in fact be a viable strategy for a work�ow with large amounts of
internal data transfer if it were assigned to a single large multi-core
machine that is expected to be available for the entire work�ow.

For a given work�ow run, some partitioning strategy must be
chosen, either manually by the end user or automatically by the



PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA Sha�er et al.

work�ow system. Most production work�ow systems take the con-
servative approach of �ne-grained partitioning, assuming that it is
better to ensure forward progress rather than seeking better per-
formance via coarser jobs that may fail to run at all. In a manual
approach, the end user could provide grouping information within
or alongside the work�ow description, allowing the work�ow man-
ager to make partitions without changes to the task de�nitions.

We chose to compare two partitioning strategies for Lifemapper:
a �ne-grained strategy following the original implementation with
each task submitted as a distinct batch job, and a coarse-grained
strategy with multiple taxa processed together. Rather than using
the setup script to write out multiple work�ow de�nitions, we used
two JX templates for all con�gurations. One speci�es the structure
for processing an individual taxon. Figure 2 shows several possible
structures for a single taxon work�ow. The number of tasks in
each depends on the query, with more complicated queries produc-
ing additional intermediate tasks and data. The partitions of the
work�ow consist of one or more taxon grouped together. The other
template de�nes the high-level structure of the work�ow. Each
partition in the work�ow has a number of input and output �les
to be transferred to and from the worker. The high-level template
de�nes the per-partition tasks and passes the list of taxa to the
low-level template to generate the work�ows on the workers.

Using JX to express both levels of the work�ow allows us to avoid
the large number of intermediate Make�les produced by scripts.
Instead, we pass structured parameters (a list of taxa) to the high-
level work�ow template and then expand the low-level template to
�t each partition. These JX templates were initially written to work
with the Coarse-Grained work�ow con�guration with multiple
partitions, but also support the original Fine-Grained con�guration
consisting of unpartitioned individual tasks. In this case, we simply
place each task of the work�ow into its own partition.

Figure 3 compares these work�ow con�gurations. For the low-
level work�ow de�nition, we de�ne a pattern for each phase of
the per-taxon work�ow, e.g. pre-processing, maximum entropy
model construction, occurrence projection. The query information
(passed in from the high-level work�ow) determines the structure
of the per-taxon work�ow and the connections between phases.
The template for the high-level work�ow is simpler as it only trans-
forms a list of partitions into sub-work�ow invocations. The query
details do not a�ect the high-level structure of the work�ow, so this
template passes the query down to the taxon template. Using these
work�ow templates, we can freely adjust the partitioning scheme
without modifying the work�ow de�nition. Using JX templates
helps to disentangle the design of the pipeline from details of the
execution site. We were able to use the same work�ow templates
to take advantage of several di�erent compute environments by
simply adjusting the partitioning parameters. The templates used
here do not support every conceivable partitioning scheme. For
example, they do not break individual taxa into fragments split
across partitions. Choice of partitions would depend on the struc-
ture of the particular application. When working with Lifemapper’s
computational pipeline, the partitioning options we implemented
are su�cient to demonstrate the decisions and trade-o�s between
partitioning schemes. Nonetheless, JX provides enough �exibility
to perform more complicated partitions. For our evaluation, we
consider only Lifemapper partitioned at the granularity of taxa.
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Figure 3: Partitioning Schemes for Lifemapper.
The labels here have the same meaning as in Figure 2. With the Fine-
Grained con�guration in (a), there is no additional structure within
the work�ow beyond data dependencies. With the Coarse-Grained
con�guration in (b), the taxa are arranged into two partitions. Each
partition becomes a task in the high level work�ow.

In addition to limitations that would prevent the work�ow from
running, researchers may need to take other factors into consid-
erations when structuring a work�ow. Speci�c sites often require
varying resource or queue speci�cations to work with the batch
scheduler or local resources. When moving between the sites evalu-
ated here, JX gave us a way to easily patch these localized changes
into a common work�ow template shared across all sites. In the
case of Lifemapper, it is also important to recover from failures due
to invalid input data. This was one of Lifemapper’s researchers’
initial motivations for breaking a work�ow into sub-components.
In the Fine-Grained con�guration, it is di�cult to isolate failed
tasks and recover. While the amount of lost work in each failure
was smaller in the Fine-Grained con�guration, grouping taxa in the
Coarse-Grained con�guration made it more convenient to repair or
discard only the failing pieces. For the particular case of Lifemap-
per, where failures are an infrequent but regular occurrence that
may require manual intervention, researchers preferred to waste
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Execution Batch Per-node
Site Scheduler Cores Clock Speed RAM

Comet SLURM 24 2.5 GHz 128 GB
Notre Dame HTCondor Varies Varies Varies
Stampede2 SLURM 68 1.4 GHz 96 GB

Figure 4: Comparison of Execution Sites.
Note that Stampede2 compute nodes are equipped with Intel Xeon
Phi 7250 (“Knights Landing”) CPUs, with 4 hardware threads per
core for a total of 272 hardware threads. Also note HTCondor is a
cycle-scavenging batch system, relying on unused compute cycles on
commodity hardware in addition to dedicated compute nodes.

somewhat more computational resources so that the majority of
sub-work�ows completing successfully could �nish quickly and re-
turn results to end users. Di�erent applications and infrastructures
might bene�t from other strategies, so it is valuable to give users
�exibility in de�ning work�ow structure.

6 EVALUATION
For our evaluation, the Lifemapper project provided us with two
sample data sets. Figure 2 shows the structure of a work�ow to
process a single taxon from these data sets. The smaller dataset,
consisting of samples related to the genus Heuchera, consists of 51
taxa and generates projections for a single data layer. This dataset
is small enough to run on a single computer. The larger dataset
consists of samples from the order Saxifragales and contains 838
taxa with queries against three data layers. This bigger dataset is
better suited to running on multiple workers in parallel. Larger
production queries may include more data layers to be processed
for each taxon, shown at the top of Figure 2.

Using the larger of the two data sets, we measured the runtime
characteristics of the two work�ow con�gurations on the execution
sites listed in Figure 4. Between sites, there are signi�cant di�er-
ences in types of worker nodes, communication speeds, and system
organization. Using Make�ow’s logs, we collected detailed data
about the total work�ow runtime and amount of data transferred
over the course of the work�ow. The Fine-Grained con�guration
is the normal mode of operation for work�ow managers such as
Make�ow, so we initially supposed that this con�guration would
perform the best overall. The original implementation of Lifemap-
per also used a Fine-Grained con�guration. We wanted to compare
this straightforward structure to a Coarse-Grained con�guration
that partitions the work�ow into multiple sub-work�ows to run on
worker nodes. We suspected that this con�guration would result in
less data transfer compared to the Fine-Grained con�guration.

Figure 5 shows the amount of data transferred by HTCondor
versus the number of individual tasks completed over the course of
the work�ow execution. For each distinct worker node, the Make-
�ow requests the transfer a number of necessary components such
as scripts, Java programs, and reference data. The other execution
sites assume a shared �le system, which hides this process of data
transfer from the user. In the Coarse-Grained case, many tasks run
at once on the same node, sharing input data and only transferring
the �nished outputs back to the master. In the Fine-Grained case,
however, each task is handled independently, so all input data and
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Figure 5: Data Transferred by HTCondor.
Above, the data transfer in the Fine-Grained con�guration is far
greater than in Coarse con�guration; Coarse-Grained is di�cult to
distinguish from the x-axis. Below, the same graph is zoomed in
to show the Coarse-Grained con�guration more clearly. Note the
di�erence in �-axis scales between the two.

Execution Fine-Grained Coarse-Grained
Site Con�guration Con�guration

Comet 162 min. 116 min.
Notre Dame 86 min. 9.8 min.
Stampede2 171 min. 8.7 min.

Figure 6: Lifemapper Runtime Di�erences.

intermediate �les must be transferred to and from the master. As
Figure 5 shows, reorganizing the work�ow into a Coarse-Grained
con�guration substantially decreases the amount of data transfer
required to compute the same results.

Figure 6 gives the running time for the work�ow under both
con�gurations at each site. Across all sites, the Coarse-Grained
con�guration showed better performance, Notre Dame and Stam-
pede2 showed a more than tenfold increase in performance due to
reorganizing the work�ow. On Comet, the improvement was more
modest, but still signi�cant. We attribute this to variations in system
utilization and queue scheduling when running the work�ows. We
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do not present these results as a comprehensive performance anal-
ysis; instead, they serve to illustrate that straightforward work�ow
transformations based on intuitive big and small pieces can achieve
signi�cant improvements in data transfer and performance.

7 RELATEDWORK
An important consideration for researchers is whether JX or another
work�ow language is a good �t for a particular application. There
is a large number of existing work�ow languages, which vary in
expressivity, ease of use, and adoption by the research community.
While we cannot hope to discuss every alternative, we can draw
comparisons to several popular languages and systems.

Galaxy [8] operates on static work�ow “templates” with the run-
time generating concrete steps during execution. Galaxy provides
users with a graphical interface for combining command line tools
to build work�ows, which is helpful for researchers with little pro-
gramming experience. The CommonWork�ow Language (CWL) [2]
is a work�ow speci�cation standard for describing command line
tools andwork�ows in a portable manner. It supports similar uses to
Galaxy, but is speci�ed as a textual language rather than through a
graphical interface. With both Galaxy and CWL, administrators can
provide pre-con�gured tools to use in work�ows. Thus researchers
may be encouraged to use the work�ow tool adopted by their site.
Another alternative is Cromwell [13] work�ow manager, which
operates on the Work�ow Description Language (WDL) and CWL.
WDL is a more complete imperative language than expression-
oriented JX, and is popular in the genomics and bioinformatics
communities. WDL and Cromwell have strong support for running
genomics workloads in the cloud. Snakemake [9] also supports a
Make-like style, but is much more tightly integrated with Python.
Thus for applications already written in Python, it may be easier to
use Snakemake.

8 CONCLUSIONS
Based on our evaluation with Lifemapper, we demonstrated how
the organization of a scienti�c work�ow can a�ect runtime perfor-
mance. Despite computing the same results, poor choice of interme-
diate work�ow structure can result in degraded performance. We
introduced JX as a language for �exibly expressing work�ows that
allowed us to �t the partitioning of a scienti�c work�ow to sev-
eral execution sites. Using JX, it is possible to quickly make broad
structural changes to a work�ow based on common templates. Our
implementation of JX is distributed under the GPLv2 as part of
CCTools1, which also includes Make�ow. A summary of the syntax
and work�ow representations for JX is also available2.

While JX can aid in generating work�ows according to a parti-
tioning scheme, it does not address the issue of choosing parameters
to �t an execution site and work�ow. This kind of decision requires
the researcher to have some knowledge of the application struc-
ture. In general, it is also necessary to run the application on a
given site and measure the performance to get an estimate of the
best partitioning parameters. We do not make an e�ort to �nd
optimal partitioning schemes for arbitrary applications. JX o�ers
researchers a way to quickly and �exibly adjust the parameters

1https://github.com/cooperative-computing-lab/cctools
2http://ccl.cse.nd.edu/software/manuals/jx-quick.html

of a work�ow partitioning to �t a site based on knowledge of the
application structure and performance measurements.
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