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Abstract—We propose methods to solve time-varying,
sensor and actuator (SaA) selection problems for uncertain
cyber-physical systems. We show that many SaA selection
problems for optimizing a variety of control and estimation
metrics can be posed as semidefinite optimization prob-
lems with mixed-integer bilinear matrix inequalities (MIB-
MIs). Although this class of optimization problems is com-
putationally challenging, we present tractable approaches
that directly tackle MIBMIs, providing both upper and lower
bounds, and that lead to effective heuristics for SaA selec-
tion. The upper and lower bounds are obtained via succes-
sive convex approximations and semidefinite programming
relaxations, respectively, and selections are obtained with a
slicing algorithm from the solutions of the bounding prob-
lems. Custom branch-and-bound and combinatorial greedy
approaches are also developed for a broad class of systems
for comparison. Finally, comprehensive numerical simula-
tions are performed to compare the different methods and
illustrate their effectiveness.

Index Terms—Controller/estimator design, cyber-
physical systems (CPS), linear matrix inequalities (LMIs),
sensor and actuator selection.

I. INTRODUCTION AND BRIEF LITERATURE REVIEW

MANY emerging complex dynamical networks, from crit-
ical infrastructures to industrial cyber-physical systems

(CPSs) and various biological networks, are increasingly able
to be instrumented with new sensing and actuation capabilities.
These networks comprise growing webs of interconnected
feedback loops and must operate efficiently and resiliently
in dynamic and uncertain environments. The prospect of
incorporating large numbers of additional sensors and actuators
(SaAs) raises fundamental and important problems of jointly
and dynamically selecting the most effective SaAs, in addition
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to simultaneously designing corresponding estimation and
control laws associated with the selected SaAs.

There are many different quantitative notions of network con-
trollability and observability that can be used as a basis for se-
lecting effective SaAs in uncertain and dynamic cyber-physical
networks. Notions based on classical Kalman rank conditions
for linear systems focus on binary structural properties [2]–[5].
More elaborate quantitative notions based on Gramians [6]–
[12] and classical optimal and robust control and estimation
problems [13]–[20] for linear systems have also been studied.
For selecting SaAs based on these metrics, several optimization
methods are proposed in this literature, including combinatorial
greedy algorithms [8], [9], [17], [19], [21], convex relaxations
using sparsity-inducing �1 penalty functions [13]–[16] and re-
formulations to mixed-integer semidefinite programming via the
Big-M method or McCormick’s relaxation [12], [20], [22]. As a
departure from control-theoretic frameworks, Haber et al. [23]
explore routines for reconstructing, the initial states of nonlinear
systems while optimally selecting a fixed number of sensors.

Despite the recent surge of interest in quantifying network
controllability and observability and in associated SaA selection
problems, a much wider set of metrics are relevant for uncertain
CPSs. The existing literature tends to focus mainly on classi-
cal metrics (e.g., involving Kalman rank [2], Gramians [9], [11],
[17], linear–quadratic regulators [12], [17], [18], and Kalman fil-
ters [19], [20]) and deterministic linear time-invariant systems.
Methods for time-varying systems with various uncertainties,
constraints, and nonlinearities are also important to broaden
applicability. It is well known that a broad variety of systems
and control problems can be cast in the form of semidefinite
programs (SDP) and linear matrix inequalities (LMIs) [24], but
many of these more recent formulations have not been consid-
ered in the context of SaA selection. In general, the selection
of sensors or actuators and design of associated estimation and
control laws for many metrics can be posed as semidefinite opti-
mization problems with mixed-integer bilinear matrix inequal-
ities (MIBMIs) as we have recently shown in [25]. A general
MIBMI formulation for the selection problem is also discussed
in the ensuing sections.

Here, we propose methods to solve time-varying sensor
and actuator (SaA) selection problems for uncertain CPSs.
Our methods can be applied to any of the broad range of
problems formulated as MIBMIs. Although this class of op-
timization problems is computationally challenging, we present
tractable approaches that provide bounds and lead to effective
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heuristics for SaA selection. The bounds are obtained via suc-
cessive convex approximations (SCAs) and SDP relaxations
(SDP-R), respectively, and selections are obtained with a slic-
ing algorithm from the solutions of the bounding problems.

A preliminary version of this paper appeared in [25] where we
developed customized algorithms for actuator selection. Here,
we significantly extended the methodology with the SCA and
convex relaxation approaches and provide comprehensive nu-
merical simulations. The extended version of this paper can be
found in [1]; it includes significant additions to this paper:

1) extensions of this paper to include a variety of other con-
trol and estimation metrics with sensor/actuator selection;

2) an alternate formulation for the SaA selection problem
via the Big-M method that amounts to solving mixed-
integer SDPs, in comparison with the convex relaxations
and approximations, we develop in this paper; and

3) a thorough discussion on greedy algorithms, and extended
numerical tests for another dynamical system with differ-
ent network size and properties.

II. CPS MODEL AND PAPER CONTRIBUTIONS

We consider time-varying CPSs with N nodes modeled as

ẋ(t) = Ajx(t) + Bj
uΠ

ju(t) + Bj
w w(t) + Bj

f φj (x) (1a)

y(t) = ΓjCjx(t) + Dj
uu(t) + Dj

vv(t), xj (t0) = xj
0 .

(1b)

The network state x(t) ∈ Rnx consists of each of N nodal
agent states xi ∈ Rnx i , i = 1, . . . , N . Each nodal agent has a set
of available inputs ui ∈ Rnu i and measurements yi(t) ∈ Rny i .
The mapping from the input to state vector can, thus, be written
in the form Bu = blkdiag(Bu1 , . . . ,BuN

). The system non-
linearity can be expressed as φ(x) ∈ Rnx and Bf represents
the distribution of the nonlinearities. The vectors w(t) ∈ Rnw

and v(t) ∈ Rnv model unknown inputs and data perturbations.
In summary, the system has nx states, nu control inputs, ny

output measurements, nw unknown inputs, and nv data pertur-
bations, which are common in CPSs. Superscript j denotes the
time-period and transitions in state-space matrices are assumed
to be known.

Model (1) includes binary variables πi , i = 1, . . . , N , where
πi = 1 if the actuator of the ith nodal agent is selected, and 0 oth-
erwise. Similarly, we define binary variables γi , i = 1, . . . , N ,
where γi = 1 if the sensor of the ith nodal agent is selected,
and 0 otherwise. Variables πi and γi are organized in vec-
tors π and γ, i.e., Π = blkdiag(π1Inu 1

, . . . , πN Inu N
) and

Γ = blkdiag(γ1Iny 1
, . . . , γN Iny N

).
The formulations in this paper are building on SDP ap-

proaches for robust control and estimation routines; see [24],
[26]. To set the stage, control and estimation formulations as
SDPs are succinctly summarized in [1, Appendix E], where the
system dynamics, controller/observer form, optimization vari-
ables, and the optimization problem are stated. The listed for-
mulations are instrumental in formalizing the SaA selection
problem since the LMIs share a similar structure. Many other
control and estimation laws can fit directly into the proposed

methodologies. The main contributions of this paper are de-
tailed as follows.

1) First, we show that a large array of optimal control and
estimation problems with SaA selection share a similar
level of computational complexity of solving optimiza-
tion problems with MIBMIs (see Section III).

2) Second, we develop one-shot convex relaxation that pro-
duces a lower bound to the original problem with MIB-
MIs. Two SCAs that yield upper bounds are also de-
veloped. Theoretical guarantees on the convergence of
the convex relaxations and approximations are provided.
The convex approximations draw from previous general
methods [27], [28], but this paper develops specialized
algorithms for the MIBMI problem structures that stem
specifically from sensor and actuator selection. We also
develop simple algorithms to recover the binary selection
of SaAs, in addition to the state-feedback gains and the
performance indices (see Sections IV–VI).

3) Third, we include a general formulation that utilizes
the Big-M method, thereby transforming the optimiza-
tion problem that includes MIBMIs to a mixed-integer
semidefinite program (MISDP)—this approach is de-
tailed in the extended version of this paper [1]. Fi-
nally, comprehensive numerical examples are provided in
Section VII. The numerical results corroborate the theo-
retical results, and the necessary assumptions needed to
obtain convergence are satisfied. Section III presents the
developed framework of time-varying SaA selection for
uncertain dynamic systems.

III. TIME-VARYING SAA SELECTION WITH VARIOUS

METRICS: A UNIFYING MIBMI FRAMEWORK

In this section, we show that a plethora of control or esti-
mation problems with time-varying SaA can be written as non-
convex optimization problems with MIBMIs. This observation
considers different formulations pertaining to various observ-
ability and controllability metrics. In particular, replacing Bu

with BuΠ and C with ΓC in the SDPs in [1, Appendix E]
significantly increases the complexity of the optimization prob-
lem. This transforms the SDPs into nonconvex problems with
MIBMIs, thereby necessitating the development of advanced
optimization algorithms—the major contribution of this paper.

For concreteness, we only consider the actuator selection
problem for robust L∞ control of uncertain linear systems (see
the second row of [1, Table III] or [29]), and leave the other
SDP formulations with different control/estimation metrics as
simple extensions. Focusing on the robust control with actuator
selection, we can write the system dynamics as

ẋ(t) = Ajx(t) + Bj
uΠ

ju(t) + Bj
w w(t) (2a)

z(t) = Cj
zx(t) + Dj

wzw(t) (2b)

where Πj is binary matrix variable (cf. Section II) and z(t) is
the control performance index. The time-varying sequence of
selected actuators and stabilizing controllers is obtained as the
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solution of the following multiperiod optimization problem:

minimize
{S,Z,ζ ,π}j

Tf∑

j=1

(η + 1)ζj + α�π πj (3a)

subject to

⎡

⎢⎣
AjSj + SjAj� + αSj

−Bj
uΠ

jZj −Zj�ΠjBj�
u Bj

w

Bj�
w −αηI

⎤

⎥⎦ � O

(3b)
⎡

⎢⎣
−Sj O SjC

j �
z

O −I D�
wz

Cj
zS

j Dj
wz −ζjI

⎤

⎥⎦ � O (3c)

Hπ ≤ h, π ∈ {0, 1}N . (3d)

In (3), the optimization variables are matrices (S,Z,Y )j ,
the actuator selection πj (collected in vector π for all j), and
the robust control index ζj for all j ∈ {1, . . . , Tf }, where α
and η are predefined positive constants [29]. Given the solution
to (3), the stabilizing control law for the L∞ problem can be
written as u∗(t) = −Z∗j (S∗j )−1x(t) for all t ∈ [tj , tj+1). This
guarantees that ‖z(t)‖2 ≤

√
(η + 1)ζ∗‖w(t)‖∞. Note that the

L∞ control LMIs represented here and in [1, Table III] are
slightly different from the ones in [29], as some assumptions
are made to simplify this robust control formulation.

The logistic constraint Hπ ≤ h couples the selected actua-
tors across time periods, and is discussed in Appendix A. The
optimization problem (3) includes MIBMIs due to the term
Bj

uΠ
jZj . The bilinearity together with the integrality con-

straints bring about the need for specialized optimization meth-
ods. It should be emphasized that (3) is not a mixed-integer con-
vex program. Therefore, general-purpose mixed-integer convex
programming solvers are not applicable.

Interestingly, the design of the remaining controllers and
observers in [1, Appendix E] largely share the optimization
complexity of (3). It can be observed that all design prob-
lems in [1, Appendix E] feature MIBMIs with the form
BuΠZ + Z�ΠB�u or a similar one. This simple idea signi-
fies the impact of finding a solution to optimization problems
with MIBMIs. In fact, many LMI formulations for control prob-
lems in [24] become MIBMIs when SaA selection is included.
Using (3) as an exemplification for other problems with simi-
lar nonconvexities, custom optimization algorithms to deal with
such MIBMIs are proposed in the ensuing sections.

IV. FROM MIBMIS TO BMIS

This section along with Sections V and VI develops a series
of methods to deal with MIBMIs that all have the same starting
point: Relaxing the integer constraints to continuous intervals.
The resulting problem is still hard to solve, as it includes bi-
linear matrix inequalities (BMIs). For clarity, we consider a
single-period version of the L∞ problem with actuator selec-
tion, i.e., problem (3) with Tf = 1. This section presents some
preparatory material that will be useful in the following sec-
tions. We start by considering the actuator selection problem

with optimal value denoted by f ∗

f ∗ = minimize
S,Z,ζ ,π

(η + 1)ζ + α�π π (4a)

subject to

⎡

⎢⎣
AS + SA� + αS

−BuΠZ −Z�ΠB�u Bw

B�w −αηI

⎤

⎥⎦ � O

(4b)
⎡

⎢⎣
−S O SC�z
O −I D�

wz

CzS Dwz −ζI

⎤

⎥⎦ � O (4c)

Hπ ≤ h (4d)

π ∈ {0, 1}N . (4e)

The following standing assumption regarding the feasibility
of (4) is made throughout this paper.

Assumption 1: Problem (4) is feasible for πi = 1,
i = 1, . . . , N with constraints (4b)–(4d) holding as strict
inequalities.

The previous assumption essentially postulates that when all
actuators are selected, then S,Z, ζ can be found so that matrix
inequalities (4b) and (4c) hold with O on the left-hand side
replaced by −εI , and (4d) with h replaced by h− ε′1, for
sufficiently small ε > 0 and ε′ > 0. Such a point does not need
to be the optimal solution of (4); Assumption 1 only requires
the existence of such a point in the feasible set. It follows from
the previous discussion that finding such a point is a convex
optimization problem.

The methods developed in Sections V and VI rely on substi-
tuting the integer constraint (4e) with the box constraint

0 ≤ π ≤ 1. (5)

Problem (4) with (4e) substituted by (5) can be written as

L = minimize
p

f(p) (6a)

subject to G(p) � O (6b)

where the shorthand notation p = [ vec(S)� ζ vec(Z)�

π)�]� denotes the optimization variables. The objective is
f(p) = (η + 1)ζ + α�π π, and G(p) is a matrix-valued func-
tion that includes the left-hand sides of (4b), (4c), (4d), and the
two sides of (5), in a block diagonal form. Problem (6) has the
general form of a nonlinear SDP [30]. The dimensions of p and
G(p) are, respectively, given by p ∈ Rd and G(p) ∈ Sκ , where
d and κ can be inferred from (4). The notation DG(p) is used for
the differential of G(p) at p, i.e., DG(p) maps a vector q ∈ Rd

to Sκ as follows:

[DG(p)]q =
d∑

i=1

qi
∂G(p)
∂pi

. (7)

The optimal value serves as an index to formally compare the
various formulations to be developed in the sequel. But compar-
ison with respect to control metrics is also important, therefore,
the resulting controllers are also evaluated in terms of the system
closed-loop eigenvalues in the numerical tests of Section VII.
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The relationship between the optimal value of (4) and (6) is
formalized in the following proposition. �

Proposition 1: With L denoting the optimal value of prob-
lem (6), it holds that L ≤ f ∗.

Proof of Proposition 1: The proposition holds because (5)
represents a relaxation of (4e).

Problem (6) is still hard to solve, because it contains the
BMI (4b). Since the problem is nonconvex, several algorithms
seek to find a stationary point of (6), instead of a globally optimal
one. Before formally stating the definition of stationary point,
the Lagrangian function of (6) is as follows:

L(p,Λ) = f(p) + trace[ΛG(p)] (8)

where Λ is a Lagrange multiplier matrix. Stationary points of (6)
abide by the following definition.

Definition 1: A pair (p∗,Λ∗) is a Karush-Kuhn-Tucker
(KKT) point of (6), and p∗ is a stationary point of (6), if the
following hold:

1) Lagrangian optimality: ∇pL(p∗,Λ) = 0;
2) primal feasibility: G(p∗) � O;
3) dual feasibility: Λ∗ � O; and
4) complementary slackness: Λ∗G(p∗) = O.
Above-mentioned conditions 1)–4) are the KKT conditions

for (6). These become necessary conditions that locally optimal
solutions of (6) must satisfy, when appropriate constraint qual-
ifications hold. Constraint qualifications are properties of the
feasible set of an optimization problem. To make this concept
concrete, two typical constraint qualifications are presented as
follows [30].

Definition 2: Problem (6) satisfies Slater’s constraint qual-
ification if there is a point p0 ∈ Rd satisfying G(p0) ≺ O.

Slater’s constraint qualification guarantees zero duality gap
for problems of the form (6) when f(p) and G(p) are convex.
Although G(p) is not convex for the problem at hand, we will
use Slater’s constraint qualification for convex approximations
of (6) in the following. A constraint qualification useful for
nonconvex nonlinear SDPs is given in the following.

Definition 3: The Mangasarian–Fromovitz constraint qual-
ification (MFCQ) holds at feasible point p0 if there exists a
vector q ∈ Rd such that

G(p0) + [DG(p0)]q ≺ O. (9)

Under MFCQ, the KKT conditions become necessary for
local optima of (6).

Lemma 1: Let p∗ be a locally optimal solution of (6). Then,
under MFCQ, there exists a Lagrange multiplier matrix Λ∗ that
together with p∗ satisfies the KKT conditions of Definition 1.

Proof of Lemma 1: This result is typical in the literature
of nonlinear SDPs; see [31, Sec. 4.1.3]. �

The significance of Lemma 1 is that it characterizes the points
that are local minima of (6). For future use, we mention follow-
ing two refinements of the KKT conditions of Definition 1.
Specifically, the complementary slackness condition implies
that rank [G(p∗)] + rank(Λ∗) ≤ κ [30, p. 307]. A stricter con-
dition is defined as follows.

Definition 4: A KKT point of (6) satisfies the strict com-
plementarity if rank[G(p∗)] + rank(Λ∗) = κ.

To state the second condition, the definition of a feasible
direction for problem (6) is provided in the following.

Definition 5: Let p0 be a feasible point of (6). A vector
q ∈ Rd is called a feasible direction for problem (6) at p0 if
p0 + εq is feasible for (6) for all sufficiently small ε > 0.

The KKT conditions are of first order, i.e., they involve the
gradient of the Lagrangian. The following definition states a
second-order condition.

Definition 6: Let (p∗,Λ∗) be a KKT point of (6). The
second-order sufficiency condition holds for p∗ if for all feasi-
ble directions q at p∗ satisfying ∇pf(p∗)�q = 0, it holds that
q�∇2

pL(p∗,Λ∗)q ≥ μ‖q‖2 , for some μ > 0.
The second-order sufficiency condition will be useful for the

convergence of one of the algorithms to solve BMIs in the
following. Sections V and VI develop algorithms for solving
problems of the form (6) that include BMIs. These algorithms
typically return vectors π with noninteger, real entries. Based on
the solutions produced by these algorithms, Appendix D details
the procedure of actuator selection.

V. SDP-R: A LOWER BOUND ON (6)

This section develops a solver for BMI problems based on
SDP-R of the BMI constraint. To this end, we introduce an
additional optimization variable G = ΠZ. With this change
of variables, ΠZ is replaced by G and G� replaces Z�Π in
(4b), while the constraint G = ΠZ is added to the problem.
Effectively, we have pushed the bilinearity into a new constraint
G = ΠZ, which can actually be manipulated to much simpler
constraints due to the diagonal structure of Π.

Specifically, Z and G are stacks of N matrices

Z =

⎛

⎜⎜⎝

Z1

...

ZN

⎞

⎟⎟⎠ , G =

⎛

⎜⎜⎝

G1

...

GN

⎞

⎟⎟⎠ (10)

where Zi and Gi (i = 1, . . . , N ) are both in Rnu i
×nx . Due

to the diagonal structure of Π, the constraint G = ΠZ is
equivalent to

Gi = πiZi , i = 1, . . . , N. (11)

Denote the (l,m) entries of matrices Zi and Gi by Zi,(l,m ) and
Gi,(l,m ) , respectively, where l = 1, . . . , nui

and m = 1, . . . , nx .
Then, (11) is equivalent to the constraint

Gi,(l,m ) = πiZi,(l,m ) , i = 1, . . . , N, l = 1, . . . , nui

m = 1, . . . , nx. (12)

It follows that problem (6) is equivalent to

L = minimize
S,Z,ζ ,π,G

ζ + α�π π (13a)

subject to

⎡

⎢⎣
AS + SA� + αS

−BuG−G�B�u Bw

B�w −αηI

⎤

⎥⎦ � O (13b)

(4c), (4d), (5), (12). (13c)
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The following step is to relax (12) into an SDP constraint. To
this end, define

E =

⎛

⎜⎝
0 0 0
0 0 1
0 1 0

⎞

⎟⎠ , e =

⎛

⎜⎝
2
0
0

⎞

⎟⎠ . (14)

The SDP-R of (13) is provided in the following.
Proposition 2: The following SDP is a relaxation of (13)

and yields a lower bound on the optimal value of (6)

L̃ = minimize
S,Z,ζ ,π,G,V

(η + 1)ζ + α�π π (15a)

subject to
⎡

⎢⎣
AS + SA� + αS

−BuG−G�B�u Bw

B�w −αηI

⎤

⎥⎦ � O (15b)

trace
(
EV i,(l,m )

)− e�

⎛

⎜⎝
Gi,(l,m )

Zi,(l,m )

πi

⎞

⎟⎠ = 0 (15c)

⎛

⎜⎜⎝
V i,(l,m )

∣∣∣∣∣∣

Gi,(l,m )
Zi,(l,m )

πi

Gi,(l,m ) Zi,(l,m ) πi 1

⎞

⎟⎟⎠ � O (15d)

∀ i = 1, . . . , N, l = 1, . . . , nui
, m = 1, . . . , nx

(4c), (4d), (5) (15e)

where V i,(l,m ) ∈ R3×3 are auxiliary optimization variables col-
lected in V for all i, l, and m. The optimal value of (15) has the
property that L̃ ≤ L. If, in addition, rank[V i,(l,m ) ] = 1 holds
for all i, l, and m for the solution of (15), then L̃ = L.

Proof of Proposition 2: Introduce an auxiliary optimiza-
tion variable v�i,(l,m ) = (Gi,(l,m ) Zi,(l,m ) πi ) ∈ R3 . One can
verify that

πiZi,(l,m ) −Gi,(l,m ) = v�i,(l,m )Evi,(l,m ) − e�vi,(l,m ) . (16)

A relaxation trick can be used at this point. In particular, intro-
duce an additional optimization variable V i,(l,m ) ∈ R3×3 and
the constraint V i,(l,m ) = vi,(l,m )v

�
i,(l,m ) . We have that

v�i,(l,m )Evi,(l,m ) = trace
(
v�i,(l,m )Evi,(l,m )

)

= trace
(
Evi,(l,m )v

�
i,(l,m )

)

= trace
(
EV i,(l,m )

)
. (17)

The previous development reveals that constraint (12) is equiv-
alent to the constraint trace(EV i,(l,m ))− e�vi,(l,m ) = 0,
which is linear in V i,(l,m ) and vi,(l,m ) , as long as the constraint
V i,(l,m ) = vi,(l,m )v

�
i,(l,m ) is imposed, which is nonconvex. The

constraint V i,(l,m ) = vi,(l,m )v
�
i,(l,m ) is equivalent to

(
V i,(l,m ) vi,(l,m )

v�i,(l,m ) 1

)
� O, rank(V i,(l,m )) = 1. (18)

The rank constraint mentioned above is nonconvex, and by
dropping it, we obtain the convex relaxation (15) of (13). As
a relaxation of (13), its optimal value has the property that
L̃ ≤ L. �

Proposition 2 asserts that L̃ = L if rank[V i,(l,m ) ] = 1. Since
the rank constraint is nonconvex, it is reasonable to consider
surrogates for the rank in an effort to make the relaxation (15)
tighter; one such convex surrogate is the nuclear norm of a
matrix [32]. Thus, the constraint ‖V i,(l,m )‖∗ ≤ 1 can be added
to promote smaller rank for V i,(l,m ) ; the optimal value of (15)
is impacted as follows.

Corollary 1: Let L̆ be the optimal value of (15) with the
added constraint ‖V i,(l,m )‖∗ ≤ 1. It holds that L̆ ≥ L̃.

Proof of Corollary 1: Adding the constraint restricts the
feasible set of (15), yielding the stated relationship between the
optimal values. �

VI. CONVEX APPROXIMATIONS: AN UPPER BOUND ON (6)

The common thread between the previous and the present
section is to replace the nonconvex feasible set given by con-
straints (4b)–(4d), and (5) with convex sets. While the previous
section relies on convex relaxations of the nonconvex feasible
set, this section develops convex restrictions, i.e., replaces the
nonconvex feasible set with a convex subset. The premise is to
solve a series of optimization problems, in which the convex
subset is improved. Thus, the algorithms in this section fall un-
der the class of SCAs. Two SCA algorithms are developed in
this section. Due to the convex restriction, the algorithms solve
optimization problems that yield upper bounds for the optimal
value L of problem (6).

Because the SCA algorithms rely on forming convex subsets
of the feasible nonconvex set, they must be initialized at interior
points of the nonconvex feasible set. The following proposition
asserts that such points indeed exist under Assumption 1.

Proposition 3: Under Assumption 1, problem (6) is strictly
feasible, i.e., it satisfies Slater’s constraint qualification.

Proof of Proposition 3: Consider a point p0 that satisfies
Assumption 1 (in particular, π0 = 1 holds). Constraints (4b)–
(4d), and (5) can be written in the form of a block diagonal
matrix inequality (6b). The implication is that G(p0) is negative
definite, i.e., all its eigenvalues are negative. By continuity of
the eigenvalues as functions of the matrix elements [33, Ap-
pendix D], there is a ball of sufficiently small radius around p0
such that for all p is this ball, the eigenvalues of G(p) remain
negative. Any point within the ball satisfying π < 1 together
with the associated S, ζ,Z yields a strictly feasible point for
constraints (4b)–(4d), and (5). �

A. SCA Using Difference of Convex Functions (SCA-1)

The main idea is to replace (4b) with a surrogate convex
inequality constraint. To this end, the left-hand side of (4b) is
replaced by a convex function in the variables Z, Π, which is
denoted by C(Π,Z;Π0 ,Z0), where Π0 ,Z0 are given matrices
to be specified later. This approach has been investigated in the
context of BMIs for control problems with bilinearities arising
in output feedback control problems; see [27]. We first define
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the following linear function of Π,Z with parameters Π0 ,Z0 :

Hlin(Π,Z;Π0 ,Z0)

= BuΠ0Π�0 B�u −BuΠΠ�0 B�u −BuΠ0Π�B�u

+ BuΠ0Z
j
0 −BuΠZj

0 −BuΠ0Z
j

+ Z�0 Π0B
�
u −Z�0 ΠB�u −Z�Π0B

�
u

+ Z�0 Z0 −Z�0 Z −Z�Z0 . (19)

The following proposition introduces a convex function that
upper bounds the left-hand side of (4b).

Proposition 4: It holds for all Π,Z and Π0 ,Z0 that
⎡

⎢⎣
AS + SA� + αS

−BuΠZ −Z�ΠB�u Bw

B�w −αηI

⎤

⎥⎦ � C(Π,Z;Π0 ,Z0)

(20)
where function C(Π,Z;Π0 ,Z0) is defined as follows and is
convex in Π,Z:

C(·) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

AS + SA� + αS

+
1
2
(
BuΠ−Z�

) (
BuΠ−Z�

)�

+
1
2
Hlin(Π,Z;Π0 ,Z0) Bw

B�w −αηI

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

(21)
The proof of Proposition 4 is included in Appendix B.

Given this result, convex approximation of the BMI is ob-
tained by replacing constraint (4b) with the convex constraint
C(Π,Z;Π0 ,Z0) � O. The resulting problem has a restricted
feasible set due to (20). Although C(Π,Z;Π0 ,Z0) is a convex
function in Π and Z, it is not linear in Π and Z. Therefore,
when we replace (4b) by the constraint C(Π,Z;Π0 ,Z0) � O,
a convex constraint is obtained, but not an LMI. Fortunately, the
constraint C(Π,Z;Π0 ,Z0) � O can be equivalently written
as an LMI as follows.

Lemma 2: It holds that

C(Π,Z;Π0 ,Z0) � O ⇐⇒ Cs(Π,Z;Π0 ,Z0)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

AS + SA� + αS

+
1
2
Hlin(Π,Z;Π0 ,Z0) 1√

2

(
BuΠ−Z�

)
Bw

1√
2

(
BuΠ−Z�

)� −I O

B�w O −αηI

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

� O. (22)

Proof of Lemma 2: Applying the Schur complement to
C(·) � O yields the LMI Cs(·) � O. �

To summarize, the convex approximation to (4) at Π0 ,Z0
is formed by replacing the integer constraints by the box con-
straints (5), and the BMI (4b) by the LMI constraint in (22).

This problem is stated as follows:

L̂ = minimize
S,Z,ζ ,π

(η + 1)ζ + α�π π (23a)

subject to (4c), (4d), (5), (22). (23b)

Problem (23) is an SDP with optimal value denoted by L̂,
whose relationship with L is as follows.

Corollary 2: The optimal value of the convex approxima-
tion (23) for all Π0 ,Z0 is an upper bound on the optimal value
of (6), that is, L ≤ L̂.

Proof of Corollary 2: Due to (20) and (22), problem (23)
has a restricted feasible set with respect to problem (6). �

The convex approximation (23) depends on the point Π0 ,Z0 ,
and can be successively improved. The main idea is to solve a
sequence of convex approximations given by (23), where the
values of Π0 ,Z0 for the following approximating problem are
given by the solution of the previous problem.

Let k = 1, 2, . . . denote the index of the convex approxima-
tion to be solved, and let Sk , ζk ,Πk ,Zk denote its solution.
The kth problem is obtained by adding a strictly convex reg-
ularizer to the objective (23a), which ensures that the problem
has a unique solution. The kth problem is, thus,

L̂
(1)
k = minimize

{S,Z,ζ ,π}
(η + 1)ζ + α�π π + ρJk (24a)

subject to Cs(Π,Z;Πk−1 ,Zk−1) � O (24b)

(4c),Hπ ≤ h, 0 ≤ π ≤ 1 (24c)

where Jk = ‖ζ − ζk−1‖22 + ‖S − Sk−1‖2F +‖Z−Zk−1‖2F +
‖Π−Πk−1‖2F ; the linearization point is given by Π0 = Πk−1 ,
Z0 = Zk−1 ; ρ is the weight of the quadratic regularizers. For
k = 1, the point Π0 ,Z0 can be selected as any interior point
of (6); such is guaranteed to exist due to Proposition 3. Note that
the regularization term ρJk penalizes the difference between the
new solution and the previous. Upon algorithm convergence, the
two successive solutions should be close to each other, which
means that at optimality, the entire term ρJk should be close to
zero.

Notice that for every k, problem (24) has the form of (6),
but the objective is a strictly convex quadratic, and the con-
straint function is convex. The convergence is established in the
following proposition.

Proposition 5: Let pk ,Λk denote a KKT point of (24).
Suppose that the feasible set of (6) is bounded, and that the
following hold for problem (24) for k = 1, 2, 3, ...

1) Slater’s constraint qualification holds.
2) The Lagrange multiplier Λk is locally unique.
3) Strict complementarity holds for the KKT point.
4) The second-order sufficiency condition holds for the KKT

point.
Then, the following are concluded:
1) It holds that f(pk ) ≥ L and L

(1)
k ≥ L for k = 1, 2, 3, ...

2) The sequence {f(pk )}∞k=1 is monotone decreasing, and
converges to a limit f̂ (1) ≥ L.

3) Every limit point of the sequence {pk ,Λk}∞k=1 is a KKT
point of (6). If the set of KKT points of (6) is finite, then



756 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 6, NO. 2, JUNE 2019

the entire sequence {pk ,Λk}∞k=1 converges to a KKT
point of (6).

The proof of Proposition 5 is included in Appendix B. Albeit
some of the conditions of the previous proposition may be hard
to verify in practice, we encountered no case where the SCA
algorithm did not converge. In particular, we tested the algo-
rithm on a variety of dynamic systems with varying sizes and
conditions in Section VII.

B. Parametric SCA (SCA-2)

In this section, we depart from the difference of two convex
functions approach used in the previous SCA, and use another
approach to obtain an upper bound on the bilinear terms. The
developments in this section follow the spirit of the methods
presented in [28], where the authors investigate a new approach
to solve BMIs that are often encountered in output feedback
control problems.

First, let F1(p) denote the left-hand side of (4b). Given Πk

and Zk , define ΔΠ = Π−Πk and ΔZ = Z −Zk . For any
Q ∈ Snx

++ , define further the following function:

K1(p;pk ,Q) =

[
−BuΠkZk −Z�k ΠkB�u Bw

B�w −αηI

]

+

⎡

⎢⎣
AS + SA� + αS −BuΠkΔZ

−ΔZ�ΠkB�u −BuΔΠZk −Z�k ΔΠB�u O

O O

⎤

⎥⎦

+

[
BuΔΠQΔΠB�u + ΔZ�Q−1ΔZ O

O O

]
. (25)

Similar to Proposition 4, an upper bound on F1(p) is pro-
vided by the following.

Proposition 6: It holds for all p, Πk ,Zk , and Q ∈ Snu
++

that

F1(p) ≤ K1(p;pk ,Q). (26)

The proof of Proposition 6 is included in Appendix B.
The previous proposition suggests that constraint (4b) can
be replaced by K1(p;pk ,Q) � O. There are two challenges
to be addressed though. First, although K1(p;pk ,Q) is a
convex function of p, it is not linear, and thus, constraint
K1(p;pk ,Q) � O is not an LMI. Second, although Q can
remain constant, the approximation can be tightened if Q is
allowed to be an optimization variable. The former challenge is
addressed by Lemma 3, which is analogous to Lemma 2.

Lemma 3: Constraint K1(p;pk ,Q) � O is equivalent to

K(p;pk ,Q) =

⎡

⎢⎢⎢⎣

Ω(p;pk ) Bw BuΔΠ ΔZ�

B�w −αηI O O

ΔΠB�u O −Q−1 O

ΔZ O O −Q

⎤

⎥⎥⎥⎦ � O,

(27)

where

Ω(p;pk ) = −BuΠkZk −Z�k ΠkB�u + AS + SA� + αS

−BuΠkΔZ −ΔZ�ΠkB�u −BuΔΠZk −Z�k ΔΠB�u .

Proof of Lemma 3: Use the Schur complement. �
When Q is an optimization variable, function K(p;pk ,Q) is

not convex in p and Q. An upper bound of K(p;pk ,Q) that is
linear in p and Q is given in Lemma 5. The following lemma
gives a particular matrix property that becomes the foundation
for Lemma 5.

Lemma 4: Let Q(x) : Rn → Sm
++ be a mapping defined as

Q(x) =
∑n

i=1 xiQi where Qi ∈ Sm . The following inequality
holds, where the right-hand side is the linearization of−Q(x)−1

around xk

−Q(x)−1 � −2Q(xk )−1 + Q(xk )−1Q(x)Q(xk )−1 . (28)

Lemma 5: It holds for all p, Q ∈ Snu
++ , Πk ,Zk , and Qk ∈

Snu
++ that

K(p;pk ,Q) � Ks(p,Q;pk ,Qk ) (29)

where Ks(p,Q;pk ,Qk )

=

⎡

⎢⎢⎢⎣

Ω(p;pk ) Bw BuΔΠQk ΔZ�

B�w −αηI O O

QkΔΠB�u O −2Qk + Q O

ΔZ O O −Q

⎤

⎥⎥⎥⎦. (30)

The proofs of Lemmas 4 and 5 are included in Appendix B.
Given these results, the constraint Ks(p,Q;pk ,Qk ) � O
yields a restricted feasible set relative to constraint (3b). Sim-
ilarly to Section VI-A, k = 1, 2, 3, ... is the index of the opti-
mization problem to be solved, and pk ,Qk denotes its solution.
The kth problem is an SDP and is stated as follows:

L̂
(2)
k = minimize

{S,Z,ζ ,π,Q}
(η + 1)ζ + α�π π + ρJk (31a)

subject to Ks(p,Q;pk−1 ,Qk−1) � O (31b)

c1I � Q � c2I, −2Qk−1 + Q � −c3I
(31c)

(4c), Hπ ≤ h, 0 ≤ π ≤ 1 (31d)

where ρ, c1 , c2 , and c3 are positive constants, and Jk is the
same regularizer as the one in (24). Constraint (31c) guarantees
that Q is positive definite, sequence {Qk}∞k=1 is bounded, and
that −2Qk + Q, which appears as a diagonal block in (30) is
negative definite for all k. Similar to the first convex approxi-
mation, the above-mentioned problem can be initialized by let-
ting {S0 ,Z0 , ζ0 ,π0} be any interior point of (6) and Q0 = I .
The algorithm convergence is characterized by the following
proposition.

Proposition 7: Assume that the MFCQ holds for every
feasible point of (6) and that the sequence {pk}∞k=1 is bounded.
Then, the following are concluded.

1) It holds that f(pk ) ≥ L and L
(2)
k ≥ L for k = 1, 2, . . .
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2) The sequence {f(pk )}∞k=1 is monotone decreasing, and
converges to a limit f̂ (2) ≥ L.

3) Every limit point of {pk}∞k=1 is a stationary point of (6).
The proof of Proposition 7 is included in Appendix B.

Algorithm 1 in Appendix C provides the option to imple-
ment one of the two developed convex approximations [cf. (24)
and (31)] sequentially until a maximum number of iterations
or a stopping criterion are met. Section VI-C compares the two
approximations in terms of computational effort and their con-
vergence claims.

C. Comparing the SCAs and Recovering the
Integer Solutions

The first convex approximation is simpler to implement
and involves a smaller number of SDP constraints and vari-
ables; see the difference in dimensions between constraints
Ks(p,Q;zk ,Qk ) � O and Cs(Π,Z;Πk ,Zk ) � O. In addi-
tion, constraint (31c) is added, and an extra variable Q is needed
in (31). Both methods rely on constructing a series of feasi-
ble sets that are subsets of the original nonconvex feasible set
in (6). Each produces a sequence of decreasing objective values
{f(pk )}∞k=1 , yielding upper bounds on the optimal value of (6).

It is also worth noting that the first method requires a con-
straint qualification and additional assumptions on the KKT
point to hold for each convex approximation problem k. Slater’s
constraint qualification is also an assumption in one of the earli-
est SCA methods for nonlinear programming [34]. On the other
hand, the second method requires only the MFCQ to hold for the
original nonconvex problem (6). Both methods have a bounded-
ness assumption; the first method requires the feasible set of (6)
to be bounded, the second method only the resulting sequence to
be bounded. The boundedness assumption, respectively, guar-
antees the existence of at least one limit point of {pk}∞k=1 . Both
methods enjoy the property that every limit point of {pk}∞k=1 is
a stationary point of (6).

Remark 1 (Existence of Local Minima): The stationarity
is a necessary condition for local optimality (cf. Lemma 1). It is,
thus, not guaranteed that the stationary point is locally optimal.
In view of the fact that the methods attempt to solve a nonconvex
problem, such convergence result is to be expected.

The solutions obtained from (15), (24), and (31) produce a
noninteger solution for the actuator selection problem. Since
the objective is to determine a binary selection for the actuators,
we present in this section a simple slicing routine that returns a
binary selection given the solutions to the optimization problems
in Sections V and VI. The algorithm is included and discussed
in Appendix D.

VII. NUMERICAL TESTS

In this paper, we develop different computational methods to
solve the actuator selection problem with a focus on theL∞ con-
trol metric (4). Note that the extended paper [1] includes more
thorough discussions and examples. The tested here methods
are summarized as follows.

1) SDP-R: An SDP-R providing a lower bound to the opti-
mal solution of the problem with BMIs; see (15).

Fig. 1. Flow chart showing the actuator selection and feedback control
approach for the developed methods.

2) SDP-RN: Same as SDP-R with the addition of the nuclear
norm constraint to (15); see Corollary 1.

3) SCA-1 and SCA-2: SCAs producing upper bounds;
see (23) and (31).

4) These four methods (SDP-R, SDP-RN, SCA-1, SCA-2)
are based on relaxing the integer constraints, and then
followed by a slicing algorithm that returns an integer
actuator selection and an upper bound on the optimization
problem with MIBMIs (see Algorithm 2). Fig. 1 shows
a flowchart summarizing these four methods, where the
feedback law K∗ is obtained according to Algorithm 2.

5) Big-M: The fifth method pertains to a formulation that
transforms a problem with MIBMIs (4) into an MISDP
via the Big-M method. This method is presented in the
extended paper [1].

All the simulations are performed using MATLAB R2016b
running on 64-b Windows 10 with Intel Core i7-6700 CPU with
base frequency of 3.4 GHz and 16 GB of RAM. YALMIP [35]
and its internal branch-and-bound solver are used as a modeling
language and MOSEK [36] is used as the SDP solver for all
methods.

A. Simulated Dynamic Systems, Parameters, and Setup

We use a randomly generated dynamic network from [37],
[38] as a benchmark to test the presented methods. Additional
numerical tests for another dynamic network are included in
the extended paper [1]. The random dynamic network has the
following structure:

ẋi = −
[

1 1
1 2

]

︸ ︷︷ ︸
Ai

xi +
∑

i �=j

e−α(i,j )xj +

[
0
1

]
(ui + wi)

where the coupling between nodes i and j is determined by
the Euclidean distance α(i, j). These distances are unique for
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TABLE I
FINAL RESULTS AFTER RUNNING ALGORITHM 2 TO RECOVER THE BINARY ACTUATOR SELECTION AND THE ACTUAL SYSTEM PERFORMANCE FOR

THE SYSTEM WITH RANDOM NETWORK

The boldfaced numbers describe the method that outperformed other methods (the MISDP solver on YALMIP that implements the Big-M approach is terminated after 300
branch-and-bound iterations). For the Big-M method, the gap percentages are 1.2, 10.19, 25.31, 44.90, 47.33, 51.48, 52.63, 52.21, 53.54, 55.91 for N = 5, 10, . . . , 50.

every N and randomly generated inside a box of size N/5.1 The
constraint Hπ ≤ h is represented as

∑N
i=1 πi ≥ �N/4�, where

�·� denotes the floor function. We also set α�π = [1, . . . , 1 ],
that is all actuators have equal weight; α = 1 and η = 1 (these
constants appear in the LMIs). For SCA-1 and SCA-2, to obtain
S0 , ζ0 , and Z0 , we initialize by assuming that Π0 = 0.1Inu

,
and subsequently solving the L∞ SDP with S0 � ε1Inx

and
ζ0 ≥ ε1 , where ε1 = 10−8 .

B. Results and Comparisons

Table I depicts the results after applying Algorithm 2 for SDP-
R (15), SDP-RN, SCA-1 (23), and SCA-2 (31). Algorithm 2
is not applied to the Big-M solutions, as these solutions are
binary. Table I presents the performance index

√
(η + 1)ζ, the

total activated actuators
∑N

i πi , and the objective function value
ffinal = (η + 1)ζ +

∑N
i=1 πi . The presented results for the Big-

M method are for 300 iterations for the branch-and-bound solver
of YALMIP. The maximum number of iterations is reached
while the gap percentage is still between 1% for N = 5 all
the way to 56% for N = 50 (the gap, provided in the caption
of Table I, increases as N increases). Unfortunately, solving
MISDPs would require weeks before the optimal solution (for
larger values of N ) is obtained, and hence, the choice of the
default maximum iterations number of 300.

The boldfaced numbers in ffinal column in Table I depict
the method with the smallest objective function value. The
Big-M/MISDP formulation has been proposed before for SaA
selection in linear systems [12], [20]. While Big-M yields
the smallest ffinal in some cases, the other methods (SDP-R,
SDP-RN, SCA-1, SCA-2) yield better objective values, while
requiring significantly less computational time—often orders of
magnitude smaller than Big-M. In particular, Table II shows
the computational time (in seconds) for the five methods.
Since SDP-R solves only a single SDP, it is expected to be

1Note that in these tests, we made the individual Ai matrix for each subsystem
to be stable (in comparison with [37], [38] where Ai is unstable), so that the
total number of unstable eigenvalues is smaller for the dynamic network (A
still has few unstable eigenvalues). Keeping the same structure for the A matrix
as in [37] and [38] yields the trivial solution of activating all actuators that is
needed to guarantee an L∞-stable performance— and hence, the modification
in the state-space matrix A.

TABLE II
CPU TIME FOR THE DIFFERENT METHODS WITH VARIOUS VALUES FOR THE

NUMBER OF NODES N FOR THE RANDOM DYNAMIC NETWORK

computationally more efficient than the other methods—
this can be observed from Table II. In addition, and since
SCA-1 includes a smaller number of constraints and variables
than SCA-2 (see Section VI-C), the former requires less compu-
tational time in several simulations. However, there are instances
where the SCAs require less computational time the than the
semidefinite relaxations (SDP-RN and SDP-R). The unifying
theme here is that relaxing the integer constraints and using the
convex approximations and relaxations is a good alternative to
computationally costly MISDPs. In addition, we emphasize that
although some methods can yield the same number of activated
actuators, the specific activated actuators from each method can
be significantly different. More discussions and numerical sim-
ulations are included in [1].

C. Extensions to Sensor Selection for Nonlinear
Systems

In this paper, we only use the L∞ control problem with ac-
tuator selection to exemplify how the proposed methods can
provide insights into the solution of MIBMIs. We emphasize
that all other CPS dynamics and control/estimation formulations
(see [1, Appendix E]) with SaA selection can be solved using the
methods we develop here. For example, consider the sensor se-
lection alongside the state estimator design problem for nonlin-
ear systems ẋ = Ax + Buu + φ(x), y = ΓCx where φ(x)
is the vector of nonlinearities with Lipschitz constant β > 0 and
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Γ is the binary sensor selection variable [cf. (1)]. By considering
the last SDP in [1, Table IV], the sensor selection with observer
design problem becomes:

minimize
Γ,P ,Y ,κ

α�γ γ

subject to

⎛

⎝
A�P + PA− Y ΓC

−C�ΓY � + αP + κβ2I P
P −κI

⎞

⎠ � O

Hγ ≤ h, γ ∈ {0, 1}N

which can be solved using the developed methods in the pa-
per. This formulation yields observer gain L∗ = (P ∗)−1Y ∗

that guarantees the asymptotic stability of the estimation er-
ror e(t) = x(t)− x̂(t) from ˙̂x = Ax̂ + Buu + L∗(y − ŷ) +
φ(x̂), ŷ = Γ∗Cx̂ with minimal number of sensors Γ∗.

VIII. SUMMARY AND FUTURE WORK

This paper puts forth a framework to solve SaA selection
problems for uncertain CPSs with various control and estimation
metrics. Given the widely popular SDP formulations of various
control and estimation problems (without SaA selection), we
present various techniques that aim to recover, approximate, or
bound the optimal solution to the combinatorial SaA selection
problem via convex programming. While the majority of prior
art focuses on specific metrics or dynamics, the objective of
this paper is to present a unifying framework that streamlines
the problem of time-varying SaA selection in uncertain and
potentially nonlinear CPSs.

The developed methods in this paper have their limitation.
First, the transition in the state-space matrices needs to be given
before the time-varying actuator selection problem is solved.
This narrows the scope of the actuator selection problem. In fu-
ture work, we plan to study the actuator selection problem when
the topological evolution is unknown, yet bounded. In particu-
lar, we plan to explore solutions to the SaA selection problem
if the state-space matrix A includes bounded perturbations that
mimic the evolution in the CPS topology.

In future work, we also plan to study the following related
research problems:

1) applications to selection of distributed generation in elec-
tric power networks with frequency-performance guaran-
tees;

2) customized branch-and-bound and cutting plane methods
that can improve the performance of the Big-M method;
and

3) theoretical analysis of the tightness of the lower and upper
bounds resulting from the convex formulations in this
paper.

APPENDIX A
ACTUATOR SELECTION: THE LOGISTIC CONSTRAINTS

The constraint Hπ ≤ h couples the selected actuators
across time periods, and is a linear logistic constraint that in-
cludes the following scenarios.

1) Activation and deactivation of SaAs in a specific time-
period j. For example, if actuator i cannot be selected at
period j, we set πj

i ≤ 0.
2) If actuator k is allowed to be selected only after ac-

tuator i is selected at period j, we set πj+1
k ≤ πj

i , for
j = 1, . . . , Tf .

3) If actuator k must be deselected after actuator i is selected
at period j, we set πj+1

k ≤ 1− πj
i , for j = 1, . . . Tf .

4) Upper and lower bounds on the total number of active
SaAs per period can be accounted for.

5) Other constraints, such as minimal number of required
active actuators in a certain region of the CPS, and unit
commitment constraints that are obtained from solutions
day-ahead planning problems, can be included.

APPENDIX B
PROOFS OF VARIOUS RESULTS

Proof of Proposition 4: To construct the upper bound (20),
the bilinear term is written as

−BuΠZ −Z�ΠB�u =
1
2

[(
BuΠ−Z�

) (
BuΠ−Z�

)�

− (BuΠ + Z�
) (

BuΠ + Z�
)�]

.

(32)

The term (BuΠ−Z�)(BuΠ−Z�)� is convex in Z and Π
since it comes from an affine transformation of the domain of a
convex function [39, Example 3.48]. The term

H(Π,Z) := − (BuΠ + Z�
) (

BuΠ + Z�
)�

is concave in Z and Π. We can, therefore, invoke the fact that
the first-order Taylor approximation of a concave function (at
any point) is a global over-estimator of the function. Let Π0 ,Z0
be the linearization point, and let Hlin(Π,Z;Π0 ,Z0) denote
the linearization ofH(Π,Z) at the point (Π0 ,Z0). It holds that

H(Π,Z) � Hlin(Π,Z;Π0 ,Z0) (33)

for all Π0 ,Z0 and Π,Z.
The linearization can be derived by substituting Π = Π0 +

(Π−Π0) and Z = Z0 + (Z −Z0) intoH(Π,Z) and ignor-
ing all second-order terms that involve (Π−Π0) and (Z −
Z0). The result is (19). Combining (19) with (33) and (32), we
conclude that the left-hand side of (4b) is upper bounded as
⎡

⎢⎣
AS + SA� + αS

−BuΠZ −Z�ΠB�u Bw

B�w −αηI

⎤

⎥⎦

�

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

AS + SA� + αS

+
1
2
(
BuΠ−Z�

) (
BuΠ−Z�

)�

+
1
2
Hlin(Π,Z;Π0 ,Z0) Bw

B�w −αηI

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (34)
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This can be obtained using the fact that

(
A1 B

B� C

)
� O,A2 � A1 =⇒

(
A2 B

B� C

)
� O

which can be proved using the definition of positive semidefi-
niteness. Inequality (34) holds for all Π0 ,Z0 and Π,Z, and its
left-hand side is C(Π,Z;Π0 ,Z0). �

Proof of Proposition 5: Notice that problem (24) has
the same feasible set as (23) (with Π0 ,Z0 replaced by
Πk−1 ,Zk−1). Corollary 2 establishes that its feasible set is
a restriction of the one in (6). It follows that f(pk ) ≥ L, and
L

(1)
k ≥ L holds because of the added regularizer in (24a). The

monotonicity of {f(pk )}∞k=1 follows from a corresponding re-
sult in [27, Lemma 4.2(c)]. The sequence is, thus, monotone
decreasing and bounded [the latter follows from the assumption
on the boundedness of the feasible set of (6)]. It is a standard
result in analysis that a bounded and monotone decreasing se-
quence has a limit. Therefore, f̂ (1) ≥ L holds for the limit due
to f(pk ) ≥ L. The convergence result of part c) follows [27,
Th. 4.3]. It is emphasized that the existence of at least one limit
point is guaranteed by the boundedness of the feasible set. �

Proof of Proposition 6: Function F1(p) is written as

F1(p) = C0 + A(p) + B(p)

=

[
O Bw

B�w −αηI

]
+

[
AS + SA� + αS O

O O

]

+

[
−BuΠZ −Z�ΠB�u O

O O

]
.

Substituting Π = Πk + ΔΠ = Πk + Π−Πk and Z = Zk +
ΔZ = Zk + Z −Zk into B(z) yields

B(p) =

⎡

⎢⎣
−Bu (Πk + ΔΠ)(Zk + ΔZ)

−(Zk + ΔZ)�(Πk + ΔΠ)B�u O

O O

⎤

⎥⎦

where −Bu (Πk + ΔΠ)(Zk + ΔZ)=−BuΠkZk −BuΠk

ΔZ −BuΔΠZk −BuΔΠΔZ and −(Zk + ΔZ)�(Πk +
ΔΠ)B�u = −Z�k ΠkB�u −Z�k ΔΠB�u −ΔZ�ΠkB�u −Δ
Z�ΔΠB�u .

Given this, B(p) can be rearranged as

B(p) =

⎡

⎢⎣
−BuΠkZk −Z�k ΠkB�u −BuΠkΔZ

−ΔZ�ΠkB�u −BuΔΠZk −Z�k ΔΠB�u O

O O

⎤

⎥⎦

+

[
−BuΔΠΔZ −ΔZ�ΔΠB�u O

O O

]
.

By combining and grouping these results, we obtain

F1(p) =

[
−BuΠkZk −Z�k ΠkB�u Bw

B�w −αηI

]

+

⎡

⎢⎣
AS + SA� + αS −BuΠkΔZ

−ΔZ�ΠkB�u −BuΔΠZk −Z�k ΔΠB�u O

O O

⎤

⎥⎦

+

[
−BuΔΠΔZ −ΔZ�ΔΠB�u O

O O

]
.

An upper bound for the last bilinear term for any Q ∈ Snu
++ is

given as [28, Lemma 1]

−BuΔΠΔZ −ΔZ�ΔΠB�u �
BuΔΠQΔΠB�u + ΔZ�Q−1ΔZ.

Combining the previous two results yields (26). �
Proof of Lemma 4: Let R(x;xk ) be the first-order Taylor

approximation of −Q(x)−1 computed around xk . That is

R(x;xk ) = −Q(xk )−1 − [D(Q(xk )−1)](x− xk ). (35)

By setting Δx = x− xk , the differential −[D(Q(xk )−1)]Δx
is given by [40]

[D(Q(xk )−1)]Δx = −Q(xk )−1 [DQ(xk )]ΔxQ(xk )−1

= −Q(xk )−1
n∑

i=1

∂Q(xk )
∂xi

ΔxiQ(xk )−1

= −Q(xk )−1Q(x)Q(xk )−1 + Q(xk )−1 .

Substituting the latter into (35) yields

R(x;xk ) = −2Q(xk )−1 + Q(xk )−1Q(x)Q(xk )−1 .

Since Q(x) is positive definite, then it follows that −Q(x)−1

is concave [39, Example 3.48]. Because the first-order approx-
imation of a concave function is a global over-estimator, we
obtain (28). �

Proof of Lemma 5: By linearizing −Q−1 around a given
Qk ∈ Snu

++ , an upper bound on K(p;pk ,Q) can be derived
as follows. Since −Q−1 is concave in Q, then according to
Lemma 4, the over approximation of −Q−1 around Qk is
−2Q−1

k + Q−1
k QQ−1

k . Substituting this over approximation of
−Q−1 into K(p;pk ,Q) and applying congruence transfor-
mation with diag(I, I,Qk , I) as the post and premultiplier
yields (30). The relation in (29) is obtained due to the fact
that −Q−1 � −2Q−1

k + Q−1
k QQ−1

k . �
Proof of Proposition 7: The feasible set of problem (31)

is a restriction of the one in (6) due to Proposition 6, Lemma 3,
Lemma 5. It, therefore, holds that f(pk ) ≥ L, and L

(2)
k ≥ L

follows from the addition of the regularizer in the objective.
The monotonicity of {f(pk )}∞k=1 follows from a related result
in [28, Lemma 6]. The monotonicity and the boundedness im-
ply the existence of the limit, similarly to Proposition 5. The
convergence in part c) is analogous to [28, Proposition 5]. The
existence of at least one limit point is ensured by the bounded-
ness of the sequence {pk}∞k=1 . �
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Algorithm 1: Solving the Successive Convex Approxima-
tions.

input: MaxIterNum, tol, k = 0,Π0 = Inu

while k < MaxIterNum do
Option 1: Solve (24)
Option 2: Solve (31)
if |L̂(1) or (2)

k − L̂
(1) or (2)
k−1 | < tol then

break
else

k ← k + 1
end if

end while
output: {S� , ζ� ,Z� ,Π�} ← {Sk , ζk ,Zk ,Πk}

Algorithm 2: A Slicing Algorithm to Recover the Integer
Selection from (15), (24), and (31).

input: Π∗ from Algorithm 1, set λm =∞
Sort π∗ in a decreasing order
s = minimum

π∈{0,1}N ,Hπ≤h
1�N π

while λm ≥ 0 do
Activate the s-highest ranked actuators in π
Obtain Πs = blkdiag(π1Inu 1

, . . . , πN Inu N
)

Given Π = Πs , solve the SDP (4a)–(4c) for Z and S
λm = max(real(λ)) where λ ∈ Λ(A−BuΠsZS−1)
s← s + 1

end while
output: Π∗s ,K

∗ = Z∗(S∗)−1

APPENDIX C
SCA IMPLEMENTATION

Algorithm 1 illustrates how the SCAs (24) and (31) can
be solved sequentially until a maximum number of iterations
(MaxIter) or a stopping criterion defined by a tolerance (tol)
are met.

APPENDIX D
RECOVERING THE BINARY SELECTION

The solutions obtained from (15), (24), and (31) produce
a noninteger solution for the actuator selection problem. Since
the objective is to determine a binary selection for the actuators,
we present in this section a simple slicing routine that returns a
binary selection given the solutions to the optimization problems
in Sections V and VI.

The slicing routine is presented in Algorithm 2. Since the
objective of the L∞ problem is to find a feedback gain K =
ZS−1 that renders the closed-loop system stable, the slicing
algorithm ensures that the spectrum Λ(Acl) of the closed-loop
system matrix Acl = A−BuΠK lies on the left-half plane.

The slicing routine takes as an input the real-valued solution
to the actuator selection Π∗ with π∗i ∈ [0, 1]. First, the entries of
π∗ are sorted in decreasing order, and the minimum s-actuator
selection is obtained such that the logistic constraints Hπ ≤ h
are satisfied, given that π ∈ {0, 1}N . This ensures that we start

the slicing algorithm from the minimum number of actuators,
while still satisfying all of the actuator-related constraints in (4).
The algorithm proceeds by activating the s-highest ranked actu-
ators, followed by solving the L∞ SDP (4a)–(4c) for Z and S.
Then, the maximum real part of the eigenvalues of Acl , namely
λm , is obtained. If λm < 0, the algorithm exits returning the
actuator selection Πs and the associated feedback gain.

The algorithm allows the addition of other user-defined re-
quirements, such as a minimum performance index ζ or a maxi-
mum λm , which can guarantee a minimal distance to instability.
It can also be generalized to other control or estimation prob-
lems. Notice that Algorithm 2 terminates when λm < 0 and the
SDP (4a)–(4c) is solved. These conditions ensure by definition
that the system is controllable for the resulting binary actua-
tor combination. In short, the slicing algorithm guarantees the
controllability of the system.

The actuator selection and associated control law returned by
Algorithm 2 yield an upper bound U to the optimal value of the
actuator selection problem (3).

ACKNOWLEDGMENT

The authors would like to acknowledge the anonymous paper
reviewers and editor for their helpful suggestions to improve the
quality of the paper.

REFERENCES

[1] A. F. Taha, N. Gatsis, T. Summers, and S. Nugroho, “Time-varying sen-
sor and actuator selection for uncertain cyber-physical systems,” 2018.
[Online]. Available: https://arxiv.org/pdf/1708.07912.pdf

[2] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, “Controllability of complex
networks,” Nature, vol. 473, no. 7346, pp. 167–173, 2011.

[3] J. Ruths and D. Ruths, “Control profiles of complex networks,” Science,
vol. 343, no. 6177, pp. 1373–1376, 2014.

[4] A. Olshevsky, “Minimal controllability problems,” IEEE Trans. Control
Netw. Syst., vol. 1, no. 3, pp. 249–258, Sep. 2014.

[5] S. Pequito, S. Kar, and A. Aguiar, “A framework for structural input/output
and control configuration selection in large-scale systems,” IEEE Trans.
Autom. Control, vol. 61, no. 2, pp. 303–318, Feb. 2016.

[6] F. Pasqualetti, S. Zampieri, and F. Bullo, “Controllability metrics, limita-
tions and algorithms for complex networks,” IEEE Trans. Control Netw.
Syst., vol. 1, no. 1, pp. 40–52, Mar. 2014.

[7] T. H. Summers and J. Lygeros, “Optimal sensor and actuator placement
in complex dynamical networks,” IFAC Proc. Volumes, vol. 47, no. 3,
pp. 3784–3789, 2014.

[8] T. Summers, F. Cortesi, and J. Lygeros, “On submodularity and controlla-
bility in complex dynamical networks,” IEEE Trans. Control Netw. Syst.,
vol. 3, no. 1, pp. 91–101, Mar. 2016.

[9] V. Tzoumas, M. A. Rahimian, G. Pappas, and A. Jadbabaie, “Minimal
actuator placement with bounds on control effort,” IEEE Trans. Control
Netw. Syst., vol. 3, no. 1, pp. 67–78, Mar. 2016.

[10] Y. Zhao, F. Pasqualetti, and J. Cortés, “Scheduling of control nodes for
improved network controllability,” in Proc. IEEE Conf. Decis. Control,
2016, pp. 1859–1864.

[11] E. Nozari, F. Pasqualetti, and J. Cortes, “Time-varying actuator scheduling
in complex networks,” arXiv:1611.06485, 2016.

[12] P. V. Chanekar, N. Chopra, and S. Azarm, “Optimal actuator placement for
linear systems with limited number of actuators,” in Proc. Amer. Control
Conf., May 2017, pp. 334–339.

[13] B. Polyak, M. Khlebnikov, and P. Shcherbakov, “An LMI approach to
structured sparse feedback design in linear control systems,” in Proc. Eur.
Control Conf., Jul. 2013, pp. 833–838.

[14] N. K. Dhingra, M. R. Jovanović, and Z.-Q. Luo, “An ADMM algorithm
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