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Free products and the algebraic structure
of diffeomorphism groups

Sang-hyun Kim and Thomas Koberda

Abstract

Let M be a compact one-manifold, and let Diff1+bv
+ (M) denote the group of C1 orientation

preserving diffeomorphisms of M whose first derivatives have bounded variation. We prove that
if G is a group which is not virtually metabelian, then (G× Z) ∗ Z is not realized as a subgroup of

Diff1+bv
+ (M). This gives the first examples of finitely generated groups G,H � Diff∞

+ (M) such

that G ∗ H does not embed into Diff1+bv
+ (M). By contrast, for all countable groups G,H �

Homeo+(M) there exists an embedding G ∗H → Homeo+(M). We deduce that many common

groups of homeomorphisms do not embed into Diff1+bv
+ (M), for example the free product of

Z with Thompson’s group F . We also complete the classification of right-angled Artin groups
which can act smoothly on M and in particular, recover the main result of a joint work of the
authors with Baik [3]. Namely, a right-angled Artin group A(Γ) either admits a faithful C∞

action on M , or A(Γ) admits no faithful C1+bv action on M . In the former case, A(Γ) ∼= ∏
i Gi,

where Gi is a free product of free abelian groups. Finally, we develop a hierarchy of right-angled
Artin groups, with the levels of the hierarchy corresponding to the number of semi-conjugacy
classes of possible actions of these groups on S1.

1. Introduction

Let M be a compact one-manifold. In this article, we study the algebraic structure of
the group Diff1+bv

+ (M), where Diff1+bv
+ (M) denotes the group of C1 diffeomorphisms of M

whose derivatives have bounded variation. Specifically, we consider the restrictions placed on
subgroups of Diff1+bv

+ (M) by the C1+bv regularity assumption. Our main result implies that
there is a large class A0 of finitely generated subgroups of Diff∞

+ (M) such that for all G,H ∈ A0,
the free product G ∗H can never be realized as a subgroup of Diff1+bv

+ (M); see Corollary 1.7.
As a corollary, we complete a program initiated by Baik and the authors in [2, 3] to decide

which right-angled Artin groups admit faithful C∞ actions on a compact one-manifold, and
exhibit many classes of finitely generated subgroups of Homeo+(M) which cannot be realized
as subgroups of Diff1+bv

+ (M).

1.1. Statement of results

Unless otherwise noted, M will denote a compact one-manifold. That is to say, M is a finite
union of disjoint closed intervals I = [0, 1] and circles S1 = R/Z. An action on a one-manifold is
always assumed to mean an orientation preserving action. For each 0 � r � ∞ or r = ω, we let
Diffr

+(M) denote the group of orientation preserving Cr (analytic if r = ω) diffeomorphisms.
We write Homeo+(M) = Diff0

+(M). Our main result is the following.
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Theorem 1.1. If G is a group which is not virtually metabelian, then the group (G× Z) ∗ Z

admits no faithful C1+bv action on M .

Theorem 1.1 clearly implies that (G× Z) ∗ Z does not embed into Diffr
+(M) for every

level of regularity r � 2. A key step in our proof of Theorem 1.1 is the following result on
C1-smoothability:

Theorem 1.2 (Theorem 3.1). Let X ∈ {I, S1}, and let a, b, t ∈ Diff1
+(X). If

supp a ∩ supp b = ∅,

then the group 〈a, b, t〉 is not isomorphic to Z2 ∗ Z.

We have stated Theorem 1.1 as above for clarity and concision, though several stronger
statements can be deduced from the proof we give. In the particular case of finitely generated
groups, we note the following, which should be compared to Corollary 4.5:

Corollary 1.3. If G is a finitely generated group which is not virtually abelian, then
(G× Z) ∗ Z admits no faithful C1+bv action on M .

The motivation for proving Theorem 1.1 came from investigating right-angled Artin
subgroups of Diff1+bv

+ (M) (cf. Corollary 1.7). The simplest right-angled Artin group to which
Theorem 1.1 applies is (F2 × Z) ∗ Z:

Corollary 1.4. The group (F2 × Z) ∗ Z is not a subgroup of Diff1+bv
+ (M).

Since the hypotheses on Theorem 1.1 are relatively weak, there are many finitely generated
subgroups of Homeo+(M) which can be thus shown to admit no faithful C1+bv actions
on a compact manifold. Recall that Thompson’s group F is a group of piecewise linear
homeomorphisms of the interval, with dyadic break points and with all slopes being powers
of two. Thompson’s group T is the analogous group defined for the circle. A famous result of
Ghys–Sergiescu [21] says that the standard actions of T and F are topologically conjugate into
a group of C∞ diffeomorphisms of the circle and of the interval, respectively. However, we have
the following.

Corollary 1.5. The groups F ∗ Z and T ∗ Z are not subgroups of Diff1+bv
+ (M).

In the vein of Corollary 1.5, we do not know the answer to the following.

Question 1.6. Are the groups F ∗ Z and T ∗ Z subgroups of Diff1
+(I) and Diff1

+(S1),
respectively? If so, what is their optimal regularity, that is, the supremum of the Hölder
continuity exponent τ ∈ [0, 1) such that these groups embed in Diff1+τ

+ for the relevant
manifolds (cf. [26, 30])?

Returning to the original motivation, Theorem 1.1 combined with results of Farb–Franks and
Jorquera completes the classification of right-angled Artin groups admitting actions of various
regularities on compact one-manifolds. Before stating the result, we define some terminology.
We write Γ for a finite simplicial graph with vertex set V (Γ) and edge set E(Γ). The right-angled
Artin group (or RAAG, for short) on Γ is defined as

A(Γ) = 〈V (Γ) | [v, w] = 1 if and only if {v, w} ∈ E(Γ)〉.
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A subgraph Λ of a graph Γ is called a full subgraph if Λ is spanned by the vertices of Λ. That
is, two vertices in Λ are adjacent if and only if they are adjacent in Γ. A simplicial graph Γ is
called P4-free if no full subgraph of Γ is isomorphic to a path P4 on four vertices. Such graphs
are often called cographs [13, 28]. We write K for the class of cographs. It is well known that
cographs can be fit into a hierarchy which is defined as follows:

(1) the class K0 consists of a single vertex;
(2) if n � 1 is odd then Kn is obtained by taking Kn−1 together with finite joins of elements

in Kn−1;
(3) if n � 2 is even then Kn is obtained by taking Kn−1 together with finite disjoint unions

of elements in Kn−1.

Here, a join of two simplicial graphs X and Y is a simplicial graph consisting of the disjoint
union of X and Y , together with an edge of the form {x, y} for every vertex x of X and every
vertex y of Y .

We have that K0 ⊂ K1 ⊂ K2 ⊂ · · · and

K =
⋃
i

Ki.

Note that join and disjoint union correspond to direct product and free product respectively, so
that right-angled Artin groups on cographs are exactly the smallest class of groups containing
Z, which is closed under finite direct products, and which is closed under finite free products.
The reader will observe that if Γ ∈ K0 then A(Γ) ∼= Z. Similarly, if Γ ∈ K1 then A(Γ) is free
abelian, and if Γ ∈ K2 then A(Γ) is a free product of free abelian groups. If Γ ∈ K3 then A(Γ)
can be written as

A(Γ) =
m∏
i=1

Gi,

where each Gi is a free product of free abelian groups. In [2], Baik and the authors proved that
if A(Γ) admits an injective homomorphism into Diff1+bv

+ (M), then Γ ∈ K . We will deduce a
strengthening of this result, using Theorem 1.1.

Corollary 1.7 (cf. [2]). Let A(Γ) be a right-angled Artin group.

(1) (see [18, 25]) There exists an injective homomorphism A(Γ) → Diff1
+(M); thus, A(Γ)

admits a faithful C1 action of M .
(2) If there exists an injective homomorphism A(Γ) → Diff1+bv

+ (M) then Γ ∈ K3; conversely,
if Γ ∈ K3 then A(Γ) � Diff∞

+ (M).

In particular, if we define

A0 = {A(Γ) | Γ ∈ K3 \ K2}
then each G ∈ A0 embeds into Diff∞

+ (M), but for all G,H ∈ A0 the group G ∗H never embeds
into Diff1+bv

+ (M). By contrast, we have the following, which is well known from several contexts.

Proposition 1.8 (cf. [4, 35, 42]). The class of countable subgroups of Homeo+(M) is
closed under finite free products.

In the same spirit of Question 1.6 and the authors’ paper [30], we have the following.

Question 1.9. Let Γ /∈ K3. What is the supremum of τ ∈ [0, 1) for which A(Γ) embeds in
Diff1+τ

+ (M)? Does τ depend on Γ?
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Let S be an orientable surface of genus g and with n punctures or boundary components.
We say that S is sporadic if

3g − 3 + n � 1.

We write Mod(S) for the mapping class group of S, that is, Mod(S) = π0(Homeo+(S)).
Using the main result of [32], we immediately recover the following result as a corollary of
Theorem 1.1.

Corollary 1.10 (cf. [2]). Let M be a compact one-manifold, and let S be an ori-
entable finite-type surface. Then there exists a finite index subgroup G � Mod(S) such that
G � Diff1+bv

+ (M) if and only if S is sporadic.

Theorem 1.1 allows us to build a hierarchy on right-angled Artin groups, whose levels
correspond to right-angled Artin groups with more or fewer ‘dynamically different’ actions
on the circle. Roughly speaking, two group actions

ρ1, ρ2 : G → Homeo+(S1)

are semi-conjugate (or, monotone-equivalent) if there exists another action

ρ : G → Homeo+(S1)

and monotone degree one maps hi : S1 → S1 such that

hi ◦ ρ = ρi ◦ hi

for each i = 1, 2. See [9, 11, 19, 20, 31, 38] for instance, and the many references therein. A
projective action of a group G is a representation

ρ : G → PSL2(R),

where PSL2(R) sits inside of Homeo+(S1) as the group of projective analytic diffeomorphisms
of S1.

Corollary 1.11. Let A(Γ) be a right-angled Artin group.

(1) If Γ ∈ K2, then A(Γ) admits uncountably many distinct semi-conjugacy classes of faithful
orientation preserving projective actions on S1;

(2) If Γ ∈ K3 \ K2 then any faithful orientation preserving C1+bv action of A(Γ) on S1

has a periodic point and no dense orbits and hence admits at most countably many distinct
semi-conjugacy classes of C1+bv actions on S1;

(3) If Γ /∈ K3 then A(Γ) admits no faithful C1+bv action on S1.

In the case of analytic actions on a compact connected one-manifold M , one has the following
result of Akhmedov and Cohen:

Theorem 1.12 (see [1]). The right-angled Artin group A(Γ) embeds into Diffω(M) if and
only if Γ ∈ K2, that is, A(Γ) decomposes as a free product of free abelian groups.

1.2. Notes and references

This paper reveals some of the subtlety of the interplay between algebra and regularity in
diffeomorphism groups of one-manifolds. Our paper arose during the effort to complete the
classification of right-angled Artin subgroups of Diff∞

+ (S1) in the spirit of [2]. The essential
content of this paper is Lemma 3.8, which exhibits an explicit element of the kernel of any
given C1+bv action of (G× Z) ∗ Z action on a compact one-manifold. Since a group of the form
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(G× Z) ∗ Z is generally simpler than the right-angled Artin groups considered in [2], it is more
difficult to find elements in the kernel of a given action, and therefore we develop more sophis-
ticated tools here. We note that our main result does subsume the main result of [2]. Indeed,
the main result of [2] is that there is no injective homomorphism A(P4) → Diff1+bv

+ (M), where

A(P4) = 〈a, b, c, d | [a, b] = [b, c] = [c, d] = 1〉.
The group A(P4) contains a copy of (F2 × Z) ∗ Z, which cannot embed in Diff1+bv

+ (M)
by Corollary 1.4. An explicit embedding of (F2 × Z) ∗ Z into A(P4) is given by
〈a, b, c, dad−1〉 � A(P4) (see [28] for a discussion on this fact).

The program completed by Corollary 1.7 fully answers a question raised in a paper of
Kapovich (attributed to Kharlamov) as to which right-angled Artin groups admit faithful
C∞ actions on the circle [27].

Right-angled Artin subgroups of diffeomorphism groups of one-manifolds find an analogue in
right-angled Artin subgroups of linear groups. It is well known that right-angled Artin groups
are always linear over Z and hence admit injective homomorphisms into SLn(Z) [14, 23, 24].
For SL3(Z), it is still unclear which right-angled Artin groups appear as subgroups. Long–Reid
[36] showed that F2 × Z is not a subgroup of SL3(Z), which implies that any right-angled Artin
subgroup of SL3(Z) is a free product of free abelian groups of rank at most two. It is currently
unknown whether or not Z2 ∗ Z is a subgroup of SL3(Z).

A consequence of the technical work behind Theorem 1.1 is a certain criterion to prove
that a group contains a lamplighter subgroup. See Lemma 3.3 and Proposition 3.9 for precise
statements.

A crucial step in our proof of the main theorem is a C1-rigidity result, which is Theorem 3.1.
We note that Thurston [44], Calegari [10], Navas [39] and Bonatti, Monteverde, Navas and
Rivas [7] explored various remarkable C1-rigidity results. In particular, a C1-rigidity result on
Baumslag–Solitar groups in [7] was employed in a very recent paper by Bonatti, Lodha and
Triestino [6], to produce certain piecewise affine homeomorphism groups of R which do not
embed into Diff1

+(I).
As for other classes of groups of homeomorphisms which cannot be realized as groups of

C1+bv diffeomorphisms, Corollary 1.5 is a complement to a result of the second author with
Lodha [33], in which they show that certain ‘square roots of Thompson’s group F may fail
to act faithfully by C1+bv diffeomorphisms on a compact one-manifold, even though they are
manifestly groups of homeomorphisms of these manifolds. Thus, the Ghys–Sergiescu Theorem
appears to place F and T at the cusp of smoothability in the sense that even relatively minor
algebraic variations on F and on T fail to be smoothable.

Finally, we remark on the optimality of the differentiability hypothesis. Corollary 1.7 shows
that every right-angled Artin group can act faithfully by C1 diffeomorphisms, but nearly none
of them can act by C1+bv diffeomorphisms. As for Corollary 4.6 and Proposition 1.8, we have
the following result (based on [7] and on a suggestion by Navas), which is proved in the authors’
recent manuscript [30]:

Proposition 1.13 [30]. LetM ∈ {I, S1}, and let BS(1, 2) be the Baumslag–Solitar group
with the presentation 〈s, t | sts−1 = t2〉. Then the group (BS(1, 2) × Z) ∗ Z is not a subgroup
of Diff1

+(M). In particular, the class of finitely generated subgroups of Diff1
+(M) is not closed

under taking finite free products.

2. Background on one-dimensional smooth dynamics

We very briefly summarize the necessary background from one- dimensional dynamics. The
reader may also consult [2], parts of which we repeat here, and where we direct the reader for
proofs.
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2.1. Poincaré’s theory of rotation numbers

Let f ∈ Homeo+(S1), and let f̃ : R → R be an arbitrary lift of f . Then the rotation number of
f is defined as

rot f = lim
n→∞

f̃n(x)
n

∈ R/Z = S1,

where x ∈ R. Then rot f is well defined, and independent of the choice of a lift f̃ and a base
point x ∈ R; see [40] for instance. The set of periodic points of f is denoted as Per f . Let us
record some elementary facts.

Lemma 2.1. For f ∈ Homeo+(S1), the following hold:

(1) rot(f) = 0 if and only if Fix f �= ∅;
(2) rot(f) ∈ Q if and only if Per f �= ∅;
(3) If x ∈ S1 and g ∈ Homeo+(S1) satisfy

fn(x) = gn(x)

for all n ∈ Z, then rot(f) = rot(g).

The rotation number is a continuous class function (that is, constant on each conjugacy
class)

rot : Homeo+(S1) → S1.

Moreover, the rotation number restricts to a group homomorphism on each amenable subgroup
of Homeo+(S1); see [20].

Let us recall the following classical result.

Theorem 2.2 (Hölder’s Theorem [22]; see [40]). A group acting freely on R or on S1 by
orientation preserving homeomorphisms is abelian.

We will use the following variation, which is similar to [17, Theorem 2.2].

Corollary 2.3 (cf. [17]). Let X be a nonempty closed subset of S1, and let G be a group
acting freely on X by orientation preserving homeomorphisms. Then the action of G extends
to a free action ρ : G → Homeo+(S1) such that

rot ◦ρ : G → S1

is an injective group homomorphism.

Proof. If (a, b) is a component of S1 \X and g ∈ G, then (ga, gb) is also a component of
S1 \X. So, G extends to some action ρ on S1 in an affine manner. Put

S1 \X =
∐
i�1

Ii.

If ρ(g)y = y for some g ∈ G and for some y ∈ S1, then y ∈ Ii for some i. We have that ρ(g)
restricts to the identity on Ii by definition. This would imply ρ(g)∂Ii = g∂Ii = ∂Ii, and so,
g = 1. That is, the action ρ of G on S1 is free.

By Hölder’s theorem, we see ρ(G) ∼= G is abelian. Since abelian groups are amenable, we have
that rot ◦ρ is a group homomorphism. The freeness of the action ρ implies that rot ◦ρ(g) �= 0
for all nontrivial g. �
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2.2. Kopell–Denjoy theory

Let M ∈ {I, S1}. We denote by var(g;M) the total variation of a map g : M → R:

var(g;M) = sup

{
n−1∑
i=0

|g(ai+1) − g(ai)| : (ai : 0 � i � n) is a partition of M

}
.

In the case M = S1, we require an = a0 in the above definition. Following [40], we say a
C1 diffeomorphism f on M is C1+bv if var(f ′;M) < ∞. We let Diff1+bv

+ (M) denote the
group of orientation preserving C1+bv diffeomorphisms of M . The following two results play a
fundamental role on the study of C1+bv diffeomorphisms.

Theorem 2.4 (Denjoy’s theorem [15, 40]). If a ∈ Diff1+bv
+ (S1) and Per a = ∅, then a is

topologically conjugate to an irrational rotation.

Theorem 2.5 (Kopell’s lemma [34, 40]). Suppose a ∈ Diff1+bv
+ [0, 1), b ∈ Diff1

+[0, 1), and
[a, b] = 1. If Fix a ∩ (0, 1) = ∅ and b �= 1, then Fix b ∩ (0, 1) = ∅.

We remark that the original statement by Kopell was for C2-regularity. Navas extended her
result to C1+bv case [40, Theorem 4.1.1].

Let X be a topological space. Then we define the support of h ∈ Homeo(X) as

supph = X \ Fixh.

It is convenient for us to consider the nonstandard open support of a homeomorphism as defined
here, whereas many other authors use the closure of the open support. We will consistently
mean the open support unless otherwise noted.

For a subgroup G � Homeo(X), we put

suppG =
⋃
g∈G

supp g.

We say that f ∈ Homeo(X) is grounded if Fix f �= ∅. We note that every f ∈ Homeo+(I) is
grounded by definition.

The following important observations on commuting C1+bv diffeomorphisms essentially
builds on Kopell’s Lemma and Hölder’s Theorem.

Lemma 2.6. The following hold:

(1) Disjointness condition [2]: Let M ∈ {I, S1}, and let a, b ∈ Diff1+bv
+ (M) be commuting

grounded diffeomorphisms. If A and B are components of supp a and supp b respectively, then
either A = B or A ∩B = ∅.

(2) Abelian criterion (cf. [17]): If a, b, c ∈ Diff1+bv
+ (I) satisfy Fix a = ∂I and that [a, b] =

1 = [a, c], then [b, c] = 1.

Remark 2.7. The abelian criterion as given by Farb and Franks is a straightforward
consequence of Hölder’s Theorem and Kopell’s lemma. We thank one of the referees for pointing
out another simple proof using Szekeres’ theorem [40].

The notation f �A for a function f (or set of functions) and a set A means the restriction to
A. We will need the following properties of centralizer groups.

Lemma 2.8. Let a ∈ Diff1+bv
+ (S1) be an infinite order element, and let Z(a) be the

centralizer of a in Diff1+bv
+ (S1). Then the following hold.
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(1) If a is grounded and if a group H � Z(a) is generated by grounded elements, then every
element in H is grounded and moreover,

supp a ∩ supp[H,H] = ∅.

(2) If rot a �∈ Q, then Z(a) is topologically conjugate to a subgroup of SO(2,R).
(3) If rot a ∈ Q, then rotZ(a) ⊆ Q.
(4) (cf. [17, Lemma 3.4]) The rotation number restricts to a homomorphism on Z(a); in

particular, every element of [Z(a), Z(a)] is grounded.

Proof. (1) Let J be a component of supp a. By the disjointness condition, the group H acts
on the open interval J . Since H fixes ∂J , every element of H is grounded. The abelian criterion
implies that

[H,H] �J= 1.
So, we have that J ∩ supp[H,H] = ∅.

(2) By Denjoy’s theorem, the map a is topologically conjugate to an irrational rotation. The
centralizer of an irrational rotation in Homeo+(S1) is SO(2,R); see [17, Proposition 2.10; 40,
Exercise 2.2.12].

(3) Suppose some element b in Z(a) has an irrational rotation number. Since a ∈ Z(b), part
(2) implies that a is conjugate to a rotation. This is a contradiction, for a rotation with a
rational rotation number must have a finite order.

(4) If rot a is irrational, then the conclusion follows from part (2). So we may assume rot
a ∈ Q. Then ap is grounded for some p �= 0. Since Z(a) � Z(ap), it suffices to prove the lemma
for ap. In other words, we may further suppose that a is grounded.

Let us put

G = Z(a), G0 = rot−1(0) ∩G.
Part (1) implies that

G0 =
⋃

x∈S1

StabG(x) = 〈G0〉

is a group. Since rot is a class function on Homeo+(S1), we see that G0 �G.
For each x ∈ Fix a and g ∈ G, we note

ag(x) = ga(x) = g(x).

So, Fix a is G-invariant. We have a nonempty proper closed G-invariant set

X = ∂ Fix a.

Claim 1. For all x ∈ X, the group G0 fixes x.

For each J ∈ π0 supp a and g ∈ G0, we have seen in part (1) that ∂J ⊆ Fix g. Since we can
write

X =
⋃

{∂J | J ∈ π0 supp a},
we see that X ⊆ Fix g. This proves the claim.

Let p : G → G/G0 denote the quotient map. By Claim 1, the natural action

G/G0 → Homeo+(X), p(g).x = g(x)

is well defined and free. By Corollary 2.3, this free action extends to a free action

ρ : G/G0 → Homeo+(S1)

such that rot ◦ρ is an injective homomorphism.
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For each g ∈ G, x ∈ X and n ∈ Z, we have

ρ ◦ p(gn)(x) = gn(x).

By Lemma 2.1(3) we see that

rot ◦ρ ◦ p = rot �G,

and hence, that rot �G is a group homomorphism. As S1 is abelian, we also obtain

[G,G] � ker(rot �G) = G0.

�
Note that a finitely generated subgroup of SO(2,R) consisting of elements with rational

rotation numbers is necessarily finite. So in Lemma 2.8(3), if G is a finitely generated subgroup
of Z(a) then rot(G) is a finite subgroup of S1 ∼= SO(2,R).

Remark 2.9. Part (4) of Lemma 2.8 appears in the unpublished work of Farb and Franks
[17], on which our argument is based. We included here a detailed, self-contained proof for
readers’ convenience. We also remark the necessity of the infinite-order hypothesis, which was
omitted in [17]. For example, let us consider a, b, c ∈ Diff∞

+ (S1) such that for each x ∈ S1 =
R/Z we have

a(x) = x + 1/2, b(x) = x + 1/4, c(x + 1/2) = c(x) + 1/2

and such that

c(0) = 0, c(1/8) = 1/4, c(1/4) = 3/8.

Then b, c ∈ Z(a) and (bc)3(0) = 0. Hence we have

rot(b) + rot(c) = 1/4 + 0 �= 1/3 = rot(bc).

Lemma 2.10. Let a ∈ Diff1+bv
+ (I), and let Z(a) be the centralizer of a in Diff1+bv

+ (I). Then
we have

supp a ∩ supp[Z(a), Z(a)] = ∅.

The proof is almost identical to that of Lemma 2.8(1).

2.3. The Two-jumps lemma

The two-jumps lemma was developed by Baik and the authors in [2] and is the second essential
analytic result needed to establish Theorem 1.1.

Lemma 2.11 (Two-jumps lemma [2]). Let M ∈ {I, S1} and let f, g : M → M be continuous
maps. Suppose (si), (ti) and (yi) are infinite sequences of points in M such that for each i � 1,
one of the following two conditions hold:

(i) f(yi) � si = g(si) < yi < ti = f(ti) � g(yi);
(ii) g(yi) � ti = f(ti) < yi < si = g(si) � f(yi).

If |g(yi) − f(yi)| converges to 0 as i goes to infinity, then f or g fails to be C1.

Figure 1 illustrates the case (i) of Lemma 2.11. The reader may note that the homeomor-
phisms f and g above are crossed elements [40, Definition 2.2.43]. Indeed, the two-jumps
lemma generalizes a unpublished lemma of Bonatti–Crovisier–Wilkinson regarding crossed
C1-diffeomorphisms, which can be found in [40, Proposition 4.2.25].
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Figure 1 (colour online). The two-jumps lemma.

3. The C1-smoothability of Z2 ∗ Z

This section establishes the main technical result of the paper as below.

Theorem 3.1. Let M ∈ {I, S1}, and let a, b, t ∈ Diff1
+(M). If

supp a ∩ supp b = ∅,

then the group 〈a, b, t〉 is not isomorphic to Z2 ∗ Z.

Remark 3.2. (1) We emphasize that this theorem is about C1, rather than C1+bv,
diffeomorphisms.

(2) The regularity hypothesis of C1 cannot be replaced by C0; see Proposition 6.2.
(3) The proof of Theorem 3.1 is relatively easy and standard if supp a or supp b is assumed

to have finitely many components.

Let us prove Theorem 3.1 through a sequence of lemmas in this section.

3.1. Finding a lamplighter group from compact support

A crucial step in the proof of Theorem 3.1 is the following construction, which generalizes a
result of Brin and Squier in the PL setting [8]. The same idea to find vanishing words from
successive commutators goes back even to the Zassenhaus Lemma [41]; the authors thank an
anonymous referee for suggesting us to further prove the existence of a lamplighter subgroup.

Lemma 3.3. Let 1 �= g ∈ H � Homeo+(I). If the closure of supp g is contained in suppH,
then H contains the lamplighter group Z � Z.

More precisely, we will show that for g1 = g, there exists a positive integer m and elements
u1, . . . , um ∈ H such that the recursively defined sequence

gi+1 = [gi, uigiu
−1
i ], i = 1, 2, . . . ,m,

satisfies that 〈gm, um〉 ∼= Z � Z and that gm+1 = 1. Here and throughout this paper, when 1
refers to a homeomorphism or a group element then it means the identity, and otherwise it
refers to the real number 1.

Proof of Lemma 3.3. Since supp g1 is a compact subset of the open set suppH, we can
enumerate

I1, I2, . . . , IN ∈ π0(suppH)

such that supp g1 ∩ Ii �= ∅ for each i and such that

supp g1 ⊆
N⋃
i=1

Ii.

Note that each Ii is an open, H-invariant interval contained in (0,1).
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Let us inductively construct the elements u1, . . . , uk−1 satisfying the required properties. As
a base case, we put r(1) = 1 ∈ N and

K1 := supp g1 ∩ I1.

Since K1 is a nonempty compact subset of I1 ⊆ suppH, we have that

sup{u(inf K1) | u ∈ H} = sup I1 > supK1.

So, there exists u1 ∈ H such that K1 ∩ uj
1K1 = ∅ for all j ∈ N. Note that

〈g1, u1〉 �I1∼= 〈s, t | [s, tjst−j
]

= 1 for all j ∈ N〉 = Z � Z.
Let us set

r(2) = 1 + sup{s ∈ [1, N ] | supp[g1, u
j
1g1u

−j
1 ] �Is= 1 for all j ∈ N} � 1 + r(1) = 2.

If r(2) > N , then we have a sequence of surjections

Z � Z � 〈g1, u1〉 � 〈g1, u1〉 �I1� Z � Z,

which composes to the identity. In particular, 〈g1, u1〉 ∼= Z � Z. In the case where r(2) � N , we
pick j ∈ N such that the element

g2 :=
[
g1, u

j
1g1u

−j
]

satisfies supp g2 ∩ Ir(2) �= ∅, and apply the same argument to g2.
By a straightforward induction, we eventually find 1 � m � r(m) � N and gm, um ∈ G such

that the following hold:

supp gm ⊆ Ir(m) ∪ · · · ∪ IN ,

supp gm ∩ Ir(m) �= ∅,

supp gm ∩ uj
m supp gm ∩ Ir(m) = ∅, for all j ∈ N,[

gm, uj
mgmu−j

m

]
= 1 for all j ∈ N.

It follows that 〈gm, um〉 ∼= Z � Z. �

Lemma 3.3 implies the following for circle homeomorphisms.

Lemma 3.4. Let a, b, c, d ∈ Homeo+(S1) be nontrivial elements such that

supp a ∩ supp b = ∅ and supp c ∩ supp d = ∅.

If suppG = S1, then G contains Z � Z.

Proof. For simplicity, let us abbreviate A = π0 supp a, and similarly define B, C and D .
Since S1 is compact, there exists a finite open covering V of S1 such that

V ⊆ A ∪ B ∪ C ∪ D .

By minimizing the cardinality, we can require that V forms a chain of intervals. More
precisely, this means that V = {V1, . . . , Vk} for some k � 1 and that

inf Vi < supVi−1 � inf Vi+1

for i = 1, 2, . . . , k, where the indices are taken cyclically.
Without loss of generality, let us assume V1 ∈ A . Then we have V2i−1 ∈ A ∪ B and

V2i ∈ C ∪ D for each i. Note that k is an even number and that x = inf V2 is a global fixed
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point of H = 〈b, c, d〉. In particular, we can regard H as acting on I, which is a two-point
compactification of S1 \ {x}. Note that

∅ �= supp b ⊆ S1 \
⋃

(V ∩ A ) ⊆
⋃

(V ∩ (B ∪ C ∪ D)) ⊆ suppH.

The desired conclusion follows from Lemma 3.3. �

3.2. Supports of commutators

We will need rather technical estimates of supports as given in this subsection. In order to
prevent obfuscation of the ideas, we have included some intuition behind the proofs when
appropriate.

Lemma 3.5. If f and g are homeomorphisms of a topological space X, then

supp[f, g] ⊆ supp f ∪ supp g ∪ supp f ∩ supp g.

Proof. Suppose

x �∈ supp f ∪ supp g ∪ supp f ∩ supp g.

Then f(x) = x = g(x). Moreover, for some open neighborhood U of x we have

U ∩ supp f ∩ supp g = ∅.

We can find an open neighborhood V ⊆ U of x such that

f±1(V ) ∪ g±1(V ) ⊆ U.

Let y ∈ V . We see [f, g](y) = y, by considering the following three cases separately:

y ∈ V ∩ supp f, y ∈ V ∩ supp g, y ∈ V ∩ Fix f ∩ Fix g.

So we obtain that

[f, g] �V = 1.

This implies

x �∈ supp[f, g]. �

Lemma 3.6. Let X be a topological space. If b, c, d ∈ Homeo(X) satisfy

supp c ∩ supp d = ∅,

then for φ = [c, bdb−1] we have that

suppφ ⊆ supp b ∪ cb(supp b ∩ supp d) ∪ db−1(supp b ∩ supp c).

Let us briefly explain the key idea behind the statement of this lemma. The support of
the homeomorphism bdb−1 is exactly b(supp d). The homeomorphism φ may be viewed as a
composition of bd−1b−1 and the conjugate of bdb−1 by c, and the latter of these has support
cb(supp d). By exhaustively checking the possible images of points under bdb−1 and cbdb−1c−1,
we see that every x ∈ suppφ belongs to one of the three sets as stated in the lemma.

Proof of Lemma 3.6. For brevity, let us write

b̃ = supp b, c̃ = supp c, d̃ = supp d.

Let us consider three equivalent expressions for φ:

[c, bdb−1] = cbd(cb)−1 · bd−1b−1 = c · b · db−1c−1(db−1)−1 · b−1.
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After some set theoretic computation, one sees the following:

suppφ ⊆
(
c̃ ∪ bd̃

)
∩
(
cbd̃ ∪ bd̃

)
∩
(
c̃ ∪ b̃ ∪ db−1c̃

)
⊆

(
(c̃ ∩ cbd̃) ∪ bd̃

)
∩
(
c̃ ∪ b̃ ∪ db−1c̃

)
⊆ (c̃ ∩ cbd̃) ∪

(
bd̃ ∩ (c̃ ∪ b̃ ∪ db−1c̃)

)
⊆

(
c̃ ∩ cbd̃

)
∪
(
(b̃ ∪ d̃) ∩ (b̃ ∪ c̃ ∪ db−1c̃)

)
⊆

(
c̃ ∩ cbd̃

)
∪ b̃ ∪

(
d̃ ∩ (c̃ ∪ db−1c̃)

)
⊆

(
c̃ ∩ cbd̃

)
∪ b̃ ∪

(
d̃ ∩ db−1c̃

)
.

Note that we used bd̃ ⊆ b̃ ∪ d̃, and also c̃ ∩ d̃ = ∅. It now suffices for us to prove the following
claim:

Claim. We have the following:

c̃ ∩ cbd̃ ⊆ cb
(
b̃ ∩ d̃

)
,

d̃ ∩ db−1c̃ ⊆ db−1
(
b̃ ∩ c̃

)
.

To see the first part of the claim, let us consider x ∈ X satisfying

cb(x) ∈ c̃ ∩ cbd̃.

Then we have x ∈ d̃ and cb(x) ∈ c̃. Since c̃ ∩ d̃ = ∅ and b(x) ∈ c−1c̃ = c̃, we see x �= b(x). In
particular, we have x ∈ b̃ and cb(x) ∈ cb(b̃ ∩ d̃). This proves the first part of the claim. The
second part follows by symmetry. �

Lemma 3.7. If b, c, d ∈ Diff1
+(I) are given such that

supp c ∩ supp d = ∅,

then for φ = [c, bdb−1] we have that

suppφ \ supp b ⊆ supp c ∪ supp d.

Proof. As in the proof of Lemma 3.4, we let B = π0 supp b and C = π0 supp c. Let

JB = B ∪ cb(B ∩ supp d) ∪ db−1(B ∩ supp c)

for each B ∈ B. By Lemma 3.6, we have that

suppφ ⊆
⋃

{JB | B ∈ B} =
⋃

{JB \B | B ∈ B} ∪ supp b.

Moreover, for each B ∈ B we note that

JB \B ⊆ c(B) \B ∪ d(B) \B ⊆ supp c ∪ supp d.

Claim. The following set is a finite collection of intervals:

B0 = {B ∈ B | JB �= B}. �

We will employ the C1-hypothesis for this claim. Let us write

B1 = {B ∈ B | cb(B ∩ supp d) \B �= ∅}, B2 = {B ∈ B | db−1(B ∩ supp c) \B �= ∅}.
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Figure 2 (colour online). Lemma 3.7.

Assume for a contradiction that B0 = B1 ∪ B2 is infinite. We may suppose B1 is infinite, as
the proof is similar when B2 is infinite. There are infinitely many distinct B1, B2, . . . ∈ B1 and
xi ∈ Bi ∩ supp d such that cb(xi) �∈ Bi. Then we have C1, C2, . . . ∈ C such that b(xi), cb(xi) ∈
Ci. Since xi ∈ supp d, we have xi �∈ Ci; see Figure 2.

Let us consider the interval Ji = [xi, cb(xi)] which contains b(xi) in the interior, up to
switching the end points of this interval. Then we have

(b(xi), cb(xi)] ∩ ∂Bi �= ∅, [xi, b(xi)) ∩ ∂Ci �= ∅.

We now apply the two-jumps lemma (Lemma 2.11) to the following parameters:

f = b−1, g = c, si = ∂Ci ∩Bi, ti = ∂Bi ∩ Ci, yi = b(xi).

We deduce that b or c is not C1. This is a contradiction and the claim is proved.
From the claim above, we deduce the conclusion as follows:

suppφ \ supp b ⊆
⋃

{JB \B | B ∈ B0} =
⋃

{JB \B | B ∈ B0} ⊆ supp c ∪ supp d.

3.3. Finding compact supports

We will deduce Theorem 3.1 from the following, seemingly weaker result.

Lemma 3.8. Let M ∈ {I, S1} and let a, b, c, d ∈ Diff1
+(M). If

supp a ∩ supp b = ∅, supp c ∩ supp d = ∅,

then the group 〈a, b, c, d〉 is not isomorphic to Z2 ∗ Z2.

Let us note two properties of RAAGs. First, a RAAG does not contain a subgroup isomorphic
to Z � Z. The reason is that, every two-generator subgroup of a RAAG is either free or
free abelian [5]; see also [29, Corollary 1.3]. Second, a RAAG is Hopfian; that is, every
endomorphism of a RAAG is an isomorphism. This follows from a general fact that every
finitely generated residually finite group is Hopfian [37].

Proof of Theorem 3.1 from Lemma 3.8. Assume 〈a, b, t〉 ∼= Z2 ∗ Z. Since the RAAG Z2 ∗ Z

is Hopfian, the natural surjection between groups

〈A,B, T | [A,B] = 1〉 → 〈a, b, t〉
is actually an isomorphism. It follows that

〈a, b, tat−1, tbt−1〉 ∼= 〈A,B, TAT−1, TBT−1〉 ∼= Z2 ∗ Z2.

This contradicts Lemma 3.8, since the four diffeomorphism a, b, tat−1, tbt−1 satisfy the
conditions of the lemma. �

Proof of Lemma 3.8. We put G = 〈a, b, c, d〉 and consider an abstract group

G0 = 〈a0, b0, c0, d0 | [a0, b0] = 1 = [c0, d0]〉 ∼= Z2 ∗ Z2.



FREE PRODUCTS AND THE ALGEBRAIC STRUCTURE OF DIFFEOMORPHISM GROUPS 1067

There is a natural surjection p : G0 → G defined by

(a0, b0, c0, d0) �→ (a, b, c, d).

Assume for a contradiction that G ∼= G0. By the Hopficity of Z2 ∗ Z2, we see that p is an
isomorphism. Since G does not contain Z � Z, Lemma 3.4 implies that G has a global fixed
point. In other words, we may assume M = I.

Let us define φ = [c, bdb−1] and ψ = [φ, a]. Lemma 3.5 implies that

suppψ ⊆ suppφ ∪ supp a ∪ suppφ ∩ supp a.

We see from Lemma 3.7 that

suppφ ∩ supp a ⊆ suppφ \ supp b ⊆ supp c ∪ supp d.

So, it follows that

suppψ ⊆ suppG.

As we are assuming p is injective, we have

ψ = [φ, a] =
[
[c, bdb−1], a

] �= 1.

Lemma 3.3 implies that G contains Z � Z, which is a contradiction. This completes the proof. �

Let us conclude this section by describing one generalization of Theorem 3.1.

Proposition 3.9. Let M ∈ {I, S1}. If a, b, c, d ∈ Diff1
+(M) satisfy

supp a ∩ supp b = ∅, supp c ∩ supp d = ∅.

and [
[c, bdb−1], a

] �= 1,

then 〈a, b, c, d〉 contains the lamplighter group Z � Z.

In particular, the group 〈a, b, c, d〉 does not embed into a RAAG.

4. Proof of Theorem 1.1

In this section, we apply the facts we have gathered to complete the proof of the main result.

4.1. Reducing to the connected case

We will reduce the proof of Theorem 1.1 to the case M ∈ {I, S1}, using the following group
theoretic observations.

Lemma 4.1. Suppose A,B,C,D are groups, and suppose that A×B is a normal subgroup
of C ∗D. Then at least one of these four groups is trivial.

Proof. If A×B is a subgroup of C ∗D then the Kurosh subgroup theorem implies that
there is a free product decomposition

A×B ∼= F ∗ ∗
i
Hi,

where F is a free group (possibly of infinite rank) and where each Hi is conjugate into C or
into D. By analyzing centralizers of elements, it is easy to show that a nontrivial free product



1068 SANG-HYUN KIM AND THOMAS KOBERDA

is never isomorphic to a nontrivial direct product (cf. [37, p. 177]). It follows that A×B is
conjugate into C or D, which contradicts the normality of A×B. �

An alternative proof of Lemma 4.1 can be given using Bass–Serre theory (see [43]).

Lemma 4.2. Suppose A,B,C,D are nontrivial groups, and that A ∗B � C ×D. Then there
is an injective homomorphism from A ∗B into either C or D.

Proof. Suppose the contrary, so that KC and KD are the (nontrivial) kernels of the inclusion
of A ∗B into C ×D composed with the projections onto C and D. Then KC ∩KD = 1 and
KC and KD normalize each other, so that KCKD

∼= KC ×KD � A ∗B. This contradicts
Lemma 4.1. �

Lemma 4.3. Suppose

M =
n∐

i=1

Mi

is a compact one-manifold, and suppose that A ∗B embeds into Diff1+bv
+ (M). Then for some

finite index subgroups A0 � A and B0 � B, and for some i, we have an embedding of A0 ∗B0

into Diff1+bv
+ (Mi).

Proof. This follows immediately from Lemma 4.2, using the fact that Diff1+bv
+ (M) is

commensurable with
n∏

i=1

Diff1+bv
+ (Mi).

Note that passage to finite index subgroups is necessary, since M may consist of a union of
diffeomorphic manifolds which are permuted by the action of A ∗B. �

4.2. Taming supports

Let us denote the center of a group G by ZG. If M is a one-manifold and if s ∈ Diff1+bv
+ (M),

then we denote by Z(s) the centralizer of s in Diff1+bv
+ (M). The following lemma is crucial for

applying Lemma 3.8.

Lemma 4.4. Assume one of the following:

(i) M = I and G is a nonabelian group such that ZG �= 1.
(ii) M = S1 and G is a nonmetabelian group such that Z � ZG.
(iii) M = S1 and G is a finitely generated group such that Z � ZG and such that G is not

abelian-by-finite cyclic.

In each of the cases, if G � Diff1+bv
+ (M), then there is a subgroup Z2 � G generated by

diffeomorphisms a and b such that supp a ∩ supp b = ∅.

Proof. Case (i). Let us pick s ∈ ZG \ 1 and b ∈ [G,G] \ 1. Since G � Z(s), Lemma 2.10
implies that

supp s ∩ supp b = ∅.

Since Homeo+(I) is torsion-free, we have 〈b, s〉 ∼= Z2 as desired.
Case (ii). We are given with some s ∈ ZG such that 〈s〉 ∼= Z. As G is nonabelian, Lemma 2.8

(2) implies that rot(s) ∈ Q; in particular, sn is grounded for some n � 1. From part (4) of
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the same lemma and from that G � Z(s), we see every element of [G,G] is grounded. Since
[G,G] � Z(sn), we note from Lemma 2.8 (1) that

supp(sn) ∩ suppG′′ = ∅.

From the metabelian hypothesis, we can find b ∈ G′′ \ 1. As sn and b are grounded, they have
infinite orders. It follows that 〈sn, b〉 ∼= Z2.

Case (iii). Let us proceed similarly to the case (ii). Namely, pick s ∈ ZG such that 〈s〉 ∼= Z.
By Lemma 2.8, we have a homomorphism

rot �G : G → Q.

We fix n � 1 such that sn is grounded. As G is finitely generated, we see rot(G) is finite
cyclic. The hypothesis implies that G0 = ker(rot �G) is not abelian. Since every element of G0

is grounded, we can apply Lemma 2.8 (1) and deduce

supp sn ∩ supp[G0, G0] = ∅.

Each b ∈ [G0, G0] \ 1 then yields the desired subgroup 〈b, sn〉 ∼= Z2. �

4.3. The main result

Proof of Theorem 1.1. Suppose (G× Z) ∗ Z � Diff1+bv
+ (M) for some compact one-manifold

M . Replacing G by a finite index subgroup if necessary, we may assume that M is connected,
by Lemma 4.3. By applying the cases (i) and (ii) of Lemma 4.4 to the group G× Z, we can find
a subgroup 〈a, b〉 ∼= Z2 � G× Z such that supp a ∩ supp b = ∅. If we write the Z-free factor of
(G× Z) ∗ Z as 〈t〉, then

〈a, b, t〉 ∼= 〈a, b〉 ∗ 〈t〉 ∼= Z2 ∗ Z.

This contradicts Theorem 3.1. �

One can now deduce Corollary 1.3 as well as Corollary 4.5 from Lemma 4.4, in the exact
same fashion as Theorem 1.1.

Corollary 4.5. Let G be a group.

(1) If G is nonabelian and if the center of G is nontrivial, then G ∗ Z admits no faithful
C1+bv action on I.

(2) Suppose G is finitely generated. If G is not abelian-by-finite cyclic and if the center of
G contains a copy of Z, then G ∗ Z admits no faithful C1+bv action on S1.

Here, a group G is X -by-Y for group theoretic properties X and Y if there is an exact
sequence

1 → K → G → Q → 1

such that K has property X and Q has property Y . We allow both K and Q to be trivial.
Note that G× Z often occurs as a subgroup of Diff1+bv

+ (M), where G is not virtually
metabelian. We have the following immediate consequence:

Corollary 4.6. Let G denote the class of finitely generated subgroups of Diff1+bv
+ (M).

The class G is not closed under taking finite free products.
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5. Smooth right-angled Artin group actions on compact one-manifolds

In this and the remaining sections, we deduce several corollaries from Theorem 1.1. We first
complete the classification of right-angled Artin groups which admit faithful C∞ actions on a
compact one-manifold (Corollary 1.7).

Lemma 5.1. Let A(Γ) be a right-angled Artin group. Then one of the following mutually
exclusive conclusions holds:

(1) we have (F2 × Z) ∗ Z � A(Γ);
(2) the graph Γ lies in K3.

Proof. Let us consider a stratification of graph classes:

K2 ⊆ K3 ⊆ K .

Suppose Γ ∈ K2. Then A(Γ) is the free product of free abelian groups, and hence contains
no copy of (F2 × Z) ∗ Z.

Let Γ ∈ K3 \ K2. Then Γ is the join of at least two graphs Γ1,Γ2 in K2. We write

A(Γ) = A(Γ1) ×A(Γ2).

If A(Γ) contains a copy of (F2 × Z) ∗ Z, then so does A(Γ1) or A(Γ2) by Lemma 4.2; this would
contradict the previous paragraph.

Assume Γ ∈ K \ K3. First consider the case that Γ ∈ K2i \ K2i−1 for some i � 2. We can
write

Γ =
k∐

j=1

Γj

for some k � 2 and for some nonempty connected graphs Γj ∈ K2i−1. These graphs Γj cannot
all be complete graphs, for otherwise Γ ∈ K2. So at least one graph Γj contains P3, the path
on three vertices, as a full subgraph. This implies that A(Γ) contains a copy of (F2 × Z) ∗ Z.

We then consider the case that Γ ∈ K2i+1 \ K2i for some i � 2. Note Γ is the join of some
graphs Γ1, . . . ,Γk in K2i. By the previous graph, each A(Γj) contains (F2 × Z) ∗ Z.

Finally assume Γ /∈ K , so that Γ is not a cograph. Then we have that P4 is a full subgraph
of Γ, so that A(P4) � A(Γ). The group A(P4) contains every right-angled Artin group A(F ),
where F is a finite forest (see [28]). Since the defining graph of (F2 × Z) ∗ Z is a copy of a path
P3 on three vertices together with an isolated vertex, its defining graph is a finite forest. We
see that (F2 × Z) ∗ Z � A(Γ). �

We complete the proof of Corollary 1.7 with the following proposition:

Proposition 5.2. Let Γ ∈ K3 and let M be a compact one-manifold. Then there is an
embedding of A(Γ) into Diff∞

+ (M).

In the case when M = S1, we will prove more precise facts in Section 7.

Proof of Proposition 5.2. Let Diff∞
0 (I) denote the group of C∞ diffeomorphisms of the

interval which are infinitely tangent to the identity at {0, 1}. It suffices to find a copy
A(Γ) � Diff∞

0 (I), since I is a submanifold of every compact one-manifold M and every element
of Diff∞

0 (I) can, by definition, be extended to all of M by the identity map.
In the case when Γ ∈ K2, we can write A(Γ) = Zn1 ∗ · · · ∗ Znk . As we have an embedding

A(Γ) ↪→ Z ∗ ZN for N = maxi ni, it suffices to prove the proposition for Z ∗ ZN in this case. To
do this, we first find a copy of ZN � Diff∞

0 (I) such that the support of each nontrivial element
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of ZN is all of (0,1). The existence of such a copy of ZN follows from choosing a C∞ vector
field on I which vanishes only at ∂I and integrating it to get a flow, which gives an R-worth of
commuting elements of Diff∞

0 (I). Now, choosing a generic (in the sense of Baire) element ψ of
Diff∞

0 (I), we have that ψ and this copy of ZN generate a copy of Z ∗ ZN � Diff∞
0 (I) (cf. [31]).

Finally, if Γ ∈ K3 \ K2 then A(Γ) is a finite direct product of k right-angled Artin groups
with defining graphs in K2. Write again N for the maximal rank of an abelian subgroup of
A(Γ). We choose a finite collection of disjoint intervals {J1, . . . , Jk} with nonempty interior
inside of I, and realize a copy of Z ∗ ZN on each Ji, extending by the identity outside of Ji. It
is clear that A(Γ) is thus realized as a subgroup of Diff∞

0 (I). �

6. Lower regularity

In this section, we prove Proposition 1.8. Recall a left order on a group G is a total order ≺
on G such that for all triples a, b, g ∈ G we have a ≺ b if and only if ga ≺ gb. A group is left
orderable if it admits a left order.

Every subgroup of Homeo+(R) is left orderable. Conversely, if G is countable and left
orderable, then there is a faithful action G → Homeo+(R); it can be further required from
the action that for some fixed point x0 ∈ R, whenever g ≺ h we have g(x0) < h(x0). There
exists a standard example of such an action, called a dynamical realization of the given left
order [40].

Note that if ≺ is a left order on a group G, then G also admits the opposite order ≺opp,
where g ≺ h if and only if h ≺opp g. It follows that if g is a nontrivial element of a countable
left orderable group G, then there exists a faithful action of G on R such that x0 < g(x0) for
some x0 ∈ R. We will call an action coming from the opposite order as an opposite action.

Let us now establish Proposition 1.8 for the case M = I:

Proposition 6.1. Let G denote the class of countable subgroups of Homeo+(I). Then G
is closed under countable free products.

Proposition 6.1 also follows from the general fact that if G and H are countable left orderable
groups then so is G ∗H, as was shown in [35, 42]. We are including a proof as the idea will be
needed for Proposition 6.2. Unlike a dynamical realization of G ∗H coming from its natural
left order [16], the construction below may not have a point x0 with trivial stabilizer.

Proof. The proof is based on the idea of [3]. By induction, it suffices to show that if
G1, G2, . . . ∈ G then ∗i�1Gi ∈ G . Since K = 〈{Gi | i � 1}〉 ∈ G and since ∗i�1K � Z ∗K by
the normal form theorem for free products, it suffices to show that if G ∈ G then Z ∗G ∈ G .
We let H = G ∗ Z, and choose countably many disjoint subintervals {Ih}1 �=h∈H of I, each with
nonempty interior.

Let h ∈ H \ 1 be arbitrary. We claim that there exists an action ρh : H → Homeo+(Ih) such
that h �∈ ker ρh. For some gi ∈ G and ri ∈ Z, we can write

h = g�t
r� · · · g1t

r1 .

If h ∈ 〈t〉 or h ∈ G, then the claim is obvious. So, possibly after conjugation we may assume
that ri �= 0 and gi �= 1 for each i.

We choose disjoint closed intervals

{J1, . . . , J�} ⊂ Ih

with nonempty interior, Ji = [pi, qi] and qi < pj for 1 � i < j � 
. For each 1 � i � 
, we choose
an action of G on Ji such that xi < gi(xi) for some xi ∈ Ji.
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We now define an action of t on Ih. We choose 
 disjoint closed intervals

{L1, . . . , L�} ⊂ Ih

of the form Li = [ci, di]. We choose c1 < x0 < p1 and x1 < d1 < g1(x1). For i > 1, we choose
points di−1 < ci < gi−1(xi−1) and xi < di < gi(xi). We now define t on

�⋃
i=1

Li

so that tr1(x0) = x1 and so that tri(gi−1(xi−1)) = xi. Since the {L1, . . . , L�} are disjoint, such
a choice for the definition of t is possible. It is routine to check that x0 < h(x0) = g�(x�). Since
h is not in the kernel of this action, the claim is proved.

By taking disjoint subintervals {Ih}h∈H\1 of R with each Ih equipped with an action of H
by ρh, we obtain the desired embedding

ρ =
∏

h∈H\1
ρh : H →

∏
h∈H\1

Homeo+(Ih) � Homeo+(R) ∼= Homeo+(I).
�

We note from the above proof that the restriction of G on each Ji = [pi, qi] corresponds to
the original action of G, or the opposite action of G. By taking G = Z2, we obtain the following.

Proposition 6.2. There exists an embedding

ρ : 〈a, b, t | [a, b] = 1〉 ∼= Z2 ∗ Z → Homeo+(I)

such that supp ρ(a) and supp ρ(b) are disjoint.

In particular, the C1 hypothesis in Theorem 3.1 cannot be lowered to C0.

7. Complexity of right-angled Artin groups versus diversity of circle actions

In this section, we prove Corollary 1.11. The proof follows easily from the results in [31],
together with Corollary 1.7.

In a joint work with Mj [31], the authors defined a class of finitely generated groups F and
called each group in the class as liftable–flexible. Let us extract the necessary facts which are
demonstrated therein. Recall from the introduction that a projective action of a group is a
representation into PSL(2,R).

Theorem 7.1 (cf. [31, Theorem 1.1]). There exists a class of finitely generated groups F
satisfying the following.

(1) For each G ∈ F , there exist uncountably many distinct semi-conjugacy classes of faithful
projective actions on S1.

(2) Every limit group is in F ; in particular, every free group and every free abelian group
is in F .

(3) If G,H ∈ F , then G ∗H ∈ F .

Lemma 7.2. Let A and B be nontrivial torsion-free finitely generated subgroups such that
B is nonabelian. We assume that A×B � Diff1+bv

+ (S1). Then there exist finite index normal
subgroups A1 �A and B1 �B such that A1 ×B1 has a global fixed point on S1. Furthermore,
the closure of suppA1 is a proper subset of S1.
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Proof. Choose an arbitrary element a ∈ A \ 1. Since the centralizer Z(a) is nonabelian and
A is torsion-free, Lemma 2.8 implies that rotZ(a) ⊆ Q. Since B and a×B are subsets of Z(a),
we see that rot(B), rot(a×B) ⊆ Q. This shows that rot(A×B) ⊆ Q.

For each a ∈ A and b ∈ B, note that

a, b, ab ∈ Z(a).

By Lemma 2.8 (4), it follows that rot(a) + rot(b) = rot(ab). In particular, we have a
homomorphism

rot : A×B → Q.

Since A×B is finitely generated, the image of the above map is finite. So we can find finite
index normal subgroups A1 �A and B1 �B such that every element of A1 ×B1 is grounded.

Let a ∈ A1 \ 1. Since B1 centralizes a, it acts on each component of supp a as an abelian
group; see Lemma 2.6. It follows that B1 preserves the set suppA1 and

suppA1 ∩ supp[B1, B1] = ∅.

Since B1 is nonabelian, we see suppA1 �= S1. It follows that ∂ suppA1 is a global fixed point
of A1 ×B1. �

Proof of Corollary 1.11. (1) If Γ ∈ K2, then A(Γ) is a finite free product of free abelian
groups. Combining parts (2) and (3) of Theorem 7.1, we see A(Γ) is in the class F . The first
part of the same theorem implies the desired conclusion.

(2) Suppose that Γ ∈ K3 \ K2, so that A(Γ) decomposes as a nontrivial direct product
A(Γ1) ×A(Γ2), where at least one of A(Γ1) and A(Γ2) is nonabelian. Say A(Γ2) is nonabelian.
By Lemma 7.2, there exist finite index normal subgroups G�A(Γ1) and H �A(Γ2) such that
G×H has a global fixed point; in particular, A(Γ) has a finite orbit. We put

X = suppG, Y = S1 \X.

Since G is normal in A(Γ) we see that X and Y are A(Γ)-invariant sets of S1, which are proper
by the same lemma. This implies that X and Y have nonempty interiors, and hence A(Γ) does
not have a dense orbit.

(3) This follows immediately from Corollary 1.7. �

We briefly remark that if a group acts on S1 with a global fixed point then it is semi-conjugate
to a trivial action, and if it acts with a periodic point then the action is semi-conjugate to a
rational rotation group. Corollary 1.11 implies that if Γ ∈ K3 \ K2 then A(Γ) admits only
countably many semi-conjugacy classes of faithful actions, and it is not difficult to realize one
semi-conjugacy class for each rational rotation.

Observe that since every right-angled Artin group surjects to Z, every right-angled Artin
group admits uncountably many distinct semi-conjugacy classes of nonfaithful actions on S1,
so only faithful actions are interesting for our purposes.

8. Thompson’s groups

Let F and T be the Thompson’s groups acting on the closed interval and on the circle,
respectively [12]. Recall that these are the groups of piecewise linear homeomorphisms of
the interval and circle, respectively, with dyadic breakpoints and all slopes given by powers of
two. It is known that the standard action of T is conjugate to a C∞ action [21]. The restriction
of such a smooth action yields a smooth action of F on a closed interval. On the other hand,
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the groups F ∗ Z and T ∗ Z do not admit any smooth actions on the circle, or indeed on any
compact one-manifold (cf. Corollary 1.5):

Corollary 8.1. If M is a compact one-manifold, then F ∗ Z and T ∗ Z are not subgroups
of Diff1+bv(M).

Proof. Since F � T , it suffices to prove the corollary for F ∗ Z only. In order to apply
Theorem 1.1, it suffices to show that F × Z � F and that F is not virtually metabelian, whence
the conclusion will be immediate. These claims follow immediately from the well-known facts
that F is not virtually solvable and that F × F � F , and we make these details explicit below
for the reader’s convenience.

Since F is a group of homeomorphisms of the interval, it is immediate that it is torsion-free.
Moreover, conjugating F by the homeomorphism of R given by x �→ x/2 scales F to be the
group of piecewise linear homeomorphisms with dyadic breakpoints and slopes given by powers
of two, only scaled to act on the interval [0, 1/2]. It follows that we may realize F × F � F ,
since we can realize one copy of F on [0, 1/2] and a second one on the interval [1/2, 1], with
the points {0, 1/2, 1} globally invariant. It follows that Z × F � F , since F is torsion-free.

To see that F is not virtually metabelian, we use the standard fact that [F, F ] is an infinite
simple group and that Z(F ) = {1} (cf. [12]). It follows that if H � F is a finite index subgroup
then [F, F ] � H. Since H contains an infinite simple group, it cannot be solvable, much less
metabelian. �
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