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a b s t r a c t

The problem of placing or selecting sensors and control nodes plays a pivotal role in the operation of
dynamic networks. This paper proposes optimal algorithms and heuristics to solve the Simultaneous
Sensor and Actuator Selection Problem (SSASP) in linear dynamic networks. In particular, a sufficiency
condition of static output feedback stabilizability is used to obtain the minimal set of sensors
and control nodes needed to stabilize an unstable network. We then show that SSASP can be
written as a mixed-integer nonconvex problem. To solve this nonconvex combinatorial problem,
three methods based on (i) mixed-integer nonlinear programming, (ii) binary search algorithms, and
(iii) simple heuristics are proposed. The first method yields optimal solutions to SSASP—given that
some constants are appropriately selected. The second method requires a database of binary sen-
sor/actuator combinations, returns optimal solutions, and necessitates no tuning parameters. The
third approach is a heuristic that yields suboptimal solutions but is computationally attractive. The
theoretical properties of these methods are discussed and numerical tests on dynamic networks
showcase the trade-off between optimality and computational time.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Consider an unstable dynamic network of N interconnected
nodes

ẋ(t) = Ax(t)+ Bu(t), y(t) = Cx(t) (1)

where A has at least one unstable eigenvalue; x(t), u(t), and y(t)
collect the state, input, and output vectors for all N nodes. This
paper studies the joint problems of (i) stabilization of dynamic
network (1) through static output feedback control (SOFC) while
simultaneously (ii) selecting/placing minimal number of sensors
and control nodes.

Problem (i) corresponds to finding a control law u(t) = Fy(t)
such that the closed loop system eigenvalues of A + BFC are
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in the left-half plane (Astolfi & Colaneri, 2000). This type of
control is advantageous in the sense that it only requires output
measurements rather than full state information, is analogous to
the simple proportional controller, and can be implemented with-
out an observer or an augmented dynamic system. Problem (ii)
corresponds to finding minimal number of sensors and actuators
(SA) yielding a feasible solution for the static output feedback
(SOF) stabilization problem. The joint formulations of Problems
(i)–(ii) can be abstracted through this high-level optimization
routine

min
Π,Γ,F

N∑
k=1

πk + γk (2a)

s.t. Real(eig(A+ BΠFΓC )) < 0, πi, γj ∈ {0, 1} (2b)

where πi and γj are binary variables selecting the ith actua-
tor and jth sensor; Π and Γ are diagonal matrices containing
all πi and γj. These binary variables post- and pre-multiply B
and C , thereby activating the optimal sensors and control nodes
while designing a SOFC law. Even for small to mid-size dynamic
networks, problem (2) is difficult to solve as the SOFC problem—
without the SA selection—is known to be nonconvex (Crusius &
Trofino, 1999) (conjectured to be NP-hard (Peretz, 2016)), and
the SA selection introduces binary variables thereby accentuating

https://doi.org/10.1016/j.automatica.2019.04.047
0005-1098/© 2019 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.automatica.2019.04.047
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2019.04.047&domain=pdf
mailto:sebastian.nugroho@my.utsa.edu
mailto:ahmad.taha@utsa.edu
mailto:nikolaos.gatsis@utsa.edu
mailto:tyler.summers@utdallas.edu
mailto:ram.krishnan@utsa.edu
https://doi.org/10.1016/j.automatica.2019.04.047


S.A. Nugroho, A.F. Taha, N. Gatsis et al. / Automatica 106 (2019) 124–133 125

the nonconvexity. To that end, the objective of this paper is to
develop optimal algorithms and heuristics to solve Problem (2).
Next, we summarize the recent literature on solving variants
of (2).

Hundreds of studies have investigated the separate problem
of minimally selecting/placing sensors or actuators while per-
forming state estimation or state-feedback control. This paper
studies the joint SA selection in the sense that an observer-based
controller—which invokes the separation principle and requires
a dynamic system module to perform state estimation—is not
needed. For this reason, we do not delve into the literature
of separate sensor or actuator selection. Interested readers are
referred to our recent work (Nugroho, Taha, Summers, & Gatsis,
2018; Taha, Gatsis, Summers, & Nugroho, 2018) for a summary on
methods that solve the separate SA selection problems. The liter-
ature of addressing the simultaneous sensor and actuator selection
problem (SSASP) is summarized next.

Several attempts have been made to address variants of the
SSASP in dynamic networks through the more general dynamic
output feedback control (DOFC) framework. Specifically, the au-
thors in De Oliveira and Geromei (2000) investigate the H2 min-
imization via DOFC with SA selection, in which a reformulated
suboptimal problem in the form of mixed-integer semi-definite
program (MI-SDP) is proposed and solved using a coordinate
descent algorithm. In Argha, Su, Savkin, and Celler (2017), the
SSASP for multi-channel H2 DOFC with regional pole placement
is addressed. In particular, the authors develop a semi-definite
program (SDP) framework and propose a sparsity-promoting al-
gorithm to obtain sparse row/column feedback control matri-
ces. This approach ultimately yields binary SA selection, without
needing binary variables. The same algorithm is then employed
in Singh, Swevers, and Pipeleers (2018) for SSA selection with
simpler H2/H∞ formulations. The SA selection with control con-
figuration selection problem is formulated in Pequito, Kar, and
Pappas (2015) using structural design and graph theory, which is
proven to be NP-hard. Although this particular problem is similar
to the SSASP with SOFC given in (2), the problem proposed in
Pequito et al. (2015), along with the algorithm, are based on
the information of structural pattern of the dynamic matrix. The
limitations of these studies are discussed next.

First, the majority of works (Argha et al., 2017; De Oliveira &
Geromei, 2000; Singh et al., 2018) consider the H2/H∞ control
framework in conjunction with dynamic output feedback which
requires an additional block of dynamical systems to construct
the control action (which is not the case in SOFC). Second, the
work in De Oliveira and Geromei (2000) assumes that the number
of SA to be selected is known a priori, which for certain cases
is not very intuitive. Third, the sparsity-promoting algorithm
proposed in Argha et al. (2017) and Singh et al. (2018) is based
on convex relaxation of the l0 norm—called re-weighted l1 norm—
which is then solved iteratively until the solution converges, thus
making it less suitable for larger dynamic networks. The other
drawback of this method is that arbitrary convex constraints
on the binary selection variables are not intuitive to include.
Finally, the algorithm proposed in Pequito et al. (2015)—which
interestingly runs in polynomial-time if the structure of the dy-
namic matrix is irreducible—only computes the structure and the
corresponding costs of the feedback matrix (along with the sets
of selected SA).

As an alternative to the aforementioned methods, this pa-
per proposes algorithms and heuristics to solve the SSASP for
unstable dynamic networks via SOFC. Specifically, we use a suffi-
ciency condition for SOFC from Crusius and Trofino (1999) which
reduces the SOF control problem—without the SSA selection—
from a nonconvex problem into a simple linear matrix inequality
(LMI) feasibility problem. The developed approaches are based

on MI-SDP, binary search algorithms, and simple heuristics that
use the problem structure to find good suboptimal solutions.
A preliminary version of this work appeared in Nugroho et al.
(2018) where we focus mainly on the MI-SDP approach. Here,
we significantly extend this approach with the addition of binary
search algorithms, heuristics, thorough analytical discussion of
the properties of the developed methods, and comprehensive
numerical experiments. The paper contributions and organization
are discussed as follows.
• First, we formally introduce the SOF stabilizability problem

(Section 2). The SSASP through SOFC is then formulated and
shown to be a nonconvex problem with mixed-integer nonlinear
matrix inequality (MI-NMI) constraints (Section 3). We prove that
the SSASP can be formulated as a MI-SDP, and the equivalence
between the two is shown (Section 4). The MI-SDP, if solved using
combinatorial optimization techniques, yields an optimal solution
to the SSASP.
• As a departure from the MI-SDP approach, we introduce

a routine akin to binary search algorithms that computes an
optimal solution for SSASP—the proof of optimality is given. The
routine requires a database of binary SA combinations (Section 5).
• A heuristic that scales better than the first two approaches

is also introduced. The heuristic is based on constructing a simple
logic of infeasible or suboptimal combinations of SA, while offer-
ing flexibility in terms of the tradeoff between the computational
time and distance to optimality (Section 6). A brief discussion
on the computational complexity as well as thorough numerical
tests showcasing the applicability of the proposed algorithms are
provided (Sections 7 and 8).

The presented algorithms in this paper have their limita-
tions which are all discussed with future work and concluding
marks (Section 9). The online preprint of this paper (Nugroho,
Taha, Gatsis, Summers, & Krishnan, 2018) provides a more thor-
ough discussion on the proposed heuristic algorithm presented in
Section 6.

2. Static output feedback control review

Consider a dynamic network consisting of N nodes/
sub-systems with N = {1, . . . ,N} defining the set of nodes. The
network dynamics are given as

ẋ(t) = Ax(t)+ Bu(t), y(t) = Cx(t). (3)

The state, input, and output vectors on each node i ∈ N are
represented by xi(t) ∈ Rnxi , ui(t) ∈ Rnui , and y i(t) ∈ Rnyi , in
which ui(t) and y i(t) at node i only correspond to that particular
node. The matrices B ∈ Rnx×nu and C ∈ Rny×nx are constructed as
B ≜ Blkdiag(B1, . . . ,BN ) and C ≜ Blkdiag(C1, . . . , CN ) (Blkdiag(·)
forms a block diagonal matrix). This assumption enforces the
coupling among nodes to be represented in the state evolution
matrix A ∈ Rnx×nx . In this paper, we consider the following
assumption and definition for SOF stabilizability.

Assumption 1. The system (3) satisfies the following conditions:
(a) The pair (A,B) is stabilizable; (b) the pair (A, C ) is detectable;
(c) B and C are full rank.

Definition 1. The dynamical system (3) is stabilizable via SOF if
there exists F ∈ Rnu×ny with control law given as u(t) = Fy(t)
such that λ̄Re(A+ BFC ) < 0.

The above definition and assumption are standard in the SOF
control literature (Astolfi & Colaneri, 2000; Kučera & Souza, 1995;
Syrmos, Abdallah, Dorato, & Grigoriadis, 1997) (λ̄Re(·) computes
the maximum value of the real part of eigenvalues of a square
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matrix). The SOF stabilizability problem is equivalent to the fol-
lowing feasibility problem.

Proposition 1 (From Syrmos et al., 1997). The dynamical system (3)
is SOF stabilizable with output feedback gain F ∈ Rnu×ny if and only
if there exists P ∈ Snx

++ such that

A⊤P + PA+ C⊤F⊤B⊤P + PBFC ≺ 0. (4)

In Proposition 1, Snx
++ denotes the set of positive-definite ma-

trices of size nx. Realize that the matrix inequality (4) is non-
convex due to bilinearity in terms of P and F . Thus, instead of
using (4), we consider a sufficient condition proposed in Crusius
and Trofino (1999) as it renders the SOF problem into an LMI
framework—presented in the following proposition.

Proposition 2 (From Crusius & Trofino, 1999). The dynamical sys-
tem (3) is SOF stabilizable if there exist M ∈ Rnu×nu , P ∈ Snx

++,
N ∈ Rnu×ny , and F ∈ Rnu×ny such that the following LMIs are
feasible

A⊤P + PA+ C⊤N⊤B⊤ + BNC ≺ 0, BM = PB, (5)

with SOF gain computed as F = M−1N .

3. Problem formulation

To formulate the SSASP, let γi ∈ {0, 1} and πi ∈ {0, 1} be
two binary variables that represent the selection of SA at node
i of the dynamic networks. We consider that γi = 1 if the
sensor of node i is selected (or activated) and γi = 0 otherwise.
Similarly, πi = 1 if the actuator of node i is selected and πi =

0 otherwise. By defining Π ≜ Blkdiag(π1Inu1 , . . . , πN InuN ) and
Γ ≜ Blkdiag(γ1Iny1 , . . . , γN InyN ), the system dynamics with SA
selection can be formulated as

ẋ(t) = Ax(t)+ BΠu(t), y(t) = ΓCx(t). (6)

The SSASP via SOF stabilizability can be expressed as in (7), which
optimization variables are {π, γ,N ,M, P} with π = [π1, π2, . . . ,

πN ]
⊤, γ = [γ1, γ2, . . . , γN ]

⊤.

SSASP minimize
π,γ,N
M,P

N∑
k=1

πk + γk (7a)

subject to A⊤P + PA+ C⊤ΓN⊤ΠB⊤

+ BΠNΓC ≺ 0 (7b)

BΠM = PBΠ (7c)

Φ

[
π
γ

]
≤ φ (7d)

P ≻ 0, π ∈ {0, 1}N , γ ∈ {0, 1}N . (7e)

Remark 1. The solution of SSASP guarantees that the dynamic
network is stabilized using the minimal number of SA, as the
closed loop stability is ensured by the sufficient condition for the
existence of SOFC given in Proposition 2. This entails that the
closed-loop eigenvalues are all in the left side of jω-axis. If it is
desired to move the closed-loop eigenvalues further away from
the jω-axis, the matrix inequality (7b) can be upper bounded by
−ϵI where ϵ > 0.

Remark 2. Our focus here is to find a SOF control gain that
stabilizes dynamical system (6) with minimum number of SA.
With that in mind, performance metrics such as robustness and
energy cost functions are not considered in SSASP.

In the next sections, π and γ will be used interchangeably
with Π and Γ. Constraints (7b) and (7c) in SSASP are obtained
by simply applying the sufficient condition for SOF stabilizability.
Constraint (7d) is an additional linear logistic constraint which
can be useful to model preferred activation or deactivation of
SA on particular nodes and to define the desired minimum and
maximum number of activated SA. After solving (7), the selected
SA are obtained and represented by {π∗, γ∗}. Due to SSA selection,
the matrix BΠ will most likely not be full column rank, hence the
existence of an invertible matrix M is not assured. This is not the
case when solving (5) due to the fact that B being full column
rank and P ≻ 0 ensure M to be nonsingular—see Lemma 1.
However, if (7) returns M that is invertible, then the SSASP is
solved with SOF gain F to be computed as M−1N . Otherwise, F
can be computed as M̂

−1
N̂ where M̂ and N̂ are the submatrices of

M and N that correspond to activated SA. Proposition 3 ensures
the SOF stabilizability with minimal SA after solving SSASP.

Lemma 1. Let M ∈ Rm×m and P ∈ Snx be the solution of BM = PB
where B ∈ Rnx×m and m ≤ nu. If P ≻ 0 and Rank(B) = m, then M
is invertible.

Proposition 3. Let P , M , N , Π∗, and Γ∗ be the solution of SSASP
with appropriate dimensions. Also, let B̂ ∈ Rnx×m, Ĉ ∈ Rr×nx ,
M̂ ∈ Rm×m, and N̂ ∈ Rm×r , where m ≤ nu and r ≤ ny, be the
matrices (or submatrices) representing the nonzero components of
BΠ∗, Γ∗C , Π∗M , and Π∗NΓ∗ that correspond to activated SA. Then,
the closed loop system A+ B̂F Ĉ is stable with SOF gain F = M̂

−1
N̂ .

See Appendices A and B respectively for the proofs of Lemma 1
and Proposition 3. SSASP (7) is nonconvex due to the presence of
MI-NMI in the form of ΠNΓ and mixed-integer bilinear matrix
equality in (7c). Therefore, it cannot be solved by any general-
purpose mixed-integer convex programming solver. To that end,
we present three approaches that solve or approximate SSASP.

4. SSASP as a MI-SDP

In this section, we present the first approach to solve (7),
which transforms SSASP from a mixed-integer nonconvex prob-
lem to a MI-SDP. The following theorem presents this result.

Theorem 1. SSASP is equivalent to

minimize
π,γ,N ,M

P,Θ

N∑
k=1

πk + γk (8a)

subject to

A⊤P + PA+ C⊤Θ⊤B⊤ + BΘC ≺ 0 (8b)

Ψ1(N ,Θ) ≤ L1∆1(Γ,Π) (8c)

Ψ2(M,Ω(P)) ≤ L2∆2(Π) (8d)

Ψ3(Ξ(P)) ≤ L3∆3(Π) (8e)

P ≻ 0, Φ

[
π
γ

]
≤ φ, π ∈ {0, 1}N , γ ∈ {0, 1}N , (8f)

where (8c),(8d),(8e) are linear constraints in which each function is
specified as

Ψ1(N ,Θ) ≜

⎡⎢⎢⎢⎢⎢⎣
Vec(Θ)
−Vec(Θ)
Vec(Θ)
−Vec(Θ)

Vec(Θ− N )
−Vec(Θ− N )

⎤⎥⎥⎥⎥⎥⎦ (9a)
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∆1(Γ,Π) ≜

⎡⎢⎢⎢⎢⎢⎣
Diag(Iny ⊗Π)
Diag(Iny ⊗Π)
Diag(Γ⊗ Inu )
Diag(Γ⊗ Inu )

Diag(2Inu×ny − Iny ⊗Π− Γ⊗ Inu )
Diag(2Inu×ny − Iny ⊗Π− Γ⊗ Inu )

⎤⎥⎥⎥⎥⎥⎦ (9b)

Ψ2(M,Ω(P)) ≜

⎡⎢⎢⎢⎢⎢⎣
Vec(M)
−Vec(M)
Vec(Ω(P))
−Vec(Ω(P))

Vec(M −Ω(P))
−Vec(M −Ω(P))

⎤⎥⎥⎥⎥⎥⎦ (9c)

∆2(Π) ≜

⎡⎢⎢⎢⎢⎢⎢⎣

Diag(In2u − Inu ⊗Π+Π⊗ Inu )
Diag(In2u − Inu ⊗Π+Π⊗ Inu )
Diag(In2u + Inu ⊗Π−Π⊗ Inu )
Diag(In2u + Inu ⊗Π−Π⊗ Inu )
Diag(2In2u − Inu ⊗Π−Π⊗ Inu )
Diag(2In2u − Inu ⊗Π−Π⊗ Inu )

⎤⎥⎥⎥⎥⎥⎥⎦ (9d)

Ψ3(Ξ(P)) ≜
[

Vec(Ξ(P))
−Vec(Ξ(P))

]
(9e)

∆3(Π) ≜
[
Diag(Inx×nu −Π⊗ Inx )
Diag(Inx×nu −Π⊗ Inx )

]
, (9f)

Ω and Ξ are functions defined as

Ω(P) ≜ (B⊤B)−1B⊤PB (10a)

Ξ(P) ≜ (I − B(B⊤B)−1B⊤)PB, (10b)

Θ ∈ Rnu×ny , is an additional optimization variable, and L1,2,3 > 0
are three predefined, sufficiently large constants.

The proof of Theorem 1 is given in Appendix C. In (9a)–(9f),
Vec(X) returns a stacked pq × 1 column vector of entries of
X ∈ Rp×q, Diag(Y ) returns a n × 1 column vector of diagonal
entries of square matrix Y ∈ Rn×n, ⊗ denotes the Kronecker
product, and In is an n × n identity matrix. Theorem 1 allows
the SSASP to be solved as a MI-SDP, which can be handled using
a variety of optimization methods such as branch-and-bound
algorithms (Gally, Pfetsch, & Ulbrich, 2017; Gamrath et al., 2016),
outer approximations (Lubin, Yamangil, Bent, & Vielma, 2016), or
branch-and-cut algorithm (Kobayashi & Takano, 2018). The next
section presents a departure from MI-SDP to an algorithm that
returns optimal solutions to SSASP, without requiring L1,2,3.

Remark 3. Although (8) is equivalent to SSASP, the quality of the
solution that comes out of (8) is very dependent on the choice of
L1,2,3. This observation is corroborated by numerical test results
discussed in Section 8.

5. Binary search algorithm for SSA selection

In this section we present an algorithm that is similar, in spirit,
to binary search algorithms. The presented algorithm here seeks
optimality for SSASP while not requiring any tuning parameters
such as L1,2,3; see Theorem 1.

5.1. Definitions and preliminaries

In what follows, we provide some needed definitions.

Definition 2. Let Sπ and Sγ be two N-tuples representing the
selection of SA, i.e., Sπ ≜ (π1, . . . , πN ) and Sγ ≜ (γ1, . . . , γN ).
Then, the selection of SA can be defined as S ≜ (Sπ , Sγ ) such that
{Π,Γ} = G(S), Π = Gπ (S), and Γ = Gγ (S) where G : {0, 1}2N →
Rnu×nu × Rny×ny , Gπ : {0, 1}2N → Rnu×nu , and Gγ : {0, 1}2N →

Algorithm 1: Binary Search Algorithm (BSA)

1 initialize: S∗ = (1)2N , p = 1
2 input: Sp, A, B, C
3 while Sp ̸= ∅ do
4 compute: σ ← |Sp|, q← ⌈σ/2⌉, Sq ∈ Sp
5 if Sq is feasible for (5) then
6 S∗ ← Sq, Sp ← Sp \ {S ∈ Sp |H(S) ≥ H(Sq)}
7 else
8 Sp ← Sp \ {S ∈ Sp | Sq ∨ S = Sq}

9 p← p+ 1
10 output: S∗

Rny×ny are linear mappings. The number of nodes with activated
SA is defined as H(S) ≜

∑N
k=1 πk + γk where H : S → Z+.

Definition 3. Let S ≜ {Sq}
σ
q=1 be the candidate set such that

it contains all possible combinations of SA where σ denotes the
number of total combinations, i.e., σ ≜ |S|. Then, the following
conditions hold: (1) for every S ∈ S, S ∈

{
S ∈ {0, 1}2N | G(S) is

feasible for (7d)
}
, (2) for every q where 1 ≤ q ≤ σ , H(Sq−1) ≤

H(Sq).

Definition 4. For any Sq ∈ S such that {Πq,Γq} = G(Sq),
Bq and Cq are defined as the matrices containing the nonzero
components of BΠq and ΓqC that correspond to the activated SA.
Then, we say that Sq is feasible for (5) if and only if the triplet
(A,Bq, Cq) is feasible for (5).

The following example shows how the candidate set S is
constructed for a given simple logistic constraint.

Example 1. Suppose that the dynamical system has two nodes. If
the logistic constraint dictates that 1 ≤ H(S) =

∑2
k=1 πk+γk < 4,

then S1 can be constructed as

S1 = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 1, 0, 0),
(1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1),
(1, 1, 1, 0), (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1)}.

5.2. Binary search algorithm to solve SSASP

The objective of this algorithm is to find an optimal solution
S∗ ∈ S such that H(S∗) ≤ H(S) for all S ∈ V where V ≜ {S ∈
S | S is feasible for (5)}—that is, for any S ∈ V , there exist a
corresponding feedback gain F that stabilizes dynamical system
(6). Realize that any Sq ∈ V , (A,Bq, Cq) is feasible for SSASP with
objective function value equal to H(Sq).

The routine to solve SSASP based on binary search algorithm
is now explained and summarized in Algorithm 1. Let p be the
index of iteration and q be the index of position in the ordered set
S. Hence at iteration p, the candidate set containing all possible
combinations of SA can be represented as Sp, with σ = |Sp| (the
cardinality of Sp), and any element of Sp at position q can be
represented by Sq. Also, let S∗ be the solution at iteration p.

Next, obtain Sq where Sq ∈ Sp, q = ⌈σ/2⌉, and ⌈·⌉ denotes
the ceiling function. In this step, we need to determine whether
system (6) is SOF stabilizable with the particular combination of
SA {Πq, Γq} = G(Sq). To that end, we solve the LMIs (5). If Sq is
feasible for (5), then update S∗ ← Sq. Since Sq is feasible, then
we can discard all combinations that have more or equal number
of activated SA, i.e., the combinations that are suboptimal. Other-
wise, if Sq is infeasible for (5), Sq can be discarded along with all
combinations that (a) have less number of activated SA than Sq



128 S.A. Nugroho, A.F. Taha, N. Gatsis et al. / Automatica 106 (2019) 124–133

and (b) the activated SA are included in Sq. Realize that the above
method reduces the size of Sp in every iteration since one or more
elements of Sp are discarded. The algorithm now continues and
terminates whenever Sp = ∅. The details of this algorithm are
given in Algorithm 1. Example 2 gives an illustration how Sp is
constructed in every iteration.

Example 2. Consider again the dynamic system from Example 1.
Let (1, 0, 0, 1) be the starting combination and assume that it is
infeasible for (5). Then, by Algorithm 1, the set {(1, 0, 0, 0), (0, 0,
0, 1)} is removed from S1, which gives S2 = S1\{(1, 0, 0, 0), (0, 0,
0, 1)}. Let (0, 1, 0, 1) be the new starting point. If we assume that
it is feasible for (5), then by Algorithm 1, the suboptimal candi-
dates of SA can be discarded such that S3 = {(0, 1, 0, 0), (0, 0, 1,
0)}. This algorithm continues in a fashion similar to the above
routine. If none of these combinations in S3 is feasible, then
Algorithm 1 returns S∗ = (0, 1, 0, 1) as the solution.

In what follows, we discuss the optimality of Algorithm 1
through Theorem 2—see Appendix D for the proof.

Theorem 2. Algorithm 1 yields an optimal solution of SSASP.

Remark 4. S∗ from Algorithm 1 might not be unique. This is
the case since there could be multiple binary combinations of SA
yielding the same number of activated SA and hence the same
objective function value

∑N
k=1 πk + γk.

6. Heuristics to solve SSASP

The binary search algorithm in the previous section requires
the construction of the candidate set S in an off-line database,
while leading to an optimal solution for the SSASP. Seeking opti-
mality and constructing an off-line database might be impractical
for large-scale dynamic networks. Moreover, the other approach
presented in Section 4 entails solving (8), a MI-SDP, which might
consume large computational resources. This motivates the de-
velopment of a heuristic for the SSASP that forgoes optimality. In
short, the heuristic builds a dynamic, virtual database of all pos-
sible combinations—not by generating all of these combinations,
but by having a procedure that identifies suboptimal/infeasible
candidates—while attempting to find a SA combination that has
the least number of activated SA that makes system (6) SOF
stabilizable.

We now introduce the details of the heuristic. Define W ≜{
S ∈ {0, 1}2N | G(S) is not feasible for (7d)

}
. Since we are inter-

ested in finding a candidate S that is feasible for (5), we just
need to check whether S /∈W using the logistic constraint (7d).
Next, from the logistic constraint (7d), we define w ≜ min(H(S))
and w̄ ≜ max(H(S)) for all S /∈ W . That is, w and w̄ represent
the required minimum and maximum number of activated SA
so that any candidate S /∈ W must satisfy w ≤ H(S) ≤ w̄.
More importantly, w and w̄ can also be used to bound the search
space of a potential candidate S. In contrast with Algorithm 1,
the heuristic constructs and updates—in each iteration—a set that
contains combinations of SA that are known to be infeasible
for (7). This finite set is referred to as the forbidden set and
symbolized by Z . Clearly, W ⊆ Z . Thus, any candidate S must
not belong in Z because any S ∈ Z is infeasible for (5) and/or
S ∈ W . To get a potential candidate S for this heuristic, we can
randomly generate S such that S /∈ Z .

The heuristic is described as follows and summarized in
Algorithm 2. First, from the logistic constraint, w, w̄, and Z are
initialized. Let p denote the iteration index and q = ⌈(w+ w̄)/2⌉

Algorithm 2: Heuristic to Solve SSASP

1 initialize: S∗ = (1)2N , Z =W , w, and w̄

2 set: t = 1, p = 1, q = ⌈(w + w̄)/2⌉
3 input: maxIter, maxInfeasibility
4 while p ≤ maxIter and w ≤ q ≤ w̄ do
5 while p ≤ maxIter and t ≤ maxInfeasibility do
6 compute: S(q)

p /∈ Z from Algorithm 3
7 if S(q)

p ̸= (0)2N then
8 if (5) is feasible then
9 S∗ ← S(q)

p , w̄← q− 1, t ← 1, p← p+ 1
10 break
11 else
12 Z ← Z ∪ {S(q)

p }, t ← t + 1, p← p+ 1

13 else
14 t ← 1
15 break

16 if t > maxInfeasibility then
17 q← ⌈(q+ w̄)/2⌉, t ← 1
18 else
19 q← ⌈(w + w̄)/2⌉

20 output: S∗

Algorithm 3: Candidate Generation

1 initialize: S(q)
p = (0)2N , r = 1

2 input: p, q, w
3 while r ≤ maxRandom do
4 Randomly generate S with H(S) = q
5 if S /∈ Z then
6 S(q)

p ← S
7 break
8 else
9 r ← r + 1

10 if r > maxRandom then
11 w← q+ 1

12 output: S(q)
p , w

denote the desired number of activated SA for the candidate S
such that H(S) = q. Then, a candidate at iteration p with q
number of activated SA can be denoted by S(q)

p . The next step is
to generate a candidate S(q)

p such that S(q)
p /∈ Z . As mentioned

earlier, one simple method to obtain S(q)
p is to randomly generate

S with q number of activated SA such that S /∈ Z—see Algorithm
3 for the detailed steps. If such candidate cannot be obtained after
some combinations of SA have been randomly generated, then
S(q)
p ← (0)2N . When this happens, we can assert that the majority

of combinations of SA with q or less than q number of activated
SA most likely belong to the forbidden setZ . Given this condition,
the required minimum number of activated SA can then be
increased and updated. If S(q)

p is nonzero, then we must check
whether S(q)

p is feasible for (5). If S(q)
p is feasible for (5), we update

S∗ ← S(q)
p ; otherwise, update the forbidden set so that Z ←

Z ∪ {S(q)
p }. Unlike Algorithm 1, here we define maxInfeasibility

that allows (5) to be solved repeatedly with different candidates
while having the same number of activated SA. This process is
repeated until there exists a candidate that makes (5) feasible or
maxInfeasibility is reached. If (5) is still infeasible, we increase
the required number of activated SA for the next candidate,
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hoping that adding more activated SA will increase the chance
for (5) being feasible. The algorithm continues and terminates
when maximum iteration, denoted by maxIter, is reached or
there is no more candidates that can be generated. At the end of
Algorithm 2, the best suboptimal combination of SA is given as
S∗.

The algorithm in its nature allows the trade-off between
the computational time and distance to optimality. This trade-
off can be designed via selecting large values for maxRandom,
maxInfeasibility, and maxIter. The parameter maxIter depends on
how the user is willing to wait before the algorithm terminates,
maxRandom imposes an upper bound on how many times a
random SA candidate S is generated such that it is does not
belong to the forbidden set. Finally, maxInfeasibility defines how
many LMI feasibility problems are solved with a fixed number of
activated SA.

7. Discussion on computational complexity

To discuss the computational complexity of the developed
approaches, we start by discussing that of LMIs/SDPs. Primal–dual
interior-point methods for SDPs have a worst-case complexity
estimate of O

(
m2.75L1.5

)
, where m is the number of variables

and L is the number of constraints (Boyd, El Ghaoui, Feron, &
Balakrishnan, 1994). The number of variables and constraints
in (5) are

m = 0.5nx(nx + 1)  
entries in P

+ nuny
entries in N

+ n2
u

entries in M

(11a)

L = 0.5nx(nx + 1)  
matrix inequality constraints

+ nxnu
equality constraints

. (11b)

In various problems arising in control systems studies, it is
shown that the complexity estimate is closer to O

(
m2.1L1.2

)
which is significantly smaller than the worst-case estimate
O

(
m2.75L1.5

)
(Boyd et al., 1994). Hence, the complexity estimate

for the LMIs is O
(
n4.2
x n2.4

x

)
= O

(
n6.6
x

)
, since typically nx > nu

and nx > ny in dynamic networks. Admittedly, these figures are
outdated now as many advancements in interior-point methods
are often implemented within newer versions of SDP solvers.
Given that, the first approach in Theorem 1 entails solving the MI-
SDP. Unfortunately, the worst-case complexity of solving MI-SDPs
through branch-and-bound is O

(
22Nn6.6

x

)
as there are 2N SSA

decision variables (for a network comprising N nodes). However,
as branch-and-bound solvers almost always terminate way before
trying all combinations, it is very difficult to obtain the best-case
performance for this approach.

The second approach, namely Algorithm 1, entails solving
a LMI feasibility problem at each iteration. The best case per-
formance of this algorithm occurs when a feasible solution is
always obtained for the LMI at each iteration of Algorithm 1.
This yields a logarithmic reduction in the number of candidate
optimal solutions. Hence, the best case complexity of running
Algorithm 1 is of O

(
log(22N ) n6.6

x

)
= O

(
N n6.6

x

)
= O

(
n7.6
x

)
. The

worst-case performance of Algorithm 1 occurs when the LMI
returns an infeasible solution at each iteration, which is hard
to quantify. Unfortunately, it is virtually impossible to upper
or lower bound the number of these combinations as this is
system-dependent. Algorithm 2 also entails either solving an LMI
feasibility problem, while depending on a maximum iteration
number and thresholds. The computational complexity hence
depends on the user-defined maximum iteration number and
thresholds which is hard to estimate here.

8. Numerical experiments

Numerical experiments are presented here to test the pro-
posed approaches on two dynamic networks. The first system
is a random dynamic network adopted from Motee and Jad-
babaie (2008) and Jovanović (0000), whereas the second is a
mass–spring system (Lin, Fardad, & Jovanović, 2013). Both sys-
tems are initially unstable; the latter has a sparser structure
than the former. All simulations are performed using MATLAB
R2016b running on a 64-bit Windows 10 with 3.4 GHz Intel Core
i7-6700 CPU and 16 GB of RAM. All optimization problems are
solved using MOSEK version 8.1 (Andersen & Andersen, 2000)
with YALMIP (Löfberg, 2004). All the MATLAB codes used in the
paper are available for the interested reader upon request.

8.1. Comparing the proposed algorithms

In the first part of our numerical experiment, we focus on
testing the performance of the approaches to solve SSASP on a
relatively small dynamic network where optimality for the SSASP
can be determined. Specifically, we consider the aforementioned
random dynamic network with 10 subsystems, with two states
per subsystem, so that 10 sensors and 10 actuators are available.
Each sensor measures the two states per subsystem. We impose
a logistic constraint so that there are at least one sensor and one
actuator to be activated:

∑N
i πi ≥ 1 and

∑N
j γj ≥ 1. In this

particular experiment, the following scenarios are considered.

1. MI-SDP-1: The first scenario uses the results from
Theorem 1 that is solved via YALMIP’s MI-SDP branch and
bound (BnB) solver (Integer Programming, 2015). We set
L1 = 104, L2 = 5× 106, and L3 = 5× 106.

2. MI-SDP-2: The second scenario is identical to the first one
with the exception that L1 = 104, L2 = 107, and L3 = 107.
This scenario shows the impact of L1,2,3 on the performance
of the MI-SDP approach.

3. BSA: The third scenario directly follows Algorithm 1 and
solves (5) in each iteration to check the feasibility of the
given SA combinations, while also computing the SOF gain
matrix from the solution of LMI (5).

4. HEU: The fourth scenario implements the heuristic
(Algorithm 2). The parameters of the heuristic in this sce-
nario are maxRandom = 104, maxInfeasibility = 10,
and maxIter = 50. Since the proposed heuristic entails
randomizations to generate SA candidates, we perform
500 randomizations. Then, from these randomizations, the
mean values are computed.

Table 1 presents the result of this test. All scenarios success-
fully return solutions with stable closed-loop system eigenvalues.
The MI-SDP approach yields the optimal solution as discussed in
Theorem 1 and confirmed by BSA and Theorem 2. While MI-SDP-
1 returns an optimal solution with a smaller computational time
in comparison with BSA, the former is dependent on the choice
of L1,2,3. MI-SDP-2 solves the same problem for different values of
L1,2,3 and yields 5 activated SA—clearly a suboptimal solution. BSA
here is advantageous in the sense that it does not require tuning
to find the appropriate constants L1,2,3. Also, BSA requires only an
LMI solver, instead of a BnB solver for the MI-SDP. Out of the 500
randomizations, the heuristic yields an average of 3.42 activated
SA as shown in Table 1. The HEU hence surprisingly yields optimal
solutions with 3 activated SA in the majority of randomizations,
while requiring a smaller computational time in comparison with
BSA and a comparable computational time with the MI-SDP while
not requiring any tuning for L1,2,3.

Secondly, to find out how our methods perform on a larger
system, we test our MI-SDP and heuristic (Algorithm 2) to solve
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Table 1
Numerical test results on random network with N = 10, nx = 20, nu = 10 and ny = 20. The symbol ∆t(s) represents the computational time measured in seconds.
All methods successfully return a stable closed loop system, albeit close to the jω-axis; see Remark 1. The number of iterations for the MI-SDP corresponds to the
BnB solver in YALMIP.
Scenario λ̄Re(A+ BΠ∗FΓ∗C ) ∆t(s) Iterations

∑
k πk + γk γ∗ and π∗

MI-SDP-1 −4.78× 10−3 24.2 187 3 γ∗ = {0, 0, 0, 0, 0, 0, 1, 0, 0, 0}, π∗ = {0, 0, 0, 0, 0, 1, 0, 0, 0, 1}
MI-SDP-2 −6.71× 10−3 13.3 82 5 γ∗ = {1, 1, 0, 0, 0, 0, 0, 0, 0, 0}, π∗ = {0, 1, 0, 0, 1, 0, 0, 0, 0, 1}
BSA −2.69× 10−3 61.8 198 3 γ∗ = {0, 0, 0, 0, 1, 0, 0, 0, 0, 0}, π∗ = {1, 0, 0, 0, 0, 1, 0, 0, 0, 0}
HEUa

−1.65× 10−3 27.4 50 3.42b γ∗ = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0} , π∗ = {1, 0, 0, 0, 0, 1, 0, 0, 0, 0}

aThe displayed values are mean values of 500 randomizations. The corresponding binary configurations of SA are taken from the first randomization. All of the 500
randomizations return stable closed loop system.
bOut of the 500 randomizations, 294 return 3 activated SA, 198 return 4, and 8 randomizations return 5.

Table 2
Results for the MI-SDP and heuristic with N = 50, nx = 100, nu = 50, ny = 100.

Method λ̄Re(A+ BΠ∗FΓ∗C ) ∆t(s)
∑

k πk + γk

MI-SDP −7.59× 10−3 13749.9 9
Heuristic −1.68× 10−2 6181.5 17.39a

aOut of the 10 randomizations, 4 return 3 activated SA while the remaining 6
return various number of activated SA each ranging from 11 to 23.

a larger random dynamic network consisting 50 subsystems with
nx = 100, nu = 50, and ny = 100. For MI-SDP, we set a maximum
of 1000 iterations for the BnB solver. As for heuristic, we perform
10 randomizations with maxRandom = 106,maxInfeasibility =
10, and maxIter = 200. The result of this experiment is sum-
marized in Table 2. The MI-SDP via BnB algorithm returns 9
activated SA in total (3 sensors and 6 actuators) while requiring
112 iterations and 1.38 × 104 s ≈ 3.8 h of computational time
which we presume is the optimal solution. On the other hand, we
obtain an average of 17.39 activated SA with 6.18×103 s ≈ 1.7 h
of average computational time. Realize that the total available
SA are 50 sensors and 50 actuators, which implies that there are
2100
≈ 1.26×1030 combinations of SA. With the average number

of activated SA being relatively small compared to the number
of available SA, we conclude that the heuristic produces a rea-
sonably good solution—in comparison with the MI-SDP solution.
This experiment demonstrates the tradeoff between MI-SDP and
heuristic.

8.2. Comparative study with dynamic output feedback

In the second part of the numerical experiment, we consider
the mass–spring systems from Lin et al. (2013) of various sizes to
measure the performance of our heuristic (Algorithm 2) relative
to the other method by comparing it with the sparsity promoting
algorithm (SPA) for H∞ dynamic output feedback developed in
Singh et al. (2018). The heuristic algorithm is configured in a
way such that maxRandom = 106, maxInfeasibility = 10, and
maxIter = 200. For each number of nodes N , we perform 10
randomizations for the heuristic in which the mean value of
maximum real part of closed loop eigenvalues, computational
time, and the number of activated SA are computed accordingly.
The SPA is set up so that the maximum iteration number is 50 and
the convergence tolerance is 0.5. The results are given in Table 3.

From this experiment, we observe that both methods are able
to give stable closed-loop systems with the heuristic returning
fewer activated SA than SPA. The computational time of the
heuristic is significantly faster than SPA’s and the latter returns
many more activated SA. For example, if we consider the partic-
ular case of N = 50, the heuristic returns 2.30 of activated SA on
average, while SPA returns 26. These findings, however, should
not conflated with the objectives of the H∞ and SOFC meth-
ods, seeing that both methods consider different control metrics

Table 3
Numerical comparison results between the heuristic and SPA with mass–spring
systems. Notations: Acl = A + BΠ∗FΓ∗C ; Ãcl denotes the overall closed-loop
dynamics matrix of the plant with DOFC; and Σ =

∑N
k=1 πk + γk .

N Heuristic SPA

λ̄Re(Acl) ∆t(s) Σ λ̄Re(Ãcl) ∆t(s) Σ

10 −3.3× 10−3 6.9 2 −2.7× 10−1 10.4 10
20 −4.6× 10−4 19.5 2 −3.4× 10−1 129.1 20
30 −1.5× 10−4 98.9 2 −8.2× 10−2 1383.4 24
40 −6.1× 10−5 406.0 2 −2.6× 10−1 3844.7 40
50 −2.3× 10−5 1736.7 2.30 −5.8× 10−2 28513.9 26

(static output feedback considers pure stabilization whereas dy-
namic output feedback with H∞ control considers robustness)
with complexity. The results shown here are meant to give an
indication that when robustness is considered as a metric through
DOFC and SA selection, the corresponding problem requires more
computational time, the activation of more SA, yet returns a
closed-loop system that is more robust to disturbances.

9. Summary, limitations, and future directions

In this paper, we propose computational methods to solve
the simultaneous sensor and actuator selection problem (SSASP)
through static output feedback control framework. Three dif-
ferent approaches to obtain the minimal selection of activated
SA that yield stable closed-loop systems are proposed. The first
approach utilizes disjunctive programming principles and linear
algebra techniques to convert the mixed-integer nonconvex prob-
lem into a MI-SDP. The second approach uses a simple algorithm
that is akin to the binary search algorithm. The third approach is
a simple heuristic that constructs a dynamic data structure with
infeasible combinations.

The first two approaches yield optimal solutions for the SSASP,
while the third yields suboptimal results while resulting in an
improved computational time. In particular, the first approach
requires finding suitable constants, namely L1,2,3, to obtain an
optimal solution to the MI-SDP and hence the SSASP. This is for
combinatorial optimization problems that use the Big-M method
or the McCormick Relaxation. The second optimal approach re-
quires efficient data structures to store and update the feasible
combinations of sensors and actuators, without requiring any
tuning parameters. The third approach is suitable for larger net-
works as it trades optimality with improved computational time.
It is noteworthy to mention that the second and third algorithms
only require an LMI solver making it easier to interface with
without the need to install any additional optimization packages
or tune any parameters.

The limitations of the proposed methods in this paper are
listed as follows. First, we do not consider any robustness or en-
ergy metrics through SOFC and SSASP. For example, an interesting



S.A. Nugroho, A.F. Taha, N. Gatsis et al. / Automatica 106 (2019) 124–133 131

extension can capture the minimal SA selection alongside design-
ing energy-aware and robust output feedback control laws for
the activated nodes. Second, our approach still requires solving
LMIs. Albeit the LMIs solved in this paper are simple with few
optimization variables and only one block, and while the selec-
tion/placement problem can be performed offline, the proposed
approaches do not scale graciously when large-scale dynamic
networks with tens of thousands of nodes are studied.

To that end, future work will focus on addressing the afore-
mentioned paper’s limitations by deriving SOFC energy and ro-
bustness metrics with the SSASP, and consequently examining
the performance of the presented algorithms in this paper. Fur-
thermore, and to address the computational burden of solving
many LMIs, we plan to investigate algebraic conditions on the
existence of SOFC given a fixed SA selection. The idea here is to
avoid solving LMI feasibility problem at each iteration. Instead,
we can learn the feasibility of specific SA selection using these
algebraic conditions. Finally, and instead of solving the MI-SDP
form of SSASP using the classical BnB algorithm, we plan to
test the performance of the outer approximations (Lubin et al.,
2016) and the branch-and-cut algorithm (Kobayashi & Takano,
2018)—as these approaches have shown significant savings for
the computational time when compared with the classical BnB
methods.
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Appendix A. Proof of Lemma 1

Proof. Let M , P , and B satisfy BM = PB. Then, suppose that
P ≻ 0 and Rank(B) = m. Since B is full column rank, B⊤B is non-
singular. Premultiplying both sides of BM = PB with B⊤ yields
B⊤BM = B⊤PB, which is equivalent to M = (B⊤B)−1B⊤PB. Since
P ≻ 0 and Rank(B) = m, by Horn and Johnson (2013, Observation
7.1.8), we have B⊤PB ≻ 0. Thus M−1 = (B⊤PB)−1B⊤B. ■

Appendix B. Proof of Proposition 3

Proof. Without loss of generality, BΠ∗ and C⊤Γ∗ can be ex-
pressed as BΠ∗ =

[
B̂ O

]
and C⊤Γ∗ =

[
Ĉ
⊤

O
]
. Then, M and

N can be partitioned as

M =
[
M1 M2
M3 M4

]
, N =

[
N1 N2
N3 N4

]
,

where M1 ∈ Rm×m and N1 ∈ Rm×r . By letting N̂ = N1, (7b) can
be expressed as

A⊤P + PA+
[
Ĉ
⊤

O
][

N̂
⊤

N⊤3
N⊤2 N⊤4

][
B̂
⊤

O

]
+

[
B̂ O

] [
N̂ N2
N3 N4

][
Ĉ
O

]
≺ 0

⇔ A⊤P + PA+ Ĉ
⊤

N̂
⊤

B̂
⊤

+ B̂N̂ Ĉ ≺ 0. (B.1)

Since (7b) is feasible for P and N , then (B.1) is also feasible.
Similarly, letting M̂ = M1 allows (7c) to be[
B̂ O

] [
M̂ M2
M3 M4

]
=P

[
B̂ O

]
⇔

[
B̂M̂ B̂M2

]
=

[
PB̂ O

]
. (B.2)

Realize that (B.2) holds since we assume that (7c) holds. From
(B.2), we have B̂M̂ = PB̂. Since B̂ is full column rank and P ≻ 0,
by Lemma 1, M̂ is nonsingular. Finally, having P ≻ 0, M̂ , and N̂
that satisfy (B.1) and B̂M̂ = PB̂, then according to Proposition 2,
the closed loop system A+ B̂F Ĉ is stable with F = M̂

−1
N̂ . ■

Appendix C. Proof of Theorem 1

Proof. Let (ΠNΓ)ij be the (i, j) element of ΠNΓ and
{
πi, γj

}
be

the associated SA selection that corresponds to (ΠNΓ)ij. Then,
there exists Θ ∈ Rnu×ny such that Θ = ΠNΓ. This relation is
established as follows. Realize that, as Π and Γ are symmetric
diagonal matrices with binary values, we can write (ΠNΓ)ij as

(ΠNΓ)ij =
{
N ij, if πi ∧ γj = 1
0, if πi ∧ γj = 0.

for i = 1, . . . , nu and j = 1, . . . , ny. That is, if
{
πi, γj

}
= {1, 1},

then N ij = Θij. Otherwise, N ij ∈ R andΘij = 0. For an appropriate
large constant L1, this is equivalent to

|Θij| ≤ L1πi, |Θij| ≤ L1γj

|Θij − N ij| ≤ L1(2− πi − γj),

where |·| denotes the absolute value function. The above equa-
tions can be represented as Ψ1(N ,Θ) ≤ L1∆1(Γ,Π) where
Ψ1(N ,Θ) and ∆1(Γ,Π) are given in (9a) and (9b). This estab-
lishes (8c). Consequently, ΠNΓ in (7b) can be replaced with Θ,
giving (8b). Now, pre-multiplying both sides of (7c) with BB† (B†

denotes the pseudoinverse of B) and, since BB†B = B, we obtain

BB†BΠM = BB†PBΠ (C.1a)

⇔ BΠM = BB†PBΠ. (C.1b)

Since B is full column rank, B† can be expressed as B†
=

(B⊤B)−1B⊤. Then by the same reason, (C.1b) implies

ΠM = B†PBΠ⇔ ΠM = (B⊤B)−1B⊤PBΠ. (C.2)

By using the definition of Ω(P) given in (10a), allows (7c) to be
replaced by ΠM = Ω(P)Π. Next, consider ΠiM ij = Ω(P)ijΠj as
the (i, j) element of ΠM = Ω(P)Π. Then, we have

ΠiM ij = Ω(P)ijΠj ⇔ ΠiM ij −ΠjΩ(P)ij = 0, (C.3)

such that

(C.3) ⇔

⎧⎪⎪⎨⎪⎪⎩
M ij = Ω(P)ij, if πi = 1, πj = 1
M ij = 0,Ω(P)ij ∈ R, if πi = 1, πj = 0
M ij ∈ R,Ω(P)ij = 0, if πi = 0, πj = 1
M ij,Ω(P)ij ∈ R, if πi = 0, πj = 0.

for all i, j = 1, . . . , nu. For an appropriate large constant L2, the
above is equivalent to

|M ij| ≤ L2(1− πi + πj), |Ω(P)ij| ≤ L2(1+ πi − πj)
|M ij −Ω(P)ij| ≤ L2(2− πi − πj),

that can be expressed as Ψ2(M,Ω(P)) ≤ L2∆2(Π) in which
Ψ2(M,Ω(P)) and ∆2(Π) are given in (9c) and (9d). This estab-
lishes (8d). Finally, since the left-hand side of (7c) and (C.1b) are
equal, then (Skelton, Iwasaki, & Grigoriadis, 2013, Theorem 2.3.1)

PBΠ = BB†PBΠ⇔ PBΠ = B(B⊤B)−1B⊤PBΠ

⇔ O = (I − B(B⊤B)−1B⊤)PBΠ. (C.4)

By using the definition of Ξ(P) as in (10b), we get Ξ(P)Π = O.
Let Ξ(P)ijΠj be the (i, j) element of Ξ(P)Π. Then, this constraint
is equivalent to

Ξ(P)ijΠj = 0⇔
{
Ξ(P)ij = 0, if πj = 1
Ξ(P)ij ∈ R, if πj = 0,
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for i = 1, . . . , nx and j = 1, . . . , nu. For an appropriate large
constant L3, the above is equivalent to |Ξ(P)ij| ≤ L3(1− πj) such
that we obtain Ψ3(Ξ(P)) ≤ L3∆3(Π), where Ψ3(Ξ(P)) and ∆3(Π)
are given in (9e) and (9f). This establishes (8e).

The equivalence between (7) and (8) is now summarized. For
any feasible {π, γ,N ,M, P} that satisfies (7), by constructing Θ

such that Ψ1(N ,Θ) ≤ L1∆1(Γ,Π) for a sufficiently large L1,
we get ΠNΓ = Θ. Substituting ΠNΓ = Θ into (7b) yields
(8b). Next, since B is full column rank, B⊤B is nonsingular. By
using the Moore–Penrose pseudoinverse of B given as B†

=

(B⊤B)−1B⊤, pre-multiplying both sides of (7c) with BB† yields
(C.2). By computing Ω(P) using (10a) such that ΠM = Ω(P)Π, we
get M and Ω(P) satisfy Ψ2(M,Ω(P)) ≤ L2∆2(Π) for a sufficiently
large L2. Then, Ξ(P) can be computed as (10b). Since we have
(C.4), Ξ(P) must satisfy Ψ3(Ξ) ≤ L3∆3(Π) for a large constant
L3. Therefore, {π, γ,N ,M, P,Θ,Ω(P),Ξ(P)} is feasible for (8).
Conversely, given sufficiently large constants L1, L2, and L3, we
always have Θ = ΠNΓ , ΠM = Ω(P)Π with Ω(P) satisfying
(10a), and Ξ(P)Π = O with Ξ(P) satisfying (10b) for any feasible
{π, γ,N ,M, P,Θ,Ω(P),Ξ(P)} that satisfies (8). Substituting Θ =

ΠNΓ into (8b) and (10a) into ΠM = Ω(P)Π yield (7b) and
ΠM = (B⊤B)−1B⊤PBΠ. The fact that B being full column rank
implies (B⊤B)−1B⊤ = B† so that we have ΠM = B†PBΠ.
Then, pre-multiplying both sides of ΠM = B†PBΠ with B yields
BΠM = BB†PBΠ. Then, substituting (10b) into Ξ(P)Π = O
yields (C.4), which implies that BB†PBΠ = PBΠ and finally
BΠM = PBΠ, which is (7c). Hence, {π, γ,N ,M, P} is feasible
for (7). This completes the proof. ■

Appendix D. Proof of Theorem 2

Proof. Assume that V ̸= ∅ (that is, SSASP has a solution) and
Sp be the candidate set at iteration p and Sq ∈ Sp with q =
⌈σ/2⌉ and σ = |Sp|. Also, let S∗p be the best known solution
at iteration p. If Sq is infeasible for (5), then S∗p = S∗p−1 and,
considering that for practical systems, if a set of selected sensors
or actuators renders (5) infeasible, then a subset thereof should
also render (5) infeasible, the candidate set is updated such that
Sp+1 = Sp \ {S ∈ Sp | Sq ∨ S = Sq}. However, assume that Sq is
feasible for (5), then according to Algorithm 1, S∗p = Sq. In this
case, for all S ∈ Up where Up ≜ {S ∈ Sp |H(S) ≥ H(Sq)}, we
have H(S∗p ) ≤ H(S). However, since Vp ⊆ Up where Vp ≜ {S ∈
Up | S is feasible for (5)}, we have H(S∗p ) ≤ H(S) for all S ∈ Vp.
Then, the candidate set is updated such that Sp+1 = Sp \ Up and
the algorithm proceeds. Accordingly, σ and q are updated such
that σ = |Sp+1| and q = ⌈σ/2⌉. If Sq is infeasible for (5), where
Sq ∈ Sp+1, then S∗p+1 = S∗p . Nonetheless, if Sq is feasible for (5),
then according to Algorithm 1, S∗p+1 = Sq.

In the latter case, we have the fact that H(S∗p+1) < H(S∗p ) since
H(S) < H(Ŝ) for all S ∈ Sp+1 and Ŝ ∈ Sp. This shows that at any
iteration we have H(S∗p+1) ≤ H(S∗p ). Let l denote the index of last
iteration. This implies that the sequence (H(S∗p ))

l
p=1 is decreasing.

Therefore, when Sl = ∅, H(S∗l ) ≤ H(S) for all S ∈ V . This shows
that Algorithm 1 computes an optimal solution of SSASP. ■
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