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Abstract

We present online boosting algorithms for
multiclass classification with bandit feed-
back, where the learner only receives feed-
back about the correctness of its prediction.
We propose an unbiased estimate of the loss
using a randomized prediction, allowing the
model to update its weak learners with lim-
ited information. Using the unbiased esti-
mate, we extend two full information boost-
ing algorithms (Jung et al., 2017) to the ban-
dit setting. We prove that the asymptotic
error bounds of the bandit algorithms ex-
actly match their full information counter-
parts. The cost of restricted feedback is re-
flected in the larger sample complexity. Ex-
perimental results also support our theoreti-
cal findings, and performance of the proposed
models is comparable to that of an existing
bandit boosting algorithm, which is limited
to use binary weak learners.

1 INTRODUCTION

We study the online multiclass classification problem
with bandit feedback. In this setting, the data in-
stances arrive sequentially, and the learner has to pre-
dict the label among a finite, but perhaps large, set
of candidates. In certain practical settings, such as
when the labels are ads or product recommendations
on the web, the learner does not receive the correct
label as feedback. Instead, it only receives feedback
about whether its predicted label was correct (e.g., the
user clicked on the ad or recommendation) or not (e.g.,
user did not click). However, training machine learn-
ing models under such partial feedback is challenging.
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A common approach is to convert a full information
algorithm into a bandit version without incurring too
much performance loss (see, for example, Kakade et al.
(2008) and Beygelzimer et al. (2017) for work using the
perceptron algorithm).

In this paper, we design online algorithms for multi-
class classification under bandit feedback by building
on recent online boosting work in the full-information
setting. Online boosting algorithms combine the pre-
dictions of multiple online weak learners to improve
prediction performance. Classical boosting algorithms
were designed for the batch setting. Chen et al. (2012)
and Beygelzimer et al. (2015) first developed a the-
ory of online boosting for binary classification. Then
Jung et al. (2017) and Jung and Tewari (2018) ex-
tended the theory to the multiclass classification and
the multilabel ranking problems. These works prove
that the boosting algorithm’s asymptotic error con-
verges to zero if the number of weak learners, whose
predictions are slightly better than random guessing,
gets larger.

Designing a boosting algorithm with bandit feedback
is particularly difficult as it is not clear how to update
the weak learners. For example, suppose that a weak
learner WL1 predicts the label 1, another learner WL2

predicts the label 2, and the boosting algorithm pre-
dicts the label 1, which turns out to be incorrect. We
cannot even tell WL2 whether its prediction is correct.
To the best of our knowledge, Chen et al. (2014) are
the only ones who have proposed a boosting algorithm
in the multiclass bandit setting. However, their algo-
rithm is restricted to use binary weak learners and only
updates a subset of them, viz. ones which can get full
feedback. In contrast, our algorithms use multiclass
weak learners and update every learner at each round.

To derive our algorithms and guarantees, we extend
the work of Jung et al. (2017) to the bandit setting.
Instead of making a deterministic prediction, our algo-
rithms randomize them. This allows them to estimate
the loss using the distribution over labels, and this es-
timate is used to update the weak learners. Similar to
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the full information work, we propose a computation-
ally expensive algorithm, BanditBBM, with an opti-
mal error bound and a more practical algorithm, Ad-
aBandit, with a suboptimal bound. AdaBandit is the
first adaptive boosting algorithm in the bandit setting
that does not assume weak learners’ edge over random
is known beforehand. Interestingly, our algorithms’
asymptotic error bounds match the full information
counterparts with increased sample complexity, which
can be interpreted as the cost of bandit feedback.

2 PRELIMINARIES

We denote the indicator function by I(·), the ith stan-
dard basis vector by ei, the vector of ones by 1, and
the vector of zeros by 0. We will use [n] for the set
{1, · · · , n}, ∆n for probability distributions over [n].

2.1 Problem Setting

We first describe the online multiclass classification
problem with bandit feedback. It is a sequential game
between two players: learner and adversary. The set
[k] = {1, · · · , k} of k possible labels is known to both
players. At each round t = 1, · · · , T , the adversary
selects a labeled example (xt, yt) ∈ X × [k] (where X
is some domain) and sends only xt to the learner. The
learner then tries to guess its label and sends its predic-
tion ŷt back to the adversary. As we are in the bandit
setting, the adversary only reveals whether the predic-
tion is correct by sending I(ŷt 6= yt) to the learner. The
learner’s goal is to minimize the number of incorrect
predictions. In other words, the learner’s performance
is evaluated by the zero-one loss (see (1) for definition).

To tackle this problem, we use the online multiclass
boosting setup of Jung et al. (2017). In this setting,
the learner further splits into N online weak learners,
WL1, · · · ,WLN , as well as a booster that handles the
weak learners. When the booster receives an unlabeled
instance xt, it shares this information with the weak
learners and then aggregates their predictions to pro-
duce the final prediction. Here we assume that each
weak learner WLi predicts a label hit in [k]. Once
the booster gets the feedback from the adversary, it
computes a cost vector cit ∈ Rk for WLi to incur the
loss ci

t,hit
and update its prediction rule. It should be

noted that even though our boosting algorithms are
designed for the bandit setting, the weak learners ob-
serve full cost vectors cit ∈ Rk, which are constructed
from bandit feedback by the booster.

2.2 Unbiased Estimate of the Zero-One Loss

Even though we have not specified how to compute
cost vectors cit, it is naturally expected that they

should depend on the final zero-one loss vector:

l0−1t = 1− eyt ∈ Rk. (1)

As we are in the bandit setting, the booster only has
limited information about this vector. In particular,
unless its final prediction is correct, only a single entry
of l0−1t is available.

A popular approach for algorithm design in the partial
information setting is to obtain an unbiased estimate
of the loss. To do so, many bandit algorithms random-
ize their prediction. In our setting, instead of making
a deterministic prediction ŷ, the algorithm designs a
sampling distribution pt ∈ ∆k as follows:

pt,i =

{
1− ρ if i = ŷt
ρ
k−1 if i 6= ŷt

, (2)

where ρ is a parameter that controls the exploration
rate. This distribution puts a large weight on the label
ŷt and evenly distributes the remaining weight over
the rest. The algorithm draws a final prediction ỹt
based on pt. In this way, the algorithm can build an
estimator using the known sampling distribution. A
simplest unbiased estimate of the zero-one loss is

l̂0−1t =
I(ỹt = yt)

pt,ỹt
(1− eỹt) ∈ Rk. (3)

It is easy to check that this is indeed unbiased. How-
ever, it is not necessarily the best because it becomes a
zero vector when the booster makes a mistake. As the
zero loss vector does not provide any useful informa-
tion, the weak learners cannot update at this round.
Therefore, it would be hard for the booster to escape
the early training stage using the simple estimate.

As an alternative, we propose a new estimator

l̂0−1t,i =
I(ỹt = yt)

pt,ỹt
I(yt 6= i)I(ŷt 6= i)

+
I(ỹt = ŷt)

pt,ỹt
I(ŷt 6= yt)I(ŷt = i).

(4)

We first emphasize that this quantity can be computed
only using the bandit feedback. The proof that it is
actually unbiased appears in Appendix A.1.

This estimator resolves the main issue with the estima-
tor in (3), viz. that the learner cannot update during
a mistake round. In fact, it allows the weak learner to
update on each instance with probability at least 1−ρ.
Furthermore, the algorithms using this estimator em-
pirically performed much better than ones using the
estimator in (3). For these reasons, we will stick to
the estimate in (4) from now on.

To apply concentration inequalities, we need to control
the variance of estimators. We say a random vector Y
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is b-bounded if ||Y − EY ||∞ ≤ b almost surely. Note
that this definition also applies to random variables
(i.e., scalars), in which case the norm above simply
becomes the absolute value. It is easy to check our
estimator l̂0−1t is k

ρ -bounded.

Now suppose that a cost vector cit ∈ Rk (to be fed into
weak learner i at time t) requires the knowledge of the
true label yt. Since the label is usually unavailable,
we also need to estimate the cost vector. We first
compute a matrix Cit ∈ Rk×k, whose jth column is the
cost vector cit assuming j is the correct label. Then we
will use the following random cost vector:

ĉit = Cit · (1− l̂0−1t ). (5)

Since Cit is a deterministic matrix, we can compute

Eỹt ĉit = Cit · (1− l0−1t ) = Cit · eyt ,

which is the ytht column of Cit . This shows that ĉit is
an unbiased estimate of cit.

3 ALGORITHMS

We introduce two different online boosting algorithms
and provide their theoretical error bounds. As the
booster’s performance obviously depends on the weak
learner’s predictive power, we need a way to quantify
the latter. Firstly, we define the edge of a weak learner
over random guessing and assume every weak learner
has a positive edge γ. This edge is closely related to the
one defined in the full information setting, and hence
we can easily compare the error bounds between the
two settings. This idea leads to the algorithm Ban-
ditBBM, which has a very strong error bound. Sec-
ondly, instead of having an additional assumption on
the weak learners, we measure empirical edges of the
learners and use these quantities to bound the num-
ber of mistakes. We call this algorithm AdaBandit,
and since it enjoys theoretical guarantees under fewer
assumptions, it is more practical.

3.1 Algorithm Template

Our boosting algorithms share a template, which we
discuss here. As it adopts the cost vector framework
from Jung et al. (2017) and Jung and Tewari (2018),
the template is very similar except for the additional
step of estimating the loss.

To keep the template in Algorithm 1 general, we do not
specify certain steps, which will be finalized later for
each algorithm. Also, we do not restrict weak learners
in any way except requiring that each WLi predicts a
label hit ∈ [k], receives a full loss vector ĉit ∈ Rk, and
suffers the loss ĉit,ht according to their prediction.

Algorithm 1 Online Bandit Boosting Template

1: Input: Exploration rate ρ
2: Initialize: Weak learner weights αi1 for i ∈ [N ]
3: for t = 1, · · · , T do
4: Receive example xt
5: Get predictions hit ∈ [k] from WLi for i ∈ [N ]
6: Compute expert predictions for j ∈ [N ]

sjt =
∑j
i=1 α

i
tehit ∈ Rk and ŷjt = argmaxl s

j
t,l

7: Choose an expert index it ∈ [N ]
8: Get an intermediate prediction ŷt = ŷitt
9: Compute pt in (2)

10: Draw ỹt using pt and send to the adversary
11: Receive feedback I(ỹt 6= yt)

12: Estimate the loss by l̂0−1t in (4)
13: Update weights αit+1 for i ∈ [N ]
14: Compute cost vectors ĉit for i ∈ [N ]
15: Weak learners suffer the loss ĉi

t,hit
16: Weak learners update the internal parameters
17: Update the booster’s parameters, if any
18: end for

The booster keeps updating the learner weights αit and
constructs experts. There are N experts where the ex-
pert j tracks the weighted cumulative votes among the
first j weak learners: sjt =

∑j
i=1 α

i
tehit ∈ Rk. We also

track ŷjt = argmaxl s
j
t,l, where the tie breaks arbitrar-

ily. Then the booster chooses an expert index it ∈ [N ]
at each round t and decides the intermediate prediction
ŷt as ŷitt . In other words, it takes a weighted majority
vote among the first it learners. BanditBBM fixes it
to be N , while AdaBandit draws it randomly using a
calibrated distribution. Using ŷt and the exploration
rate ρ, the booster computes the sampling distribution
pt ∈ ∆k as in (2). A random label ỹt drawn from pt is
the final prediction, and the booster gets the feedback
I(ỹt 6= yt). Then it constructs the unbiased estimate of
the zero-one loss in (4) and updates the learner weights
αit. Finally, it computes cost vectors ĉit ∈ Rk for WLi

and lets them update their parameters.

3.2 An Optimal Algorithm

The first algorithm, BanditBBM (Bandit Boost-by-
Majority), assumes the bandit weak learning condi-
tion, which states that weak learners are better than
random guessing. The algorithm is optimal: it requires
the minimal number of weak learners up to a constant
factor to attain a certain accuracy.

3.2.1 Bandit Weak Learning Condition

This section proposes a bandit weak learning condition
which requires weak learners to do better than random
guessing, having only observed unbiased estimates of
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cost vectors. At a high level, what the weak learning
condition says is that, as far as the random cost vectors
provided by the booster satisfy certain conditions, the
weak learner can perform better than random guessing
when graded against the expected cost vectors. As a
baseline, we define ulγ ∈ ∆k to be almost a uniform
distribution that puts γ more weight on the label l.
As an example, ukγ = ( 1−γ

k , · · · , 1−γk , 1−γk + γ). The
intuition is that if a learner predicts a label based on
uytγ at each round, then its accuracy would be better
than random guessing by the edge γ.

The booster’s goal is to minimize the number of incor-
rect predictions and hence it wants to put the minimal
cost on the correct label. In this regard, Jung et al.
(2017) constrain the choice of cost vectors1 to

Ceor1 = {c ∈ Rk+ | cy = 0 and ||c||1 = 1}, (6)

where y is the correct label. We allow a sample weight
that can be multiplied by a cost vector to include
scaled cost vectors. One remark is that we can al-
ways subtract a common number from every entry of
the cost vector as we are interested in the relative loss.
This means that as long as the booster puts the mini-
mal cost on the correct label, one can transform it to
represent as wc for some weight w and c ∈ Ceor1 . Mean-
while, we are in the bandit setting, where the true label
is often unavailable to the booster. Therefore, we al-
low our booster to compute a random vector ĉit, whose
expectation lies in Ceor1 . Once the exploration rate ρ is
specified, we can additionally ensure that the random
cost vectors are k

ρ -bounded.

It would be theoretically most sound if the bandit weak
learning condition can be closely related to its full in-
formation counterpart. To do so, we present two weak
learning conditions together. The settings are almost
identical except the full information version observes
a deterministic cost vector ct ∈ Ceor1 while the ban-
dit version only observes a randomized vector ĉt such
that Eỹt ĉt ∈ Ceor1 . Recall that the entire cost vector is
shown to the learner even in the bandit setting. For
both conditions, the time horizon is T , labeled data
are chosen adaptively, and the parameters γ, δ, and
the sample weights wt lie in [0, 1].

Definition 3.1 (OnlineWLC from Jung et al. (2017)).
A pair of a learner and an adversary satisfies
OnlineWLC(γ, δ, S) if the learner can generate predic-
tions ŷt such that we have with probability 1− δ,

T∑
t=1

wtct,ŷt ≤
T∑
t=1

wtct · uytγ + S.

1In fact, the authors constrain the choice of cost ma-
trices, but it suffices to choose a specific row to get a cost
vector.

Definition 3.2 (BanditWLC). Suppose the random
cost vectors ĉt are b-bounded for some b. A pair of
learner and adversary satisfies BanditWLC(γ, δ, S) if
the learner can generate predictions ŷt, observing the
random cost vectors wtĉt, such that we have with prob-
ability 1− δ,

T∑
t=1

wtct,ŷt ≤
T∑
t=1

wtct · uytγ + S,

where ct = Eĉt for all t.

Here S is called excess loss. OnlineWLC is a special
case of BanditWLC where the bound b is 0. In fact,
we can show more intrinsic relations between the two.

Suppose there is a fixed hypothesis class H and an
online learner makes a prediction ht(xt) at time t by
choosing a hypothesis ht ∈ H. Obviously, this setting
does not cover all online learners, but the most widely
used learners can be interpreted in this manner. Jung
et al. (2017) showed that the OnlineWLC can be de-
rived from the following two assumptions:

• (Online Richness Condition) For any sequence of
cost vectors (wt, ct) ∈ [0, 1] × Ceor1 , there is a hy-
pothesis h ∈ H such that

T∑
t=1

wtct,h(xt) ≤
T∑
t=1

wtct · uytγ .

• (Online Agnostic Learnability Condition) For any
sequence of (bounded) loss vectors lt ∈ Rk, there
is an online algorithm which can generate predic-
tions ŷt such that with probability 1− δ,

T∑
t=1

lt,ŷt ≤ inf
h∈H

T∑
t=1

lt,h(xt) +Rδ(T ),

where Rδ(·) is a sublinear regret.

Note that the online learnability condition only as-
sumes a bounded loss instead of Ceor1 . This condition
holds, for example, if the space H has a finite Lit-
tlestone dimension. Interested readers can refer the
paper by Daniely et al. (2015). We show that these
two conditions also imply the BanditWLC. The proof
appears in Appendix A.2.

Theorem 3.1. Suppose a pair of weak learning space
H and adversary satisfies the richness condition with
edge 2γ and the agnostic learnability condition with
regret Rδ(T). Addionally, we assume that wt ≥ m for
all t. Then the online learner based on H satisfies
BanditWLC(γ, 2δ, S) with

S = sup
T
−γ
k
mT + b

√
2T log

1

δ
+Rδ(T ),
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where b is the bound of the random cost vectors.

The extra condition wt ≥ m is acceptable because if
wt = 0 for some t, then we can simply ignore this
round because any prediction does not incur a loss.
The excess loss S is always finite due to the sublin-
ear regret Rδ(T ). Furthermore, a smaller δ would re-
quire a larger S. The excess loss in the BanditWLC is
larger than the one in the OnlineWLC due to the term

b
√

2T log 1
δ . This is intuitive in that the learner needs

more samples if only bandit feedback is available. Fi-
nally, the exploration rate ρ also affects S because b is
equal to k

ρ . This provides the following rough bound:

S = Õ(
k

ρ
), (7)

where Õ suppresses dependence on log 1
δ .

3.2.2 BanditBBM Details

Throughout the section, we assume the weak learners
satisfy BanditWLC(γ, δ, S). BanditBBM is a modi-
fication of OnlineMBBM from Jung et al. (2017) by
incorporating the unbiased estimate of the loss in (4).

We use the potential function φyi (s), discussed thor-
oughly in relation to boosting by Mukherjee and
Schapire (2013), to design the cost vectors. The po-
tential function φyi takes the current cumulative votes
s ∈ Rk as an input and estimates the booster’s loss
when the true label is y and there are i weak learners
left until the final prediction. In particular, it can be
recursively defined as follows:

φy0(s) = I(argmax
i

si 6= y)

φyi+1(s) = El∼uyγφ
y
i (s+ el).

Unfortunately, this potential does not have a closed
form. Since potential functions are the main ingredi-
ent to design cost vectors, their computation becomes
a bottleneck when running the algorithm. This is a
weakness of BanditBBM despite its strong mistake
bound. However, one can use Monte Carlo simulations
to approximate its value.

Returning to our algorithm, we essentially want to set
the cost vector to

cit,l = φytN−i(s
i−1
t + el). (8)

Jung et al. (2017) prove that this cost vector puts the
minimal cost on the correct label and thus it is a valid
choice. The booster in our setting, however, cannot
compute this vector as it requires the knowledge of
the true label yt. As an alternative, we create the
following cost matrix

Cit [l, r] = φrN−i(s
i−1
t + el) (9)

Algorithm 2 BanditBBM Details

2: Initialize: Set αi1 = 1 for i ∈ [N ]
7: Set it = N

13: Keep weights αit+1 = 1 for i ∈ [N ]
14: Compute cost vectors ĉit using (5) and (9)
17: There is no extra parameter

and use (5) to compute a random cost vector ĉit, which
is an unbiased estimate of cit in (8).

The rest of the algorithm is straightforward. We set
all weights αit to be one and always choose the last
expert: it = N . This means that the intermediate
prediction ŷt is a simple majority vote among all the
weak learners. The reasoning behind this is that the
booster wants to include all learners as they are strictly
better than random, and all weak learners are equiva-
lent in that they share the same edge γ. Algorithm 2
summarizes the specifications.

3.2.3 Mistake Bound of BanditBBM

We still assume that our weak learners satisfy
BanditWLC(γ, δ, S). From observation (7), it is rea-
sonable to assume S = Õ(kρ ). Upon these assump-
tions, we can bound the number of mistakes made by
BanditBBM. The proof appears in Appendix A.3

Theorem 3.2 (Mistake Bound of BanditBBM). For
any T , N satisfying δ � 1

N , the number of mistakes
made by BanditBBM satisfies the following inequality
with probability at least 1− (N + 1)δ:

T∑
t=1

I(ỹt 6= yt) ≤ (k − 1)e−
γ2N

2 T + 2ρT + Õ(
k7/2
√
N

ρ
),

where Õ suppresses dependence on log 1
δ .

If we set the exploration rate ρ = k7/4N1/4
√
T

, then the

bound becomes

(k − 1)e−
γ2N

2 T + Õ(k7/4N1/4
√
T ).

Dividing by T , we can infer that (k − 1)e−
γ2N

2 is the
asymptotic error bound of the algorithm. This bound
matches the bound of the full information counterpart,
OnlineMBBM. Since it depends exponentially on N ,
BanditBBM does not require too many weak learners
to obtain a desired accuracy. Jung et al. (2017) also
provide a lower bound in the full information setting,
which shows that the exponential decay is the fastest
rate one can expect for the asymptotic error bound.
This result applies to our bandit setting as it is harder.
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3.3 An Adaptive Algorithm

While BanditBBM is theoretically sound, in real appli-
cations it has a number of drawbacks. Firstly, it is hard
to identify the edge γ of each weak learner, leading to
incorrect computations of the potential function. Also,
each learner may have a different edge, and assuming a
common edge can underestimate some weak learner’s
predictive power. Finally, as pointed out in the previ-
ous section, evaluating the potential function is com-
putationally expensive, which makes BanditBBM less
useful in practice. To address these issues, we pro-
pose an adaptive algorithm, AdaBandit, based on the
full information adaptive algorithm, Adaboost.OLM
by Jung et al. (2017). Using the idea of improper
learning, Foster et al. (2018) proposed another adap-
tive boosting algorithm that has a tighter sample com-
plexity than Adaboost.OLM. However, we stick to Ad-
aboost.OLM as it has the competitive asymptotic error
bound, which is of primary interest in this paper.

3.3.1 Logistic Loss and Empirical Edges

Instead of directly minimizing the zero-one loss, the
adaptive algorithm tries to minimize a surrogate loss.
As in Adaboost.OLM, we choose the following logistic
loss llogy : Rk → R:

llogy (s) =
k∑
l=1

log(1 + exp(sl − sy)),

where s is the cumulative votes of a chosen expert.

As for the zero-one loss, computing the loss requires
knowledge of the true label, and we again use the idea
in (5) to estimate the loss. We want to emphasize
that the logistic loss only plays an intermediate role in
training, and the learner’s predictions are still evalu-
ated by the zero-one loss.

Essentially, we want to set the cost vector cit =
∇llogyt (si−1t ). Since this depends on the true label yt,

we build a cost matrix Cit ∈ Rk×k as below:

Cit [l, r] =


1

1+exp(si−1
t,r −s

i−1
t,l )

if l 6= r

−
∑
j 6=r

1
1+exp(si−1

t,r −s
i−1
t,j )

if l = r
. (10)

Note that each column also puts the minimal cost on
the correct label r. Moreover, the sum of entries equals
zero. Using the idea described in (5), we can compute
ĉit, which is an unbiased estimate of cit = ∇llogyt (si−1t ).

Even though the adaptive algorithm does not assume
the BanditWLC, we still need to measure the weak
learners’ predictive powers to analyze the booster’s
performance. As in the full information case, we use

the following empirical edge of WLi:

γi =
T∑
t=1

cit,hit
/

T∑
t=1

cit,yt .

Having the same empirical edge as Adaboost.OLM
allows us to precisely evaluate the cost of bandit
feedback. Based on our design of cost vector cit =
∇llogyt (si−1t ), we can check that γi is in [−1, 1] and a
larger value implies a better accuracy. Obviously, the
empirical edge is unavailable to the learner as it re-
quires the true cost vector cit. This is fine because
we only use this value to provide the mistake bound.
Running AdaBandit does not require the knowledge of
empirical edges.

3.3.2 AdaBandit Details

Now we describe the details of AdaBandit (see Algo-
rithm 3). The choice of cost vectors ĉit is already dis-
cussed in the previous section. As this is an adaptive
algorithm, we update the learner weights αit to give
more influence to high-performing learners. We also
allow negative weights in case a weak learner is worse
than random.

As AdaBandit incorporates the logistic loss as a sur-
rogate, we want to pick αit to minimize

T∑
t=1

f it (α
i
t) where f it (α) = llogyt (si−1t + αehit),

where only the following unbiased estimator f̂ it is avail-
able to the learner:

f̂ it (α) =
k∑
j=1

llogj (si−1t + αehit) · (1− l̂
0−1
t,j ).

Since the logistic loss is convex, it is a classical on-
line convex optimization problem, and we can use
stochastic gradient descent (see Zinkevich (2003) and
Shalev-Shwartz and Ben-David (2014)). Following
the convention in Adaboost.OLM, we use the fea-
sible set F = [−2, 2] and the projection function
Π(·) = max{−2,min{2, ·}} to update αit:

αit+1 = Π(αit − ηtf̂ i′t (αit)), (11)

where ηt is a learning rate. As the gradient of the
logistic loss is universally bounded by k and l̂0−1t is
k
ρ -bounded, we can check that |f̂ i′t (α)| ≤ 2k2

ρ almost

surely. From this, if we set ηt = ρ

k2
√
t
, then a standard

result in online stochastic gradient descent (see Shalev-
Shwartz and Ben-David (2014), Chapter 14) provides
with probability 1− δ,

T∑
t=1

f it (α
i
t) ≤ min

α∈[−2,2]

T∑
t=1

f it (α) + Õ(
k2

ρ

√
T ), (12)
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Algorithm 3 AdaBandit Details

2: Initialize: Set αi1 = 0 and vit = 1 for i ∈ [N ]
7: Randomly draw it with P(it = i) ∝ vit

13: Update weights αit using (11) with ηt = ρ

k2
√
t

14: Compute cost vectors ĉit using (5) and (10)

17: Update vit+1 = vit · exp(−l̂0−1
t,ŷit

)

where Õ suppresses dependence on log 1
δ .

We cannot prove that the last expert is the best be-
cause our weak learners do not adhere to the weak
learning condition. Instead, we will show that at least
one expert is reliable. To identify this expert, we use
the Hedge algorithm from Littlestone and Warmuth
(1994) and Freund and Schapire (1997). This algo-
rithm generally receives the zero-one loss of each ex-
pert. Since that is no longer available, we will feed
l̂0−1, which in expectation reflects the true zero-one
loss. As the exploration rate ρ controls the variance of
the loss estimate, we can combine the analysis of the
Hedge algorithm with the concentration inequality to
obtain a similar result.

3.3.3 Mistake Bound of AdaBandit

As mentioned earlier, we bound the number of mis-
takes made by the adaptive algorithm using the weak
learners’ empirical edges. We emphasize again that
these empirical edges are defined exactly in the same
manner with those used in the full information bound.

Theorem 3.3 (Mistake Bound of AdaBandit). For
any T , N satisfying δ � 1

N , the number of mistakes
made by AdaBandit satisfies the following inequality
with probability at least 1− (N + 4)δ:

T∑
t=1

I(ỹt 6= yt) ≤
8k∑N
i=1 γ

2
i

T + 2ρT + Õ(
k3N2

ρ2
∑N
i=1 γ

2
i

),

where Õ suppresses dependence on log 1
δ .

If we set the exploration rate ρ = kN2/3

(T
∑N
i=1 γ

2
i )

1/3 , then

the bound becomes

8k∑N
i=1 γ

2
i

T + Õ(
kN

2
3

(
∑N
i=1 γ

2
i )

1
3

T
2
3 ).

This implies that 8k∑N
i=1 γ

2
i

becomes the asymptotic er-

ror bound of AdaBandit, which matches the bound of
Adaboost.OLM. Jung et al. (2017) observe that γi ≥ γ
with high probability if the learner has edge γ. There-
fore, if our weak learners satisfy BanditWLC(γ, δ, S) as
for BanditBBM, then the asymptotic bound becomes
roughly 8k

Nγ2 . The bound depends polynomially on
N , which is suboptimal. However, AdaBandit resolves

the aforementioned issues of BanditBBM and actually
shows comparable results on real data sets.

4 EXPERIMENTS

We compare various boosting algorithms on bench-
mark data sets using publicly available code2. The
models include our proposed algorithms, BanditBBM
and AdaBandit, their full information versions, On-
lineMBBM and Adaboost.OLM from Jung et al.
(2017), and BanditBoost from Chen et al. (2014). To
maximize readability, we will call them by OptBandit,
AdaBandit, OptFull, AdaFull, and BinBandit respec-
tively, based on their characteristics. The first four
models require multiclass weak learners, whereas Bin-
Bandit needs binary learners. For every model, we
use online decision trees proposed by Domingos and
Hulten (2000) as weak learners.

We examine several data sets from the UCI data repos-
itory (Blake and Merz, 1998; Higuera et al., 2015;
Ugulino et al., 2012) that are tested by Jung et al.
(2017). We follow the authors’ data preprocessing to
provide a consistent comparison. However, the bandit
algorithms need more samples to reach their asymp-
totic performance. Because these data sets often have
insufficient examples to yield this asymptotic perfor-
mance, we duplicate and shuffle the data sets a num-
ber of times before feeding them to the algorithm. The
amount of duplication done to each data set is chosen
to suggest the asymptotic performance of each algo-
rithm. Table 1 contains a summary of data sets that
are examined. The number of actual data points sent
to each model is noted under the column StreamCnt.

We optimize the number of weak learners N for each
bandit algorithm and data set, with granularity down
to multiples of 5. As BinBandit only takes binary weak
learners, it needs more of them for data sets with large
k. Thus, we use 10k weak learners for BinBandit on
each data set. Recall that OptBandit and OptFull
require the knowledge of the edge γ from their weak
learning condition. Since one cannot identify this value
in practice, we also do not optimize this value and se-
lect γ = 0.1 to be fixed. Lastly, the three bandit algo-
rithms have the exploration rate ρ, which we optimize
through the grid search and record the best results.
A more detailed description of the experiment setting
appears in Appendix B.

4.1 Asymptotic Performance

Since the theoretical asymptotic error bounds of
the proposed algorithms match their full information
counterparts, we first compare the models’ empirical

2 https://github.com/pi224/banditboosting

https://github.com/pi224/banditboosting
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Table 1: Bandit and Full Information Asymptotic Performance

Data k StreamCnt OptBandit AdaBandit BinBandit OptFull AdaFull

Balance 3 6250 0.89 0.97 0.80 0.76 0.93
Car 4 10368 0.88 0.98 0.84 0.84 0.96
Nursery 4 51840 0.93 0.95 0.92 0.94 0.98
Movement 5 165631 0.94 0.97 0.89 0.92 0.97
Mice 8 8640 0.73 0.87 0.81 0.81 0.96
Isolet 26 116955 0.48 0.66 0.66 0.84 0.90

asymptotic performance. To do so, we feed the first
80% of the data without counting mistakes and com-
pute the average accuracy on the last 20% of the data.
Table 1 summarizes the results. The accuracy is av-
eraged over 20 rounds for all data sets except Isolet
and Movement, which we ran 10 times. These runs
were computed with shuffling from 20 random seeds,
a predetermined subset of which were used for Isolet
and Movement.

The full information algorithms exhibit very strong
performance due to data duplication. Despite this,
OptBandit and AdaBandit are quite competitive
against them across data sets with smaller k. For
datasets with larger k, our bandit algorithms do not
keep up as well, as they receive less feedback per in-
stance. Our algorithm’s perform comparably to Bin-
Bandit, showing that our algorithms successfully com-
bine the multiclass weak learners. A noteworthy as-
pect is how AdaBandit outperforms OptBandit on all
the data sets, showing adaptive weighing’s power.

4.2 Analyzing Learning Curves

Even though our bandit algorithms have the same
asymptotic error bounds as their full information coun-
terparts, the cost of bandit feedback is reflected in
larger sample complexities. Investigating this, we com-
pute approximate learning curves for these algorithms
by recording the moving average accuracy across the
latest 0.2×(total rounds to be run) data instances. For
data sets of varying k this illustrates the hardness of
the bandit problem: as k increases, learning an ap-
propriately performing hypothesis takes longer, but is
achievable nonetheless.

Figure 1 shows the learning curves on Car and Iso-
let data for our two bandit algorithms as compared
with their full information counterparts. The curves
for other data sets can be found in the Appendix B.
On Car data where k is small, AdaBandit even outper-
forms OptFull and AdaFull by the end. This compet-
itiveness with full information algorithms is reflected
in the other learning curves in the appendix. On Iso-

Figure 1: Learning Curves on Car (Top) and Isolet
(Bottom); Best Viewed in Color

let data with large k, our bandit methods lose some of
their competitiveness. Given that the exploration rate
ρ is set to 0.1 (whereas the theory would have it con-
verge to 0) and that the bandit algorithms have not
fully plateaued off, the performance is still reasonable.
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Appendix A DETAILED PROOFS

In this section, we include the full proofs that are omit-
ted in the main manuscript.

A.1 Unbiased Estimate of The Zero-One Loss

We prove the unbaisedness of our loss estimator pre-
sented in (4).

Lemma A.1. The estimator l̂0−1t in (4) is an unbi-
ased estimator of the zero-one loss l0−1t :

Eỹt∼pt l̂
0−1
t = l0−1t .

Proof. Since ỹ is drawn with respect to pt, we can
write

Eỹt∼pt l̂
0−1
t,i = I(yt 6= i)I(ŷt 6= i) + I(ŷt 6= yt)I(ŷt = i)

= I(yt 6= i)I(ŷt 6= i) + I(i 6= yt)I(ŷt = i)

= I(yt 6= i)(I(ŷt 6= i) + I(ŷt = i))

= I(yt 6= i),

where the last term is l0−1t,i , which completes the proof.

A.2 Proof of Theorem 3.1

Since the agnostic learnability condition is given with
deterministic cost vectors, we need to bridge the de-
terministic costs with the randomized ones. Observe
that ĉit relies solely on the random draw of ỹt at each
round. Therefore, the partial sum of random vectors
Sj =

∑j
t=1 ĉ

i
t − cit has the martingale property. Then

we can prove the following lemma using the Azuma-
Hoeffding inequality.

Lemma A.2. Suppose the random cost vectors ĉt are
b-bounded. Let pt be a probability vector in ∆k. Then
the following inequality holds with probability 1− δ:

|
T∑
t=1

(ĉt − ct) · pt| ≤ b
√

2T log
2

δ
.

Proof. Since ĉt is b-bounded and unbiased, we have

|(ĉt − ct) · pt| ≤ b a.s. and E(ĉt − ct) · pt = 0.

Therefore the Azuma-Hoeffding’s inequality implies

P(|
T∑
t=1

(ĉt − ct) · pt| ≥ ε) ≤ 2e−
ε2

2b2T .

Putting ε = b
√

2T log 2
δ finishes the proof.

We now go into the main proof of Theorem 3.1.

Proof. Fix the sequence of cost vectors wtct. From the
richness condition with edge 2γ, we know

inf
h∈H

T∑
t=1

wtct,h(xt) ≤
T∑
t=1

wtct · uyt2γ .

By applying Lemma A.2 with pt = eh(xt), we get with
probability 1− δ,

inf
h∈H

T∑
t=1

wtĉt,h(xt) ≤
T∑
t=1

wtct ·uyt2γ +b

√
2T log

2

δ
. (13)

Then by the online learnability condition, the online
learner based on H can generate predictions ŷt that
satisfies the following inequality with probability 1−δ:

T∑
t=1

wtĉt,ŷt ≤ inf
h∈H

T∑
t=1

wtĉt,h(xt) +Rδ(T ),

Using (13) and the union bound, we have with proba-
bility 1− 2δ,

T∑
t=1

wtĉt,ŷt ≤
T∑
t=1

wtct · uyt2γ + b

√
2T log

2

δ
+Rδ(T ).

Then by the definition of Ceor1 in (6), we can compute

ct · uyγ =
1− γ
k

.

Therefore, using the assumption wt ≥ m for all t, we
can bound

T∑
t=1

wtct · (uytγ − u
yt
2γ) =

γ

k

T∑
t=1

wt ≥
γ

k
mT.

Then by taking

S = sup
T
−γ
k
mT + b

√
2T log

1

δ
+Rδ(T ),

we prove that with probability 1− 2δ,

T∑
t=1

wtĉt,ŷt ≤
T∑
t=1

wtct · uytγ + S,

which shows the learner and the adversary satisfy
BanditWLC(γ, 2δ, S).

A.3 Proof of Theorem 3.2

Note that the cost vectors defined in (8) does not put
zero cost on the correct label. In order to apply the
BanditWLC, we transform the cost vector. Since the
zero-one loss vector has the minimal loss on the true
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label, we can inductively check that argminl c
i
t,l = yt.

Then we define dit ∈ Rk as below:

dit,l = cit,l − cit,yt .

The minimal entry of dit is zero. Let wit = ||dit||1,
which plays a similar role of the sample weight in that
dit
wit
∈ Ceor1 . We also define wi∗ = supt w

i
t.

We bound the cumulative potential functions by fol-
lowing the modified proof of Theorem 2 from Jung
et al. (2017).

Lemma A.3. With probability 1−Nδ, we have

T∑
t=1

φyt0 (sNt ) ≤ φ1N (0) · T + S
N∑
i=1

wi∗.

Proof. In the proof of Theorem 2 by Jung et al. (2017),
the authors write

T∑
t=1

φytN−i+1(si−1t )

=
1− γ
k

T∑
t=1

wit −
T∑
t=1

dit,hit
+

T∑
t=1

φytN−i(s
i
t).

Using the fact that our weak learners satisfy
BanditWLC(γ, δ, S), we have with probability 1− δ

1

wi∗

T∑
t=1

dit,hit
≤ 1− γ

kwi∗

T∑
t=1

wit + S,

from which we deduce

T∑
t=1

φytN−i+1(si−1t ) + wi∗S ≥
T∑
t=1

φytN−i(s
i
t).

Summing this over i and using the union bound, we
have with probability 1−Nδ,

T∑
t=1

φyt0 (sNt ) ≤
T∑
t=1

φytN (0) + S
N∑
i=1

wi∗.

By symmetry, we can check φlN (0) = φ1N (0) for any
label l ∈ [k], which completes the proof.

We now prove Theorem 3.2.

Proof. Since ŷt = argmaxl s
N
t,l, we obtain

φyt0 (sNt ) = I(ŷt 6= yt).

Furthermore, Jung et al. (2017) bound the terms that
appear in the previous lemma:

φlN (0) ≤ (k − 1)e−
γ2N

2

N∑
i=1

wi∗ = O(k5/2
√
N).

Combining these, we get with probability 1−Nδ,

T∑
t=1

I(ŷt 6= yt) ≤ (k − 1)e−
γ2N

2 T +O(k5/2
√
NS)

≤ (k − 1)e−
γ2N

2 T + Õ(
k7/2
√
N

ρ
),

where the last inequality holds by (7).

To bound the booster’s loss I(ỹt 6= yt), observe

EỹtI(ỹt 6= yt) ≤ I(ŷt 6= yt) + ρ.

Using the concentration inequality, we have with prob-
ability 1− (N + 1)δ,

T∑
t=1

I(ỹt 6= yt)

≤ (k − 1)e−
γ2N

2 T + Õ(
k7/2
√
N

ρ
) + ρT +

√
T log

1

δ

≤ (k − 1)e−
γ2N

2 T + 2ρT + Õ(
k7/2
√
N

ρ
),

where we use the relation ρT +
log 1

δ

ρ ≥ 2
√
T log 1

δ to

absorb the term
√
T log 1

δ . This proves the main the-

orem.

A.4 Proof of Theorem 3.3

We first recall a lemma from Jung et al. (2017) to aid
the proof.

Lemma A.4 (Jung et al. (2017), Lemma 11). Suppose
A,B ≥ 0, B −A = γ ∈ [−1, 1], and A+B ≤ 1. Then
we have

min
α∈[−2,2]

A(eα − 1) +B(e−α − 1) ≤ −γ
2

2
.

Now we proceed with a bound of the zero-one loss of
AdaBandit. The main structure of the proof results
from the mistake bound of Adaboost.OLM by Jung
et al. (2017).

Proof. We let Mi denote the number of mistakes made
by expert i: Mi =

∑T
t=1 I(ŷit 6= yt). We also let

M0 = T for convenience. As the booster uses the
estimate l̂0−1t to run the Hedge algorithm, we define

M̂i =
∑T
t=1 l̂

0−1
t,ŷit

so that Eỹ1,··· ,ỹT M̂i = Mi. If we

write i∗ = argminiMi, then by the Azuma-Hoeffding

inequality and the fact that l̂0−1t is k
ρ -bounded, we have

with probability 1− δ,

min
i
M̂i ≤ M̂i∗ ≤ min

i
Mi + Õ(

k

ρ

√
T ),
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where Õ suppresses dependence on log 1
δ .

Then a standard analysis of the Hedge algorithm
(see Corollary 2.3 by Cesa-Bianchi and Lugosi (2006))
and the Azuma-Hoeffding inequality provide that with
probability 1− 3δ,

T∑
t=1

I(ŷt 6= yt) ≤
T∑
t=1

l̂0−1t,ŷt
+ Õ(

k

ρ

√
T )

≤ 2 min
i
M̂i + 2 logN + Õ(

k

ρ

√
T )

≤ 2 min
i
Mi + 2 logN + Õ(

k

ρ

√
T ).

(14)

Now define wi = −
∑T
t=1 c

i
t,yt . If the expert i−1 makes

a mistake at round t, there is l 6= yt such that si−1t,yt ≤
si−1t,l . According to (10), this implies that −cit,yt ≥

1
2 .

From this, we can deduce that

wi ≥ Mi−1

2
. (15)

By our convention M0 = T , the above inequality still
holds for i = 1.

Next we define the difference in the cumulative logistic
loss between two consecutive experts as

∆i =

T∑
t=1

llogyt (sit)− llogyt (si−1t )

=
T∑
t=1

llogyt (si−1t + αitehit)− l
log
yt (si−1t ).

From (12), we have with probability 1− δ,

∆i ≤ min
α∈[−2,2]

T∑
t=1

[llogyt (si−1t + αehit)− l
log
yt (si−1t )]

+ Õ(
k2

ρ

√
T ).

(16)

Let us record an inequality:

log(1 + es+α)− log(1 + es) = log(1 +
eα − 1

1 + e−s
)

≤ eα − 1

1 + e−s
.

Using this, we can write

llogyt (si−1t + αehit)− l
log
yt (si−1t )

≤

{
ci
t,hit

(eα − 1) if hit 6= yt

ci
t,hit

(−e−α + 1) if hit = yt
.

Summing this over t, we get

T∑
t=1

llogyt (si−1t + αehit)− l
log
yt (si−1t )

≤ wi(A(eα − 1) +B(e−α − 1)),

where

A =
∑

t:hit 6=yt

cit,hit
/wi, B = −

∑
t:hit=yt

cit,hit
/wi.

By (10), A and B are non-negative and B −A = γi ∈
[−1, 1], which is the empirical edge of WLi. Then
Lemma A.4 implies

min
α∈[−2,2]

T∑
t=1

llogyt (si−1t + αehit)− l
log
yt (si−1t ) ≤ −γ

2
i

2
wi.

Combining this result with (15) and (16), we have with
probability 1− δ,

∆i ≤ −
γ2i
4
Mi−1 + Õ(

k2

ρ

√
T ).

Summing this over i and using the union bound, we
have with probability 1−Nδ,

T∑
t=1

llogyt (sNt )− llogyt (0)

≤ −miniMi

4

N∑
i=1

γ2i + Õ(
k2N

ρ

√
T ).

Since llogyt (0) = (k − 1) log 2 and llogyt (sNt ) ≥ 0, we have
with probability 1−Nδ,

min
i
Mi ≤

4(k − 1) log 2∑N
i=1 γ

2
i

T + Õ(
k2N

ρ
∑N
i=1 γ

2
i

√
T ).

Using this to (14), we get with probability 1−(N+3)δ,

T∑
t=1

I(ŷt 6= yt) ≤
8(k − 1) log 2∑N

i=1 γ
2
i

T + Õ(
k2N

ρ
∑N
i=1 γ

2
i

√
T ).

Then by the same argument as in Appendix A.3, we
get with probability 1− (N + 4)δ,

T∑
t=1

I(ỹt 6= yt)

≤ 8(k − 1) log 2∑N
i=1 γ

2
i

T + 2ρT + Õ(
k2N

ρ
∑N
i=1 γ

2
i

√
T )

≤ 8k∑N
i=1 γ

2
i

T + 2ρT + Õ(
k3N2

ρ2
∑N
i=1 γ

2
i

),

where the last inequality comes from the arithmetic
mean and geometric mean relation:

2ck2N
√
T ≤ kT + c2k3N2.
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Table 2: Bandit and Full Information Total Accuracy

Data k StreamCnt OptBandit AdaBandit BinBandit OptFull AdaFull

Balance 3 6250 0.83 0.91 0.73 0.71 0.85
Car 4 10368 0.82 0.93 0.78 0.80 0.93
Nursery 4 51840 0.89 0.92 0.89 0.91 0.95
Movement 5 165631 0.89 0.95 0.84 0.87 0.95
Mice 8 8640 0.53 0.71 0.62 0.65 0.84
Isolet 26 116955 0.32 0.51 0.52 0.74 0.78

Appendix B DETAILED
DESCRIPTIONS OF
EXPERIMENTS

We discuss the experimental results more in detail.

B.1 Data Set Details

We modified the data sets identically as in Jung et al.
(2017). In particular, we replaced missing data val-
ues in Mice data with 0 and removed user information
from Movement, leaving only sensor data in the lat-
ter. A single data point with missing values was also
removed from Movement. Lastly, for Isolet the original
617 covariates were projected onto the top 50 principal
components of the data set, retaining 80% of the vari-
ance. Table 3 summarizes the data information after
preprocessing.

B.2 Parameter Tuning

Our boosting algorithms have a few parameters: the
number of weak learners N , the edge γ for Ban-
ditBBM, and the exploration rate ρ. As the goal of
the experiment is to compare the bandit algorithms
with their full information counterparts, we did not
optimize the parameters too hard. We optimized N
up to multiples of 5 and fix γ = 0.1 for all data sets.

The only parameter we tried to fit is exploration rate.
To obtain a reasonable ρ, we ran a grid search keeping

Table 3: Data Set Summary

Data Size Dimension k

Balance 625 4 3
Car 1728 82 4
Nursery 12960 4 8
Mice 1080 82 8
Isolet 7797 50 26
Movement 165631 12 4

all other parameters stable and observing accuracy on
a random stream from each data set. The chosen ρ
values reflect choices that made all the bandit algo-
rithms perform well on each set. Table 4 shows the
chosen ρ from each of these grid searches. How many
data points were streamed to obtain the final accuracy
is shown in column Count.

B.3 Updating Weak Learners

We used the VFDT algorithm designed by Domingos
and Hulten (2000). The learner takes a label and an
importance weight to be updated. When a cost vector
ĉit ∈ Rk is passed to the learner, we used

l = argmin
j

ĉit,j and w =
k∑
j=1

(ĉit,j − ĉit,l)

as the label and the importance weight, respectively.
If there were multiple minima in ĉit, we chose one of
them randomly in a mistake round and selected the
true label yt in a correct round if it minimized the
cost vector.

One weakness of VFDT is that its performance is
very sensitive to the range of importance weights. To
address this, we added clipping in our implementa-
tion to prevent cost vectors from having excessively
large entries. We introduced a magic number 100 and
clipped the entry whenever it went outside the range
[−100, 100]. Clipping was especially helpful in stabi-
lizing results for data sets with large k. Additionally,

Table 4: Parameters for Bandit Algorithms

Data Count ρ NOpt NAda γ

Balance 2500 0.001 20 15 0.1
Car 6912 0.001 15 15 0.1
Nursery 12960 0.001 10 5 0.1
Movement 165631 0.001 10 20 0.1
Mice 4320 0.1 10 20 0.1
Isolet 38985 0.1 10 20 0.1
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we scaled the importance weights for Isolet, as large k
tends to create larger weights.

B.4 Total Accuracy

Table 2 shows the average accuracy of all five algo-
rithms on each of the data sets, in contrast to the
asymptotic performance in Table 1. The effect of in-
creased k on the excess loss is noticeable, showing that
the bandit algorithms learn less quickly. For data sets
with smaller k, the total loss is a fairly large percentage
of the asymptotic loss, indicating the the algorithms
stay at their asymptotic accuracy for a larger fraction
of rounds. For Mice and Isolet data, however, the to-
tal accuracy is significantly lower than the asympototic
loss, indicating a much more linear improvement that

Figure 2: Learning Curves on Balance (Top), Nursery,
Movement, and Mice (Bottom); Best Viewed in Color

is amortized over the whole data stream. Indeed, this
corroborates Figure 1, where accuracy improvement
of the bandit algorithms slows and tends towards a
straight line for large k.

B.5 Learning Curves

Figure 2 exhibits the learning curves of our bandit al-
gorithms and the full information ones. Similar to the
analysis in the main paper, the bandit algorithms learn
slower than the full information algorithms in general,
and the trend becomes obvious when k gets larger.
However, the bandit algorithms, especially AdaBan-
dit, become competitive in the end and sometimes out-
perform the full information algorithms. The under-
performance of the optimal algorithms is partially be-
cause we did not optimize the edge γ, and this aspect
makes adaptive algorithms more suitable in practice.
It should be noted that the learning curves do not be-
gin at round 0 because the window accuracy is not
defined for a number of rounds less than 20% of the
total rounds to be given.
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