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Abstract. We develop a functional calculus for d -tuples of non-commuting
elements in a Banach algebra. The functions we apply are free analytic functions,
that is, nc-functions that are bounded on certain polynomial polyhedra.

1 Introduction

1.1 Overview. The purpose of this note is to develop an approach to func-
tional calculus and spectral theory for d -tuples of elements of a Banach algebra,
with no assumption that the elements commute.

In [28], J. L. Taylor considered this problem for d -tuples in L(X), the bounded
linear operators on a Banach space X . His idea was to start with the algebra Pd of
free polynomials1 in d variables over the complex numbers and consider what he
called “satellite algebras”, that is, algebrasA that contain Pd with the property that
every representation from Pd to L(X) that extends to a representation of A has a
unique extension. As a representation of Pd is determined by choosing the images
of the generators, i.e., choosing T = (T 1, . . . ,T d ) ∈ L(X)d , the extension of the
representation toA, when it exists, constitutes anA-functional calculus for T . The
classes of satellite algebras that Taylor considered, which he called free analytic
algebras, were intended to be non-commutative generalizations of the algebras
O(U), the algebra of holomorphic functions on a domain U in C

d (and indeed he
proved in [28, Prop 3.3] that when d = 1, these constitute all the free analytic
algebras). Taylor had already developed a successfulO(U) functional calculus for
d -tuples T of commuting operators on X for which a certain spectrum (now called
the Taylor spectrum) is contained in U ; see [25, 26] for the original articles, and
the article [21] by M. Putinar, which shows uniqueness. An excellent treatment is
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1We use the terms free polynomial and non-commuting polynomial in d variables inter-

changeably to mean an element of the algebra over the free monoid with d generators.
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in [6] by R. Curto. However, in the non-commutative case, Taylor’s approach in
[27, 28] using homological algebra was only partially successful.

What constitutes a successful theory? This is of course subjective, but we
argue that it should contain some of the following ingredients, and one has to make
trade-offs between them. The functional calculus should use algebras A that one
knows something about–the better the algebras are understood, the more useful
the theory. Secondly, the condition under which a given T has an A-functional
calculus should be related as simply as possible to the way in which T is presented.
Thirdly, the more explicit the map that sends φ in A to φ(T ) in L(X), the easier
it is to use the theory. Finally, one should have a theory which, when restricted to
the commutative case, agrees with the normal idea of a functional calculus.

The approach that we advocate in this note is to replace the universal set Cd

with the nc-universeM[d] :=
⋃∞

n=1 M
d
n , where Mn denotes the set of n-by-n matri-

ces over C, with the induced operator norm from �2n. In other words, we look at
d -tuples of n-by-n matrices; but, instead of fixing n, we allow all values of n. We
look at certain special open sets in M[d].

Let δ be a matrix of free polynomials in d variables, and define

(1.1) Gδ = {x ∈ M
[d] : ‖δ (x)‖ < 1}.

The algebras we work with are algebras of the form H∞(Gδ ). We define H∞(Gδ )
in Definition 1.3. For now, think of it as some sort of non-commutative analogue
of the set of bounded analytic functions defined on Gδ . We develop conditions for
a d -tuple in L(X) to have an H∞(Gδ ) functional calculus, in other words, for a
particular T ∈ L(X)d to have the property that there is a unique extension of the
polynomial functional calculus to all of H∞(Gδ ).

1.2 Non-commutative functions. LetM[d] =
⋃∞

n=1 M
d
n . A graded func-

tion defined on a subset ofM[d] is a function φ with the property that φ(x) ∈ Mn if
x ∈ Md

n . If x ∈ Md
n and y ∈ Md

m , we let x⊕y = (x1⊕y1, . . . , xd ⊕yd ) ∈ Md
n+m; and,

if s ∈ Mn, we let sx (respectively, xs) denote the tuple (sx1, . . . , sxd ) (respectively,
(x1s, . . . , xds)).

Definition 1.1. An nc-function is a graded function φ defined on a set
D ⊆ M[d] such that

i) if x, y, x⊕ y ∈ D, then φ(x ⊕ y) = φ(x)⊕ φ(y);
ii) if s ∈ Mn is invertible and x, s−1xs ∈ D ∩ Md

n , then φ(s−1xs) = s−1φ(x)s.

Observe that every non-commutative polynomial is an nc-function on all of
M[d]. Subject to being locally bounded with respect to an appropriate topology,
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nc-functions are holomorphic [2, 9, 11], and can be thought of as bearing an anal-
ogous relationship to non-commutative polynomials as holomorphic functions do
to regular polynomials.

Nc-functions have been studied by, among others, G. Popescu [15, 16, 17, 18,
19, 20]; J. Ball, G. Groenewald, and T. Malakorn [5]; D. Alpay and D. Kaliuzhnyi-
Verbovetzkyi [4]; and J.W. Helton, I. Klep and S. McCullough [8, 9] and Helton
and McCullough [10]. We refer to the book [11] by Kaliuzhnyi-Verbovetskyi and
V. Vinnikov on nc-functions.

We define matrix- or operator-valued nc-functions in the natural way, and use
upper-case letters to denote them.

Definition 1.2. Let K1 and K2 be Hilbert spaces, and D ⊆ M
[d]. We say a

function F is an L(K1,K2)-valued nc-function on D if

∀n ∀x∈D∩Md
n
F (x) ∈ L(Cn ⊗ K1,C

n ⊗ K2),

∀x,y,x⊕y∈D F (x⊕ y) = F (x)⊕ F (y), and

∀n ∀x∈D∩Md
n
∀s∈Mn s

−1xs ∈ D ⇒ F (s−1xs) = (s−1 ⊗ idK1 )F (x)(s⊗ idK2 ).

A special case of Gδ in (1.1) is when d = IJ and δ is the I -by-J rectangular
matrix whose (i, j ) entry is the [(i − 1)J + j ]th coordinate function. We give this
the special symbol E:

E(x1, . . . , xIJ ) =

⎛
⎜⎜⎜⎜⎝

x1 x2 · · · xJ

xJ+1 xJ+2 · · · x2J

...
...

. . .
...

x(I−1)J+1 x(I−1)J+2 · · · xIJ

⎞
⎟⎟⎟⎟⎠ .

We denote the set GE by BI×J :

BI×J =
∞⋃
n=1

{
x = (x1, . . . , xIJ ) ∈ M

IJ
n : ‖E(x)‖ < 1

}
.

Definition 1.3. We denote by H∞(Gδ ) the set of bounded nc-functions on
Gδ , and by H∞

L(K1,K2)(Gδ ) the set of bounded L(K1,K2)-valued nc-functions on
D.

Functions in these sets were studied in [1] and [2]. When K1 = K2 = C, we
identify H∞(Gδ ) with H∞

L(K1,K2)(Gδ ). By a matrix-valued H∞(Gδ ) function, we
mean an element of some H∞

L(K1,K2)(Gδ ) with both K1 and K2 finite dimensional.
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2 Hilbert tensor norms

We wish to define norms on matrices of elements of L(X). Were X restricted to be
a Hilbert spaceH, there would be a natural way to do this by thinking of an I -by-J
matrix in L(H) as a linear map from the (Hilbert space) tensor productH ⊗C

J to
H ⊗ CI . We would like to do this in general.

Note first that although every Banach space can be embedded in an operator
space (see e.g., [14, Chap. 3]), which in turn can be realized as a subset of some
L(H), we would lose the multiplicative structure of L(X), so this approach does
not work in general for our purpose.

Let us recall some definitions from the theory of tensor products on Banach
spaces [7, 23]. A reasonable cross norm on the algebraic tensor product X ⊗Y
of two Banach spaces is a norm τ satisfying

i) for every x ∈ X , and y ∈ Y ,

τ(x ⊗ y) = ‖x‖‖y‖;
ii) for every x∗ ∈ X∗ and y∗ ∈ Y ∗,

‖x∗ ⊗ y∗‖(X⊗Y,τ)∗ = ‖x∗‖‖y∗‖.

A uniform cross norm is an assignment to each pair of Banach spaces X,Y
a reasonable cross-norm on X ⊗ Y such that if R : X1 → X2 and S : Y1 → Y2 are
bounded linear operators, then

‖R ⊗ S‖X1⊗Y1→X2⊗Y2 ≤ ‖R‖‖S‖.

A uniform cross norm τ is finitely generated if, for every pair of Banach spaces
X,Y and every u ∈ X ⊗ Y ,

τ(u;X ⊗ Y ) = inf{τ(u;M ⊗ N ), u ∈ M ⊗ N, dimM < ∞, dim N < ∞}.
A finitely generated uniform cross norm is called a tensor norm. Both the injec-
tive and projective tensor products are tensor norms [7, Propositions 1.2.1, 1.3.2],
[23, Section 6.1]; there are also other tensor products [7, 23]. When τ is a reason-
able cross norm, we write X ⊗τ Y for the Banach space that is the completion of
X ⊗ Y with respect to the norm given by τ.

Definition 2.1. Let X be a Banach space. A Hilbert tensor norm on X is
an assignment of a reasonable cross norm h to X ⊗ K for every Hilbert space K

such that if R : X → X and S : K1 → K2 are bounded linear operators and K1

and K2 are Hilbert spaces, then

(2.1) ‖R ⊗ S‖L(X⊗hK1, X⊗hK2) ≤ ‖R‖L(X)‖S‖L(K1,K2).
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Every uniform cross norm is a Hilbert tensor norm, but there are other Hilbert
tensor norms. Most importantly, if X is a Hilbert space, then the Hilbert space
tensor product is a Hilbert tensor norm.

In what follows, we denote by ⊗ without a subscript the Hilbert space tensor
product of two Hilbert spaces, and by ⊗h a Hilbert tensor norm.

Let X be a Banach space, and let h be a Hilbert tensor norm on X . Let R = (Ri j )
be an I -by-J matrix with entries in L(X). Thinking of R as a linear operator from
X ⊗ C

J to X ⊗ C
I , we use h to define a norm for R. Formally, let Ei j : CJ → C

I

be the matrix with 1 in the (i, j ) slot and 0 elsewhere. Let K be a Hilbert space.
We define

Rh,K : X ⊗h (C
J ⊗ K) → X ⊗h (C

I ⊗ K)

Rh,K =
I∑

i =1

J∑
j =1

Ri j ⊗h (Ei j ⊗ idK)
(2.2)

Then we define

(2.3) ‖R‖h = sup{‖Rh,K‖ : K is a Hilbert space},
and (borrowing notation from the Irish use of a dot or séimhiú for an “h”)

(2.4) ‖R‖• = inf{‖R‖h : h is a Hilbert tensor norm}.
Let us record the following lemma for future use.

Lemma 2.2. Let R = (Ri j ) be an I-by-J matrix with entries in L(X). Then

(2.5) ‖R‖• ≥ max
i, j

‖Ri j‖L(X).

Proof. Let Bi be the 1-by-I matrix with i th entry idX , and the other entries the
0 element of L(X). Let Cj be the J-by-1 column matrix with j th entry idX and
the other entries 0. Let h be a Hilbert tensor norm on X . By (2.1), ‖Bi‖h ≤ 1 and
‖Cj‖h ≤ 1; and, since h is a reasonable cross norm, ‖Bi‖h = ‖Cj‖h = 1. Then

‖Ri j‖L(X) = ‖BiRCj‖L(X) ≤ ‖R‖L(X⊗hC
J ,X⊗hC

I ) ≤ ‖R‖h.
Since this holds for every h, (2.5) follows. �

3 Free analytic functions

Here are some of the primary results of [2]. When δ is an I -by-J rectangular
matrix with entries in Pd , and x ∈ Md

n , we think of δ (x) as an element of L(Cn ⊗
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C
J,Cn ⊗C

I ). WhenM is a Hilbert space, we write δM(x) for δ (x)⊗ idM and think
of it as an element of

L(Cn ⊗ MJ,Cn ⊗ MI ) = L(Cn ⊗ (CJ ⊗ M),Cn ⊗ (CI ⊗ M)).

Theorem 3.1. Let δ be an I-by-J rectangular matrix of free polynomials, and

Gδ be non-empty. Let K1 and K2 be finite-dimensional Hilbert spaces. A function
� is in H∞

L(K1,K2)(Gδ ) if and only if there is a function F in H∞
L(K1,K2)(BI×J ), with

‖F‖ ≤ ‖�‖, such that � = F ◦ δ .

Theorem 3.2. Let K1 and K2 be finite-dimensional Hilbert spaces. If F is in

H∞
L(K1,K2)(BI×J ) and ‖F‖ ≤ 1, there exist an auxiliary Hilbert space M and an

isometry

(3.1) V =

[
A B
C D

]
: K1 ⊕ M(I) → K2 ⊕ M(J)

such that

(3.2a) F (x) = idCn ⊗ A + (idCn ⊗ B)EM(x)[idCn ⊗ idM(J) − (idCn ⊗D)EM(x)]−1(idCn ⊗ C)

for x ∈ BI×J ∩ Md
n . Consequently, F has the series expansion

(3.2b) F (x) = idCn ⊗ A +
∞∑
k=1

(idCn ⊗ B)EM(x)[(idCn ⊗ D)EM(x)]k−1(idCn ⊗ C),

which is absolutely convergent on Gδ .

If we write CnA for idCn ⊗ A, equations (3.2a) and (3.2b) have the more easily
readable form

F =Cn A + CnB EM [I − CnD EM]−1
CnC(3.3a)

F (x) =Cn A +
∞∑
k=1

CnB EM(x) [CnD EM(x)]k−1
CnC.(3.3b)

We call (3.2a) a free realization of F . The isometry V is not unique, but each
term on the right-hand side of (3.3b) is a free matrix-valued polynomial, each of
whose non-zero entries is homogeneous of degree k. Thus we can rewrite (3.3b)
as

(3.3c) F (x) =
∞∑
k=0

Pk(x)
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where each Pk is a homogeneous L(K1,K2)-valued free polynomial, and which
satisfies

(3.4) ‖Pk(x)‖ ≤ ‖x‖k for all x ∈ BI×J , for all k ≥ 1.

Formulas (3.3a) or (3.3c) allow us to extend the domain of F from d -tuples of
matrices to d -tuples in L(X).

Let X be a Banach space, with a Hilbert tensor norm h. Let T = (Ti j ) be an
I -by-J matrix of elements of L(X). If ‖T ‖h < 1, where ‖T ‖h is defined by (2.3),
we can replace EM(x) in (3.2a) with

∑
i, j Ti j ⊗h (Ei j ⊗ idM) and get a bounded

operator from X ⊗h K1 to X ⊗h K2, provided we tensor with idX .

Definition 3.3. Let K1 and K2 be finite-dimensional Hilbert spaces, and let
F be a matrix-valued nc-function on BI×J , bounded in norm by 1, with a free
realization given by (3.2a) and an expansion into homogeneous L(K1,K2)-valued
free polynomials given by (3.3c). Let T = (Ti j )

i =I, j =J
i =1, j =1 be an I -by-J matrix of

bounded operators on a Banach space X . Let h be a Hilbert tensor norm on X .
Then we define F �

h(T ) ∈ L(X ⊗h K1,X ⊗h K2) by

(3.5) F �
h(T ) =

∞∑
k=0

Pk(T ),

provided that the right-hand side converges absolutely.
We extend the definition of F � to functions of norm greater than 1 by scaling.

The definition of F �
h(T ) might seem to depend on the choice of free realization,

but in fact does not, since the polynomials Pk do not depend on the free realization.
However, the definition of F �

h(T ) does depend subtly on the choice of h, as F �
h(T )

is a bounded linear map in L(X ⊗h K1,X ⊗h K2), but these are all the same if
K1 = K2 = C. We write F �(T ) for the dim(K2)-by-dim(K1) matrix

(3.6) F �(T ) =
∞∑
k=0

Pk(T ),

which is a matrix of elements of L(X).
In the following theorem, XA = idX ⊗h A and TM =

∑
i, j Ti j ⊗h (Ei j ⊗ idM),

where we assume that h is understood.

Theorem 3.4. Let X be a Banach space and T an I-by-J matrix of elements
of L(X). Suppose F is as in Theorem 3.2 and ‖F‖ ≤ 1.

(i) If h is a Hilbert tensor norm on X and ‖T ‖h < 1, then

F �
h(T ) =X A + (XB)TM[I − (XD)TM]−1

XC,(3.7)
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and

‖F �
h(T )‖ ≤ 1

1 − ‖T ‖h .(3.8)

(ii) If ‖T ‖• < 1, then

(3.9) ‖F �(T )‖• ≤ 1
1 − ‖T ‖•

.

(iii) If X is a Hilbert space, H is the Hilbert space tensor product, and
‖T ‖H < 1, then

(3.10) ‖F �
H (T )‖ ≤ 1.

Proof. (i) Let ‖T ‖h = r < 1. Let us temporarily denote by G(T ) the right-
hand side of (3.7). By 2.1, we have ‖XD‖ ≤ 1; and, by (2.3), ‖TM‖ < 1.
Therefore, the Neumann series [I − (XD)TM]−1 =

∑∞
k=0[XD TM]k converges to a

bounded linear operator in L(X ⊗h (CJ ⊗M)) of norm at most 1/1− r. Using 2.1
again, we conclude that

(3.11) ‖G(T )‖L(X⊗hK1,X⊗hK2) ≤ 1 +
r

1 − r
=

1
1 − r

.

Replacing T by eiθT and integrating G(eiθT ) against e−ikθ , we get, for k ≥ 1,

1
2π

∫ 2π

0
G(eiθT )e−ikθdθ = XB TM[XD TM]k−1

XC = Pk(T ),

where Pk is the homogeneous polynomial from (3.3c). Therefore G(T ) is given
by the absolutely convergent series

∑∞
k=0 Pk(T ), and hence equals F �(T ), proving

(3.7), and, by (3.11), also proving (3.8).
(ii) follows from the definition (2.4).
(iii) Using the fact that

(
A B
C D

)
is an isometry, and equation (3.7), after some

algebraic rearrangements we obtain

(3.12) I − F �
H (T )

∗F �
H (T ) = XC

∗[I − T ∗
M XD]−1[I − T ∗

MTM][I − (XD)TM]−1
XC.

Since ‖TM‖ < 1, the right-hand side of (3.12) is positive, and so the left-hand side
is positive, which means ‖F �

H (T )‖ ≤ 1. �
Suppose �(x1, . . . , xd ) is in H∞

L(K1,K2)(Gδ ). By Theorem 3.1, we can write
� = F ◦ δ , for some F in H∞

L(K1,K2)(BI×J ). Let T = (T 1, . . . ,T d ) ∈ L(X)d . Then
δ (T ) is an I -by-J matrix with entries in L(X). If ‖δ (T )‖• < 1, one would like to
define �� by

(3.13) ��(T ) = F �(δ (T )).

But, since F is not unique, this raises questions about whether �� is well-defined.
We address this question in Section 4.
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4 Existence of a functional calculus

Throughout this section, X is a Banach space, and T = (T 1, . . . ,T d ) is a d -tuple
of bounded linear operators on X .

Let δ be an I -by-J matrix of free polynomials in P
d , and let

Gδ =
∞⋃
n=1

{x ∈ M
d
n : ‖δ (x)‖ < 1}.

We say that Gδ is a spectral set for T if

(4.1) ‖p(T )‖L(X) ≤ sup
x∈Gδ

‖p(x)‖ for all p ∈ P
d .

When P is an I -by-J matrix of polynomials, we consider P to be an L(CJ,CI )
valued nc-function. We denote by M(Pd ) the vector space of all (finite) matri-
ces of free polynomials, with the norm of P(x) given as the operator norm in
L(Cn ⊗C

J ,Cn ⊗C
I ) where x = (xi j ) is a matrix with each xi j ∈ Mn. If (4.1) holds

for all matrices of polynomials, i.e.,

(4.2) ‖P(T )‖• ≤ sup
x∈Gδ

‖P(x)‖ for all n, for all P ∈ M(Pd ),

we say thatGδ is a complete spectral set for T . If inequalities (4.1) or (4.2) hold
with the right-hand side multiplied by a constant K , we say Gδ is a K -spectral
set (respectively, complete K -spectral set) for T .

Theorem 4.1. The following are equivalent.

(i) There exists s < 1 such that Gδ/s is a K-spectral set for T .

(ii) There exists r < 1 such that the map π : f ◦ ( 1r δ ) �→ f �( 1r δ (T )) is a

well-defined bounded homomorphism from H∞(Gδ/r) to L(X) with ‖π‖ ≤ K that

extends the polynomial functional calculus on P
d ∩H∞(Gδ/r).

Moreover, if these conditions hold, then π is the unique extension of the evalua-
tion homomorphism on the polynomials to a bounded homomorphism from

H∞(Gδ/r) to L(X).

Proof. (ii) ⇒ (i). Let s = r. Let q ∈ Pd . If ‖q‖Gδ/r is infinite, there is
nothing to prove, so assume that ‖q‖Gδ/r is finite. By Theorem 3.1, there exists
f ∈ H∞(BI×J ) such that q = f ◦ 1

r δ on Gδ/r , and ‖ f ‖ ≤ ‖q‖Gδ/r . Since π is
well-defined and extends the polynomial evaluation, π(q) = q(T ) = f �( 1r δ (T )).
Therefore

‖q(T )‖ ≤ K
∥∥∥ f ◦ 1

r
δ
∥∥∥
Gδ/r

≤ K‖q‖Gδ/r .
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(i) ⇒ (ii). Choose r in (s, 1). Let φ ∈ H∞(Gδ/r), and assume that there are
functions f1 and f2 in H∞(BI×J ) such that φ(x) = f1 ◦ 1

r δ (x) = f2 ◦ 1
r δ (x) for all

x ∈ Gδ/r . Expand each f l as in (3.3c) into a series of homogeneous polynomials,
obtaining f l(x) =

∑∞
k=0 p

l
k(x), l = 1, 2. By (3.4), we have ‖plk(x)‖ ≤ ‖x‖k, so

∥∥∥ N∑
k=0

p1k
(1
r
δ (x)

)
−

N∑
k=0

p2k
(1
r
δ (x)

)∥∥∥
Gδ/s

=
∥∥∥ ∞∑
k=N+1

p1k
(1
r
δ (x)

)
−

∞∑
k=N+1

p2k
(1
r
δ (x)

)∥∥∥
Gδ/s

≤ 2
∞∑

k=N+1

( s
r

)k
= 2

sN+1

rN
1

r − s
.

Therefore

(4.3)
∥∥∥ N∑

k=0

p1k
(1
r
δ (T )

)
−

N∑
k=0

p2k
(1
r
δ (T )

)∥∥∥ ≤ 2K
sN+1

rN
1

r − s
.

Both series
∑∞

k=0 p
1
k(

1
r δ (T )) converge to the same limit, so π(φ) is well-defined.

Moreover, since
∑N

k=0 p
1
k(

1
r δ (x)) converges uniformly to φ(x) on Gδ/s, we have

lim sup
N→∞

∥∥∥ N∑
k=0

p1k ◦ 1
r
δ
∥∥∥
Gδ/s

≤ ‖φ‖Gδ/s ≤ ‖φ‖Gδ/r .

Therefore

‖π(φ)‖L(X) = lim
N→∞

∥∥∥ N∑
k=0

p1k
(1
r
δ (T )

)∥∥∥ ≤ K‖φ‖Gδ/r .

The fact that π is a homomorphism follows from it being well defined, as if φ =
f ◦ ( 1r δ ) and ψ = g ◦ 1

r δ , then φψ = ( fg) ◦ 1
r δ .

Finally, to show that π extends the polynomial functional calculus, suppose q
is a free polynomial in H∞(Gδ/r), so q = f ◦ 1

r δ . Expand f (x) =
∑

pk(x) into
its homogeneous parts. Then

∑N
k=0 pk(

1
r δ (x)) converges uniformly to q(x) on Gδ/s.

So, since Gδ/s is a K -spectral set for T ,

π(q) = lim
N→∞

N∑
k=0

pk
(1
r
δ (T )

)
= q(T ).

This last argument shows that π is the unique continuous extension of the evalua-
tion map on polynomials. �

A similar result holds for complete K -spectral sets.

Theorem 4.2. The following are equivalent.

(i) There exists s < 1 such that Gδ/s is a complete K -spectral set for T .
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(ii) There exists r < 1 such that the map π : F ◦ 1
r δ �→ F �( 1r δ (T )) is a well-

defined completely bounded homomorphism, satisfying∥∥∥F �
(1
r
δ (T )

)∥∥∥• ≤ K
∥∥∥F ◦ 1

r
δ
∥∥∥
Gδ/r

that extends the polynomial functional calculus on P
d ∩H∞(Gδ/r).

Moreover, if these conditions hold, then π is the unique extension of the evalua-

tion homomorphism on the polynomials to a bounded homomorphism from
H∞(Gδ/r) to L(X).

The proof is very similar to the proof of Theorem 5.2. The only significant
difference is that (4.3) becomes

∥∥∥ N∑
k=0

P1
k

(1
r
δ (T )

)
−

N∑
k=0

P2
k

(1
r
δ (T )

)∥∥∥• ≤ 2K
sN+1

rN
1

r − s
.

We apply Lemma 2.2 to conclude that both series converge to the same limit ma-
trix.

Definition 4.3. We say that T has a contractive (respectively, completely
contractive, bounded, completely bounded) Gδ functional calculus if
there exists 0 < r < 1 such that Gδ/r is a spectral set (respectively, complete
spectral set, K spectral set, complete K spectral set) for T .

Remark 4.4. Even in the case d = 1, T ∈ L(H), and δ (x) = x, the question
of when T has an H∞(D) functional calculus becomes murky without the a priori
requirement that ‖T ‖ < 1. By von Neumann’s inequality [29], T has a completely
contractive Gδ functional calculus if ‖T ‖ < 1. When ‖T ‖ = 1, p �→ p(T ) ex-
tends contractively to H∞(D) if T does not have a singular unitary summand [24,
Theorem III.2.3]; but, to guarantee uniqueness, one usually imposes the standard
extra assumption of continuity in the strong operator topology for functions that
converge boundedly almost everywhere on the unit circle [24, Section III.2.2].

By Rota’s theorem [22], if σ(T ) ⊆ (D), T is similar to an operator which has a
completely contractive H∞(D) functional calculus. Again, the situation becomes
more delicate if σ(T ) is not required to lie in D. By Paulsen’s theorem [13], T has
a completely bounded polynomial functional calculus if and only if T is similar to
a contraction.

5 Complete spectral sets

For � ∈ H∞(Gδ ), and T a d -tuple with ‖δ (T )‖• < 1, one wants to define ��(T )
as F �(δ (T )). But what if there are two different functions, F and F1, both in
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H∞(BI×J ), satisfying �(x) = F ◦ δ (x) = F1 ◦ δ (x) for all x ∈ Gδ . How does one
know that F �(δ (T )) = F �

1(δ (T ))? If it doesn’t, is there a “best” choice?

Definition 5.1. We say Gδ is bounded if there exists M such that ‖x‖ ≤ M

for all x ∈ Gδ . This is the same as requiring that Pd ⊆ H∞(Gδ ). A stronger
condition is that the algebra generated by the δi j is all of Pd .

We say that δ is separating if every coordinate function xr, 1 ≤ r ≤ d , is in
the algebra generated by the functions {δi j : 1 ≤ i ≤ I, 1 ≤ j ≤ J}.

Theorem 5.2. Assume ‖δ (T )‖• < 1. Then there exists r < 1 such that
Gδ/r is a complete K -spectral set for T if and only if there exists s in the inter-

val (‖δ (T )‖•, 1) such that

(5.1) F �
(1
s
δ (T )

)
= P(T )

for every matrix-valued H∞(BI×J ) function F and matrix P of free polynomials

satisfying

(5.2) F ◦
(1
s
δ
)
(x) = P(x) for all x ∈ G(1/s)δ .

If δ is separating, then it suffices to check the condition for the case P = 0.

Proof. (⇒) By Theorem 4.2, (5.2) implies (5.1) whenever Gδ/r is a complete
K-spectral set.

(⇐) Suppose ‖δ (T )‖• = t < 1 and that s ∈ (t, 1) has the property that (5.2)
implies (5.1). Let r = s. We show that Gδ/r is a complete K -spectral set for T .

Let P be a matrix of polynomials. We wish to show that

(5.3) ‖P(T )‖• ≤ K sup{‖P(x)‖ : x ∈ M
d
n , ‖δ (x)‖ < r}.

Without loss of generality, assume that the right-hand side of (5.3) is finite. By
Theorem 3.1, we can find F and a matrix-valued function on H∞(BI×J ) such that
F ◦ 1

r δ = P on Gδ/r and ‖F‖ ≤ sup{‖P(x)‖ : x ∈ M
d
n , ‖δ (x)‖ < r}. By (5.1),

we have P(T ) = F � ◦ 1
r δ (T ), and so, by Theorem 3.4, (5.3) holds in general, with

K = r/r − t.
Now, suppose that

(5.4) F ◦
(1
s
δ
)
= 0 on G(1/s)δ

implies

(5.5) F �
(1
s
δ (T )

)
= 0.
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We wish to show that (5.2) implies (5.1). Since δ is separating, there is a matrix
H of free polynomials such that H ◦ 1

s δ (x) = P(x). Then

(F − H ) ◦ 1
s
δ (x) = 0 for all x ∈ Gδ/s;

so, by hypothesis,

F �
(1
s
δ (T )

)
= H �

(1
s
δ (T )

)
;

and, since H is a polynomial,

H �
(1
s
δ (T )

)
= H

(1
s
δ (T )

)
= P(T ),

as required. �

Remark 5.3. To just check the case P = 0, we don’t need to know that δ

is separating; we just need to know that if a polynomial is bounded on Gδ/r , it is
expressible as a polynomial in the δi j .

Here is a checkable condition.

Theorem 5.4. Suppose δ (0) = 0 and that T ∈ L(X)d satisfies

sup
0≤r≤1

‖δ (rT )‖• < 1.

Then T has a completely bounded Gδ functional calculus.

Proof. By Theorem 5.2, suffices to prove that (5.2) implies (5.1). Hence,
assume (5.2) holds, i.e., F ◦ 1

s δ (x) =
∑∞

k=0 Pk( 1s δ (x)) = P(x) for all x ∈ G(1/s)δ . By
Theorem 3.2, F ◦ 1

s δ − P has a power series expansion in a ball centered at 0 in
M[d]. Since δ (0) = 0, for each m ∈ N, the number of terms in F ◦ 1

s δ (x) − P(x)
that are of degree m in x is finite.

Expanding Pk( 1s δ (x)), one gets O((IJ)k) terms, so if ‖ 1
s δ (x)‖ < 1

IJ , then the
series expansion for

∑∞
k=0 Pk( 1s δ (x)) converges absolutely. We conclude therefore,

by rearranging the absolutely convergent series, that if R is a d -tuple in L(X)
satisfying ‖δ (R)‖• < s/IJ , then

(5.6)
∞∑
k=0

Pk

(1
s
δ (R)

)
= P(R).

Since δ (0) = 0, we can apply (5.6) to ζT , for all sufficiently small ζ . Now we
analytically continue to ζ = 1 and conclude that (5.6) also holds for T . �
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6 Hilbert spaces

For d -tuples in L(H)d , it is natural to work with the Hilbert space tensor product
and the Hilbert space norm instead of the norm ‖ · ‖•. Throughout this section, we
assume that S = (S1, . . . , Sd ) ∈ L(H)d and that all norms (including those used to
define spectral and complete spectral sets) are Hilbert space norms. Many of our
earlier results go through with essentially the same proofs; but, since we can use
(3.10) instead of (3.9), we get better constants.

The following theorem is a sample result, proved like Theorem 5.2.

Theorem 6.1. Let S ∈ L(H)d . Then there exists r < 1 such that

∥∥∥F �
(1
r
δ (S)

)∥∥∥ ≤ sup
{∥∥∥F(1

r
δ (x)

)∥∥∥ : x ∈ Gδ/r

}
if and only if

(i) ‖δ (S)‖ < 1, and
(ii) F �( 1s δ (S)) = P(S) for every matrix-valued H∞(BI×J ) function F satisfying

F ◦ 1
s δ (x) = P(x) for all x ∈ G(1/s)δ .

Example 7.3 below shows that condition (i) in Theorem 6.1 does not imply (ii).

For the remainder of this section, {en}∞n=1 is a fixed orthonoormal basis of H.
We can naturally identify Mn with the operators on H that map ∨n

k=1{ek} to itself
and vanish on the orthogonal complement. In this way,Gδ is a subset ofG

�
δ , where

G�
δ := {S ∈ L(H)d : ‖δ (S)‖ < 1}.

Since multiplication is sequentially continuous in the strong operator topology,
to get a functional calculus it suffices to determine that S ∈ G�

δ is the strong op-
erator topology limit of a sequence of d -tuples in Gδ/r . For a set A ∈ B(H)d , we
denote by sclSOT(A) the set of tuples in B(H)d that are strong operator topology
limits of sequences from A.

Theorem 6.2. Suppose S ∈ ⋃
0<r<1 sclSOT(G1

r δ
). Then S has a completely

contractive Gδ functional calculus.

Proof. By hypothesis, there exists a sequence (xk) in G(1/t)δ that converges
to S in the strong operator topology, for some t < 1. Therefore δ (xk) converges
to δ (S) in the strong operator topology, so ‖δ (S)‖ = r ≤ t < 1. Let s ∈ (t, 1).
By Theorem 6.1, it suffices to prove that (5.2) implies (5.1). As in the proof of
Theorem 4.1, we can approximate F uniformly on t

sBI×J with a sequence QN , the
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sum of the first N homogeneous polynomials. So for all ε > 0, there exists N0

such that ∥∥∥QN

(1
s
δ (xk)

)
− F

(1
s
δ (xk)

)∥∥∥ < ε and(6.1) ∥∥∥QN

(1
s
δ (S)

)
− F �

(1
s
δ (S)

)∥∥∥ < ε(6.2)

if N ≥ N0. As F ◦ 1
s δ = P on G(1/s)δ , inequality (6.1) means

(6.3)
∥∥∥QN

(1
s
δ (xk)

)
− P(xk)

∥∥∥ < ε for all N ≥ N0.

Since multiplication is sequentially strong operator continuous andQN is a matrix
of polynomials,

(6.4) S.O.T. lim
k→∞

[
QN

(1
s
δ (xk)

)
− P(xk)

]
= QN

(1
s
δ (S)

)
− P(S).

The norm of a strong operator topology sequential limit is less than or equal to the
limit of the norms, so by (6.3), we get from (6.4) that

(6.5)
∥∥∥QN

(1
s
δ (S)

)
− P(S)

∥∥∥ ≤ ε for all N ≥ 0.

Using (6.5) in (6.2), we conclude that ‖F � ◦ 1
s δ (S) − P(S)‖ ≤ 2ε. Since ε was

arbitrary, we conclude that (5.1) holds, i.e., F � ◦ 1
s δ (S) = P(S). �

Corollary 6.3. Suppose each δi j is the sum of a scalar and a homogeneous

polynomial of degree 1. Then S has a completely contractive Gδ functional calcu-
lus if and only if ‖δ (S)‖ < 1.

Proof. Let �N be the projection from H onto ∨n
j =1{e j }, and suppose

‖δ (S)‖ ≤ r. Let xN = �NS�N . Then xN converges to S in the strong opera-
tor topology. Moreover, δ (xn) = �N ⊗ idCI δ (S)�N ⊗ idCJ , so ‖δ (xN )‖ ≤ ‖δ (S)‖.�

For Hilbert spaces, replacing completely bounded with completely contractive
changes things only up to similarity. This follows from the following theorem of
V. Paulsen. :

Theorem 6.4 ([13]). Let H and K be Hilbert spaces, and let A be a unital

subalgebra of L(K). Let ρ : A → L(H) be a completely bounded homomorphism.
Then there exists an invertible operator a onH, with ‖a‖‖a−1‖ = ‖ρ‖cb, such that
a−1ρ(·)a is a completely contractive homomorphism.

As a consequence, we get the following theorem.
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Theorem 6.5. Let S be a d-tuple of operators onH. Then S has a completely

bounded Gδ functional calculus if and only if there exists an invertible operator a
onH such that R = a−1Sa has a completely contractive Gδ functional calculus.

Proof. Sufficiency is clear. For necessity, suppose 0 < r < 1, and that the
map H∞(Gδ/r) ∈ � �→ �(S) is a completely bounded map, with completely
bounded norm K , that extends polynomial evaluations for polynomials that are
bounded on Gδ/r . Then in particular, Gδ/r is a complete K -spectral set for S. Let
{xk}∞k=1 be a countable dense set in Gδ/r , and let X = ⊕xk. Then, for every matrix-
valued function P,

‖P‖Gδ/r = sup{‖P(x)‖ : x ∈ Gδ/r} = ‖P(X)‖.

By hypothesis, the map ρ : P(X) �→ P(S) is completely bounded, with ‖ρ‖cb ≤ K .
By Theorem 6.4, there exists a ∈ L(H) such that the map P(X) �→ P(a−1Sa) is
completely contractive. Therefore Gδ/r is a complete spectral set for a−1Sa. �

Remark 6.6. We don’t need K to be separable, so we could have taken X to
be the direct sum over all of Gδ/r . Indeed, we could sum over all Gδ/r which are
complete K spectral sets, and get one similarity that works for all of them.

7 Examples

Example 7.1. Let δ (x) = (x1, . . . , xd ) be a 1-by-d matrix. Then H∞(Gδ ) is
the algebra of all bounded nc-functions defined on the row contractions. Functions
on the row contractions were studied by Popescu in [15]. Note that a function in
H∞(Gδ ) need not have an absolutely convergent power series. When we expand
f ∈ H∞(Gδ ) as in (3.3b) or (3.3c), we get f (x) =

∑∞
k=0 pk(x), where each pk is

a homogeneous polynomial of degree k, having dk terms. Knowing merely that
all the coefficients are bounded, one would need ‖x j‖ < 1/d for each j to con-
clude that the series converged absolutely. However we do know that

∑∞
k=0 ‖pk(x)‖

converges for all x in Gδ .
By Theorem 5.4 or Theorem 3.4, if T ∈ L(X)d satisfies ‖δ (T )‖• < 1, the

functional calculus F �→ F �(T ) is a completely bounded homomorphism from
H∞(Gδ ) to L(X), with completely bounded norm at most 1/1 − ‖δ (T )‖•. Every
function in the multiplier algebra of the Drury-Arveson space can be extended
without increase of norm to a function in H∞(Gδ ) [1]; so. in particular, one can
then apply these functions to T .

Example 7.2. This is similar to Example 7.1. This time, let δ be the d -by-
d diagonal matrix with the coordinate functions on the diagonal. Then H∞(Gδ )
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is the set of free analytic functions defined on d -tuples x with max ‖x j‖ < 1.
Again, every function that is bounded on the commuting contractive d -tuples can
be extended to all of Gδ without increasing its norm [1].

Let T = (T 1, . . . ,T d ) ∈ L(X)d . We can calculate ‖δ (T )‖• by observing that

defining ‖(x1, x2, . . . , xm)‖ =
√∑ ‖x j‖2X gives a Hilbert tensor norm on X ⊗ �2m .

It follows that ‖δ (T )‖• ≤ max ‖T j‖; and, since this is easily seen to be a lower
bound, we conclude

(7.1) ‖δ (T )‖• = max
1≤ j≤d

‖T j‖L(X).

So, one gets an H∞(Gδ ) functional calculus whenever (7.1) is less than 1. Let
us reiterate that if f ∈ H∞(Gδ ) and we expand it in a power series, we have no
guarantee that the resulting series converges absolutely, even if the norm of each
T j is less than one; we need to group the terms as in (3.6).

Example 7.3. Here is an example of a polynomial that has a different norm
on Gδ and G�

δ . Consequently, sclSOT(Gδ ) �= G�
δ , proving that condition (i) in The-

orem 6.1 does not imply (ii).
Let 0 < ε < 0.2. For ease of reading, we write (x, y) instead of (x1, x2) to

denote coordinates. Let

δ (x, y) =

⎛
⎜⎝

1
ε
(yx− I ) 0 0

0 1
1+ε

x 0
0 0 1

1+ε
y

⎞
⎟⎠ .

Let p(x) = xy− I . We claim that

‖p‖Gδ
≤ ε + 4ε2,(7.2a)

‖p‖G�
δ
≥ 1.(7.2b)

To prove the claim, let x ∈ Gδ . Then ‖y‖ < 1 + ε; and, since yx is bounded below
by 1−ε, we conclude that x is bounded below by (1−ε)/(1+ε). By this, we mean
that for all vectors v , ‖xv‖ ≥ 1−ε

1+ε
‖v‖. So x has an inverse z, and ‖z‖ ≤ 1+ε

1−ε
. Let

e = yx − I . Then ‖e‖ < ε, and y = z + ez. Therefore p(x) = xz + xez− I = xez, so
‖p(x)‖ ≤ ε(1+ε)2

1−ε
≤ ε + 4ε2, which yields (7.2a).

To prove (7.2b), let T = (S, S∗), where S is the unilateral shift. Then
‖δ (S, S∗)‖ = 1/1 + ε < 1, and ‖p(S, S∗)‖ = 1, which yields (7.2b).

Example 7.4. This is an example of our non-commutative approach applied
to a single matrix. Let U = {z ∈ C : |z| < 1 and |z − 1| < 1}. Let X be a
finite-dimensional Banach space, and T ∈ L(X) be such that σ(T ) ⊂ U . Let

δ (x) =

(
x 0
0 x − 1

)
.
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Then H∞(Gδ ) is a space of analytic functions on U , but the norm is not the sup-
norm; it is the larger norm given by

‖φ‖ := sup{‖φ(S)‖ : S ∈ L(H), ‖δ (S)‖ < 1}.
Indeed, by Theorem 3.1, the norm can obtained as

‖φ‖ = inf{‖g‖H∞(D2) : g(z, z− 1) = φ(z) ∀ z ∈ U}.
(It suffices to calculate the norm of g in the commutative case, since it always has
an extension of the same norm to the non-commutative space, by [1]).

By [3, Theorem 4.9], every function analytic on a neighborhood of U is in
H∞(Gδ ). Since X is finite dimensional, T is similar to an operator on a Hilbert
space; and, by the results of Smith and Paulsen, this can be taken to have U as a
complete spectral set.

Putting all this together, we can write T as a−1Sa, where S is a Hilbert space
operator with ‖δ (S)‖ < 1. For any φ in H∞(Gδ ), we find a g of minimal norm in
H∞(D2) such that g(z, z− 1) = φ(z) for all z ∈ U . Finally, we get the estimate

‖φ(T )‖L(X) ≤ ‖a−1‖‖a‖‖g‖H∞(D2).

If max(‖T ‖, ‖T − 1‖) = r < 1, we have the estimate (which works even if X is
infinite dimensional)

‖φ(T )‖L(X) ≤ 1
1 − r

‖g‖H∞(D2).
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