NON-COMMUTATIVE FUNCTIONAL CALCULUS

 B_{λ}

JIM AGLER*AND JOHN E. MCCARTHY†

Abstract. We develop a functional calculus for d-tuples of non-commuting elements in a Banach algebra. The functions we apply are free analytic functions, that is, nc-functions that are bounded on certain polynomial polyhedra.

1 Introduction

1.1 Overview. The purpose of this note is to develop an approach to functional calculus and spectral theory for d-tuples of elements of a Banach algebra, with no assumption that the elements commute.

In [28], J. L. Taylor considered this problem for d-tuples in $\mathcal{L}(X)$, the bounded linear operators on a Banach space X. His idea was to start with the algebra \mathbb{P}^d of free polynomials 1 in d variables over the complex numbers and consider what he called "satellite algebras", that is, algebras A that contain \mathbb{P}^d with the property that every representation from \mathbb{P}^d to $\mathcal{L}(X)$ that extends to a representation of \mathcal{A} has a unique extension. As a representation of \mathbb{P}^d is determined by choosing the images of the generators, i.e., choosing $T = (T^1, \dots, T^d) \in \mathcal{L}(X)^d$, the extension of the representation to A, when it exists, constitutes an A-functional calculus for T. The classes of satellite algebras that Taylor considered, which he called free analytic algebras, were intended to be non-commutative generalizations of the algebras O(U), the algebra of holomorphic functions on a domain U in \mathbb{C}^d (and indeed he proved in [28, Prop 3.3] that when d = 1, these constitute all the free analytic algebras). Taylor had already developed a successful $\mathcal{O}(U)$ functional calculus for d-tuples T of commuting operators on X for which a certain spectrum (now called the Taylor spectrum) is contained in U; see [25, 26] for the original articles, and the article [21] by M. Putinar, which shows uniqueness. An excellent treatment is

^{*}Partially supported by National Science Foundation Grant DMS 1361720.

[†]Partially supported by National Science Foundation Grant DMS 1300280.

 $^{^{1}}$ We use the terms **free polynomial** and **non-commuting polynomial** in d variables interchangeably to mean an element of the algebra over the free monoid with d generators.

in [6] by R. Curto. However, in the non-commutative case, Taylor's approach in [27, 28] using homological algebra was only partially successful.

What constitutes a successful theory? This is of course subjective, but we argue that it should contain some of the following ingredients, and one has to make trade-offs between them. The functional calculus should use algebras $\mathcal A$ that one knows something about—the better the algebras are understood, the more useful the theory. Secondly, the condition under which a given T has an $\mathcal A$ -functional calculus should be related as simply as possible to the way in which T is presented. Thirdly, the more explicit the map that sends ϕ in $\mathcal A$ to $\phi(T)$ in $\mathcal L(X)$, the easier it is to use the theory. Finally, one should have a theory which, when restricted to the commutative case, agrees with the normal idea of a functional calculus.

The approach that we advocate in this note is to replace the universal set \mathbb{C}^d with the nc-universe $\mathbb{M}^{[d]} := \bigcup_{n=1}^{\infty} \mathbb{M}_n^d$, where \mathbb{M}_n denotes the set of *n*-by-*n* matrices over \mathbb{C} , with the induced operator norm from ℓ_n^2 . In other words, we look at *d*-tuples of *n*-by-*n* matrices; but, instead of fixing *n*, we allow all values of *n*. We look at certain special open sets in $\mathbb{M}^{[d]}$.

Let δ be a matrix of free polynomials in d variables, and define

(1.1)
$$G_{\delta} = \{ x \in \mathbb{M}^{[d]} : ||\delta(x)|| < 1 \}.$$

The algebras we work with are algebras of the form $H^{\infty}(G_{\delta})$. We define $H^{\infty}(G_{\delta})$ in Definition 1.3. For now, think of it as some sort of non-commutative analogue of the set of bounded analytic functions defined on G_{δ} . We develop conditions for a d-tuple in $\mathcal{L}(X)$ to have an $H^{\infty}(G_{\delta})$ functional calculus, in other words, for a particular $T \in \mathcal{L}(X)^d$ to have the property that there is a unique extension of the polynomial functional calculus to all of $H^{\infty}(G_{\delta})$.

1.2 Non-commutative functions. Let $\mathbb{M}^{[d]} = \bigcup_{n=1}^{\infty} \mathbb{M}_n^d$. A graded function defined on a subset of $\mathbb{M}^{[d]}$ is a function ϕ with the property that $\phi(x) \in \mathbb{M}_n$ if $x \in \mathbb{M}_n^d$. If $x \in \mathbb{M}_n^d$ and $y \in \mathbb{M}_m^d$, we let $x \oplus y = (x^1 \oplus y^1, \dots, x^d \oplus y^d) \in \mathbb{M}_{n+m}^d$; and, if $s \in \mathbb{M}_n$, we let sx (respectively, sx) denote the tuple (sx^1, \dots, sx^d) (respectively, (x^1s, \dots, x^ds)).

Definition 1.1. An **nc-function** is a graded function ϕ defined on a set $D\subseteq \mathbb{M}^{[d]}$ such that

- i) if $x, y, x \oplus y \in D$, then $\phi(x \oplus y) = \phi(x) \oplus \phi(y)$;
- ii) if $s \in \mathbb{M}_n$ is invertible and $x, s^{-1}xs \in D \cap \mathbb{M}_n^d$, then $\phi(s^{-1}xs) = s^{-1}\phi(x)s$.

Observe that every non-commutative polynomial is an nc-function on all of $\mathbb{M}^{[d]}$. Subject to being locally bounded with respect to an appropriate topology,

nc-functions are holomorphic [2, 9, 11], and can be thought of as bearing an analogous relationship to non-commutative polynomials as holomorphic functions do to regular polynomials.

Nc-functions have been studied by, among others, G. Popescu [15, 16, 17, 18, 19, 20]; J. Ball, G. Groenewald, and T. Malakorn [5]; D. Alpay and D. Kaliuzhnyi-Verbovetzkyi [4]; and J.W. Helton, I. Klep and S. McCullough [8, 9] and Helton and McCullough [10]. We refer to the book [11] by Kaliuzhnyi-Verbovetskyi and V. Vinnikov on nc-functions.

We define matrix- or operator-valued nc-functions in the natural way, and use upper-case letters to denote them.

Definition 1.2. Let \mathcal{K}_1 and \mathcal{K}_2 be Hilbert spaces, and $D \subseteq \mathbb{M}^{[d]}$. We say a function F is an $\mathcal{L}(\mathcal{K}_1, \mathcal{K}_2)$ -valued nc-function on D if

$$\forall_{n} \ \forall_{x \in D \cap \mathbb{M}_{n}^{d}} \ F(x) \in \mathcal{L}(\mathbb{C}^{n} \otimes \mathcal{K}_{1}, \mathbb{C}^{n} \otimes \mathcal{K}_{2}),$$

$$\forall_{x,y,x \oplus y \in D} \ F(x \oplus y) = F(x) \oplus F(y), \text{ and}$$

$$\forall_{n} \ \forall_{x \in D \cap \mathbb{M}_{n}^{d}} \ \forall_{s \in \mathbb{M}_{n}} \ s^{-1}xs \in D \Rightarrow F(s^{-1}xs) = (s^{-1} \otimes \mathrm{id}_{\mathcal{K}_{1}})F(x)(s \otimes \mathrm{id}_{\mathcal{K}_{2}}).$$

A special case of G_{δ} in (1.1) is when d = IJ and δ is the *I*-by-*J* rectangular matrix whose (i, j) entry is the $[(i-1)J+j]^{\text{th}}$ coordinate function. We give this the special symbol \mathcal{E} :

$$\mathcal{E}(x^1, \dots, x^{IJ}) = \begin{pmatrix} x^1 & x^2 & \cdots & x^J \\ x^{J+1} & x^{J+2} & \cdots & x^{2J} \\ \vdots & \vdots & \ddots & \vdots \\ x^{(I-1)J+1} & x^{(I-1)J+2} & \cdots & x^{IJ} \end{pmatrix}.$$

We denote the set $G_{\mathcal{E}}$ by $\mathbb{B}_{I \times J}$:

$$\mathbb{B}_{I \times J} = \bigcup_{n=1}^{\infty} \left\{ x = (x^1, \dots, x^{IJ}) \in \mathbb{M}_n^{IJ} : \|\mathcal{E}(x)\| < 1 \right\}.$$

Definition 1.3. We denote by $H^{\infty}(G_{\delta})$ the set of bounded nc-functions on G_{δ} , and by $H^{\infty}_{\mathcal{L}(\mathcal{K}_{1},\mathcal{K}_{2})}(G_{\delta})$ the set of bounded $\mathcal{L}(\mathcal{K}_{1},\mathcal{K}_{2})$ -valued nc-functions on D.

Functions in these sets were studied in [1] and [2]. When $\mathcal{K}_1 = \mathcal{K}_2 = \mathbb{C}$, we identify $H^{\infty}(G_{\delta})$ with $H^{\infty}_{\mathcal{L}(\mathcal{K}_1,\mathcal{K}_2)}(G_{\delta})$. By a matrix-valued $H^{\infty}(G_{\delta})$ function, we mean an element of some $H^{\infty}_{\mathcal{L}(\mathcal{K}_1,\mathcal{K}_2)}(G_{\delta})$ with both \mathcal{K}_1 and \mathcal{K}_2 finite dimensional.

2 Hilbert tensor norms

We wish to define norms on matrices of elements of $\mathcal{L}(X)$. Were X restricted to be a Hilbert space \mathcal{H} , there would be a natural way to do this by thinking of an I-by-J matrix in $\mathcal{L}(\mathcal{H})$ as a linear map from the (Hilbert space) tensor product $\mathcal{H} \otimes \mathbb{C}^J$ to $\mathcal{H} \otimes \mathbb{C}^I$. We would like to do this in general.

Note first that although every Banach space can be embedded in an operator space (see e.g., [14, Chap. 3]), which in turn can be realized as a subset of some $\mathcal{L}(\mathcal{H})$, we would lose the multiplicative structure of $\mathcal{L}(X)$, so this approach does not work in general for our purpose.

Let us recall some definitions from the theory of tensor products on Banach spaces [7, 23]. A **reasonable cross norm** on the algebraic tensor product $X \otimes Y$ of two Banach spaces is a norm τ satisfying

i) for every $x \in X$, and $y \in Y$,

$$\tau(x \otimes y) = \|x\| \|y\|;$$

ii) for every $x^* \in X^*$ and $y^* \in Y^*$,

$$||x^* \otimes y^*||_{(X \otimes Y, \tau)^*} = ||x^*|| ||y^*||.$$

A **uniform cross norm** is an assignment to each pair of Banach spaces X, Y a reasonable cross-norm on $X \otimes Y$ such that if $R: X_1 \to X_2$ and $S: Y_1 \to Y_2$ are bounded linear operators, then

$$||R \otimes S||_{X_1 \otimes Y_1 \to X_2 \otimes Y_2} \leq ||R|| ||S||.$$

A uniform cross norm τ is **finitely generated** if, for every pair of Banach spaces X, Y and every $u \in X \otimes Y$,

$$\tau(u; X \otimes Y) = \inf\{\tau(u; M \otimes N), u \in M \otimes N, \dim M < \infty, \dim N < \infty\}.$$

A finitely generated uniform cross norm is called a **tensor norm**. Both the injective and projective tensor products are tensor norms [7, Propositions 1.2.1, 1.3.2], [23, Section 6.1]; there are also other tensor products [7, 23]. When τ is a reasonable cross norm, we write $X \otimes_{\tau} Y$ for the Banach space that is the completion of $X \otimes Y$ with respect to the norm given by τ .

Definition 2.1. Let X be a Banach space. A **Hilbert tensor norm** on X is an assignment of a reasonable cross norm h to $X \otimes \mathcal{K}$ for every Hilbert space \mathcal{K} such that if $R: X \to X$ and $S: \mathcal{K}_1 \to \mathcal{K}_2$ are bounded linear operators and \mathcal{K}_1 and \mathcal{K}_2 are Hilbert spaces, then

Every uniform cross norm is a Hilbert tensor norm, but there are other Hilbert tensor norms. Most importantly, if X is a Hilbert space, then the Hilbert space tensor product is a Hilbert tensor norm.

In what follows, we denote by \otimes without a subscript the Hilbert space tensor product of two Hilbert spaces, and by \otimes_h a Hilbert tensor norm.

Let X be a Banach space, and let h be a Hilbert tensor norm on X. Let $R = (R_{ij})$ be an I-by-J matrix with entries in $\mathcal{L}(X)$. Thinking of R as a linear operator from $X \otimes \mathbb{C}^J$ to $X \otimes \mathbb{C}^J$, we use h to define a norm for R. Formally, let $E_{ij} : \mathbb{C}^J \to \mathbb{C}^I$ be the matrix with 1 in the (i, j) slot and 0 elsewhere. Let \mathcal{K} be a Hilbert space. We define

(2.2)
$$R_{h,\mathcal{K}}: X \otimes_h (\mathbb{C}^J \otimes \mathcal{K}) \to X \otimes_h (\mathbb{C}^I \otimes \mathcal{K})$$
$$R_{h,\mathcal{K}} = \sum_{i=1}^I \sum_{j=1}^J R_{ij} \otimes_h (E_{ij} \otimes \mathrm{id}_{\mathcal{K}})$$

Then we define

(2.3)
$$||R||_h = \sup\{||R_{h,\mathcal{K}}|| : \mathcal{K} \text{ is a Hilbert space}\},$$

and (borrowing notation from the Irish use of a dot or séimhiú for an "h")

(2.4)
$$||R||_{\bullet} = \inf\{||R||_h : h \text{ is a Hilbert tensor norm}\}.$$

Let us record the following lemma for future use.

Lemma 2.2. Let $R = (R_{ij})$ be an I-by-J matrix with entries in $\mathcal{L}(X)$. Then

(2.5)
$$||R||_{\bullet} \ge \max_{i,j} ||R_{ij}||_{\mathcal{L}(X)}.$$

Proof. Let B_i be the 1-by-I matrix with i^{th} entry id_X , and the other entries the 0 element of $\mathcal{L}(X)$. Let C_j be the J-by-1 column matrix with j^{th} entry id_X and the other entries 0. Let h be a Hilbert tensor norm on X. By (2.1), $\|B_i\|_h \leq 1$ and $\|C_j\|_h \leq 1$; and, since h is a reasonable cross norm, $\|B_i\|_h = \|C_j\|_h = 1$. Then

$$\|R_{ij}\|_{\mathcal{L}(X)} = \|B_i R C_j\|_{\mathcal{L}(X)} \le \|R\|_{\mathcal{L}(X \otimes_h \mathbb{C}^J, X \otimes_h \mathbb{C}^J)} \le \|R\|_h.$$

Since this holds for every h, (2.5) follows.

3 Free analytic functions

Here are some of the primary results of [2]. When δ is an *I*-by-*J* rectangular matrix with entries in \mathbb{P}^d , and $x \in \mathbb{M}_n^d$, we think of $\delta(x)$ as an element of $\mathcal{L}(\mathbb{C}^n \otimes \mathbb{C}^n)$

 \mathbb{C}^J , $\mathbb{C}^n \otimes \mathbb{C}^I$). When \mathbb{M} is a Hilbert space, we write $\delta_{\mathbb{M}}(x)$ for $\delta(x) \otimes \mathrm{id}_{\mathbb{M}}$ and think of it as an element of

$$\mathcal{L}(\mathbb{C}^n \otimes \mathbb{M}^J, \mathbb{C}^n \otimes \mathbb{M}^I) = \mathcal{L}(\mathbb{C}^n \otimes (\mathbb{C}^J \otimes \mathbb{M}), \mathbb{C}^n \otimes (\mathbb{C}^I \otimes \mathbb{M})).$$

Theorem 3.1. Let δ be an I-by-J rectangular matrix of free polynomials, and G_{δ} be non-empty. Let \mathcal{K}_1 and \mathcal{K}_2 be finite-dimensional Hilbert spaces. A function Φ is in $H^{\infty}_{\mathcal{L}(\mathcal{K}_1,\mathcal{K}_2)}(G_{\delta})$ if and only if there is a function F in $H^{\infty}_{\mathcal{L}(\mathcal{K}_1,\mathcal{K}_2)}(\mathbb{B}_{I\times J})$, with $\|F\| \leq \|\Phi\|$, such that $\Phi = F \circ \delta$.

Theorem 3.2. Let \mathcal{K}_1 and \mathcal{K}_2 be finite-dimensional Hilbert spaces. If F is in $H^{\infty}_{\mathcal{L}(\mathcal{K}_1,\mathcal{K}_2)}(\mathbb{B}_{I\times J})$ and $\|F\|\leq 1$, there exist an auxiliary Hilbert space \mathcal{M} and an isometry

(3.1)
$$V = \begin{bmatrix} A & B \\ C & D \end{bmatrix} : \mathcal{K}_1 \oplus \mathcal{M}^{(I)} \to \mathcal{K}_2 \oplus \mathcal{M}^{(J)}$$

such that

$$(3.2a) F(x) = \mathrm{id}_{\mathbb{C}^n} \otimes A + (\mathrm{id}_{\mathbb{C}^n} \otimes B) \mathcal{E}_{\mathfrak{M}}(x) [\mathrm{id}_{\mathbb{C}^n} \otimes \mathrm{id}_{\mathfrak{M}^{(J)}} - (\mathrm{id}_{\mathbb{C}^n} \otimes D) \mathcal{E}_{\mathfrak{M}}(x)]^{-1} (\mathrm{id}_{\mathbb{C}^n} \otimes C)$$

for $x \in \mathbb{B}_{I \times J} \cap \mathbb{M}_n^d$. Consequently, F has the series expansion

$$(3.2b) \quad F(x) = \mathrm{id}_{\mathbb{C}^n} \otimes A + \sum_{k=1}^{\infty} (\mathrm{id}_{\mathbb{C}^n} \otimes B) \mathcal{E}_{\mathfrak{M}}(x) [(\mathrm{id}_{\mathbb{C}^n} \otimes D) \mathcal{E}_{\mathfrak{M}}(x)]^{k-1} (\mathrm{id}_{\mathbb{C}^n} \otimes C),$$

which is absolutely convergent on G_{δ} .

If we write $_{\mathbb{C}^n}A$ for $\mathrm{id}_{\mathbb{C}^n}\otimes A$, equations (3.2a) and (3.2b) have the more easily readable form

$$(3.3a) F =_{\mathbb{C}^n} A +_{\mathbb{C}^n} B \mathcal{E}_{\mathfrak{M}} [I -_{\mathbb{C}^n} D \mathcal{E}_{\mathfrak{M}}]^{-1} \mathcal{E}_{\mathfrak{M}} C$$

$$(3.3b) F(x) =_{\mathbb{C}^n} A + \sum_{k=1}^{\infty} \mathbb{C}^n B \mathcal{E}_{\mathcal{M}}(x) \left[\mathbb{C}^n D \mathcal{E}_{\mathcal{M}}(x) \right]^{k-1} \mathbb{C}^n C.$$

We call (3.2a) a **free realization** of F. The isometry V is not unique, but each term on the right-hand side of (3.3b) is a free matrix-valued polynomial, each of whose non-zero entries is homogeneous of degree k. Thus we can rewrite (3.3b) as

(3.3c)
$$F(x) = \sum_{k=0}^{\infty} P_k(x)$$

where each P_k is a homogeneous $\mathcal{L}(\mathcal{K}_1, \mathcal{K}_2)$ -valued free polynomial, and which satisfies

$$(3.4) ||P_k(x)|| \le ||x||^k \text{for all } x \in \mathbb{B}_{I \times J}, \text{ for all } k \ge 1.$$

Formulas (3.3a) or (3.3c) allow us to extend the domain of F from d-tuples of matrices to d-tuples in $\mathcal{L}(X)$.

Let X be a Banach space, with a Hilbert tensor norm h. Let $T = (T_{ij})$ be an I-by-J matrix of elements of $\mathcal{L}(X)$. If $||T||_h < 1$, where $||T||_h$ is defined by (2.3), we can replace $\mathcal{E}_{\mathcal{M}}(x)$ in (3.2a) with $\sum_{i,j} T_{ij} \otimes_h (E_{ij} \otimes \mathrm{id}_{\mathcal{M}})$ and get a bounded operator from $X \otimes_h \mathcal{K}_1$ to $X \otimes_h \mathcal{K}_2$, provided we tensor with id_X .

Definition 3.3. Let \mathcal{K}_1 and \mathcal{K}_2 be finite-dimensional Hilbert spaces, and let F be a matrix-valued nc-function on $\mathbb{B}_{I\times J}$, bounded in norm by 1, with a free realization given by (3.2a) and an expansion into homogeneous $\mathcal{L}(\mathcal{K}_1,\mathcal{K}_2)$ -valued free polynomials given by (3.3c). Let $T=(T_{ij})_{i=1,j=1}^{i=I,j=J}$ be an I-by-J matrix of bounded operators on a Banach space X. Let h be a Hilbert tensor norm on X. Then we define $F_h^{\sharp}(T) \in \mathcal{L}(X \otimes_h \mathcal{K}_1, X \otimes_h \mathcal{K}_2)$ by

(3.5)
$$F_h^{\sharp}(T) = \sum_{k=0}^{\infty} P_k(T),$$

provided that the right-hand side converges absolutely.

We extend the definition of F^{\sharp} to functions of norm greater than 1 by scaling.

The definition of $F_h^\sharp(T)$ might seem to depend on the choice of free realization, but in fact does not, since the polynomials P_k do not depend on the free realization. However, the definition of $F_h^\sharp(T)$ does depend subtly on the choice of h, as $F_h^\sharp(T)$ is a bounded linear map in $\mathcal{L}(X \otimes_h \mathcal{K}_1, X \otimes_h \mathcal{K}_2)$, but these are all the same if $\mathcal{K}_1 = \mathcal{K}_2 = \mathbb{C}$. We write $F^\sharp(T)$ for the $\dim(\mathcal{K}_2)$ -by- $\dim(\mathcal{K}_1)$ matrix

(3.6)
$$F^{\sharp}(T) = \sum_{k=0}^{\infty} P_k(T),$$

which is a matrix of elements of $\mathcal{L}(X)$.

In the following theorem, ${}_{X}A = \mathrm{id}_{X} \otimes_{h} A$ and $T_{\mathfrak{M}} = \sum_{i,j} T_{ij} \otimes_{h} (E_{ij} \otimes \mathrm{id}_{\mathfrak{M}})$, where we assume that h is understood.

Theorem 3.4. Let X be a Banach space and T an I-by-J matrix of elements of $\mathcal{L}(X)$. Suppose F is as in Theorem 3.2 and $||F|| \le 1$.

(i) If h is a Hilbert tensor norm on X and $||T||_h < 1$, then

(3.7)
$$F_h^{\sharp}(T) =_X A + (_XB)T_{\mathfrak{M}}[I - (_XD)T_{\mathfrak{M}}]^{-1}{}_XC,$$

and

(3.8)
$$||F_h^{\sharp}(T)|| \le \frac{1}{1 - ||T||_h}.$$

(ii) If $||T||_{\bullet} < 1$, then

$$||F^{\sharp}(T)||_{\bullet} \leq \frac{1}{1 - ||T||_{\bullet}}.$$

(iii) If X is a Hilbert space, H is the Hilbert space tensor product, and $||T||_H < 1$, then

$$||F_H^{\sharp}(T)|| \leq 1.$$

Proof. (i) Let $||T||_h = r < 1$. Let us temporarily denote by G(T) the right-hand side of (3.7). By 2.1, we have $||_XD|| \le 1$; and, by (2.3), $||T_{\mathfrak{M}}|| < 1$. Therefore, the Neumann series $[I - (_XD)T_{\mathfrak{M}}]^{-1} = \sum_{k=0}^{\infty} [_XD \ T_{\mathfrak{M}}]^k$ converges to a bounded linear operator in $\mathcal{L}(X \otimes_h (\mathbb{C}^J \otimes \mathfrak{M}))$ of norm at most 1/1 - r. Using 2.1 again, we conclude that

(3.11)
$$||G(T)||_{\mathcal{L}(X \otimes_h \mathcal{K}_1, X \otimes_h \mathcal{K}_2)} \le 1 + \frac{r}{1 - r} = \frac{1}{1 - r}.$$

Replacing T by $e^{i\theta}T$ and integrating $G(e^{i\theta}T)$ against $e^{-ik\theta}$, we get, for $k \ge 1$,

$$\frac{1}{2\pi} \int_0^{2\pi} G(e^{i\theta}T)e^{-ik\theta}d\theta = {}_XB \ T_{\mathcal{M}}[{}_XD \ T_{\mathcal{M}}]^{k-1}{}_XC = P_k(T),$$

where P_k is the homogeneous polynomial from (3.3c). Therefore G(T) is given by the absolutely convergent series $\sum_{k=0}^{\infty} P_k(T)$, and hence equals $F^{\sharp}(T)$, proving (3.7), and, by (3.11), also proving (3.8).

- (ii) follows from the definition (2.4).
- (iii) Using the fact that $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ is an isometry, and equation (3.7), after some algebraic rearrangements we obtain

$$(3.12)\ I - F_H^{\sharp}(T)^* F_H^{\sharp}(T) = {}_X C^* [I - T_{\mathcal{M}}^* {}_X D]^{-1} [I - T_{\mathcal{M}}^* T_{\mathcal{M}}] [I - ({}_X D) T_{\mathcal{M}}]^{-1} {}_X C.$$

Since $||T_{\mathcal{M}}|| < 1$, the right-hand side of (3.12) is positive, and so the left-hand side is positive, which means $||F_H^{\sharp}(T)|| \le 1$.

Suppose $\Phi(x^1,\ldots,x^d)$ is in $H^\infty_{\mathcal{L}(\mathcal{K}_1,\mathcal{K}_2)}(G_\delta)$. By Theorem 3.1, we can write $\Phi=F\circ\delta$, for some F in $H^\infty_{\mathcal{L}(\mathcal{K}_1,\mathcal{K}_2)}(\mathbb{B}_{I\times J})$. Let $T=(T^1,\ldots,T^d)\in\mathcal{L}(X)^d$. Then $\delta(T)$ is an I-by-J matrix with entries in $\mathcal{L}(X)$. If $\|\delta(T)\|_{\bullet}<1$, one would like to define Φ^{\sharp} by

(3.13)
$$\Phi^{\sharp}(T) = F^{\sharp}(\delta(T)).$$

But, since F is not unique, this raises questions about whether Φ^{\sharp} is well-defined. We address this question in Section 4.

4 Existence of a functional calculus

Throughout this section, X is a Banach space, and $T = (T^1, \dots, T^d)$ is a d-tuple of bounded linear operators on X.

Let δ be an *I*-by-*J* matrix of free polynomials in \mathbb{P}^d , and let

$$G_{\delta} = \bigcup_{n=1}^{\infty} \{ x \in \mathbb{M}_n^d : \|\delta(x)\| < 1 \}.$$

We say that G_{δ} is a **spectral set** for T if

$$(4.1) ||p(T)||_{\mathcal{L}(X)} \le \sup_{x \in G_{\delta}} ||p(x)|| \text{for all } p \in \mathbb{P}^d.$$

When P is an I-by-J matrix of polynomials, we consider P to be an $\mathcal{L}(\mathbb{C}^J, \mathbb{C}^I)$ valued nc-function. We denote by $\mathbb{M}(\mathbb{P}^d)$ the vector space of all (finite) matrices of free polynomials, with the norm of P(x) given as the operator norm in $\mathcal{L}(\mathbb{C}^n \otimes \mathbb{C}^J, \mathbb{C}^n \otimes \mathbb{C}^I)$ where $x = (x_{ij})$ is a matrix with each $x_{ij} \in \mathbb{M}_n$. If (4.1) holds for all matrices of polynomials, i.e.,

$$(4.2) ||P(T)||_{\bullet} \le \sup_{x \in G_{\delta}} ||P(x)|| \text{for all } n, \text{ for all } P \in \mathbb{M}(\mathbb{P}^d),$$

we say that G_{δ} is a **complete spectral set** for T. If inequalities (4.1) or (4.2) hold with the right-hand side multiplied by a constant K, we say G_{δ} is a K-spectral set (respectively, **complete** K-spectral set) for T.

Theorem 4.1. The following are equivalent.

- (i) There exists s < 1 such that $G_{\delta/s}$ is a K-spectral set for T.
- (ii) There exists r < 1 such that the map $\pi : f \circ (\frac{1}{r}\delta) \mapsto f^{\sharp}(\frac{1}{r}\delta(T))$ is a well-defined bounded homomorphism from $H^{\infty}(G_{\delta/r})$ to $\mathcal{L}(X)$ with $\|\pi\| \leq K$ that extends the polynomial functional calculus on $\mathbb{P}^d \cap H^{\infty}(G_{\delta/r})$.

Moreover, if these conditions hold, then π is the unique extension of the evaluation homomorphism on the polynomials to a bounded homomorphism from $H^{\infty}(G_{\delta/r})$ to $\mathcal{L}(X)$.

Proof. (ii) \Rightarrow (i). Let s=r. Let $q\in\mathbb{P}^d$. If $\|q\|_{G_{\delta/r}}$ is infinite, there is nothing to prove, so assume that $\|q\|_{G_{\delta/r}}$ is finite. By Theorem 3.1, there exists $f\in H^\infty(\mathbb{B}_{I\times J})$ such that $q=f\circ\frac{1}{r}\delta$ on $G_{\delta/r}$, and $\|f\|\leq\|q\|_{G_{\delta/r}}$. Since π is well-defined and extends the polynomial evaluation, $\pi(q)=q(T)=f^\sharp(\frac{1}{r}\delta(T))$. Therefore

$$\|q(T)\| \le K \left\| f \circ \frac{1}{r} \delta \right\|_{G_{\delta/r}} \le K \|q\|_{G_{\delta/r}}.$$

(i) \Rightarrow (ii). Choose r in (s, 1). Let $\phi \in H^{\infty}(G_{\delta/r})$, and assume that there are functions f_1 and f_2 in $H^{\infty}(\mathbb{B}_{I\times J})$ such that $\phi(x)=f_1\circ\frac{1}{r}\delta(x)=f_2\circ\frac{1}{r}\delta(x)$ for all $x\in G_{\delta/r}$. Expand each f_l as in (3.3c) into a series of homogeneous polynomials, obtaining $f_l(x)=\sum_{k=0}^{\infty}p_k^l(x),\ l=1,2$. By (3.4), we have $\|p_k^l(x)\|\leq \|x\|^k$, so

$$\begin{split} \Big\| \sum_{k=0}^{N} p_{k}^{1} \Big(\frac{1}{r} \delta(x) \Big) - \sum_{k=0}^{N} p_{k}^{2} \Big(\frac{1}{r} \delta(x) \Big) \Big\|_{G_{\delta/s}} &= \Big\| \sum_{k=N+1}^{\infty} p_{k}^{1} \Big(\frac{1}{r} \delta(x) \Big) - \sum_{k=N+1}^{\infty} p_{k}^{2} \Big(\frac{1}{r} \delta(x) \Big) \Big\|_{G_{\delta/s}} \\ &\leq 2 \sum_{k=N+1}^{\infty} \Big(\frac{s}{r} \Big)^{k} = 2 \frac{s^{N+1}}{r^{N}} \frac{1}{r-s}. \end{split}$$

Therefore

(4.3)
$$\left\| \sum_{k=0}^{N} p_k^1 \left(\frac{1}{r} \delta(T) \right) - \sum_{k=0}^{N} p_k^2 \left(\frac{1}{r} \delta(T) \right) \right\| \le 2K \frac{s^{N+1}}{r^N} \frac{1}{r-s}.$$

Both series $\sum_{k=0}^{\infty} p_k^1(\frac{1}{r}\delta(T))$ converge to the same limit, so $\pi(\phi)$ is well-defined. Moreover, since $\sum_{k=0}^{N} p_k^1(\frac{1}{r}\delta(x))$ converges uniformly to $\phi(x)$ on $G_{\delta/s}$, we have

$$\limsup_{N\to\infty} \left\| \sum_{k=0}^N p_k^1 \circ \frac{1}{r} \delta \right\|_{G_{\delta/s}} \le \|\phi\|_{G_{\delta/s}} \le \|\phi\|_{G_{\delta/r}}.$$

Therefore

$$\|\pi(\phi)\|_{\mathcal{L}(X)} = \lim_{N \to \infty} \left\| \sum_{k=0}^{N} p_k^1 \left(\frac{1}{r} \delta(T) \right) \right\| \le K \|\phi\|_{G_{\delta/r}}.$$

The fact that π is a homomorphism follows from it being well defined, as if $\phi = f \circ (\frac{1}{r}\delta)$ and $\psi = g \circ \frac{1}{r}\delta$, then $\phi \psi = (fg) \circ \frac{1}{r}\delta$.

Finally, to show that π extends the polynomial functional calculus, suppose q is a free polynomial in $H^\infty(G_{\delta/r})$, so $q=f\circ \frac{1}{r}\delta$. Expand $f(x)=\sum p_k(x)$ into its homogeneous parts. Then $\sum_{k=0}^N p_k(\frac{1}{r}\delta(x))$ converges uniformly to q(x) on $G_{\delta/s}$. So, since $G_{\delta/s}$ is a K-spectral set for T,

$$\pi(q) = \lim_{N \to \infty} \sum_{k=0}^{N} p_k \left(\frac{1}{r} \delta(T)\right) = q(T).$$

This last argument shows that π is the unique continuous extension of the evaluation map on polynomials.

A similar result holds for complete *K*-spectral sets.

Theorem 4.2. *The following are equivalent.*

(i) There exists s < 1 such that $G_{\delta/s}$ is a complete K-spectral set for T.

(ii) There exists r < 1 such that the map $\pi : F \circ \frac{1}{r} \delta \mapsto F^{\sharp}(\frac{1}{r} \delta(T))$ is a well-defined completely bounded homomorphism, satisfying

$$\left\|F^{\sharp}\left(\frac{1}{r}\delta(T)\right)\right\|_{\bullet} \leq K\left\|F\circ\frac{1}{r}\delta\right\|_{G_{\delta/r}}$$

that extends the polynomial functional calculus on $\mathbb{P}^d \cap H^{\infty}(G_{\delta/r})$.

Moreover, if these conditions hold, then π is the unique extension of the evaluation homomorphism on the polynomials to a bounded homomorphism from $H^{\infty}(G_{\delta/r})$ to $\mathcal{L}(X)$.

The proof is very similar to the proof of Theorem 5.2. The only significant difference is that (4.3) becomes

$$\left\| \sum_{k=0}^{N} P_k^1 \left(\frac{1}{r} \delta(T) \right) - \sum_{k=0}^{N} P_k^2 \left(\frac{1}{r} \delta(T) \right) \right\|_{\bullet} \le 2K \frac{s^{N+1}}{r^N} \frac{1}{r-s}.$$

We apply Lemma 2.2 to conclude that both series converge to the same limit matrix.

Definition 4.3. We say that T has a **contractive** (respectively, **completely contractive**, **bounded**, **completely bounded**) G_{δ} **functional calculus** if there exists 0 < r < 1 such that $G_{\delta/r}$ is a spectral set (respectively, complete spectral set, K spectral set, complete K spectral set) for T.

Remark 4.4. Even in the case d=1, $T\in\mathcal{L}(\mathcal{H})$, and $\delta(x)=x$, the question of when T has an $H^\infty(\mathbb{D})$ functional calculus becomes murky without the a priori requirement that $\|T\|<1$. By von Neumann's inequality [29], T has a completely contractive G_δ functional calculus if $\|T\|<1$. When $\|T\|=1$, $p\mapsto p(T)$ extends contractively to $H^\infty(\mathbb{D})$ if T does not have a singular unitary summand [24, Theorem III.2.3]; but, to guarantee uniqueness, one usually imposes the standard extra assumption of continuity in the strong operator topology for functions that converge boundedly almost everywhere on the unit circle [24, Section III.2.2].

By Rota's theorem [22], if $\sigma(T) \subseteq (\mathbb{D})$, T is similar to an operator which has a completely contractive $H^{\infty}(\mathbb{D})$ functional calculus. Again, the situation becomes more delicate if $\sigma(T)$ is not required to lie in \mathbb{D} . By Paulsen's theorem [13], T has a completely bounded polynomial functional calculus if and only if T is similar to a contraction.

5 Complete spectral sets

For $\Phi \in H^{\infty}(G_{\delta})$, and T a d-tuple with $\|\delta(T)\|_{\bullet} < 1$, one wants to define $\Phi^{\sharp}(T)$ as $F^{\sharp}(\delta(T))$. But what if there are two different functions, F and F_1 , both in

 $H^{\infty}(\mathbb{B}_{I\times J})$, satisfying $\Phi(x)=F\circ\delta(x)=F_1\circ\delta(x)$ for all $x\in G_{\delta}$. How does one know that $F^{\sharp}(\delta(T))=F_1^{\sharp}(\delta(T))$? If it doesn't, is there a "best' choice?

Definition 5.1. We say G_{δ} is **bounded** if there exists M such that $||x|| \leq M$ for all $x \in G_{\delta}$. This is the same as requiring that $\mathbb{P}^d \subseteq H^{\infty}(G_{\delta})$. A stronger condition is that the algebra generated by the δ_{ij} is all of \mathbb{P}^d .

We say that δ is **separating** if every coordinate function x^r , $1 \le r \le d$, is in the algebra generated by the functions $\{\delta_{ij}: 1 \le i \le I, 1 \le j \le J\}$.

Theorem 5.2. Assume $\|\delta(T)\|_{\bullet} < 1$. Then there exists r < 1 such that $G_{\delta/r}$ is a complete K-spectral set for T if and only if there exists s in the interval $(\|\delta(T)\|_{\bullet}, 1)$ such that

(5.1)
$$F^{\sharp}\left(\frac{1}{s}\delta(T)\right) = P(T)$$

for every matrix-valued $H^{\infty}(\mathbb{B}_{I\times J})$ function F and matrix P of free polynomials satisfying

(5.2)
$$F \circ \left(\frac{1}{s}\delta\right)(x) = P(x) \quad \text{for all } x \in G_{(1/s)\delta}.$$

If δ is separating, then it suffices to check the condition for the case P = 0.

Proof. (\Rightarrow) By Theorem 4.2, (5.2) implies (5.1) whenever $G_{\delta/r}$ is a complete K-spectral set.

(⇐) Suppose $\|\delta(T)\|_{\bullet} = t < 1$ and that $s \in (t, 1)$ has the property that (5.2) implies (5.1). Let r = s. We show that $G_{\delta/r}$ is a complete K-spectral set for T.

Let P be a matrix of polynomials. We wish to show that

Without loss of generality, assume that the right-hand side of (5.3) is finite. By Theorem 3.1, we can find F and a matrix-valued function on $H^{\infty}(\mathbb{B}_{I\times J})$ such that $F\circ \frac{1}{r}\delta=P$ on $G_{\delta/r}$ and $\|F\|\leq\sup\{\|P(x)\|:x\in\mathbb{M}_n^d,\|\delta(x)\|< r\}$. By (5.1), we have $P(T)=F^\sharp\circ\frac{1}{r}\delta(T)$, and so, by Theorem 3.4, (5.3) holds in general, with K=r/r-t.

Now, suppose that

(5.4)
$$F \circ \left(\frac{1}{s}\delta\right) = 0 \quad \text{on } G_{(1/s)\delta}$$

implies

(5.5)
$$F^{\sharp}\left(\frac{1}{s}\delta(T)\right) = 0.$$

We wish to show that (5.2) implies (5.1). Since δ is separating, there is a matrix H of free polynomials such that $H \circ \frac{1}{s}\delta(x) = P(x)$. Then

$$(F - H) \circ \frac{1}{s} \delta(x) = 0$$
 for all $x \in G_{\delta/s}$;

so, by hypothesis,

$$F^{\sharp}\left(\frac{1}{s}\delta(T)\right) = H^{\sharp}\left(\frac{1}{s}\delta(T)\right);$$

and, since H is a polynomial,

$$H^{\sharp}\left(\frac{1}{s}\delta(T)\right) = H\left(\frac{1}{s}\delta(T)\right) = P(T),$$

as required.

Remark 5.3. To just check the case P=0, we don't need to know that δ is separating; we just need to know that if a polynomial is bounded on $G_{\delta/r}$, it is expressible as a polynomial in the δ_{ij} .

Here is a checkable condition.

Theorem 5.4. Suppose $\delta(0) = 0$ and that $T \in \mathcal{L}(X)^d$ satisfies

$$\sup_{0 \le r \le 1} \|\delta(rT)\|_{\bullet} < 1.$$

Then T has a completely bounded G_{δ} functional calculus.

Proof. By Theorem 5.2, suffices to prove that (5.2) implies (5.1). Hence, assume (5.2) holds, i.e., $F \circ \frac{1}{s}\delta(x) = \sum_{k=0}^{\infty} P_k(\frac{1}{s}\delta(x)) = P(x)$ for all $x \in G_{(1/s)\delta}$. By Theorem 3.2, $F \circ \frac{1}{s}\delta - P$ has a power series expansion in a ball centered at 0 in $\mathbb{M}^{[d]}$. Since $\delta(0) = 0$, for each $m \in \mathbb{N}$, the number of terms in $F \circ \frac{1}{s}\delta(x) - P(x)$ that are of degree m in x is finite.

Expanding $P_k(\frac{1}{s}\delta(x))$, one gets $O((IJ)^k)$ terms, so if $\|\frac{1}{s}\delta(x)\| < \frac{1}{IJ}$, then the series expansion for $\sum_{k=0}^{\infty} P_k(\frac{1}{s}\delta(x))$ converges absolutely. We conclude therefore, by rearranging the absolutely convergent series, that if R is a d-tuple in $\mathcal{L}(X)$ satisfying $\|\delta(R)\|_{\bullet} < s/IJ$, then

(5.6)
$$\sum_{k=0}^{\infty} P_k \left(\frac{1}{s} \delta(R) \right) = P(R).$$

Since $\delta(0) = 0$, we can apply (5.6) to ζT , for all sufficiently small ζ . Now we analytically continue to $\zeta = 1$ and conclude that (5.6) also holds for T.

6 Hilbert spaces

For d-tuples in $\mathcal{L}(\mathcal{H})^d$, it is natural to work with the Hilbert space tensor product and the Hilbert space norm instead of the norm $\|\cdot\|_{\bullet}$. Throughout this section, we assume that $S = (S^1, \ldots, S^d) \in \mathcal{L}(\mathcal{H})^d$ and that all norms (including those used to define spectral and complete spectral sets) are Hilbert space norms. Many of our earlier results go through with essentially the same proofs; but, since we can use (3.10) instead of (3.9), we get better constants.

The following theorem is a sample result, proved like Theorem 5.2.

Theorem 6.1. Let $S \in \mathcal{L}(\mathcal{H})^d$. Then there exists r < 1 such that

$$\left\|F^{\sharp}\left(\frac{1}{r}\delta(S)\right)\right\| \leq \sup\left\{\left\|F\left(\frac{1}{r}\delta(x)\right)\right\| : x \in G_{\delta/r}\right\}$$

if and only if

- (i) $\|\delta(S)\| < 1$, and
- (ii) $F^{\sharp}(\frac{1}{s}\delta(S)) = P(S)$ for every matrix-valued $H^{\infty}(\mathbb{B}_{I\times J})$ function F satisfying $F \circ \frac{1}{s}\delta(x) = P(x)$ for all $x \in G_{(1/s)\delta}$.

Example 7.3 below shows that condition (i) in Theorem 6.1 does not imply (ii). For the remainder of this section, $\{e_n\}_{n=1}^{\infty}$ is a fixed orthonormal basis of \mathcal{H} . We can naturally identify \mathbb{M}_n with the operators on \mathcal{H} that map $\vee_{k=1}^n \{e_k\}$ to itself and vanish on the orthogonal complement. In this way, G_{δ} is a subset of G_{δ}^{\sharp} , where

$$G_{\delta}^{\sharp} := \{ S \in \mathcal{L}(\mathcal{H})^d : \|\delta(S)\| < 1 \}.$$

Since multiplication is sequentially continuous in the strong operator topology, to get a functional calculus it suffices to determine that $S \in G^{\sharp}_{\delta}$ is the strong operator topology limit of a sequence of d-tuples in $G_{\delta/r}$. For a set $A \in B(\mathcal{H})^d$, we denote by $\mathrm{scl}_{\mathrm{SOT}}(A)$ the set of tuples in $B(\mathcal{H})^d$ that are strong operator topology limits of sequences from A.

Theorem 6.2. Suppose $S \in \bigcup_{0 < r < 1} \operatorname{scl}_{SOT}(G_{\frac{1}{r}\delta})$. Then S has a completely contractive G_{δ} functional calculus.

Proof. By hypothesis, there exists a sequence (x_k) in $G_{(1/t)\delta}$ that converges to S in the strong operator topology, for some t < 1. Therefore $\delta(x_k)$ converges to $\delta(S)$ in the strong operator topology, so $\|\delta(S)\| = r \le t < 1$. Let $s \in (t, 1)$. By Theorem 6.1, it suffices to prove that (5.2) implies (5.1). As in the proof of Theorem 4.1, we can approximate F uniformly on $\frac{I}{s}\mathbb{B}_{I\times J}$ with a sequence Q_N , the

sum of the first N homogeneous polynomials. So for all $\varepsilon > 0$, there exists N_0 such that

(6.1)
$$\left\| Q_N \left(\frac{1}{s} \delta(x_k) \right) - F \left(\frac{1}{s} \delta(x_k) \right) \right\| < \varepsilon \quad \text{and} \quad$$

(6.2)
$$\left\| Q_N \left(\frac{1}{s} \delta(S) \right) - F^{\sharp} \left(\frac{1}{s} \delta(S) \right) \right\| < \varepsilon$$

if $N \ge N_0$. As $F \circ \frac{1}{s}\delta = P$ on $G_{(1/s)\delta}$, inequality (6.1) means

(6.3)
$$\left\| Q_N \left(\frac{1}{s} \delta(x_k) \right) - P(x_k) \right\| < \varepsilon \quad \text{for all } N \ge N_0.$$

Since multiplication is sequentially strong operator continuous and Q_N is a matrix of polynomials,

(6.4) S.O.T.
$$\lim_{k \to \infty} \left[Q_N \left(\frac{1}{s} \delta(x_k) \right) - P(x_k) \right] = Q_N \left(\frac{1}{s} \delta(S) \right) - P(S).$$

The norm of a strong operator topology sequential limit is less than or equal to the limit of the norms, so by (6.3), we get from (6.4) that

Using (6.5) in (6.2), we conclude that $||F^{\sharp} \circ \frac{1}{s} \delta(S) - P(S)|| \le 2\varepsilon$. Since ε was arbitrary, we conclude that (5.1) holds, i.e., $F^{\sharp} \circ \frac{1}{s} \delta(S) = P(S)$.

Corollary 6.3. Suppose each δ_{ij} is the sum of a scalar and a homogeneous polynomial of degree 1. Then S has a completely contractive G_{δ} functional calculus if and only if $\|\delta(S)\| < 1$.

Proof. Let Π_N be the projection from \mathcal{H} onto $\vee_{j=1}^n \{e_j\}$, and suppose $\|\delta(S)\| \leq r$. Let $x_N = \Pi_N S \Pi_N$. Then x_N converges to S in the strong operator topology. Moreover, $\delta(x_n) = \Pi_N \otimes \mathrm{id}_{\mathbb{C}'} \delta(S) \Pi_N \otimes \mathrm{id}_{\mathbb{C}'}$, so $\|\delta(x_N)\| \leq \|\delta(S)\|$.

For Hilbert spaces, replacing completely bounded with completely contractive changes things only up to similarity. This follows from the following theorem of V. Paulsen.:

Theorem 6.4 ([13]). Let \mathcal{H} and \mathcal{K} be Hilbert spaces, and let A be a unital subalgebra of $\mathcal{L}(\mathcal{K})$. Let $\rho: A \to \mathcal{L}(\mathcal{H})$ be a completely bounded homomorphism. Then there exists an invertible operator a on \mathcal{H} , with $||a|| ||a^{-1}|| = ||\rho||_{cb}$, such that $a^{-1}\rho(\cdot)a$ is a completely contractive homomorphism.

As a consequence, we get the following theorem.

Theorem 6.5. Let S be a d-tuple of operators on \mathfrak{H} . Then S has a completely bounded G_{δ} functional calculus if and only if there exists an invertible operator a on \mathfrak{H} such that $R = a^{-1}Sa$ has a completely contractive G_{δ} functional calculus.

Proof. Sufficiency is clear. For necessity, suppose 0 < r < 1, and that the map $H^{\infty}(G_{\delta/r}) \in \Phi \mapsto \Phi(S)$ is a completely bounded map, with completely bounded norm K, that extends polynomial evaluations for polynomials that are bounded on $G_{\delta/r}$. Then in particular, $G_{\delta/r}$ is a complete K-spectral set for S. Let $\{x_k\}_{k=1}^{\infty}$ be a countable dense set in $G_{\delta/r}$, and let $X = \oplus x_k$. Then, for every matrix-valued function P,

$$||P||_{G_{\delta/r}} = \sup\{||P(x)|| : x \in G_{\delta/r}\} = ||P(X)||.$$

By hypothesis, the map $\rho: P(X) \mapsto P(S)$ is completely bounded, with $\|\rho\|_{cb} \leq K$. By Theorem 6.4, there exists $a \in \mathcal{L}(\mathcal{H})$ such that the map $P(X) \mapsto P(a^{-1}Sa)$ is completely contractive. Therefore $G_{\delta/r}$ is a complete spectral set for $a^{-1}Sa$.

Remark 6.6. We don't need \mathcal{K} to be separable, so we could have taken X to be the direct sum over all of $G_{\delta/r}$. Indeed, we could sum over all $G_{\delta/r}$ which are complete K spectral sets, and get one similarity that works for all of them.

7 Examples

Example 7.1. Let $\delta(x) = (x^1, \dots, x^d)$ be a 1-by-d matrix. Then $H^\infty(G_\delta)$ is the algebra of all bounded nc-functions defined on the row contractions. Functions on the row contractions were studied by Popescu in [15]. Note that a function in $H^\infty(G_\delta)$ need not have an absolutely convergent power series. When we expand $f \in H^\infty(G_\delta)$ as in (3.3b) or (3.3c), we get $f(x) = \sum_{k=0}^\infty p_k(x)$, where each p_k is a homogeneous polynomial of degree k, having d^k terms. Knowing merely that all the coefficients are bounded, one would need $\|x^j\| < 1/d$ for each j to conclude that the series converged absolutely. However we do know that $\sum_{k=0}^\infty \|p_k(x)\|$ converges for all x in G_δ .

By Theorem 5.4 or Theorem 3.4, if $T \in \mathcal{L}(X)^d$ satisfies $\|\delta(T)\|_{\bullet} < 1$, the functional calculus $F \mapsto F^{\sharp}(T)$ is a completely bounded homomorphism from $H^{\infty}(G_{\delta})$ to $\mathcal{L}(X)$, with completely bounded norm at most $1/1 - \|\delta(T)\|_{\bullet}$. Every function in the multiplier algebra of the Drury-Arveson space can be extended without increase of norm to a function in $H^{\infty}(G_{\delta})$ [1]; so, in particular, one can then apply these functions to T.

Example 7.2. This is similar to Example 7.1. This time, let δ be the d-by-d diagonal matrix with the coordinate functions on the diagonal. Then $H^{\infty}(G_{\delta})$

is the set of free analytic functions defined on d-tuples x with max $||x^j|| < 1$. Again, every function that is bounded on the commuting contractive d-tuples can be extended to all of G_{δ} without increasing its norm [1].

Let $T=(T^1,\ldots,T^d)\in\mathcal{L}(X)^d$. We can calculate $\|\delta(T)\|_{\bullet}$ by observing that defining $\|(x_1,x_2,\ldots,x_m)\|=\sqrt{\sum\|x_j\|_X^2}$ gives a Hilbert tensor norm on $X\otimes\ell_m^2$. It follows that $\|\delta(T)\|_{\bullet}\leq \max\|T^j\|_{\bullet}$; and, since this is easily seen to be a lower bound, we conclude

(7.1)
$$\|\delta(T)\|_{\bullet} = \max_{1 \le j \le d} \|T^{j}\|_{\mathcal{L}(X)}.$$

So, one gets an $H^{\infty}(G_{\delta})$ functional calculus whenever (7.1) is less than 1. Let us reiterate that if $f \in H^{\infty}(G_{\delta})$ and we expand it in a power series, we have no guarantee that the resulting series converges absolutely, even if the norm of each T^{j} is less than one; we need to group the terms as in (3.6).

Example 7.3. Here is an example of a polynomial that has a different norm on G_{δ} and G_{δ}^{\sharp} . Consequently, $\mathrm{scl}_{\mathrm{SOT}}(G_{\delta}) \neq G_{\delta}^{\sharp}$, proving that condition (i) in Theorem 6.1 does not imply (ii).

Let $0 < \varepsilon < 0.2$. For ease of reading, we write (x, y) instead of (x^1, x^2) to denote coordinates. Let

$$\delta(x,y) = \begin{pmatrix} \frac{1}{\varepsilon}(yx-I) & 0 & 0\\ 0 & \frac{1}{1+\varepsilon}x & 0\\ 0 & 0 & \frac{1}{1+\varepsilon}y \end{pmatrix}.$$

Let p(x) = xy - I. We claim that

$$||p||_{G_{\delta}} \le \varepsilon + 4\varepsilon^2,$$

(7.2b)
$$||p||_{G_a^{\sharp}} \ge 1.$$

To prove the claim, let $x \in G_{\delta}$. Then $\|y\| < 1 + \varepsilon$; and, since yx is bounded below by $1 - \varepsilon$, we conclude that x is bounded below by $(1 - \varepsilon)/(1 + \varepsilon)$. By this, we mean that for all vectors v, $\|xv\| \ge \frac{1-\varepsilon}{1+\varepsilon} \|v\|$. So x has an inverse z, and $\|z\| \le \frac{1+\varepsilon}{1-\varepsilon}$. Let e = yx - I. Then $\|e\| < \varepsilon$, and y = z + ez. Therefore p(x) = xz + xez - I = xez, so $\|p(x)\| \le \frac{\varepsilon(1+\varepsilon)^2}{1-\varepsilon} \le \varepsilon + 4\varepsilon^2$, which yields (7.2a).

To prove (7.2b), let $T=(S,S^*)$, where S is the unilateral shift. Then $\|\delta(S,S^*)\|=1/1+\varepsilon<1$, and $\|p(S,S^*)\|=1$, which yields (7.2b).

Example 7.4. This is an example of our non-commutative approach applied to a single matrix. Let $U = \{z \in \mathbb{C} : |z| < 1 \text{ and } |z - 1| < 1\}$. Let X be a finite-dimensional Banach space, and $T \in \mathcal{L}(X)$ be such that $\sigma(T) \subset U$. Let

$$\delta(x) = \begin{pmatrix} x & 0 \\ 0 & x - 1 \end{pmatrix}.$$

Then $H^{\infty}(G_{\delta})$ is a space of analytic functions on U, but the norm is not the supnorm; it is the larger norm given by

$$\|\phi\| := \sup\{\|\phi(S)\| : S \in \mathcal{L}(\mathcal{H}), \|\delta(S)\| < 1\}.$$

Indeed, by Theorem 3.1, the norm can obtained as

$$\|\phi\| = \inf\{\|g\|_{H^{\infty}(\mathbb{D}^2)} : g(z, z - 1) = \phi(z) \ \forall \ z \in U\}.$$

(It suffices to calculate the norm of g in the commutative case, since it always has an extension of the same norm to the non-commutative space, by [1]).

By [3, Theorem 4.9], every function analytic on a neighborhood of \overline{U} is in $H^{\infty}(G_{\delta})$. Since X is finite dimensional, T is similar to an operator on a Hilbert space; and, by the results of Smith and Paulsen, this can be taken to have U as a complete spectral set.

Putting all this together, we can write T as $a^{-1}Sa$, where S is a Hilbert space operator with $\|\delta(S)\| < 1$. For any ϕ in $H^{\infty}(G_{\delta})$, we find a g of minimal norm in $H^{\infty}(\mathbb{D}^2)$ such that $g(z, z-1) = \phi(z)$ for all $z \in U$. Finally, we get the estimate

$$\|\phi(T)\|_{\mathcal{L}(X)} \le \|a^{-1}\| \|a\| \|g\|_{H^{\infty}(\mathbb{D}^{2})}.$$

If $\max(||T||, ||T - 1||) = r < 1$, we have the estimate (which works even if X is infinite dimensional)

$$\|\phi(T)\|_{\mathcal{L}(X)} \leq \frac{1}{1-r} \|g\|_{H^{\infty}(\mathbb{D}^2)}.$$

REFERENCES

- [1] J. Agler and J. E. McCarthy, *Pick interpolation for free holomorphic functions*, Amer. J. Math. **137** (2015), 1685–1701.
- [2] J. Agler and J. E. McCarthy, Global holomorphic functions in several non-commuting variables Canad. J. Math. 67 (2015), 241–285.
- [3] J. Agler and J. E. McCarthy, *Operator theory and the Oka extension theorem*, Hiroshima Math. J. **45** (2015), 9–34.
- [4] D. Alpay and D. S. Kalyuzhnyi-Verbovetzkii, *Matrix-J-unitary non-commutative rational formal power series*, in *The State Space Method, Generalizations and Applications*, Birkhäuser, Basel, 2006, pp. 49–113.
- [5] J. A. Ball, G. Groenewald, and T. Malakorn, Conservative structured noncommutative multidimensional linear systems, in The State Space Method Generalizations and Applications, Birkhäuser, Basel, 2006, pp. 179–223.
- [6] R. E. Curto, Applications of several complex variables to multiparameter spectral theory, in Surveys of Some Recent Results in Operator Theory, Vol. II, Longman Sci. Tech., Harlow, 1988, pp. 25–90.
- [7] J. Diestel, J. H. Fourie, and J. Swart, The Metric Theory of Tensor Products, American Mathematical Society, Providence, RI, 2008.

- [8] J. W. Helton, I. Klep, and S. McCullough, *Analytic mappings between noncommutative pencil balls*, J. Math. Anal. Appl. **376** (2011), 407–428.
- [9] J. W. Helton, I. Klep, and S. McCullough, Proper analytic free maps, J. Funct. Anal. 260 (2011), 1476–1490.
- [10] J. W. Helton and S. McCullough, Every convex free basic semi-algebraic set has an LMI representation, Ann. of Math. (2) 176 (2012), 979–1013.
- [11] D. S. Kaliuzhnyi-Verbovetskyi and V. Vinnikov, Foundations of Free Noncommutative Function Theory, Amer. Math. Soc., Providence, RI, 2014.
- [12] V. I. Paulsen, Completely bounded homomorphisms of operator algebras, Proc. Amer. Math. Soc. **92** (1984), 225–228.
- [13] V. I. Paulsen, Every completely polynomially bounded operator is similar to a contraction, J. Funct. Anal. 55 (1984), 1–17.
- [14] G. Pisier, Introduction to Operator Space Theory, Cambridge University Press, Cambridge, 2003.
- [15] G. Popescu, Free holomorphic functions on the unit ball of B(H)ⁿ, J. Funct. Anal. 241 (2006), 268–333.
- [16] G. Popescu, Free holomorphic functions and interpolation, Math. Ann. 342 (2008), 1–30.
- [17] G. Popescu, *Free holomorphic automorphisms of the unit ball of* $B(\mathfrak{H})^n$, J. Reine Angew. Math. **638** (2010), 119–168.
- [18] G. Popescu, Free biholomorphic classification of noncommutative domains, Int. Math. Res. Not. IMRN 4 (2011), 784–850.
- [19] G. Popescu, Free biholomorphic functions and operator model theory, J. Funct. Anal. **262** (2012), 3240–3308.
- [20] G. Popescu, Free biholomorphic functions and operator model theory, II, J. Funct. Anal. 265 (2013), 786–836.
- [21] M. Putinar, Uniqueness of Taylor's functional calculus, Proc. Amer. Math. Soc. 89 (1983), 647–650
- [22] G-C. Rota, On models for linear operators, Comm. Pure Appl. Math. 13 (1960), 469-472.
- [23] R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer-Verlag London, London, 2002
- [24] B. Szokefalvi-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, second edition, Springer, New York, 2010.
- [25] J. L. Taylor, *The analytic functional calculus for several commuting operators*, Acta Math. **125** (1970), 1–38.
- [26] J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172–191.
- [27] J. L. Taylor, A general framework for a multi-operator functional calculus, Advances in Math. 9 (1972), 183–252.
- [28] J. L. Taylor, Functions of several non-commuting variables, Bull. Amer. Math. Soc. **79** (1973), 1–34.
- [29] J. von Neumann, Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr. 4 (1951), 258–281.

Jim Agler UCSD La Jolla, CA 92093 USA

John E. McCarthy
WASHINGTON UNIVERSITY
St. LOUIS, MO 63130 USA
email: mccarthy@wustl.edu