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ABSTRACT Testing for the existence of variance components in linear mixed models is a fundamental task in many applicative fields. In
statistical genetics, the score test has recently become instrumental in the task of testing an association between a set of genetic
markers and a phenotype. With few markers, this amounts to set-based variance component tests, which attempt to increase power in
association studies by aggregating weak individual effects. When the entire genome is considered, it allows testing for the heritability
of a phenotype, defined as the proportion of phenotypic variance explained by genetics. In the popular score-based Sequence Kernel
Association Test (SKAT) method, the assumed distribution of the score test statistic is uncalibrated in small samples, with a correction
being computationally expensive. This may cause severe inflation or deflation of P-values, even when the null hypothesis is true. Here,
we characterize the conditions under which this discrepancy holds, and show it may occur also in large real datasets, such as a dataset
from the Wellcome Trust Case Control Consortium 2 (n = 13,950) study, and, in particular, when the individuals in the sample are
unrelated. In these cases, the SKAT approximation tends to be highly overconservative and therefore underpowered. To address this
limitation, we suggest an efficient method to calculate exact P-values for the score test in the case of a single variance component and
a continuous response vector, which can speed up the analysis by orders of magnitude. Our results enable fast and accurate application
of the score test in heritability and in set-based association tests. Our method is available in http:/github.com/cozygene/RL-SKAT.

KEYWORDS statistical genetics; SKAT; heritability; set-tests

HE variance component model is a well-established sta-
tistical framework used in many scientific fields. Testing
for an association between several explanatoryvariables and a
univariate response produces a variety of useful applications.
For example, in metagenomics, an association is tested be-
tween a phenotype (e.g., body mass index, blood glucose
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levels, blood lipid levels, etc.) and the relative abundance
counts of the measured species (Zhao et al. 2015).

In statistical genetics, testing for an association between a
set of genetic markers and a phenotype, such as a disease or a
trait, is a fundamental task. Since studies to detect genetic
signals are often underpowered, even with large datasets
becoming available, the common approach to help alleviate
this issue is grouping together genetic markers and testing
them jointly. Grouping genetic markers is commonly imple-
mented under the framework of variance component models.
In addition to association testing, this framework can be
used to answer several questions, such as estimation of the
underlying heritability of a phenotype (Kang et al. 2010);
estimating the uncertainty of such estimation (Furlotte et al.
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2014; Schweiger et al. 2016, 2017); phenotype prediction
(Hayes et al. 2001), and more.

We consider two main scenarios in which such tests are
performed: (i) a single phenotype, many sets of markers and
(ii) many phenotypes, a single set of markers. Scenario (i) is
common in set-testing, where relatively few markers are
tested jointly. This is particularly useful in the case of rare
variants, which are increasingly available for study using
sequencing technologies, and which constitute a large part
of human genetic variability. In such studies, a single pheno-
type is often tested against several sets of markers (for exam-
ple, all rare variants in a single gene), because single-marker
tests are often underpowered. Scenario (ii) occurs when
studying heritability, defined as the proportion of phenotypic
variance explained by genetics. Here, the tested markers are
commonly the entire set of genotyped or sequenced single-
nucleotide polymorphism (SNP) variants, or large portions
of the genome (defined by, e.g., chromosome or functional
annotation), and they are often tested against many (e.g.,
thousands) of phenotypes. Such phenotypes could be expres-
sion profiles of genes (Price et al. 2011; Wright et al. 2014;
Lloyd-Jones et al. 2017), methylation levels across of various
methylation sites in the DNA (Quon et al. 2013; Van Dongen
et al. 2016) or neuroimaging measurements (Ganjgahi et al.
2015; Ge et al. 2015).

Within the variance components framework, a common
approach for association testing is the score test. It is used, for
example, for testing the heritability of morphometric mea-
surements derived from brain structural MRI scans (Ge et al.
2015) and on fractional anisotropy measures in subjects from
the Genetics of Brain Structure study (Ganjgahi et al. 2015).

The main popular alternative to the score test is the
generalized likelihood ratio (LR) test, e.g., as implemented
by GCTA, a popular software package for heritability estima-
tion (Yang et al. 2011). Both the score test and the LR test are
based on properties of the likelihood function. The LR test
statistic is calculated from the likelihood of the best fitting
model across different heritability values, and from the likeli-
hood of the model corresponding to no heritability. Con-
versely, the score test is based on the derivative of the
likelihood function at the point corresponding to zero asso-
ciation, and testing if it is significantly nonzero. Compared
with the LR test, the score test is often advantageous as it
requires parameter estimation only for the null model,
whereas the LR test requires parameter estimation for both
the null and the alternative model. Additionally, the score test
is the locally most powerful test; see Lippert et al. (2014) fora
thorough comparison between the two tests, mainly in the
context of set testing.

The Sequence Kernel Association Test (SKAT) (Wu et al.
2011) has become the standard score-based test in statistical
genetics and in metagenomics (Zhao et al. 2015), in large
part due to its computational tractability. One of its merits
is that it does not rely on the asymptotic distribution of the
score test statistic, instead specifying a nonasymptotic distri-
bution for the statistic under the null hypothesis of no asso-
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ciation. However, it has been observed that this distribution
may be inaccurate. In the SKAT-O extension (Lee et al. 2012),
aresampling-based moment-matching correction is suggested.
An adaptive permutation testing procedure is suggested in
Hasegawa et al. (2016). Chen et al. (2016) provide a method
for calculating exact P-values; however, their method may be
significantly slower than that of SKAT, as it requires the
eigendecomposition of a full rank square matrix, whose com-
putational complexity is typically cubic in the sample size, for
each distinct response variable (e.g., phenotype), or each set
of explanatory variables (e.g., SNP set). Finally, in these
works, it is reported that this discrepancy occurs mainly in
studies having a small sample size, and it is currently unclear
to which extent the P-values of SKAT are calibrated for large
sample sizes.

Here, we undertake a thorough analysis of the null distri-
bution of the score test statistic, and its discrepancy under the
SKAT approximation. We suggest a practical way to quantify
this discrepancy, and show that such discrepancies may occur
even at large sample sizes. We show that a discrepancy is
expected when the number of markers is comparable to or
larger than the number of individuals, and when the individ-
uals are relatively unrelated. In particular, in addition to
such inaccuracies occurring in tests of sets of rare-variants
in small samples, we conclude that they may also occurinlarge
scale heritability studies. We further suggest a computational
method, Recalibrated Lightweight SKAT (RL-SKAT), that allows
exact P-value computation while maintaining computation
time as in SKAT; in particular, for multiple phenotypes tested
against the same marker set, only a single eigendecomposition
is required. Finally, we demonstrate and validate our results on
two real datasets, a large dataset from the Wellcome Trust Case
Control Consortium 2 (International Multiple Sclerosis Genetics
Consortium et al. 2011) (WTCCC2) study and the Cooperative
health research in the Region of Augsburg (KORA) study (Holle
et al. 2005) dataset.

Materials and Methods

We begin by reviewing the score test, as defined by the SKAT
method (Wu et al. 2011) [see also the Supplementary Infor-
mation in Lippert et al. (2014) for an excellent review]. We
focus here on continuous phenotypes, and on the case of a
single variance component; for other cases, see the Discussion
below.

The variance components model

We consider the following standard variance components
model [see Searle et al. (2009) for a detailed review]. Let n
be the number of observations, and y be a n X 1 vector of
responses. Let X be a n X p design matrix of p covariates,
associated with fixed effects (possibly including an intercept
vector 1, as a first column, as well as other covariates) and let
B be a p X 1 vector of fixed effects. Finally, let K be a kernel
matrix, which, in a kernel-based method such as SKAT, can
be taken to be any symmetric positive-definite matrix that



encodes similarity between individuals. Then, y is assumed to
follow:

y ~ N (XB,02K + 021, ), 1)

The fixed effects B and the coefficients o7 and o are the
parameters of the model.

In the context of statistical genetics, y is a vector of phe-
notype measurements for each individual, and X is a matrix of
covariates (often including an intercept, sex, age, etc.). Let Z
be a n X m standardized (i.e., columns have zero mean and
unit variance) genotype matrix containing the m SNPs we
test. The common choice for K is a weighted dot product of
the genetic markers (Yang et al. 2010); formally, define
K = ZWZ", where W is a non-negative m X m diagonal ma-
trix assigning a weight per SNP. A standard choice is the
uniform W;; = 1/m [see Wu et al. (2011) for a discussion].
The narrow-sense heritability due to genotyped common
SNPs is defined as the proportion of total variance explained
by genetic factors (Visscher et al. 2008):

o2

=_28 _ 2
a'§+0'§ @

The score test

Under the above model, evaluating whether the tested cova-
riates influence the response, while adjusting for additional
covariates, corresponds to testing the null hypothesis ag2 =0.
SKAT tests this hypothesis with a variance component score
test in the corresponding mixed model. Specifically, the score
statistic in the single-kernel case is obtained from the deriv-
ative of the restricted likelihood, discarding terms that are
constant with respect to y (Lippert et al. 2014):

Q(y) = y'SKSy 3)

where S = I, — X(X'X) 'X is the projection matrix to the
subspace orthogonal to the covariates X. For clarity of pre-
sentation, we will divide the statistic by of. Then,

Proposition 1: Let {¢;} be the eigenvalues of SKS™ and be X%i
are i.i.d. random variables distributed chi-square with one de-
gree of freedom. Then,

Q[0 ~> bixi 4
i=1

The proof of Proposition 1, as well as all proofs below, are
deferred to the Supplemental Material in File S1.

The exact distribution of the score test statistic

The above derivation is exact whenever o2 is known. How-
ever, in practice, o2 is not known and needs to be estimated
from the data; most often, from the single response vector we
are testing. In practice, o2 is replaced with its restricted max-
imum likelihood (REML) estimate. The REML estimate is

simply the corrected mean of the squared entries of the phe-
notype, after regressing out the covariates and using 'S = S:

oy ISP _y'Sy
(y) = n—p n—p (5)

We note that sometimes the ML estimate y'Sy/n is used, or
just y'Sy; as this only introduces a multiplicative constant,
we use the unbiased REML estimate for simplicity of presenta-
tion later. The statistic Q and &f, are, in fact, dependent random
variables. Therefore, the assumed distribution of Q/é—f (de-
scribed in Proposition 1) does not hold when substituting o
with its estimate, &f. In Zhang and Lin (2003), Liu et al. (2007,
2008), and Wu et al. (2011), this substitution is justified by the
claim that the (restricted) ML estimator (rf is consistent, and
may therefore be substituted by its true value for a large
enough sample size, n. However, this argument does not take
into consideration the dependency between Q and 2. Also, as
shown below, this distribution might not hold in realistic set-
tings. In Chen et al. (2016), this discrepancy is reported for
small samples, and an exact distribution is derived for the sta-
tistic Q/¢, and for any n, K and X, which we review here:

Proposition 2: The distribution of Q / &2 may be modeled as a
ratio of quadratic forms of normal variables. In particular, if
z ~N(0,,1,), then

Q

TSKS
Ln-p) 2222 )

z'Sz

S
o N

Assessing the discrepancy

While noted in the literature (Zhao et al. 2015; Chen et al.
2016), the above discrepancy is reported for small samples
only. However, as we show now, it may occur also when the
number of individuals is large. We give a qualitative measure
for when to expect large discrepancies between the asymp-
totic approximation of a weighted mixture of chi-squares and
the exact distribution.

In the Supplemental Material in File S1, it is shown that the
distributions of Q /o’ and Q /67 have the same means, but that
Var(Q/o?) > Var(Q/¢?2), i.e., the latter has a smaller variance.
We can further quantify the ratio between the variances as an
indicator to the discrepancy between the distributions.

Proposition 3: Denote the eigenvalues of SKS by ¢4, ..., ¢y,
and note that there are at most n — p nonzero eigenvalues ;.
Denote the first two sample moments of the eigenvalues by

é=>",¢;/(n—p) and ? =31 .,47/(n —_p). Denote the
empirical variance of the eigenvalues by o2 (¢) = ¢* — (¢)>. Then,

) _npez (1)) o

_Var(Q/&g) n—p ¢

The expression o(¢) /¢ is the (sample) coefficient of variation
(CV) of the eigenvalues—a unitless, relative measure of their
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Table 1 Performance summary

Scenario Algorithm Exact? Preprocessing Calculating Q/42 Calculating P-value

Heritability SKAT Approximate O(np? +n*p + n3) O(nz) o(n)
MiRKAT Exact O(np? + n*p) o(n?) o(n?)
RL-SKAT Exact O(np? +n’p +n3) 0o(n?) o(n)

Set-testing SKAT Approximate O(np? + nmp + nm?) O(n(m +p)) Oo(n)
MiRKAT Exact O(np? + nmp) O(n(m+p)) o(n?)
RL-SKAT Exact O(np? + nmp + n(m + p)?) O(n(m +p)) o(n)

Comparison of the different approaches for P-value calculation discussed. RL-SKAT achieves accuracy while remaining computationally efficient.

dispersion. Therefore, the ratio becomes larger when the CV
is smaller. Also, as noted above, since the approximation
wrongly ignores the dependency between the statistic Q and
af, we expect the discrepancy to grow larger as the correlation
between Q and 6 increases. We therefore examine this corre-
lation as an additional measure of this discrepancy.

Proposition 4: Let a(¢)/¢ be the CV of the eigenvalues as
above. Then,

-1/2
Corr(Q,82) = ((% )2 n 1) (8)

This again demonstrates that CV affects discrepancy—the
correlation becomes stronger when the CV is smaller. When
CV « 1, for example, when K~ I,, we have R > 1 and
R~ (n—p+2)/(n—p)-(1+n/m)/(n/m)Conversely, when
CV > 1, we have R ~ 1 and Corr(Q,2) ~ 1/CV. This also
gives the variance ratio as the function of the correlation as

_n-p+2 1
- n-p 1-Corr?(Q,&2)

9

Tosummarize, the discrepancy is strong when the eigenvalues
are more uniformly dispersed, and is weak when they have
large variability. The dispersion of the eigenvalues of a kinship
matrix has been previously shown to be related to the un-
certainty in estimation of heritability: In Visscher and Goddard
(2015), it is shown that the asymptotic variance of the herita-
bility REML estimator decreases with the variance of the en-
tries of the kinship matrix, and with the variance of the
eigenvalues. In Schweiger et al. (2016), this result is shown
without assumptions of asymptotics.

Examples: We now employ Propositions 3 and 4 to analyze
several interesting examples in a genetic context. For simplic-
ity, in the following, we use X = 0, sothatp =0and S = I,.
Completely unrelated cohort: Suppose the cohort contains
completely unrelated individuals; then, K =1,. Thus,
¢1=...=¢,=1,50R = o, Corr(Q,62) = 1, and Q/52 is
the constant n. Compare this to the case where ¢ is known;
then, it can be easily seen that Q/o? ~ x2. Therefore, the
mean is the same but the variance vanishes completely.
Rank-one kinship matrix: Consider the case of a simple
burden test (Lee et al. 2012): if we assume the random effects
s of all SNPs are identical, the burden test becomes equiva-
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lent to the score test with K = uu’, where u = Z1,,. Alterna-
tively, consider the extreme case, where all the individuals
are identical: K = 117 (while unlikely in human, this could
be approximately true in studies of plants, yeast, etc.). In
both these cases, there is a single nonzero eigenvalue:
¢y =...=¢, =0, which gives R~ 1 and Corr(Q,d?) =

(¢1/n)/\/$2/n = 1/\/n; that is, with large enough sample
size, we expect the correlation to be effectively zero, and the
SKAT mixture approximation to hold well.

A full rank kinship matrix: Assume the matrix Z contains
m>n SNPs in linkage equilibrium, where each column was
mean-centered and normalized to have unit variance. Choos-
ing the linear kernel K = ZZ"/m, we follow Patterson et al.
(2006) in modeling Z as a matrix of random standard normal
variables, from which it follows that K is a Wishart matrix. The
limit distribution of the density of the eigenvalues of K is spec-
ified by the MarChenko-Pastur distribution (Marcenko and
Pastur 1967), with its first two moments known to be 1 and
1+n/m. Under this approximation, ¢ ~ 1, ¢* ~ 1+ n/m,
oX(¢)~n/m, R~ (n—p+2)/(n-p)-(1+n/m)/(n/m)
and Corr(Q, &f) ~1/4/1+n/m. When m > n, as is often
the case, R > 1 and Corr(Q, &f) ~ 1. This shows that, for a

4 T T T
-RL-SKAT accurate p-values
. SKAT p-values
£ 30 :
S v
= )
= 21 |
§
A,
=
£ |
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0 1 2 3 4
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Figure 1 Statistic distribution. Results of the WTCCC2 data analysis,
presented by quantile-quantile plots of the —log,q(p)-values for herita-
bility significance of 10,000 random phenotypes drawn under the null
distribution. Significant deviation from the black line indicates a deflation
arising from an inaccurate null distribution. Calculation under the as-
sumption of a weighted mixture of chi-square distributions, gives deflated
P-values and potentially creating false negatives. Using the correct distri-
bution, as implemented in RL-SKAT, results in calibrated P-values.
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Figure 2 Heritability study. Histograms of the P-values of
the studied phenotypes in the KORA dataset, as calcu-
lated by the accurate method (left) and the inaccurate
method (right). Histograms are shown in log-scale, and
are capped at p = 1078 for clarity of presentation. SKAT
tends to severely deflate P-values, which are small accord-
ing to the accurate calculation, leading to a severe loss of
power.
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large class of kinship matrices, we would expect the SKAT
mixture approximation to hold poorly.

SNP set: Now, consider the case of set-testing, where Z is a
normalized matrix of m <n SNPs in linkage equilibrium.
Following the modeling above, we have again R ~ (n —p + 2)/
(n—p)- (1+n/m)/(n/m) and Corr(Q,42) ~ 1/«/n/m
whenm < n, R ~ 1 and Corr(Q,67) ~ \/m/n < 1, and thus
expecting a good approximation by the mixture. This perhaps
shows why the SKAT mixture approximation was considered
good in the context of set-tests, when few variants or a large
sample is considered. This also shows why, in small samples,
the mixture is expected to be a poor approximation.

Calculating P-values

We now describe how to efficiently calculate P-values for the
distribution of the statistic r = Q(y) /62 (y) calculated from
the data; that is, given an observed statistic r, what is
Pr(Q/67 >r) under the null? We review the result in Chen
et al. (2016):

Proposition 5: Let r be the observed value of the statistic. De-

note by o\, ... ol the eigenvalues of SKS—r/(n—p)-S.

Then,
Pr(Q >r) _Pr<Za X11>0>
g,

e i=1

(10)

where x?. are i.i.d. random variables distributed chi-square
with one degree of freedom.

However, this condition requires us to calculate the eigen-
values of SKS —r/(n—p)-S for each new value r, which,
naively, has a complexity of O(n®). We consider two scenarios
where this is problematic. First, in many heritability studies, we
wish to test the heritability of many (e.g., thousands) of phe-
notypes, all relative to the same kernel or kinship matrix (see
above). For each phenotype y;,...,yy, we calculate its score
test statistic r;. For P-value calculation, we need to compute the
eigendecomposition of SKS —r;/(n —p) - S for each observed
statistic r;, which is a significant computational burden.

Asecond problematic scenario is of an association study of a
single phenotype with many sets of SNPs, e.g., rare variants.
Choosing a weighted linear kernel as in SKAT (Wu et al.
2011), we have K; = Z;W;Z] for each set. As K; changes with

N
—2

SKAT, log,,(p-value)

each test, in principle, we need to perform a costly O(n®)
eigendecomposition for each matrix K;. However, a signifi-
cant computational saving is gained due to the fact that the
nonzero eigenvalues of SK;S = SZ;W;Z[S are the same as
those of Wl/ 2ZTSZ Wl/ 2 which is an m X m matrix (Lippert
et al. 2014). As the number of tested SNPs m is often small,
calculating the eigenvalues of this matrix instead is signifi-
cantly faster, taking only O(m3), with matrix construction
taking only O(n(m + p)z) (see Lippert et al. 2014). However,
with the exact approach, we need to calculate the eigen-
values of SK;S —r;/(n—p) - S instead of SK;S. Even when
K; is low rank, the matrix SK;S —r;/(n — p) - S may be close
to full rank, so another approach is needed.

The following characterizes the eigenvalues of SKS —r/
(n—p) - S given the eigenvalues of SKS :

Proposition 6: Let r be the observed score test statistic. Denote
by ¢q,. .., ¢, the eigenvalues of SKS. Denote the column space
of a matrix A by col(A), its null space by ker(A). Then,

Q
Pr| = =
r(é’f >r)

k r 2 k+q r
Pr(Z(d)i_n_p)Xu - Z —

i=k+1

X7 > 0> an

Power

L L
00 0.2 0.4 0.6 0.8 1

True value of h?

Figure 3 Power study. The power of the accurate approach and SKAT is
shown for P-value threshold of p =0.05, for the KORA dataset, on
10,000 simulated phenotypes with varying degrees of true underlying
heritability. SKAT is seen to be severely underpowered.
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Table 2 Benchmarks

Scenario Algorithm Exact? Preprocessing Calculating Q/52 Calculating P-value

Heritability SKAT Approximate 3 sec 0.3 sec 5 sec
MIRKAT Exact 0.2 sec 0.3 sec 37 min
RL-SKAT Exact 9 sec 0.3 sec 5 sec

Set-testing SKAT Approximate 45 sec 2 sec 1 sec
MIRKAT Exact 5 sec 2 sec 43 min
RL-SKAT Exact 50 sec 2 sec 4 sec

Benchmark of the performance of different approaches for P-value calculation, applied to the KORA dataset.

where k = rank(SKS) is the number of nonzero eigenvalues ¢;,
q = dim(ker(SKS)N col(S)), and x3; are i.i.d. random vari-
ables distributed chi-square with one degree of freedom,
i=1,...,k+q.

Proposition 6 shows that calculating the P-value amounts
to evaluating the cumulative distribution function of a certain
weighted mixture of chi-square distribution at 0. This can be
done rapidly using the Davies method (Davies 1980), which
is based on the numerical inversion of the characteristic func-
tion and runs in O(n) complexity, or using other methods
(Duchesne and De Micheaux 2010).

It remains to calculate k and g. Naively, this can be done in
0(n3), for example by calculating the singular value decom-
position (SVD) of SKS and S to get k and to obtain vector
bases for ker(SKS) and col(S), and by calculating the SVD of a
matrix whose columns are the two vector bases to obtain g.
When the same kernel is used with many phenotypes, it is a
single preprocessing step. However, when the number of SNPs
used to construct the kernel and the number of covariates are
small, these quantities can be calculated much faster:

Proposition 7: Suppose K = ZWZ", and let k = rank(SKS)
and q = dim(ker(SKS)N col(S)). Then, k and q can be calcu-
lated in complexity O(n(m + p)?).

Most commonly, k = min(m,n) — 1. When the number of
SNPs m and the number of covariates p are small, the com-
putational saving is substantial.

Data availability

This study makes use of data generated by the Wellcome Trust
Case Control Consortium. A full list of the investigators who
contributed to the generation of the data is available from
www.wtccc.org.uk. The data used in this manuscript were
obtained via KORA.PASST (https://epi.helmholtz-muenchen.
de/) with the following variables: KORA F4 Illumina Human-
Methylation450K BeadChip array, BMIQ normalization KORA

Algorithm 1 RL-SKAT for heritability

F4 Affymetrix 6.0 SNP Array; imputed (HapMap2 reference
panel). Access to the data may be obtained by request to KORA.

Results
Performance summary

We summarize the results described in Materials and Methods
above in Table 1 and in Algorithms 1 and 2. We compare our
method, RL-SKAT, with the SKAT formulation and the correc-
tion of Chen et al. (2016) using the naive implementation of
Proposition 5, as implemented by the MiRKAT software
package (Zhao et al. 2015). The two scenarios discussed
are those of a heritability study (same K with many responses
y;) and SNP set-testing (many low rank K;). In all methods, a
preprocessing step of calculating X' and {¢;} is required. In a
heritability study, calculating the statistic Q/¢> amounts to
evaluating two quadratic forms in O(n?). Compared to
RL-SKAT, MiRKAT requires a full O(n®) eigendecomposition
for each y;. For a set-testing study, these quadratic forms
can be calculated in O(n(m + p)) due to the low rank of K;.
Again, MiRKAT requires a full O(n®) eigendecomposition,
compared to the O(n(m +p)2) procedure described in
Proposition 7.

We now demonstrate our results on two datasets: a data-
set from the Wellcome Trust Case Control Consortium 2
(International Multiple Sclerosis Genetics Consortium et al.
2011) (WTCCC2) study and the Cooperative health research
in the Region of Augsburg (KORA) study (Holle et al. 2005).
A full description of data preprocessing is given in the Sup-
plemental Material in File S1.

A simulation study using WTCCC2 data

We first analyze data with real genotypes from the WTCCC2
Multiple Sclerosis dataset, and simulated phenotypes. We
used the same data processing described in Yang et al

procedure PreprOCESSING (X, K)
Calculate X' = (X™X)"'X"
Calculate SKS using S = 1 — XX'
Calculate ¢y, ..., @,, the eigenvalues of SKS
Extract k = rank(SKS)
Calculate g = dim(ker(SKS) n col(S)) using Proposition 7

procedure TesT(y)
Calculate the score r: =Q/6:=(n—p)-
Calculate {a } as in Propositions 5 and 6

Calculate the p-value p = Pr(>_1_ 10[(’))&,

y'SKSy/y'Sy

>0) using the Davies method

> Preprocessing step, done once
>0(np?)

>0(n’p)

> O(n3)

o)

o(n (n+P) )

> Calculate p-value for a smgle phenotype y
( %)

O(n)
)

O(n
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Algorithm 2 RL-SKAT for set-tests

procedure PreproCESSING(X, ZW /%)
Calculate X' = (X™X)7'X"
Calculate SZW'? using § = 1 — XX!
Calculate ¢, ..., @, as the squares of the singular values of SZW'/?
Extract k = rank(SKS)
Calculate g = dim(ker(SKS) N col(S)) using Proposition 7

procedure Test(y)
Calculate the score r: =Q/6t=(n-p)-
Calculate {a } as in Propositions 5 and 6

Calculate the p-value p = Pr(ZHa(r)X%, >0) using the Davies method

y"SKSy/y"Sy, using K = ZWzZ"

> Preprocessing step, done once

>O0(np?)

>O0(nmp)

> O(nmz)

>0(1)

>O0(n(m+p)?)

> Calculate p-value for a smgle phenotype y
O(n (m +p))

O(n)
)

O(n

(2014), resulting inm = 360,556 SNPs forn = 13,950 in-
dividuals. We constructed the kinship matrix by a standard,
uniformly weighted linear kernel. We sought to demonstrate
the discrepancy between the true null distribution and the
chi-square weighted mixture distribution. Following Propo-
sition 4, we calculated the correlation to be 0.886 and vari-
ance ratio to be R = 4.69, indicating that a large discrepancy
is possibly expected. To verify this, we simulated 10,000 ran-
dom phenotypes, where each phenotype is a vector of i.i.d.
standard normal variables. We tested whether the variance
component is significantly >0, and calculated their P-values
under the assumptions of either of the two distributions. In
Figure 1, we show the quantile-quantile plots for the two
sets of P-values. As evidenced, using the SKAT mixture dis-
tribution results in a severe deflation of small P-values,
while using the correct distribution as in Proposition 1 re-
sults in an accurate P-value distribution. This shows that
even for large sample sizes (n = 13,950), such a discrep-
ancy is possible.

Testing for heritable methylation sites in the
KORA dataset

The longitudinal KORA study consists of whole-blood meth-
ylation levels and genotypes of n = 1799 individuals. The
phenotype is the proportion of methylated samples at a spe-
cific site, averaged across DNA samples of an individual. The
study consists of independent population-based subjects
from the general population living in the region of Augsburg,
southern Germany (Holle et al. 2005). Whole-blood samples
of the KORA F4 study were used as described elsewhere
(Pfeifferm et al. 2015). In summary, a total of 431,366 meth-
ylation site phenotypes, and 657,103 SNPs, were available
for analysis. The correlation as in Proposition 4 is 0.976 and
the variance ratio is R = 22.01, indicating again that a large
discrepancy is expected. We performed a heritability study of
multiple phenotypes with the same kinship matrix, by testing
the heritability of the N = 43,140 methylation sites on chro-
mosome 1. As it is common for a methylation site to be cor-
related with its surrounding SNPs (Gibbs et al. 2010; Zhang
et al. 2010; Bell et al. 2011), we avoided such cis effects by
using a kinship matrix constructed from the m = 604,170
SNPs on all chromosomes other than 1. The kinship ma-
trix is constructed by a standard, uniformly weighted
linear kernel. For covariates, we used X consisting only

of an intercept vector. Again, we calculated P-values under
the assumption of the two distributions. We note that it
has been shown that some methylation site profiles often
display significant heritability, while others do not; thus,
both significant and insignificant P-values are expected
(Rahmani et al. 2017).

In Figure 2 we show the histograms of the log;, of the P-value
of all the considered phenotypes. The two histograms are indeed
very different; P-values calculated using the inaccurate SKAT
mixture distribution indicate that the heritability of almost all
sites is considered insignificant; for example, using a Bonferroni
threshold of 0.05 - 1/43140 ~ 10, only 8/43,140 sites are
significant. In light of the results above, it is reasonable to
suspect that P-values of many heritable phenotypes are de-
flated, thus causing false negatives. The P-values distribution
has a peak at ~0.5, likely an artifact of the inaccurate calcula-
tion method. In comparison, P-values calculated by RL-SKAT
do not exhibit such a peak. They are significantly smaller,
and using the same Bonferroni threshold, we now find
319/43,140 significant sites. Indeed, a simulated power study
of both approaches under varying degrees of a true underlying
heritability validates that the inaccurate approach results in a
severe decrease in power (Figure 3), which has been reported
in the literature (Uemoto et al. 2013). As a point of reference,
we compared the power of RL-SKAT with that of the popular
LR test approach, and found they have similar power (see the
Supplemental Material in File S1). We conclude that in this
dataset, using the SKAT distribution for P-value calculation is
highly problematic.

Benchmarks

Finally, we benchmarked the methods discussed here on the
KORA dataset under the two above scenarios, on a 64G,
2.2 GHz Linux workstation, using our implementation in
the Python language. We verified that the relevant part of
our implementation is equivalent to MiRKAT and has a very
similar running time. For the scenario of heritability testing,
we calculated the P-values of 1000 phenotypes with the kin-
ship matrix. For the scenario of set testing, we used 1000 sets
of 100 SNPs each. The results are summarized in Table 2; as
expected, the computational savings are very significant,
achieving a speedup of more than two orders of magnitude.
We expect the speedup to be even more significant for larger
datasets.
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Discussion

In summary, we have shown that the distribution suggested by
SKAT to the score test statistic may be very inaccurate. Unlike
previous studies, which have noted this discrepancy only in
small sample sizes, we have shown that it might occur in large
studies as well. We have proposed a computational method to
accurately calculate P-values without compromising compu-
tational time. Finally, we demonstrated our findings in two
datasets.

The exact calculation of P-values can be applied to other
variants of the score test; for example, the SKAT-O (Lee et al.
2012) test seeks to find an optimal combination of burden
tests and nonburden tests, which amounts to the score test
with a certain kernel.

In this work, we focused on the case of a single kernel, and
on a continuous phenotype. The extension of this work to
multiple kernels (e.g., corresponding to several sets of SNPs)
or to binary phenotypes (e.g., case/control studies) is non-
trivial, as the null distribution cannot be modeled as a ratio of
quadratic forms (see, e.g., Wang 2016; Wu et al. 2016). It
therefore remains a subject for future work.

We believe that the prominence of likelihood-ratio based
tests in heritability studies might stem from the statistical
issues discussed above (see, for example, Uemoto et al. 2013),
where SKAT was found to be significantly less powerful. It is
our hope that this paper would facilitate the use of score tests
in heritability studies in the future.
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