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Abstract

Given the highly dynamic and complex nature of the human gut microbial community, the
ability to identify and predict time-dependent compositional patterns of microbes is crucial to
our understanding of the structure and functions of this ecosystem. One factor that could
affect such time-dependent patterns is microbial interactions, wherein community composi-
tion at a given time point affects the microbial composition at a later time point. However, the
field has not yet settled on the degree of this effect. Specifically, it has been recently sug-
gested that only a minority of taxa depend on the microbial composition in earlier times. To
address the issue of identifying and predicting temporal microbial patterns we developed a
new model, MTV-LMM (Microbial Temporal Variability Linear Mixed Model), a linear mixed
model for the prediction of microbial community temporal dynamics. MTV-LMM can identify
time-dependent microbes (i.e., microbes whose abundance can be predicted based on the
previous microbial composition) in longitudinal studies, which can then be used to analyze
the trajectory of the microbiome over time. We evaluated the performance of MTV-LMM on
real and synthetic time series datasets, and found that MTV-LMM outperforms commonly
used methods for microbiome time series modeling. Particularly, we demonstrate that the
effect of the microbial composition in previous time points on the abundance of taxa at later
time points is underestimated by a factor of at least 10 when applying previous approaches.
Using MTV-LMM, we demonstrate that a considerable portion of the human gut microbiome,
both in infants and adults, has a significant time-dependent component that can be pre-
dicted based on microbiome composition in earlier time points. This suggests that micro-
biome composition at a given time point is a major factor in defining future microbiome
composition and that this phenomenon is considerably more common than previously
reported for the human gut microbiome.
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Author summary

The ability to characterize and predict temporal trajectories of the microbial community
in the human gut is crucial to our understanding of the structure and functions of this
ecosystem. In this study we develop MTV-LMM, a method for modeling time-series
microbial community data. Using MTV-LMM we find that in contrast to previous reports,
a considerable portion of microbial taxa in both infants and adults display temporal struc-
ture that is predictable using the previous composition of the microbial community. In
reaching this conclusion we have adopted a number of concepts common in statistical
genetics for use with longitudinal microbiome studies. We introduce concepts such as
time-explainability and the temporal kinship matrix, which we believe will be of use to
other researchers studying microbial dynamics, through the framework of linear mixed
models. In particular we find that the association matrix estimated by MTV-LMM reveals
known phylogenetic relationships and that the temporal kinship matrix uncovers known
temporal structure in infant microbiome and inter-individual differences in adult micro-
biome. Finally, we demonstrate that MTV-LMM significantly outperforms commonly
used methods for temporal modeling of the microbiome, both in terms of its prediction
accuracy as well as in its ability to identify time-dependent taxa.

Introduction

There is increasing recognition that the human gut microbiome is a contributor to many
aspects of human physiology and health including obesity, non-alcoholic fatty liver disease,
inflammatory diseases, cancer, metabolic diseases, aging, and neurodegenerative disorders [1-
14]. This suggests that the human gut microbiome may play important roles in the diagnosis,
treatment, and ultimately prevention of human disease. These applications require an under-
standing of the temporal variability of the microbiota over the lifespan of an individual partic-
ularly since we now recognize that our microbiota is highly dynamic, and that the mechanisms
underlying these changes are linked to ecological resilience and host health [15-17].

Due to the lack of data and insufficient methodology, we currently have major gaps in our
understanding of fundamental mechanisms related to the temporal behavior of the micro-
biome. Critically, we currently do not have a clear characterization of how and why our gut
microbiome varies in time, and whether these dynamics are consistent across humans. It is
also unclear whether we can define ‘stable’ or ‘healthy’ dynamics as opposed to ‘abnormal’ or
‘unhealthy’ dynamics, which could potentially reflect an underlying health condition or an
environmental factor affecting the individual, such as antibiotics exposure or diet. Moreover,
there is no consensus as to whether the gut microbial community structure varies continuously
or jumps between discrete community states, and whether or not these states are shared across
individuals [18, 19]. Notably, recent work [20] suggests that the human gut microbiome com-
position is dominated by environmental factors rather than by host genetics, emphasizing the
dynamic nature of this ecosystem.

The need for understanding the temporal dynamics of the microbiome and its interaction
with host attributes have led to a rise in longitudinal studies that record the temporal variation
of microbial communities in a wide range of environments, including the human gut micro-
biome. These time series studies are enabling increasingly comprehensive analyses of how the
microbiome changes over time, which are in turn beginning to provide insights into funda-
mental questions about microbiome dynamics [16, 17, 21].
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One of the most fundamental questions that still remains unanswered is to what degree the
microbial community in the gut is deterministically dependent on its initial composition (e.g.,
microbial composition at birth). More generally, it is unknown to what degree the microbial
composition of the gut at a given time determines the microbial composition at a later time.
Additionally, there is only preliminary evidence of the long-term effects of early life events on
the gut microbial community composition, and it is currently unclear whether these long-
term effects traverse through a predefined set of potential trajectories [21, 22].

To address these questions, it is important to quantify the dependency of the microbial
community at a given time on past community composition [23, 24]. This task has been previ-
ously studied in theoretical settings. Specifically, the generalized Lotka-Volterra family of mod-
els infer changes in community composition through defined species-species or species-
resource interaction terms, and are popular for describing internal ecological dynamics.
Recently, a few methods that rely on deterministic regularized model fitting using generalized
Lotka-Volterra equations have been proposed (e.g., [25-27]). Nonetheless, the importance of
pure autoregressive factors (a stochastic process in which future values are a function of the
weighted sum of past values) in driving gut microbial dynamics is, as yet, unclear.

Other approaches that utilize the full potential of longitudinal data, can often reveal insights
about the autoregressive nature of the microbiome. These include, for example, the sparse vec-
tor autoregression (sVAR) model, (Gibbons et al. [24]), which assumes linear dynamics and is
built around an autoregressive type of model, ARIMA Poisson (Ridenhour et al. [28]), which
assumes log-linear dynamics and suggests modeling the read counts along time using Poisson
regression, and TGP-CODA (Aijo et al. 2018 [29]), which uses a Bayesian probabilistic model
that combines a multinomial distribution with Gaussian processes.

Particularly, Gibbons et al. [24], uses the sparse vector autoregression (sVAR) model to
show evidence that the human gut microbial community has two dynamic regimes: autore-
gressive and non-autoregressive. The autoregressive regime includes taxa that are affected by
the community composition at previous time points, while the non-autoregressive regime
includes taxa that their appearance in a specific time is random and or does not depend on the
previous time points. In this paper, we show that previous studies substantially underestimate
the autoregressive component of the gut microbiome.

In order to quantify the dependency of taxa on past composition of the microbial commu-
nity, we introduce Microbial community Temporal Variability Linear Mixed Model (MTV-
LMM), a ready-to-use scalable framework that can simultaneously identify and predict the
dynamics of hundreds of time-dependent taxa across multiple hosts. MTV-LMM is based on a
linear mixed model, a heavily used tool in statistical genetics and other areas of genomics [30,
31]. Using MTV-LMM we introduce a novel concept we term ‘time-explainability’, which cor-
responds to the fraction of temporal variance explained by the microbiome composition at
previous time points. Using time-explainability researchers can select the microorganisms
whose abundance can be explained by the community composition at previous time points in
a rigorous manner.

MTV-LMM has a few notable advantages. First, unlike the sVAR model and the Bayesian
approach proposed by Aijo et al. [29], MTV-LMM models all the individual hosts simulta-
neously, thus leveraging the information across an entire population while adjusting for the
host’s effect (e.g,. host’s genetics or environment). This provides MTV-LMM an increased
power to detect temporal dependencies, as well as the ability to quantify the consistency of
dynamics across individuals. The Poisson regression method suggested by Ridenhour et al.
[28] also utilizes the information from all individuals, but does not account for the individual
effects, which may result in an inflated autoregressive component. Second, MTV-LMM is com-
putationally efficient, allowing it to model the dynamics of a complex ecosystem like the
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human gut microbiome by simultaneously evaluating the time-series of hundreds of taxa,
across multiple hosts, in a timely manner. Other methods, (e.g., TGP-CODA [29], MDSINE
[26] etc.) can model only a small number of taxa. Third, MTV-LMM can serve as a feature
selection method, selecting only the taxa affected by the past composition of the microbiome.
The ability to identify these time-dependent taxa is crucial when fitting a time series model to
study the microbial community temporal dynamics. Finally, we demonstrate that MTV-LMM
can serve as a standalone prediction model that outperforms commonly used models by an
order of magnitude in predicting the taxa abundance.

We applied MTV-LMM to synthetic data, as suggested by Ajio et al. 2018 [29] as well as to
three real longitudinal studies of the gut microbiome (David et al. [17], Caporaso et al. [16],
and DIABIMMUNE [21]). These datasets contain longitudinal abundance data using 16S
rRNA gene sequencing. Nonetheless, MTV-LMM is agnostic to the sequencing data type (i.e.,
16s rRNA or shotgun sequencing).

Using MTV-LMM we find that in contrast to previous reports, a considerable portion of
microbial taxa, in both infants and adults, display temporal structure that is predictable using
the previous composition of the microbial community. Moreover, we show that, on average,
the time-explainability is an order of magnitude larger than previously estimated for these
datasets.

Results

A brief description of MTV-LMM

We begin with an informal description of the main idea and utility of MTV-LMM. A more
comprehensive description can be found in the Methods. MTV-LMM is motivated by our
assumption that the temporal changes in the abundance of taxa are a time-homogeneous
high-order Markov process. MTV-LMM models the transitions of this Markov process by fit-
ting a sequential linear mixed model (LMM) to predict the relative abundance of taxa at a
given time point, given the microbial community composition at previous time points. Intui-
tively, the linear mixed model correlates the similarity between the microbial community com-
position across different time points with the similarity of the taxa abundance at the next time
points. MTV-LMM is making use of two types of input data: (1) continuous relative abundance
of focal taxa j at previous time points and (2) quantile-binned relative abundance of the rest of
the microbial community at previous time points. The output of MTV-LMM is prediction of
continuous relative abundance, for each taxon, at future time points.

In order to apply linear mixed models, MTV-LMM generates a temporal kinship matrix,
which represents the similarity between every pair of samples across time, where a sample is a
normalization of taxa abundances at a given time point for a given individual (see Methods).
When predicting the abundance of taxa j at time ¢, the model uses both the global state of the
entire microbial community in the last g time points, as well as the abundance of taxa j in the
previous p time points. The parameters p and q are determined by the user, or can be deter-
mined using a cross-validation approach; a more formal description of their role is provided in
the Methods. MTV-LMM has the advantage of increased power due to alow number of
parameters coupled with an inherent regularization mechanism, similar in essence to the
widely used ridge regularization, which provides a natural interpretation of the model.

Model evaluation

We evaluated MTV-LMM by testing its accuracy in predicting the abundance of taxa at a
future time point using real time series data. Such evaluation will mitigate overfitting, since the
future data points are held out from the algorithm. To measure accuracy on real data, we used
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the squared Pearson correlation coefficient between estimated and observed relative abun-
dance along time, per taxon. In addition we validated MTV-LMM using synthetic data, illus-
trating realistic dynamics and abundance distribution, as suggested by Aijo et al. 2018 [29].
Following [29], we evaluate the performance of the model using the ‘estimation-error’, defined
to be the Euclidean distance between estimated and observed relative abundance, per time
point (see Supplementary Information S1 Note).

We used real time series data from three different datasets, each composed of longitudinal
abundance data. These three datasets are David et al. [17](2 adult donors—DA, DB—average
250 time points per individual), Caporaso et al. [16] (2 adult donors—M3, F4—average 231
time points per individual), and the DIABIMMUNE dataset [21] (39 infant donors—average
28 time points per individual). In these datasets, the temporal parameters p and g were esti-
mated using a validation set, and ranged from 0 to 3. See Methods for further details.

We compared the results of MTV-LMM to common approaches that are widely used for
temporal microbiome modeling, namely the AR(1) model (see Methods), the sparse vector
autoregression model sVAR [24], the ARIMA Poisson regression [28] and TGP-CODA [29].
Overall, MTV-LMM’s prediction accuracy is higher than AR’s (Supplementary Information S1
Table) and significantly outperforms both the sVAR method and the Poisson regression across
all datasets, using real time-series data (Fig 1). In addition, since TGP-CODA can not be fully
applied to these real datasets (due to scalability limitations), we used synthetic data, consider-
ing a scenario of 200 taxa and 70 time points with realistic dynamics and abundance distribu-
tion, as suggested by the authors of this method. Similarly to the real data, MTV-LMM
significantly outperforms all the compared methods (Supplementary Information S1 Fig).

Inference on the estimated association matrix

We applied MTV-LMM to the DIABIMMUNE infant dataset and estimated the species-spe-
cies association matrix across all individuals, using 1440 taxa that passed a preliminary screen-
ing according to temporal presence-absence patterns (see Methods). We found that most of
these effects are close to zero, implying a sparse association pattern. Next, we applied a princi-
pal component analysis (PCA) to the estimated species-species associations and found a strong
phylogenetic structure (PerMANOVA P-value = 0.001) suggesting that closely related species
have similar association patterns within the microbial community (Fig 2). These findings are
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Fig 1. MTV-LMM outperforms commonly used methods in prediction accuracy (R?) and detection of autoregressive dynamics.
MTV-LMM predictions are in red, ARIMA Poisson regression in green, and sVAR in blue.

https://doi.org/10.1371/journal.pcbi.1006960.9001
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Fig 2. The first three principle components of the inferred association matrix recover known phylogenetic structure. Closely related
species, in the DIABIMUNE dataset, have similar association patterns within the microbial community. Shown on each axis is the percentage of
variance explained by each principal component for the top five orders in the data.

https://doi.org/10.1371/journal.pcbi.1006960.9002

supported by Thompson et al. [32], who suggested that ecological interactions are phylogeneti-
cally conserved, where closely related species interact with similar partners. Gomez et al. [33]
tested these assumptions on a wide variety of hosts and found that generalized interactions can
be evolutionary conserved.

We note that the association matrix estimated by MTV-LMM should be interpreted with
caution since the number of possible associations is quadratic in the number of species, and it
is, therefore, unfeasible to infer with high accuracy all the associations. However, we can still
aggregate information across species or higher taxonomic levels to uncover global patterns of
the microbial composition dynamics (e.g., principal component analysis).

Time-explainability as a measure of the autoregressive component in the
microbial community

In order to address the fundamental question regarding the gut microbiota temporal variation,
we quantify its autoregressive component. Namely, we quantify to what degree the abundance
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of different taxa can be inferred based on the microbial community composition at previous
time points. In statistical genetics, the fraction of phenotypic variance explained by genetic fac-
tors is called heritability and is typically evaluated under an LMM framework [30]. Intuitively,
linear mixed models estimate heritability by measuring the correlation between the genetic
similarity and the phenotypic similarity of pairs of individuals. We used MTV-LMM to define
an analogous concept that we term time-explainability, which corresponds to the fraction of
temporal variance explained by the microbiome composition at previous time points.

In order to highlight the effect of the microbial community, we next estimated the time-
explainability of taxa in each dataset, using the parameters g = 1, p = 0. The resulting model
corresponds to the formula: faxa, = microbiome community;_;) + individual effect(;_;) +
unknown effects. Of the taxa we examined, we identified a large portion of them to have a sta-
tistically significant time-explainability component across datasets. Specifically, we found that
over 85% of the taxa included in the temporal kinship matrix are significantly explained by
the time-explainability component, with estimated time-explainability average levels of 23% in
the DIABIMMUNE infant dataset (sd = 15%), 21% in the Caporaso et al. (2011) dataset
(sd = 15%) and 14% in the David el al. dataset (sd = 10%) (Fig 3, Supplementary Information
S2 Fig). Notably, we found that higher time explanability is associated with higher prediction
accuracy (Supplementary Information S3 Fig).

Non-autoregressive dynamics contain phylogenetic structure

As a secondary analysis, we aggregated the time-explainability by taxonomic order, and found
that in some orders (non-autoregressive orders) all taxa are non-autoregressive, while in others
(mixed orders) we observed the presence of both autoregressive and non-autoregressive taxa
(Fig 4, Supplementary Information S4 Fig), where an autoregressive taxa have a statistically
significant time-explainability component.

Particularly, in the DIABIMMUNE infant data set, there are 7244 taxa, divided into 55 dif-
ferent orders. However, the taxa recognized by MTV-LMM as autoregressive (1387 out of
7244) are represented in only 19 orders out of the 55. The remaining 36 orders do not include
any autoregressive taxa. Unlike the autoregressive organisms, these non-autoregressive organ-
isms carry a strong phylogenetic structure (t-test p-value < 107'°), that may indicate a niche/
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Fig 3. Time-explainability distribution. Time-explainability distribution in the DIABIMMUNE infant dataset (left) and David et al. adult
dataset (right). The average time-explainability (denoted by a dashed line) in the DIABIMMUNE cohort is 23% and in David et al. is 14%.

https://doi.org/10.1371/journal.pcbi.1006960.9003
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Fig 4. Time-explanability differs by taxonomic order across all datasets. In the top row, the y-axis is the average time-explainability (per
order). In the bottom row, the y-axis is the proportion of data the order occupies (log scale). the x-axis shows orders with taxa that are
autoregressive in at least one dataset.

https://doi.org/10.1371/journal.pcbi.1006960.9004

habitat filtering. This observation is consistent with the findings of Gibbons et al. [24], who
found a strong phylogenetic structure in the non-autoregressive organisms in the adult
microbiome.

Notably, across all datasets, there is no significant correlation between the order dominance
(number of taxa in the order) and the magnitude of its time-explainability component (median
Pearson r = 0.12). For example, in the DIABIMMUNE data set, the proportion of autoregres-
sive taxa within the 19 mixed orders varies between 2% and 75%, where the average is approxi-
mately 20%. In the most dominant order, Clostridiales (representing 68% of the taxa),
approximately 20% of the taxa are autoregressive and the average time-explainability is 23%.
In the second most dominant order, Bacteroidales, approximately 35% of the taxa are autore-
gressive and the average time-explainability is 31%. In the Bifidobacteriales order, approxi-
mately 75% of the taxa are autoregressive, and the average time-explainability is 19% (Fig 4).
We hypothesize that the large fraction of autoregressive taxa in the Bifidobacteriales order,
specifically in the infants dataset, can be partially attributed to the finding made by [34],
according to which some sub-species in this order appear to be specialized in the fermentation
of human milk oligosaccharides and thus can be detected in infants but not in adults. This
emphasizes the ability of MTV-LMM to identify taxa that have prominent temporal dynamics
that are both habitat and host-specific.

As an example of MTV-LMM’s ability to differentiate autoregressive from non-autoregres-
sive taxa within the same order, we examined Burkholderiales, a relatively rare order (less than
2% of the taxa in the data) with 76 taxa overall, where only 19 of which were recognized as
autoregressive by MTV-LMM. Indeed, by examining the temporal behavior of each non-auto-
regressive taxa in this order, we witnessed abrupt changes in abundance over time, where the
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maximal number of consecutive time points with abundance greater than 0 is very small. On
the other hand, in the autoregressive taxa, we witnessed a consistent temporal behavior, where
the maximal number of consecutive time points with abundance greater than 0 is well over 10
(Supplementary Information S5 Fig).

The autoregressive component of an adult versus infant microbiome

The colonization of the human gut begins at birth and is characterized by a succession of
microbial consortia [35-38], where the diversity and richness of the microbiome reach adult
levels in early childhood. A longitudinal study has recently been used to show that infant gut
microbiome begins transitioning towards an adult-like community after weaning [39]. This
observation is validated using our infant longitudinal data set (DIABIMMUNE) by applying
PCA to the temporal kinship matrix (Fig 5). Our analysis reveals that the first principal compo-
nent (accounting for 26% of the overall variability) is associated with time. Specifically, there is
a clear clustering of the time samples from the first nine months of an infant’s life and the rest
of the time samples (months 10 — 36) which may be correlated to weaning. As expected, we
find a strong autoregressive component in an infant microbiome, which is highly associated
with temporal variation across individuals. By applying PCA to the temporal kinship matrix,
we demonstrate that there is high similarity in the microbial community composition of
infants at least in the first 9 months. This similarity increases the power of our algorithm and
thus helps MTV-LMM to detect autoregressive taxa.

In contrast to the infant microbiome, the adult microbiome is considered relatively stable
[16, 40], but with considerable variation in the constituents of the microbial community
between individuals. Specifically, it was previously suggested that each individual adult has a
unique gut microbial signature [41-43], which is affected, among others factors, by environ-
mental factors [20] and host lifestyle (i.e., antibiotics consumption, high-fat diets [17] etc.). In
addition, [17] showed that over the course of one year, differences between individuals were
much larger than variation within individuals. This observation was validated in our adult
datasets (David et al. and Caporaso et al.) by applying PCA to the temporal kinship matrices.

DIABIMMUNE by ind DIABIMMUNE by time
20+ 20
[ ] [
0 04
8 8 ® <=9 months
a a
® > 9 months
201 20
[ ]
40 20 0 20 40 40 20 0 20 40
PC1 PC1

Fig 5. The first two principal components of the temporal kinship matrix in infants. The first two principal components of the temporal
kinship matrix color coded by individual (left; 39 infant donors) and by time (right; before and after nine months) using the DIABIMMUNE
data.

https://doi.org/10.1371/journal.pchi.1006960.9005
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Fig 6. The first two principal components of the temporal kinship matrix in adults. The first two principal components of the temporal
kinship matrix color coded by individual. Caporaso et al. [16](left; 2 adult donors: M3, F4) and David et al. [17](right; 2 adult donors: DA, DB).

https://doi.org/10.1371/journal.pcbi.1006960.9006

In both David et al. and Caporaso et al., the first principal component, which accounts for 61%
and 43% of the overall variation respectively, is associated with the individual’s identity (Fig 6).
Using MTV-LMM we observed that despite the large similarity along time within adult
individuals, there is also a non-negligible autoregressive component in the adult microbiome.
The fraction of variance explained by time across individuals can range from 6% up to 79% for
different taxa. These results shed more light on the temporal behavior of taxa in the adult
microbiome, as opposed to that of infants, which are known to be highly affected by time [39].

Materials and methods
MTV-LMM algorithm

MTV-LMM uses a linear mixed model (see [44] for a detailed review), a natural extension of
standard linear regression, for the prediction of time series data. We describe the technical
details of the linear mixed model below.

We assume that the relative abundance levels of focal taxa j at time point t depend on a lin-
ear combination of the relative abundance levels of the microbial community at previous time
points. We further assume that temporal changes in relative abundance levels, in taxa j, are a
time-homogeneous high-order Markov process. We model the transitions of this Markov pro-
cess using a linear mixed model, where we fit the p previous time points of taxa j as fixed effects
and the g previous time points of the rest of the microbial community as random effects. p and
q are the temporal parameters of the model.

For simplicity of exposition, we present the generative linear mixed model that motivates
the approach taken in MTV-LMM in two steps. In the first step we model the microbial
dynamics in one individual host. In the second step we extend our model to N individuals,
while accounting for the hosts’ effect.

We first describe the model assuming there is only one individual. Consider a microbial
community of m taxa measured at T equally spaced time points. We get as inputan m x T
matrix M, where Mj; represents the relative-abundance levels of taxa j at time point ¢. Let y=
(Mjprs - - MjT)t be a (T - p) x 1 vector of taxa j relative abundance, across T — p time points
starting at time point p + 1 and ending at time point T. Let X be a (T - p) x (p + 1) matrix of
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p + 1 covariates, comprised of an intercept vector as well as the first p time lags of taxa j (i.e.,

the relative abundance of taxa j in the p time points prior to the one predicted). Formally, for
k=1wehave X/, = 1,and for 1 < k < p + 1 we have X/, = M;, 4, for t > k. For simplicity of
exposition and to minimize the notation complexity, we assume for now that p = 1. Let W be
an (T — q) x q - m normalized relative abundance matrix, representing the first q time lags
of the microbial community. For simplicity of exposition we describe the model in the case
g =1, and then W,; = M, (in the more general case, we have Wy; = M{j/q1.+-(j mod q)» Where p,
g<T-1).

With these notations, we assume the following linear model:

Y =Xp + Wi + ¢, (1)

where « and ¢ are independent random variables distributed as &/ ~ N(0,,, 6%I,,) and
é ~ N(0,_,,0%I,_,). The parameters of the model are # (fixed effects), ¢, and o>

We note that environmental factors known to be correlated with taxa abundance levels
(e.g., diet, antibiotic usage [17, 20]) can be added to the model as fixed linear effects (i.e.,
added to the matrix X).

Given the high variability in the relative abundance levels, along with our desire to effi-
ciently capture the effects of multiple taxa in the microbial community on each focal taxa j, we
represent the microbial community input data (matrix M) using its quantiles. Intuitively, we
would like to capture the information as to whether a taxa is present or absent, or potentially
introduce a few levels (i.e., high, medium, and low abundance). To this end, we use the quan-
tiles of each taxa to transform the matrix M into a matrix M, where M i+ €{0,1,2} depending
on whether the abundance level is low (below 25% quantile), medium, or high (above 75%
quantile). We also tried other normalization strategies, including quantile normalization,
which is typically used in gene expression eQTL analysis [45, 46], and the results were qualita-
tively similar (see Supplementary Information S6 Fig). We subsequently replace the matrix W
by a matrix W, which is constructed analogously to W, but using M instead of M.

Notably, both the fixed effect (the relative abundance of y/ at previous time points) and the
output of MTV-LMM are the continuous relative abundance. The random effects are quantile-
binned relative abundance of the rest of the microbial community at previous time points
(matrix W). Thus, our model can now be described as

Yy =Xp+ Wi +¢é (2)

So far, we described the model assuming we have time series data from one individual. We
next extend the model to the case where time series data is available from multiple individuals.
In this case, we assume that the relative abundance levels of m taxa, denoted as the microbial
community, have been measured at T time points across N individuals. We assume the input
consists of N matrices, M', .. ., M", where matrix M’ corresponds to individual , and it is of
size m x T. Therefore, the outcome vector y’ is now an 7 x 1 vector, composed of N blocks,
where n = (T — 1)N, and block i corresponds to the time points of individual i. Formally,

Y = Mj(‘](‘,i(fn;;ﬂ(Tq». Similarly, we define X’ and W as block matrices, with N different blocks,
where corresponds to individual i.

When applied to multiple individuals, Model (2) may overfit to the individual effects (e.g.,
due to the host genetics and or environment). In other words, since our goal is to model the
changes in time, we need to condition these changes in time on the individual effects, that are
unwanted confounders for our purposes. We therefore construct a matrix H by randomly per-
muting the rows of each block matrix i in W, where the permutation is conducted only within
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the same individual. Formally, we apply permutation 7; € S;_; on the rows of each block
matrix i, M', corresponding to individual i, where Sy, is the set of all permutations of (T — 1)
elements. In each 7;, we are simultaneously permuting the entire microbial community.
Hence, matrix H corresponds to the data of each one of the individuals, but with no informa-
tion about the time (since the data was shuffled across the different time points). With this
addition, our final model is given by

y =X + Wi +Hr+¢, (3)

where v/ ~ N(0,,,0%1,) and € ~ N(0,,6%1,),and r ~ N(0,,,071,,). It is easy to verify that an

dn

equivalent mathematical representation of model 3 can be given by

y ~N(XP, okl + 05K, + ajl), (4)
where 62, = mo?, K, = LWWT, 62, = mo?, K, = L HH". We will refer to K, as the temporal
kinship matrix, which represents the similarity between every pair of samples across time (i.e.,
represents the cross-correlation structure of the data).

We note that for the simplicity of exposition, we assumed so far that each sample has the
same number of time points T, however in practice the number of samples may vary between
the different individuals. It is easy to extend the above model to the case where individual i
has T; time points, however the notations become cumbersome; the implementation of
MTV-LMM, however takes into account a variable number of time points across the different
individuals.

Once the distribution of ¥/ is specified, one can proceed to estimate the fixed effects # and
the variance of the random effects using maximum likelihood approaches. One common
approach for estimating variance components is known as restricted maximum likelihood
(REML). We followed the procedure described in the GCTA software package [47], under
‘GREML analysis’, originally developed for genotype data, and re-purposed it for longitudinal
microbiome data. GCTA implements the restricted maximum likelihood method via the aver-
age information (AI) algorithm.

Specifically, we performed a restricted maximum likelihood analysis using the function
“—reml” followed by the option “~mgrm” (reflects multiple variance components) to estimate
the variance explained by the microbial community at previous time points. To predict the
random effects by the BLUP (best linear unbiased prediction) method we use “~reml-pred-
rand”. This option is actually to predict the total temporal effect (called “breeding value” in
animal genetics) of each time point attributed by the aggregated effect of the taxa used to esti-
mate the temporal kinship matrix. In both functions, to represent y/ (the abundance of taxa j at
the next time point), we use the option “~pheno”. For a detailed description see Supplementary
Information S3 Note.

Time-explainability
We define the term time-explainability, denoted as y, to be the temporal variance explained by
the microbial community in the previous time points. Formally, for taxa j we define

2.
AR

2 2 2
Oup T Oing + 0

i o
X =

The time-explainability was estimated with GCTA, using the temporal kinship matrix. In
order to measure the accuracy of time-explainability estimation, the average confidence inter-
val width was estimated by computing the confidence interval widths for all autoregressive
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taxa and averaging the results. Additionally, we adjust the time-explainability P-values for mul-
tiple comparisons using the Benjamini-Hochberg method [48].

Best linear unbiased predictor

We now turn to the task of predicting y, using the taxa abundance in time ¢ — 1 (or more gen-
erally in the last few time points). Using our model notation, we are given x' and w, the covari-
ates associated with a newly observed time point ¢ in taxa j, and we would like to predict y,
with the greatest possible accuracy. For a simple linear regression model, the answer is simply

taking the covariate vector x and multiplying it by the estimated coefficients B 7= " B. This
practice yields unbiased estimates. However, when attempting prediction in the linear mixed
model case, things are not so simple. One could adopt the same approach, but since the effects
of the random components are not directly estimated, the vector of covariates w will not con-
tribute directly to the predicted value of , and will only affect the variance of the prediction,
resulting in an unbiased but inefficient estimate. Instead, one can use the correlation between
the realized values of Wu, to attempt a better guess at the realization of wu for the new sample.
This is achieved by computing the distribution of the outcome of the new sample conditional
on the full dataset, by using the following property of the multivariate normal distribution.
Assume we sampled t — 1 time points from taxa j, but the relative abundance level for the next
time point t, y}, is held out from the algorithm. The conditional distribution of y} given the rel-

ative abundance levels at all previous time points, ¥/, is given by:
ylt|y/ ~ N(xTﬁj + Et,—rz:tl.—t()/i - Xjﬁj)v Er,—tz:tl,—tz—t,t)v (5)

where £ = WW7o? + HH”6? + o and positive/negative indices indicate the extraction/
removal of rows or columns, respectively. Intuitively, we use information from the previous
time points that have a high correlation with the new time point, to improve its prediction
accuracy. The practice of using the conditional distribution is known as BLUP (Best Linear
Unbiased Predictor). Therefore, MTV-LMM could be used to learn taxa effects in a train set
(taxa abundance at time points 1, . . ., f), and subsequently use these learned taxa effects to pre-
dict the temporal-community contribution in the next time point in a test set (taxajat t + 1).
We will define the association matrix U (m x m) using BLUP, where u;; is the effect of taxa i on
taxaj.

Prediction accuracy

The predictive ability of a model is commonly assessed using the prediction error variance,
PEV = Var(y' — j), where j/ is the Best Linear Unbiased Predictor of y'. The proportional
reduction in relative abundance variance accounted for by the predictions (referred to as R* in
this paper) can be quantified using

R — Var(y') — Var(y’) Cov(y,7)*

Var(y)  Var(y)Var(y)

Notably, this definition is equivalent to the squared Pearson correlation.

Foreveryt € {p + 1, - - -, T}, we calculate y, where p > ¢ and the microbial community

composition at time t was held out from the algorithm. We next compute R* between y’{P T}

and j,,, 1y
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Model selection

Given that the model presented in Eq (3) can be extended to any arbitrary p and g, we tested
four different variations of this model: 1. p = 0 and g = 1 (no fixed effect, random effects based
on 1-time lag), 2. p =1 and q = 1 (one fixed effect based on 1-time lag, random effects based on
1-time lag), 3. p = 0 and g = 3 (no fixed effect, random effects based on 3-time lags) and 4.

p =1and q =3 (one fixed effect based on 1-time lag, random effects based on 3-time lags). We
divide each dataset into three parts—training, validation, and test, where each part is approxi-
mately 1/3 of the time series (sequentially). We train all four models presented above and use
the validation set to select a model for each taxa j based on the highest correlation with the
observed relative abundance. We then compute sequential out-of-sample predictions on the
test set with the selected model. Based on this metric, we found p = 1 and g = 1 to be the best
model for most taxa. We use these parameters when comparing with the other methods such
as sVAR and ARIMA-Poisson.

There are three main justifications for the use of multiple time points in the model. First,
Gibbons et al. [24] empirically preformed a time-lag analysis and found that for most taxa the
autocorrelation disappeared after 3 or 4 days, whereas for some taxa the autocorrelation disap-
peared after 1 or 2 days. Second, previous studies [26, 27, 49, 50] found that the human micro-
biome reaches equilibrium within 10 days following small perturbations to the community. It
is imperative to model the different taxa in a manner that will fit their temporal patterns.
Third, allowing for the use of multiple previous time points increases flexibility so that the
model can select the correct time window required for each taxa.

Phylogenetic analysis

We performed the following phylogenetic analysis. First, in order to test the hypothesis that
both autoregressive and non-autoregressive dynamics carry a taxonomic signal, we fitted a lin-
ear mixed model, where the kinship matrix is now the phylogenetic distance between pairs of
taxa and the outcomes are the time-explainability measurement for each taxa. Second, in order
to test the hypothesis that only non-autoregressive dynamics carry a non-random taxonomic
signal, we conducted a permutation test by shuffling the taxonomic order assigned to each
taxa—generating new random “orders” using 100, 000 iterations. We counted the number of
non-autoregressive orders in each iteration, thereby generating a null distribution, which we
then used to calculate an exact P-value for the dataset in each iteration.

Alpha diversity measures

To measure the alpha diversity, we used Shannon-Wiener index, which is defined as H = —Xp;
In(p;), where p; is the relative abundance of species j. Shannon-Wiener index accounts for both
abundance and evenness of the species present. Additionally, we computed the ‘effective num-
ber of species’ (also known as true diversity), the number of equally-common species required
to give a particular value of an index. The ‘effective number of species’ associated with a spe-
cific Shannon-Wiener index a is equal to exp(a).

Preliminary taxa screening according to temporal presence-absence
patterns

To calculate the temporal kinship matrix we included taxa using the following criteria. A taxa
is present in at least 10% of the time points (removes dominant zero abundance taxa). In the
David et al. dataset we included 1051 (out of 2804), in the Caporaso et al. dataset we included
922 (out of 3436) and in the DIABIMMUNE dataset we included 1440 (out of 7244) taxa.
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Methods comparison

We compared MTV-LMM to two existing methods: sVAR suggested by [24] and Poisson
regression suggested by [28]. In the sVAR method, we followed the procedure described in
[24], while running the model and computing the prediction for each individual separately,
since it can only handle one individual at a time. We then computed an aggregated prediction
accuracy score for each taxa, by averaging the prediction accuracy of each individual. In the
Poisson regression method, we followed the procedure described in [28], while running the
model for all the individuals simultaneously and calculating prediction accuracy for each taxa.
We used the taxa that passed the screening suggested in [28] (eliminating any taxa in the data
for which there were a small number (< 6) of average reads per sample). In both models, the
training set was 0.67 of the data and the test set was the remaining 0.33 of the data. In both
cases we used the code supplied by the authors.

Datasets

We evaluated the performance of MTV-LMM using three real longitudional datasets with 16S
rRNA gene sequencing. All data sets are publicly available. The first data set was collected and
studied by David et al. (2014) [17] (2 adult donors). The next data set was collected and studied
by Caporaso et al. (2011) [16] (2 adult donors). The third data set was collected by the ‘DIA-
BIMMUNE’ project and studied by Yassour et al. (2016) [21] (39 infant donors). In order to
compare across studies and reduce technical variance between studies, closed reference OTUs
were clustered at 99% identity against the Greengenes database 13_8 [51]. Open reference
OTU picking was also run [52], in order to look for non-database OTUs that might contribute
substantially to community dynamics. OTU tables were normalized by random sub-sampling
to contain 10, 000 reads per sample.

David et al. (2014) dataset [17]. Stool samples from 2 healthy American adults were col-
lected (donor A = DA and donor B = DB). DA collected gut microbiota samples between days
0 and 364 of the study (total 311 samples). DB primarily collected gut microbiota samples
between study days 0 and 252 (total 180 samples). The V4 region of the 16S ribosomal RNA
gene subunit was used to identify bacteria in a culture-independent manner. DNA was ampli-
fied using custom barcoded primers and sequenced with paired-end 100 bp reads on an Illu-
mina GAIIx according to a previously published protocol [53]. ‘OTU picking’ and ‘quality
control’ were performed essentially as described [17]. In this work, we used the OTUs shared
across donors (2, 804 OTUs).

Caporaso et al. (2011) dataset [16]. Two healthy American adults, one male (M3) and one
female (F4), were sampled daily at three body sites (gut (feces), mouth, and skin (left and right
palms)). M3 was sampled for 15 months (total 332 samples) and F4 for 6 months (total 131
samples). Variable region 4 (V4) of 16S rRNA genes present in each community sample were
amplified by PCR and subjected to multiplex sequencing on an Illumina Genome Analyzer IIx
according to a previously published protocol [53]. ‘OTU picking’ and ‘quality control’ were
performed essentially as described [16]. In this work, we used the OTUs shared across donors
(3,436 OTUs).

DIABIMMUNE dataset [21]. Monthly stool samples collected from 39 Finnish infants aged
2 to 36 months. To analyze the composition of the microbial communities in this cohort,
DNA from stool samples was isolated and amplified and V4 region of the 16S rRNA gene was
sequenced. Sequences were sorted into OTUs. 16S rRNA gene sequencing was performed
essentially as previously described in [21]. In this work, we used all the OTUs in the sample (7,
244 OTUs).
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Code availability
Code is available in https://github.com/cozygene/MTV-LMM.

Discussion

We have presented MTV-LMM, a flexible and computationally efficient tool, which can be eas-
ily adapted by researchers to select the core time-dependent taxa, quantify their temporal
effects and predict their future abundance. Using MTV-LMM we find that in contrast to previ-
ous reports, a considerable portion of microbial taxa in both infants and adults display tempo-
ral structure that is predictable using the previous composition of the microbial community.
In reaching this conclusion we have adopted a number of concepts common in statistical
genetics for use with longitudinal microbiome studies. We introduce concepts such as time-
explainability and the temporal kinship matrix, which we believe will be of use to other
researchers studying longitudinal microbiota dynamics, through the framework of linear
mixed models.

Time-explainability can be informative for selecting autoregressive taxa that are essential to
understanding the temporal behavior of the microbiome in longitudinal studies. In particular,
such taxa can be used to characterize the temporal trajectories of the microbial community.
The temporal kinship matrix can be used to uncover low-rank temporal structure. Specifically,
as shown in the Results section (Fig 5), applying PCA to the temporal kinship matrix in the
DIABIMMUNE infant dataset revealed a clear clustering of the time samples that separate the
first nine months of an infant’s life from the rest of the time samples (10-36 months). Further,
we have shown that the association matrix estimated by MTV-LMM can be used to uncover
global patterns in microbial composition. Using the DIABIMMUNE dataset, we found a
strong phylogenetic structure suggesting that closely related species have similar association
patterns. Finally, we have demonstrated that MTV-LMM significantly outperforms commonly
used methods for temporal modeling of the microbiome, both in terms of its prediction accu-
racy as well as in its ability to identify time-dependent taxa.

Using MTV-LMM, we have demonstrated that taxa autoregressiveness is a spectrum where
certain taxa are almost entirely determined by the community composition at previous time
points, some are somewhat dependent on the previous time points, and others are completely
independent of previous time points. We further show that MTV-LMM can identify autore-
gressive taxa in both ‘evolving’ (i.e., infant’s gut) and ‘stable’ (i.e., adult gut) ecosystems. In the
former case, i.e., infant gut, the organisms are shifting in abundance over time, which will
induce autoregressive dynamics. In this case, where succession is one of the main driving
forces, a strong phylogenetic signal is expected. In the latter case, i.e., adult gut, the dynamic is
more stationary, with occasional blooms of low-abundance taxa that introduce short-term
non-stationary behavior. Notably, the ability of MTV-LMM to identify time-dependent taxa in
both scenarios (i.e., ‘evolving” and ‘stable’) can be utilized to find keystone species that may be
responsible for the temporal changes observed in different ecosystems.

It is important to note that MTV-LMM assumes linear dynamics and is built around an AR
(p) type of model. However, we recognize that there are also non-linear dynamics in this eco-
system. Nonetheless, it seems that the linear approximation of these dynamics, using the
framework of linear mixed models, is capturing a non-negligible signal, which is consistent
with other applications of linear mixed models, such as genetics [47] and methylation data
[54]. This is demonstrated using both real and simulated longitudinal data where MTV-LMM
outperforms methods that directly model these non-linear dynamics. Despite the multiple
methodological advancements provided by MTV-LMM, future refinements are possible.
These include modeling count uncertainty as well as applying different transformations to the
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data (e.g., arcsine). This will allow MTV-LMM to model nonlinear correlations and multiplica-
tive errors while accounting for the compositional nature of the data. The instrumental novelty
of our method to predict the temporal behavior of taxa is the statistical power that is gained by
leveraging the overall community composition as well as all the individuals in the dataset. This
suggests that mutual effects of taxa within the microbial community are of major importance
in modulating the microbiome’s behavior over time.

Supporting information

S1 Fig. Estimation errors of MTV-LMM, TGP-CODA, sVAR and ARIMA Poisson models.
Estimation errors calculated using synthetic data, illustrating realistic dynamics and abun-
dance distribution, with 200 taxa and 70 time points, as suggested by Aijo et al. 2018 [29]. Esti-
mation error is defined to be the Euclidean distance between estimated relative abundance
and the true ones per time point (Wilcoxon test P-value MTV-LMM vs. TGP-CODA = 0.01501,
MTV-LMM vs. sVAR P-value = 2.224¢ — 08).

(TIFF)

S2 Fig. Time-explainability distribution. Time-explainability distribution in Caporaso et al.
dataset. The average time-explainability in this cohort is 0.2 (denoted by a dashed line).
(TIFF)

$3 Fig. Prediction accuracy (R?) as a function of time-explainability.
(TIFF)

S$4 Fig. Time-explainability distribution differ by taxonomic order across datasets. Box-
plots illustrate the time-explainability distribution across all datasets. Presented are the top
seven orders in the DIABIMMUNE dataset.

(TIF)

S5 Fig. Relative abundance of taxa from order Burkholderiales in the DIABIMMUNE data-
set, colored by individual. Right hand-side, the autoregressive taxa, taxa with a significant
time-explainability component (top and bottom: time-explainability = 0.49, 0.35, 95% CI =
[0.4,0.58], [0.33, 0.36]). Left hand-side are the non-autoregressive taxa.

(TIFF)

$6 Fig. Sensitivity analysis of the binning parameters used to normalize microbial abun-
dance. Each boxplot corresponds to the prediction accuracy distribution under different bin-
ning parameters, i.e., a 25% lower quantile and a 75% upper quantile compared to 5% and
55%, 15% and 65%, 35% and 85%, and quantile normalization. This analysis was conducted on
a simulated microbial community composed of 50 species over 50 time points (data was gener-
ated as described in the simulation section).

(TIFF)

S1 Table. Predictive accuracy comparison. P-values of the Wilcoxon test comparing the pre-
diction accuracy (R?) of MTV-LMM with the prediction accuracy of the AR(1) model, the
sVAR model and the ARIMA (1, 0, 0)-Poisson regression model.

(CSV)

S1 Note. Simulation study.
(PDF)

$2 Note. The relation between MTV-LMM and the generalized Lotka-Volterra models.
(PDF)
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$3 Note. Replicability/software.
(PDF)
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