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Abstract

N-linked glycosylation is a process mediated by glycosyltransferases to transfer sugars from
glycosyl donors to proteins or lipids. Currently, biopharmaceutical products widely produced by
culturing mammalian cells such as Chinese hamster ovary (CHO) cells are prevalently
glycosylated, and for some biologics the N-linked glycan can be a critical quality attribute of the
drugs. The impacts of cell culture on the glycan precursors - nucleotide sugars - are important for
understanding intracellular glycosylation process. Robust separation of some nucleotide sugar
isomers such as UDP-glucose and UDP-galactose remain a challenge in current analytical methods
because of their structural similarity. Based on ion-pair reverse phase (IP-RP) chromatography, a
strategy was developed in this study to resolve the separation of major nucleotide sugars including
challenging isomers. The strategy applies core-shell columns and connects multiple columns in
tandem to obtain sufficient theoretical plates for extending separation power and ultimately
improve the resolution for the nucleotide sugars detected from cell extracts. The key parameters
in the IP-RP method, including temperature, mobile phase and flow rates, have been systematically

evaluated in this work and theoretical mechanisms of the chromatographic behavior was proposed.
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1. Introduction

N-linked glycosylation is a cellular process with a function to transfer sugars from glycosyl donors
to proteins during protein synthesis [1, 2]. This process is mediated by glycosyltransferases and
occurs prevalently in mammalian cells. Nowadays, Chinese hamster ovary (CHO) cells are widely
used for producing biologics and can glycosylate most recombinant proteins produced by the cells.
The N-linked glycan is a necessitated and critical quality attribute of many therapeutic proteins
such as monoclonal antibodies (mAbs) because it can affect proteins from a wide range of drug

characteristics including stability, efficacy and safety [3].

Nucleotide sugars are a group of glycosyl donors. The abundance of this group of metabolites
is a factor in the progress of glycosylation, and necessary to be understood for the culture impacts
on the N-linked glycan formation on the cell produced products [4-7]. However, there has only
been a small number of mechanistic investigations of the glycosylation donor’s effects [1, 4, §];
and nucleotide sugar metabolism studies are still required to gain more insights for a better

understanding of the culture impacts on the N-linked glycosylation.

The common nucleotide sugars metabolized by CHO cells include guanosine diphosphate
mannose (GDP-Man), guanosine diphosphate fucose (GDP-Fuc), uridine diphosphate galactose
(UDP-Gal), uridine diphosphate glucose (UDP-Glc), uridine diphosphate-N-acetylglucosamine
(UDP-GIcNAc), uridine diphosphate-N-acetylgalactosamine (UDP-GalNAc) and cytidine
monophosphate-sialic acid (CMP-SA). A common strategy to separate these nucleotide sugars are
via chromatographic technology. There are several approaches used in literature, including ion-
pair reverse phase chromatography [9, 10], anion-exchange [11], liquid chromatography-mass
spectrometry (LC-MS) [4, 12-15] and capillary electrophoresis [16]. The similarity between some
nucleotide sugar isomers, especially UDP-sugars is an intrinsic challenge. For instance, the pair of

4
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UDP-hex (UDP-gal and UDP-glc) differ only by the orientation of a hydroxyl (-OH) group. The
similarity is also present with UDP-hexNAc (UDP-GIcNAc and UDP-GalNAc). In a
chromatographic method using UV as a measurement tool, additional challenges are given by the
presence of non-nucleotide sugar compounds in cell extracts such as nucleotides and amino acids,
which can co-elute and absorb at the same UV wavelength. Therefore, a highly selective
chromatographic method is required to provide sufficient separation between nucleotide sugar

isomers and the relatively less abundant nucleotide sugars from other compounds in cell extracts.

Ion-pair reverse phase (IP-RP) chromatography has been a successful method in literature and
obtained many applications [9, 17]. The principle is based on a modification to the conventional
reverse phase stationary phase by introducing an ion-pair reagent (commonly tetrabutylammonium
bisulfate). The first application of IP-RP chromatography to nucleotide sugar analysis was made
by Thomas et al. (1991) [17] and a number of studies have applied this method [18, 19]. However,
complete data for nucleotide sugar isomers were not always available because the separation was
inadequate at the initial methods. Nakajima’s study (2010) revised the method with an adoption of
a single high carbon-load column, which had shown a significant improvement to the separation
among most nucleotide sugars [20]. However, the separation between UDP sugar isomers was still

limited and can be subject to laboratories using different columns and systems.

Therefore, in this study, the technique of IP-RP was further developed to increase the separation
for nucleotide sugars. The strategy applied was based on core-shell particle columns and
connections of multiple columns in tandem, as a principle to gain more theoretical plates in the
chromatographic separation. Major nucleotide sugars including UDP sugar isomers were separable
by this method. Important parameters to the separation and reproducibility were identified, and a

mechanism has been provided for the behavior observed in the IP-RP chromatography method.
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2. Methods

2.1 Materials

The standards used in the study include tryptophan and 12 nucleotides: adenosine triphosphate
(ATP), cytidine triphosphate (CTP), guanosine triphosphate (GTP), uridine triphosphate (UTP),
adenosine diphosphate (ADP), cytidine diphosphate (CDP), guanosine diphosphate (GDP), uridine
diphosphate (UDP), adenosine monophosphate (AMP), cytidine monophosphate (CMP),
guanosine monophosphate (GMP), uridine monophosphate (UMP) and 8 nucleotide sugars
including CMP-SA, UDP-Gal, UDP-Glc, GDP-Man, UDP-GalNAc, UDP-GlcNAc, GDP-Fuc and
GDP-Glucose (GDP-Glc), one that does not naturally exist in CHO cells and was used as an
internal control. All these compounds were purchased from Sigma-Aldrich (St. Louis, MO). Each
standard was prepared into stock solution and the aliquots were stored at -20 °C. Standard mixture
was made from individual standard stock solution prior to use. Tetrabutylammonium bisulfate
(HPLC grade), 1 M of both potassium phosphate dibasic solution and potassium phosphate
monobasic solution, perchloric acid (PCA), potassium hydroxide and methanol (HPLC grade)
were also purchased from Sigma-Aldrich (St. Louis, MO). The PCA was diluted to 0.5 M solution

before use.

2.2 Cell culture and sampling

A vial of CHO-GS cells were thawed and seeded in Gibco™ FortiCHO medium (ThermoFisher
Scientific, Waltham, MA). The cell culture was inoculated with 0.5 million/mL of viable cells in
125 mL shake flask with 30 ml working volume. Cell count was performed on Cedex HiRes
Analyzer (Roche, Basel, Switzerland). Corresponding cell culture sample volume collection
targeted around two to three million cells, and were prepared by centrifuging at 1000 rpm for 5

min. After discarding the supernatant, 1 mL of cold PBS was added to wash the pellets by re-


https://www.google.com/search?newwindow=1&q=St.+Louis+Missouri&stick=H4sIAAAAAAAAAOPgE-LUz9U3sLC0SK5U4gAxzcoryrW0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxQDMHhGVQwAAAA&sa=X&ved=0ahUKEwiG2bzUiYbbAhVjUN8KHdUiDoMQmxMI5gEoATAW
https://www.google.com/search?newwindow=1&q=St.+Louis+Missouri&stick=H4sIAAAAAAAAAOPgE-LUz9U3sLC0SK5U4gAxzcoryrW0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxQDMHhGVQwAAAA&sa=X&ved=0ahUKEwiG2bzUiYbbAhVjUN8KHdUiDoMQmxMI5gEoATAW
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suspending the cell pellets. Subsequently, another centrifugation step was conducted at 1000 rpm
for 5 min. The PBS was discarded and the pellets were quickly frozen in dry ice and stored at -

&0 °C until extraction.

2.3 Extraction of nucleotide sugars

After pellets were thawed, 200 pL of 0.5 M PCA was added to re-suspend the cell pellets. An
aliquot of 0.5 pL of 20 mM GDP-Glc standard was spiked (The GDP-Glc is absent in natural
extracts and thus spiked to cell extract as an internal control). The mixed solution was incubated
on ice for 5 min and centrifuged at 2000 xg for 3 min at 4 °C. The supernatant was transferred to
anew Eppendorftube and kept on ice. Another 200 uL of 0.5 M PCA was then added to re-suspend
cell pellets for a second time, followed by a spike of another 0.5 pL of 20 mM GDP-Glc standard.
The mixture was incubated on ice for 2 min and centrifuged at 18000 xg for 3 min at 4 °C. The
supernatant was merged with the previous one. An aliquot of 56 pL of 2.5 M potassium hydroxide
in 1.1 M dipotassium hydrogenphosphate was added and incubated on ice for 2 min to neutralize
the solution. The sample was then centrifuged at 18000 xg for 1 min to remove formation of
potassium perchlorate precipitate. Thereafter, the supernatant was filtered by a 0.22 um PVDF

syringe filter into a clean Eppendorf tube. The sample was stored at 4 °C.

2.4 HPLC analysis

The separation and detection for nucleotide sugars were performed on an Agilent 1100 high
performance liquid chromatography (HPLC) system paired with a diode array type of UV detector
(Agilent Technologies, Santa Clara, CA). Buffer A was made of 0.1 M potassium phosphate and
8 mM tetrabutylammonium phosphate and was adjusted to pH 6.5. The buffer A was purified by
0.22 pm filter prior to use and stored at 4 °C. Buffer B contained 70% mobile A and 30% methanol.

The HPLC column used was Kinetex® 2.6 pm 100 x 4.6 mm (Phenomenex, Torrance CA).
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Columns were connected using short and narrow tubing. A Kinetex® C18 guard column was
installed at the head of the first column. An optimized method using two columns in tandem was
run at a flow rate of 0.6 mL/min with the following conditions: 0-16 min: 5% B (isocratic
separation of major nucleotide sugars); 16-16.5 min: 100% B; 16.5-30 min: 100% B (removing
late-eluting compounds); 30-30.5 min: 5% B; 30.5-45 min (re-conditioning): 5% B; the total run
time: 45 min. The wavelength of UV detector was set at 260 nm. Temperature of the thermostat
was controlled at 40 °C and the HPLC thermostat compartment was sealed to minimize heat
dispersion. The UV spectrum was collected by the diode array detector. The backpressure during
analytical runs remained under 400 bars. The injection volume was 5 pL if not otherwise indicated.
After the analyses, the columns were washed with water to remove salt residues and stored in 30%

methanol.

2.5 Peak annotation

The retention time for each nucleotide sugar was identified by running standards on HPLC. The
retention time was used to annotate unknown peaks in the chromatographic trace of cell extract
samples. The peak identities from cell extracts were further confirmed by the unique spectra of
adenosine (A), uridine (U), cytidine (C), guanosine (G) compounds and tryptophan (since the
tryptophan also absorbs at 260 nm). The spectra of these compounds are shown in Fig. S1,

supporting information.

2.6 Calculations

The separation parameters calculated in the study include capacity factor (k’), theoretical plates
(N), separation factor or selectivity (o) and resolution (Rs). The calculations were carried out by
the following equations, where tg represents retention time, t, represents the dead time of the

column, wy s represents peak width at half-peak height.
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- (Eg. 1)
tp 2
N = 5.54 (Wos) (Eq. 2)
ka  tra-to
a:E:tRl_tO (Eq. 3)

Re= W (G (Ea )

3. Results

Fig.1 summarizes a workflow for developing the chromatographic method demonstrated in this
work. A consequential flow was carried out to test different IR-RP parameters for the optimal
analytical condition, and then a proof as concept was made by connecting columns in tandem to
increase the separation power. Further modification was made to the method to achieve efficiency

and reproducibility.

3.1 Parameters of IP-RP chromatography

To achieve optimal performance using IP-RP chromatography, the impacts of the analytical
conditions were first evaluated using a single core-shell column; even though this could not resolve
all the peaks, it provided a fast process to view the impacts of analytical conditions on
chromatographic performance and to decide the optimal conditions for further testing using
tandem core-shell columns to achieve better resolution and peak separations. The two buffer
systems were adopted from pre-existing work: buffer A was 0.1 M potassium phosphate with 8
mM tetrabutylammonium phosphate, adjusted to pH 6.5 and buffer B was constituted by 70%
mobile A and 30% methanol [9, 17, 19]. The standards of CMP-SA, UDP-Gal, UDP-Glc, GDP-
Man, UDP-GalNAc, UDP-GlcNAc, GDP-Fuc, GDP-Gle, CDP and tryptophan were mixed as a

test sample. The CDP and tryptophan were added because of their presence noted in cell extracts,
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absorptivity at 260 nm and close elution time with nucleotide sugars. The identification of the
compounds in the result trace (shown in Fig.2) was assisted by UV spectra, as described in the

Method section.

The first test examined the impacts of temperature on the separation outcome. The mixture of
standards was separated respectively at the temperature of 30 °C, 40 °C and 50 °C, at isocratic
buffer containing 5% buffer B and a flow rate of 0.4 mL/min. As shown in Fig.2A, the separation
of mixture compounds was significantly affected by the temperature. As higher temperature
shortened the retention time for all the compounds, the separation resolution was decreased
significantly at 50 °C. As a result, 40 °C was determined to be applied for obtaining reasonable

separation and retention time.

In the next test, the standards were separated isocratically at different ratios between buffer B
and A using a flow rate of 0.6 mL/min and 40 °C; the different conditions tested contained 0%,
5%, 15%, 25% and 35% of buffer B respectively mixed with buffer A to constitute a 100% mobile
phase. This gradient of ratios resulted in an increasing composition of methanol in the mobile
phase. As shown in Fig.2B, a lower ratio of buffer B provided better separation of nucleotide

sugars, in the meanwhile, a longer elution time.

As the retention for all the compounds decreased with the addition of buffer B, notably, the
decrease was faster for the nucleotide sugars than the amino acid tryptophan. It was observed that
the order of tryptophan (peak #8) and GDP-Glc (peak #9*) was switched as the percentage of
buffer B in the mobile phase increased (Fig. 2B): it was observed that tryptophan eluted earlier
than GDP-Glc at lower percentage of buffer B; however, the peak of tryptophan shifted to the back
of the GDP-Glc with the increased percentage of buffer B. The distance between these two

compounds further expanded with the addition of buffer B. The phenomenon indicated a different

10
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sensitivity between tryptophan and the nucleotide sugars responding to a change in the mobile

phase composition, which will be later discussed as a mechanism of the IP-RP method.

3.2 Nucleotide sugar separation using multiple columns in tandem

From the above section, the optimal temperature was decided to be 40 °C and the mobile phase
contain 95% A and 5% B. With these conditions, two or three columns were connected in tandem
(respectively referred as 2X and 3X) to test the power for separating the same mixture of standards.
As shown in Fig.3A, the separation was continuously improved with the number of columns
connected. When 1X column was used, there was little space between UDP-GalNAc, UDP-
GlcNAc and tryptophan (peak #6,7 and 8). When 2X columns was used, those compounds were
completely separate. The 3X columns have further expanded the distance between these

compounds.

For each of the tested conditions, the theoretical plates (), capacity factor (k’), selectivity ()
and resolution (Rs) were calculated as per the equations (1) - (4) shown in the Method section.
Resolution (Rs) is a result of the N, £” and a. As shown in Fig.3B, the number of theoretical plates
(N) has increased with the number of columns connected, obtaining approximately 20000, 40000
and 60000 theoretical plates respectively at 1X, 2X and 3X columns. In the meantime, the two
other chromatographic separation parameters, capacity factor (k’) and selectivity (a), remain

unchanged. A higher resolution (Rs) was achieved as a result of the increase of theoretical plates.

The impact of the flow speed on the chromatographic separation was evaluated. The flow rates
were chosen to keep the backpressure during the method to be under 400 bars. Using two columns
connected (2X), an evaluation was made among the flow rates of 0.4, 0.6 and 0.8 mL/min. The
results (Fig.4) showed that the separation resolution remained satisfactory from 0.4 to 0.6 mL/min

but decreased at 0.8 mL/min.

11
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3.3 Separation of nucleotide sugars in cell extracts

In this section, the cell extracts were tested in the analytical conditions obtained from the
previous sections. The sample was an extract from 2.8 million CHO cells and spiked with GDP-
Glc according to the Method section. A volume of 5 uLL was injected to HPLC runs using 1X, 2X
and 3X columns respectively. Considering that the backpressure increases as the number of
columns increases, the tests used 0.6 mL/min for 2X columns as optimized above and used 0.8 and
0.4 mL/min respectively with 1X and 3X columns. The results are shown in Fig.5. According to
the trace, CMP-SA, GDP-Man and GDP-Fuc were less abundant species compared to other
nucleotide sugars. The separation was increasingly improved by the number of columns.
Specifically, the peaks between UDP-GIcNAc, tryptophan and GDP-Glc (peak #6,7 and 8) were
unable to be resolved within 1X column. The usage of 2X columns had successfully separated the
peaks #6,7 and 8. The only unsolved nucleotide sugar was CMP-SA which was overlapped by an
adjacent big peak (RT: 10 min). By further using 3X columns, the CMP-SA in cell extracts became
also separated. Because of the extended flow path and the lowered flow rate limited by the
backpressure, the elution time of nucleotide sugars was accordingly increased in the 1X, 2X and

3X columns.

3.4 Column variability

Since the method involves usage of multiple columns, the variability of single columns was
tested. In the test, four columns from different manufacturing lots (including the ones used in the
above studies) were tested individually using a cell extract sample. The results are shown in Fig.S2,
supporting information. The overall separation pattern was comparable. However, the resolution

for the closely eluting compounds had shown some variability (as shown in the red boxes on Fig.

32).

12
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3.5 Post-isocratic separation

After the nucleotide sugars were isocratically separated, stickier compounds like triphosphates
were still bound to the stationary phase and could present as residues to the next runs and therefore
needed to be flushed out of the columns. To evaluate the retention duration of other compounds in
the cell extracts, a test was carried out by running a cell extract sample using the isocratic condition
along one column at a flow rate of 0.8 mL/min, until all the compounds were eluted (Fig. 6A).
Two late-eluting compounds were found to be abundant in the cell extract, identified to be ADP
and ATP. ATP was the last peak and took 8.3 times longer than GDP-Glc to elute (Retention time:
55 min for ATP versus 6.6 min for GDP-GIc). A modification to the method was made by adding
a stringent wash using 100% B after the main peaks of interest were eluted (Fig.6B). It was found
that ATP was eluted within five column volumes of wash. After the rinse, another five column
volumes of starting mobile phase condition was applied to equilibrate the columns, and runs
following this loop were found to be free of carryover and the traces could be consistent from

consecutive runs. The cycle was similarly adapted to 2X columns.

3.6 Linearity and Reproducibility

The linearity of the method was tested using 2X columns by injecting a series of volumes of a
standard mixture. As shown in Fig.7, the chromatographic peak area and the nucleotide sugar
amount (from 1 to 100 pmol) formed a linear relationship. The baseline noise from a blank run

was under 0.1 mAu.

To test the reproducibility of the HPLC method, a same volume of mixture standard was
injected for a total of 8 times across different days. The tests used 2X columns and were conducted
at the optimal conditions from the study. The variation of the retention time and peak area of each

compound is reported in Table 1.
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Five aliquots of 2.8 million cells were extracted in parallel to examine the variation from cell
extraction steps. At each extraction, the internal control of GDP-Glc was spiked. Each extracted
sample was tested using the HPLC method with 2X columns. The peak area obtained for each
compound is shown in Table 2. The peak area of each peak was normalized to the peak area of

GDP-Gle.

4. Discussion

4.1 About using multiple columns in tandem

It has been demonstrated that enhancing separation and selectivity must be required for tackling
the challenges of the similar isomers of nucleotide sugars and the additional interfering compounds
present in cell extracts. An improvement to the chromatographic separation was focused by means
of increasing the number of theoretical plates. The conventional approach by using one analytical
column and a length within a range between 5 cm and 25 cm inevitably has a ceiling on how much
the separation can be extended. Here, the strategy applies core-shell columns and connecting
multiple columns in tandem as a mean to extend separation power. Using multiple columns could
probably raise a concern of peak broadening; therefore, a sacrifice of resolution. However, this
study shows that the increasing number of theoretical plates by connecting columns have resulted
in a continuously improvement of resolution. Core-shell stationary phase technology has been
reported to generate a better separation efficiency than porous packing columns [21]. A Kinetex®
C18 column is specified with 264,600 plates/meter by the manufacture. Our work has empirically
observed 400,000- 500,000 plates by connecting two columns, which were found to be needed to
separate the majority of the nucleotide sugars in CHO cells, including UDP-sugar isomers. All the
seven nucleotide sugars were completely resolved in the cell extracts by using three columns

coupled.
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One drawback in this strategy is that HPLC run time increases with the number of columns.
Therefore, there is a tradeoff between separation resolution and the method run time. Increased
flow rate can be potentially used to reduce the method run time; however, the speed could be
limited by the pressure tolerance of a liquid chromatographic system, for which the highest
backpressure occurs during the method when the columns are rinsed using 100% buffer B. The
flow rates can impact the separation efficiency, depending on column packing, particle size and
others. In this work, a reasonable flow rate was 0.6 mL/min when using two columns connected
and required 45 min including re-equilibration time to complete a run. A better balance between
the separation resolution and run time may be obtained by using an ultra-performance liquid
chromatography (UPLC) system, while the best flow rate in the regime of UPLC needs to be

evaluated.

As shown in our work, single columns would result in variations of separation resolution.
Therefore, the robustness of enough separation can be subject to column variations from different
manufacturing lots (or column usage condition) and different systems. In this work, such possible
variability was less problematic because the separation power was improved by connecting
multiple columns. It will thus be practical to apply this method across different laboratories and
analytical systems to achieve satisfactory results regardless of the variations existing in single

columns.

4.2 About the mechanisms of IP-RP

IP-RP chromatography is known to be a method mixed by different types of separation
mechanism. Two theories for the binding between polar compounds and the stationary phase have
been previously proposed: (1) the ion-pair reagent first binds with the analytes and then takes the

analytes to the stationary phase via its own nonpolar end and (2) the ion-pair reagent is first coated
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on the stationary phase and forms a charged surface where analytes are captured via the attraction
between counter ions. In this work, the second mechanism was preferred for the observed
chromatographic behavior. A theory is proposed in Fig.8 to explain the chromatographic behavior
throughout a method cycle, and accounts for the different retention time of molecules seen in Fig.

2B responding to different amount of buffer B used in the mobile phase.

At equilibration stage, a layer of ion-pair reagent (tetrabutylammonium) is formed near the
stationary phase via the hydrophobic interaction with the C18 stationary phase. The new surface
is both hydrophobic and charged by the presence of N+ cation provided by the
tetrabutylammonium. When cell extracts are applied, molecules in the samples are attracted to the
stationary phase via two different modes of interactions: counter-ion absorption and hydrophobic
interaction. Nucleotide sugars are molecules with negative charge on phosphate(s), and the charge
strength is dependent on the number of phosphates contained. Once entering the columns,
nucleotide sugars are temporarily absorbed on the stationary phase via the attraction between
negative charged phosphate anions and the N+ cation near the stationary surface. There is an
increase in retention time with the compounds that have more phosphates. In contrast, the
tryptophan is a neutral molecule and has no interaction with the charge near the stationary surface;
however, tryptophan is a hydrophobic molecule and can be attracted to the stationary phase by the
hydrophobic interaction. At the wash stage when mobile phase B is increased to 100%, the mobile
phase becomes more hydrophobic; thus, part of the ion-pair reagents tetrabutylammonium along
with highly absorbed phosphate ions are eluted from the stationary phase. By re-equilibration, the

tetrabutylammonium is re-coated onto the surface of the stationary phase.

In the scenario shown in Fig. 2B, both nucleotide sugars and tryptophan have reduced retention

time when higher composition of buffer B was used. However, the impacts caused by the mobile
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phase were diverse. First, the fraction of ion-pair reagent coated on the stationary phase was
reduced at higher presence of buffer B and the stationary phase became less charged. This had a
major effect on the affinity to the nucleotide sugars. Second, the solvent had also become more
hydrophobic which resulted in the competition with the stationary phase for tryptophan. Because
of the distinct effects, the rates of retention change occurring with nucleotide sugars and tryptophan

appeared to be different.

The study reveals that temperature and mobile phase composition are two critical parameters in
the method and can significantly change the behavior of the chromatographic separation. The
analytical condition must be equilibrated sufficiently with the starting condition (containing 95%
A and 5% B) to maintain consistency across runs. Previous studies suggested a need of long-
equilibration for IP-RP chromatography [22]. In this study, five column volumes were found
sufficient for satisfactory consistency in consecutive runs. The temperature as another parameter
of substantial influence on IP-RP chromatography should be tightly controlled for run to run

consistency.

5. Conclusion

We have proposed and comprehensively investigated an approach of using core-shell columns
and multiple columns in tandem to solve the shortage in the chromatographic separation for
nucleotide sugars, especially UDP-sugar isomers. Key parameters affecting chromatographic
results were identified and a workflow has been introduced to tune the method as needed for
analysis. We anticipate that this method can help expedite the studies in biopharmaceutical process
and other biological fields where the knowledge of the nucleotide sugar metabolism is to grow

[23].
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Tables

Table 1: Multi-injection reproducibility (n=8) from different days

Compounds RT Peak area

Mean SD CV% Mean SD CV%
UDP-Gal 10.990 0.795 7.237 98.263 5.786 5.888
UDP-Glc 11.754 0.666 5.669 228.888 13.197 5.766
GDP-Man 13.068 0.386 2.954 104.500 6.106 5.843
UDP-GalNAc 13.586 0.264 1.945 81.188 8.479 10.443
UDP-GIcNAc 14.197 0.211 1.487 14.840 2.805 18.904
GDP-Fuc 17.230 0.259 1.502 6.963 0.940 13.494
GDP-Glc * 15.437 0.197 1.278 168.313 10.530 6.256

Table2 Reproducibility of cell extractions (n=5)

Peak area (Normalized to GDP-GIc*)

Compounds Average SD CV%
UDP-Gal 0.0216 0.0014 6.3622
UDP-Glc 0.0715 0.0003 0.3846
GDP-Man 0.0020 0.0003 13.5238
UDP-GalNAc 0.0327 0.0015 4.4742
UDP-GlcNAc 0.0773 0.0100 12.8691
GDP-Fuc 0.0041 0.0003 7.6218

* Peak area of compounds/peak area of GDP-Glc
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Figure legends

Figure 1 Workflow of the method development for nucleotide sugar separation.

Figure 2 The impacts of analytical parameters on chromatographic separation. (A) Effects of
temperature; (B) Effects of mobile phase composition. The IDs of compounds in the chromatograms are
labeled numerically as followings: (1) CMP-Sialic acid; (2) CDP; (3) UDP-Gal; (4) UDP-Glc; (5) GDP-
Man; (6) UDP-GalNAc; (7) UDP-GlcNAc; (8) Trp; (9) GDP-Glc* and (10) GDP-Fuc.

Figure 3 Separation of mixture standards from 1X, 2X and 3X columns. (A) Chromatograms
generated using 1X, 2X and 3X columns. The IDs of compounds in the chromatograms are labeled
numerically as followings: (1) CMP-Sialic acid; (2) CDP; (3) UDP-Gal; (4) UDP-Glc; (5) GDP-Man; (6)
UDP-GalNAc; (7) UDP-GlcNAc; (8) Trp; (9) GDP-Glc* and (10) GDP-Fuc. (B) The calculation of
theoretical plates (N), capacity factor (k’), selectivity (o) and resolution (Rs) using 1X, 2X and 3X

columns.

Figure 4 Tests of chromatographic separation using different flow rates. The IDs of compounds in
the chromatograms are labeled numerically as followings: (1) CMP-Sialic acid; (2) CDP; (3) UDP-Gal;
(4) UDP-Glc; (5) GDP-Man; (6) UDP-GalNAc; (7) UDP-GIcNAc; (8) Trp; (9) GDP-Glc*, (10) GDP-Fuc
and (11) UDP.

Figure 5 Separation of nucleotide sugars from cell extracts using 1X, 2X and 3X columns. The IDs
of compounds in the chromatograms are labeled numerically as followings: (1) CMP-Sialic acid; (2)
CDP; (3) UDP-Gal; (4) UDP-Glc; (5) GDP-Man; (6) UDP-GalNAc; (7) UDP-GIcNAc; (8) Trp; (9) GDP-
Glc*; (10) GDP-Fuc; (11) UDP and (12) GMP.

Figure 4 A complete run including a wash step after isocratic separation. (A) a run with cell extract
at an entirety of isocratic condition (5% B). (B) a run with isocratic separation using 5% B, followed by a

wash using 100% B, and re-equilibration by 5% B.

Figure 7 Method linearity tested with 2X columns and nucleotide sugar standards.

Figure 8 Hypothetic theory of the chromatographic behavior during a cycle of the method. (A)

isocratic separation; (B) wash stage: (C) re-equilibration.
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(B) Effects of mobile phase composition

Analytical condition:
Column: 1X
Temperature: 40 °C
Flow rate: 0.6 mL/min

(A) Effects of temperature
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Fig.S1 Spectra of compounds containing adenosine, uridine, guanosine and cytidine groups and

the spectrum of tryptophan.
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Fig.S2 Column variability shown by running a cell extract sample on single columns obtained
from different manufacturing lots.





