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Abstract: Magnesium (Mg?*) is an essential nutrient in all organisms. However, high levels
of Mg?" in the environment are toxic to plants. In this study, we identified the vacuolar-type
H*-pyrophosphatase, AVP1, as a critical enzyme for optimal plant growth under high-Mg conditions.
The Arabidopsis avpl mutants displayed severe growth retardation, as compared to the wild-type
plants upon excessive Mg?*. Unexpectedly, the aupl mutant plants retained similar Mg content to
wild-type plants under either normal or high Mg conditions, suggesting that AVP1 may not directly
contribute to Mg?* homeostasis in plant cells. Further analyses confirmed that the aup1 mutant plants
contained a higher pyrophosphate (PPi) content than wild type, coupled with impaired vacuolar
H*-pyrophosphatase activity. Interestingly, expression of the Saccharomyces cerevisiae cytosolic
inorganic pyrophosphatasel gene IPP1, which facilitates PPi hydrolysis but not proton translocation
into vacuole, rescued the growth defects of avpl mutants under high-Mg conditions. These results
provide evidence that high-Mg sensitivity in aup]l mutants possibly resulted from elevated level of
cytosolic PPi. Moreover, genetic analysis indicated that mutation of AVP1 was additive to the defects
in mgt6 and cbl2 cbl3 mutants that are previously known to be impaired in Mg?* homeostasis. Taken
together, our results suggest AVP1 is required for cellular PPi homeostasis that in turn contributes to
high-Mg tolerance in plant cells.

Keywords: vacuolar H*-pyrophosphatase; AtAVPI; cellular PPi homeostasis; high-Mg tolerance

1. Introduction

Inorganic pyrophosphate (PPi) is an intermediate compound generated by a wide range of
metabolic processes, including biosynthesis of various macromolecules such as proteins, DNA, RNA,
and polysaccharides [1]. Being a high-energy phosphate compound, PPi can serve as a phosphate
donor and energy source, but it can, at high levels, become inhibitory to cellular metabolism [2—4].
To maintain an optimal PPi level in the cytoplasm, timely degradation of excessive PPi is carried out by
two major types of enzymes: soluble inorganic pyrophosphatases (sPPases) and proton-translocating
membrane-bound pyrophosphatases (H"-PPases) [1,5,6]. The importance of maintaining an optimal
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cellular PPi level has been demonstrated in several different organisms. Genetic mutations that lead
to the absence of sPPase activity affects cell proliferation in Escherichia coli [7]. In yeast, inorganic
pyrophosphatase is indispensable for cell viability because loss of its function results in cell cycle arrest
and autophagic cell death associated with impaired NAD* depletion [8,9].

In Arabidopsis, a tonoplast-localized proton-pumping pyrophosphatase AVP1 was shown to
be the key enzyme for cytosolic PPi metabolism in different cell types of various plants [10-12].
This enzyme activity has been correlated with the important function that AVP1 plays in many
physiological processes [1,13,14]. Arabidopsis fugu5 mutants lacking functional AVP1 show elevated
levels of cytosolic PPi and display heterotrophic growth defects resulting from the inhibition of
gluconeogenesis [13,15]. This important role in controlling PPi level in plant cells is reinforced
by a recent study showing that higher-order mutants defective in both tonoplast and cytosolic
pyrophosphatases display much severe phenotypes including plant dwarfism, ectopic starch
accumulation, decreased cellulose and callose levels, and structural cell wall defects [16]. Moreover,
the tonoplast-localized H*-PPase AVP1 appears to be a predominant contributor to the regulation
of cellular PPi levels because the quadruple knockout mutant lacking cytosolic PPase isoforms ppal
ppa2 ppa4 ppa5 showed no obvious phenotypes [16]. Interestingly, in companion cells of the phloem,
AVP1 was also shown to be localized to the plasma membrane [17] and function as a PPi synthase that
contribute to phloem loading, photosynthate partitioning, and energy metabolism [18-20]. On the
other hand, AVP1 is also believed to contribute to the establishment of electrochemical potential
across the vacuole membrane, which is important for subsequent vacuolar secondary transport
and ion sequestration [21,22]. Constitutive overexpression of AVP1 improves the growth and yield
of diverse transgenic plants under various abiotic stress conditions—including drought, salinity,
as well as phosphorus (P) and nitrogen (N) deficiency—although the mechanism remains to be fully
understood [23-27]. Taken together, AVP1 serves as a multi-functional protein involved a variety of
physiological processes in plants, some of which await to be fully understood.

Magnesium (Mg) is an essential macronutrient for plant growth and development, functioning in
numerous biological processes and cellular functions, including chlorophyll biosynthesis and carbon
fixation [28,29]. Either deficiency or excess of Mg in the soil could be detrimental to plant growth and
therefore plants have evolved multiple adaptive mechanisms to maintain cellular Mg concentration
within an optimal range [30]. In higher plants, the most well-documented Mg?* transporters (MGTs)
belong to homologues of bacterial CorA superfamily and are also called “MRS2” based on their
similarity to yeast Mitocondrial RNA splicing 2 protein [31,32]. Several members of the MGT family
mediate Mg?* transport in bacteria or yeast as indicated by functional complementation as well as ®*Ni
tracer assay [31-33]. In plants, they have been shown to play vital roles in Mg?* uptake, translocation,
and homeostasis associated with their different subcellular localizations and diverse tissue-specific
expression patterns [30]. For instance, MGT2 and MGT3 are tonoplast localized and possibly involved
in Mg?* partitioning into mesophyll vacuoles [34]; MGT4, MGT5, and MGT9 are strongly expressed
in mature anthers and play a crucial role in pollen development and male fertility [35-38]. MGT6
and MGT?7 are shown to be most directly involved in Mg homeostasis because knocking-down or
knocking-out either of the genes leads to hypersensitivity to low Mg conditions [33,39]. MGT6 encodes
a plasma membrane-localized high-affinity Mg?* transporter and mediates Mg?* uptake in root hairs,
particularly under Mg-limited conditions [39]. MGT7 is also preferentially expressed in roots and
loss-of-function of MGT7 caused poor seed germination and severe growth retardation under low-Mg
conditions [33]. Double mutant of mgt6 and mgt7 displayed a stronger phenotype than single mutants,
suggesting that MGT6 and MGT7 may be synergistic in controlling Mg homeostasis in low-Mg
environment conditions [40].

In contrast to considerable research on Mg transport and homeostasis under Mg deficient
conditions, the regulatory mechanisms required for adaptation to excessive external Mg remain
poorly understood. Recent studies suggested that MGT6 and MGT7 are essential for plants to adapt to
both normal and high Mg conditions [40,41]. The mgt6 mutant displayed dramatic growth defects with
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a decrease in cellular Mg content in the shoot, when grown under high Mg?*. Grafting experiments
further suggested a shoot-based mechanism for Mg?* detoxification although the exact role of MGT6
in this process is still not clear. More importantly, a core regulatory pathway consisting of two
calcineurin B-like Ca sensors (CBL2 and CBL3) partnering with four CBL-interacting protein kinases
(CIPK; CIPK3/9/23/26) has been established that allows plant cells to sequester Mg?* into plant
vacuoles, thereby protecting plant cells from high Mg?* toxicity [42]. In this study, we identified the
tonoplast pyrophosphatase, AVP1, as an important component in high Mg?* tolerance in Arabidopsis.
Furthermore, by analyzing the avpl-4 mgt6 double mutant and avp1-4 cbl2 cbl3 triple mutant, we
showed that the role of AVP1 in high-Mg tolerance was independent of previously reported MGT6 or
CBL/CIPK-mediated pathway. Instead, our results suggested a novel link between high Mg?* stress
and PPi homeostasis in plants.

2. Results

2.1. The avpl Mutant Is Hypersensitive to High External Magnesium Conditions

The originally reported T-DNA insertional mutant avpI-1 contains an additional T-DNA insertion
causing phenotypes unrelated to AVP1 mutation [22,43]. We thus characterized another T-DNA
insertion line avpl-4 (GK-596F06) for this study. The avpl-4 mutant carried a T-DNA insertion in
the third exon of AVP1 as further confirmed by PCR analysis and DNA sequencing (Figure 1a).
The avpl-4 homozygous mutants lacked detectable AVP1 transcripts (Figure Slc), and its tonoplast PPi
hydrolysis activity was considerably diminished, to only 10% of wild type (Figure S1d). Compared
with wild-type plants (Col-0), avp1-4 mutants exhibited no obvious phenotypic changes during the
life cycle including vegetative and reproductive periods (Figure Sle), which is quite different from
avpl-1 [43], because pleiotropic phenotypes observed in avp1-1 are caused by mutation in the GNOM
(At1g13980) gene [22]. We examined the phenotype of avpl-4 plants under multiple ionic stress
conditions and found that avp1-4 mutant and wild-type seedlings grew similarly on the MS medium
and did not show hypersensitive response to most of the ionic stresses such as 60 mM Na™*, 60 mM K*,
40 mM Ca?*, 100 uM Zn?*, 40 uM Cu?*, or 100 uM Fe3* (Figure S2). However, the growth of avp1-4
seedlings were severely impaired when 20 mM MgCl, was supplemented (Figure S2). To validate the
hypersensitivity of avp1-4 to MgCl,, we grew the seedlings of the mutant together with the wild-type
plants on the 1/6 MS medium containing various levels of Mg?*, the avpl-4 mutant plants were clearly
stunted as compared with Col-0 (Figure 1b), although the primary root length of avpl was comparable
to that of Col-0 (Figure 1d). In addition, we also studied one more mutant allele of AVP1I gene in
the Wassilewskija (Ws) background, designated as avp1-3, and another three mutant alleles of AVP1,
fugu5-1, fugu5-2, and fugub-3 in the Col-0 background [13] (Figure 1a). Measurements of seedling
fresh weight confirmed a severe growth inhibition by 8 mM MgCl, in both avpI-4 and avpl-3 mutants,
as compared with their respective wild-type counterparts (Figure le). Consistently, we also found
that high-Mg sensitivity phenotypes in the three fugu5 mutants were comparable to those in avp1-4
(Figure 1c). Together, these results suggested that AVP1 is required for Mg?* tolerance in Arabidopsis.

2.2. The Enzymatic Pyrophosphatase Activity Is Required for High-Mg Tolerance in Plants

To verify that the observed phenotypes in the avpl mutants are caused by a defect in AVP1,
we conducted a complementation test in avp1-4 background. A coding sequence fragment of AVP1
was introduced into the avpl-4 mutant, and several homozygous transgenic lines were obtained
(Figure S3a). Phenotypic analysis of two representative lines showed that oblong-shaped cotyledons of
avpl-4 when germinated on MS media containing low sucrose or in soil were fully restored to normal
shape (Figure S3b). In addition, seedling growth defects of avp1-4 under high-Mg conditions were also
completely rescued (Figure 2a). Root length and shoot fresh weight of the transgenic lines under high
Mg conditions were similar to those of the wild type (Figure 2b,c). These data further confirmed that



To address the contribution of PPi hydrolysis activity to high-Mg tolerance, we directly
measured V-PPase activity and PPi content under normal and high-Mg conditions. Under normal
conditions, PPi hydrolysis activity of two avpl mutant alleles was reduced by ~85%, whereas activity
from two complementary lines was comparable to the wild-type control (Figure 3a). Consistently, the
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Reducing the PPi concentration in the cytoplasm and increasing the acidification of vacuoles
represent the two main biochemical functions of AVP1. In order to dissect if both activities are required
in this specific high Mg?*-associated process, we resorted to the transgenic line expressing yeast IPP1
gene under the control of the AVPI promoter in the fugu5-1 mutant background [13]. IPP1 is a cytosolic
soluble protein which is not capable of translocating H*, thus decoupling the hydrolysis and proton
pump activities. Interestingly, our results showed that the severely retarded growth of fugu5-1 mutant
plants under high-Mg conditions was completely recovered by expression of the IPP1 gene (Figure 2d).
The quantitative analysis of seedling fresh weight confirmed the complementation (Figure 2ef).

To extend the phenotypic analysis of the aupl mutants in mature plants, we examined the
phenotype of avpl mutants using hydroponic culture system. Consistent with the patterns of plant
growth on agar plates, the mutant plants exhibited a pronounced growth defect (Figure 2g) than
wild-type plants in the hydroponic solutions supplemented with 15 mM external Mg?*, as revealed by
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significant differences compared with the Col-0 (Student’s ¢-test, * p < 0.05).

To address the contribution of PPi hydrolysis activity to high-Mg tolerance, we directly measured
V-PPase activity and PPi content under normal and high-Mg conditions. Under normal conditions,
PPi hydrolysis activity of two avpl mutant alleles was reduced by ~85%, whereas activity from two
complementary lines was comparable to the wild-type control (Figure 3a). Consistently, the amount
of PPi from both mutants was increased by ~50% (Figure 3b). After grown for three days on 15 mM
Mg?*, all the plants displayed reduced PPi hydrolysis activity and higher PPi content. However, the



homeostasis, we measured the Mg content in wild-type (Col-0 and Ws) and mutant plants (avp1-4
and avp1-3) using ICP-MS. When 8 mM Mg?* was added to the growth medium, Mg content in either
shoot or root in all the plants was strikingly elevated, but no significant difference between wild-type
and mutant plants in Mg content was observed. (Figure 4a,b). Considering Ca and Mg often affect
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2.4. AVP1 and MGT6 Function Independentl zréH h-Mg Tolerance in Arabidopsis
2.3. The avpl Mutant Is Not Compromised in * Homeostasis
In Arabidopsis, the magnesium transporter MGT6 is important for controlling plant Mg
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each other in their uptake and transport [30], we also measured the Ca content in the same plants.
Consistent with Mg-Ca antagonism, the Ca content in both wild-type and avpl mutant plants was
evidently lower when plants were grown under high external Mg?* conditions, but Ca content in the
shoots and roots in aupl mutants was similar to that in wild-type plants (Figure 4c,d). These data
suggest that both Mg and Ca homeostasis are not altered in the avpl mutants, which are consistent
with the earlier conclusion that PPi hydrolysis rather than vacuolar acidification is responsible for
AVP1 function under high-Mg stress.

2.4. AVP1 and MGT6 Function Independently in High-Mg Tolerance in Arabidopsis

In Arabidopsis, the magnesium transporter MGT6 is important for controlling plant Mg?*
homeostasis and adaptation to both low- and high-Mg conditions [39-41]. To investigate the functional
interaction between AVP1 and MGT6, we created a double mutant that lacks both AVP1 and MGT6
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transcripts (Figure 5a). We next tested the sensitivity of aup1-4 mgt6 double mutant to high external
Mg conditions. When grown on the 1/6 MS medium containing 0.25 mM Mg?*, the mgt6 and avp1-4
mgt6 Plants showed obV1ous érowth {\etardatlon compared with Col-0 and avp1-4 seedhngs,gefsgltmg

I Sci. 2018, 19, x
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3. Discussion

Although Mg is an essential macronutrient required for plant growth, high concentrations of
environmental Mg?* could be detrimental, and the targets underlying toxic effect of high-Mg are not
well understood. In the present study, we characterized multiple avpl mutant alleles and found they
were hypersensitive to high external Mg?*. This finding has not only improved our understanding
of the mechanism underlying Mg?* tolerance but also uncovered a novel physiological function of
AVP1 in plants. When the plants were confronted with high Mg stress, sequestration of excessive
Mg?* into the vacuole plays a vital role in detoxification of Mg excess from the cytoplasm [30,45].
The AVP1 protein predominantly localized in the vacuolar membrane [44] and was a highly abundant
component of the tonoplast proteome [21]. Encoded by AVP1, vacuolar H*-PPase, together with
vacuolar H"-ATPase, plays a critical part in establishing the electrochemical potential by pumping H*
across the vacuolar membrane. This proton gradient, in turn, facilitates secondary fluxes of ions and
molecules across the tonoplast [21,22,27]. Based on this well-established idea, we hypothesized that
avpl mutants may be impaired in cellular ionic homeostasis and should thus exhibit hypersensitivity
to a broad range of ions. However, unexpectedly, we found that avpl was hypersensitive only to
high external Mg?* but not to other cations (Figure S2). It was shown that overexpression of AVP1
improved plant salt tolerance in quite a few species, which was interpreted as the result of increased
sequestration of Na* into the vacuole [23,46,47]. It is thus reasonable to speculate that the tonoplast
electrochemical potential generated by AVP1 would likewise favor Mg?* transport into vacuoles
via secondary Mg?* /H* antiporter. Surprisingly, our subsequent experiments did not support this
hypothesis and several lines of evidence suggested that the hypersensitivity of avp1 to high Mg?* was
not due to the compromised Mg?* homeostasis in the mutant. First, unlike other high Mg?*-sensitive
mutants such as mgt6 and the vacuolar cbl/cipk mutants, the Mg and Ca content in the aupl mutant was
not altered as compared with wild type, suggesting that AVP1 may not be directly involved in Mg?*
transport in plant cells. Second, higher order mutants of the avp1-4 mgt6 double mutant and avp1-4 cbl2
cbl3 triple mutant displayed a dramatic enhancement in Mg?* sensitivity as compared to single mutants.
These genetic data strongly suggest that AVP1 does not function in the same pathway mediated by
MGT6 and does not serve as a target for vacuolar CBL-CIPK. Moreover, it was previously shown that
either vacuolar H*-ATPase double mutant vha-a2 vha-a3 or the mhx1 mutant defective in the proposed
Mg?* /H* antiporter was not hypersensitive to high Mg?* [42]. These results implicate the vacuolar
Mg?* compartmentalization should be fulfilled by an unknown Mg?* transporter/channel, whose
activity is largely not dependent on the tonoplast ApH. Identification of this novel Mg?* transport
system across the tonoplast, which is probably targeted by vacuolar CBL-CIPK complexes, would be
the key to understand the mechanism. Third, expression of the cytosolic soluble pyrophosphatase
isoform IPP1 could fully rescue the Mg-hypersensitivity caused by AVPI mutation. These lines of
evidence pinpoint PPi hydrolysis, rather than ApH-assisted secondary ion transport and sequestration,
as the major function of AVP1 in high Mg?* adaptation.

Under high Mg stress conditions, a number of adaptive responses are supposed to take place
in plants, including the remodeling of plant morphogenesis as well as reprogramming of the gene
expression and metabolite profile. However, very little is known so far and therefore, the molecular
components targeted by excessive Mg?* in plant cells remain obscure. Here, we suggest that the
concentration of cellular PPi could be responsive to external Mg supply. Our results showed that
extremely high levels of Mg?* led to inhibition of the PPase activity in Arabidopsis, which in turn,
resulted in the elevation of PPi content in the cytosol. Because high level of PPi is very toxic, the
efficient removal of PPi by AVP1 under high Mg?* conditions might become one of the limiting
factors for optimal plant growth. This idea is supported by the observation that aupl mutants
accumulated significantly higher PPi content under high Mg?* conditions compared with normal
conditions (Figure 3). Most importantly, heterologous expression of the soluble PPase IPP1 gene
rescued high Mg-sensitive phenotype of fugu5-1 (Figure 2), which strongly suggested that high Mg?*
hypersensitivity phenotype in avpl mutants could primarily be attributed to impaired PPi homeostasis.
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It would be interesting to investigate how PPi concentrations vary in different Mg?* conditions and
during different plant growth stages. Recently, cytosolic soluble pyrophosphatases (AtPPal to AtPPa5)
were identified in Arabidopsis, and were shown to physiologically cooperate with the vacuolar H*-PPase
in regulating cytosolic PPi levels [16]. Future studies should clarify if this type of soluble isoenzymes is
also involved in the same high-Mg adaptation process. Collectively, our findings provide genetic and
physiological evidence that AVP1 is a new component required for plant growth under high external
Mg?* concentrations and functions in regulating Mg?* tolerance via PPi hydrolysis.

4. Materials and Methods

4.1. Plant Materials and Growth Conditions

Arabidopsis thaliana ecotype Columbia (Col-0) and Wassilewskija (Ws) were used as wild type in
this study. The mutants fugub-1, fugu5-2, fugu5-3, and transgenic plants fugu5-1+IPP1 were offered and
characterize by Ferjani (2011) [13]. The cbi2 cbI3 double mutant was described in previous studies [48].
The T-DNA insertion mutants avp1-4 (GK-596F06) and mgt6 (SALK_205483) were obtained from the
European Arabidopsis Stock Centre and the Arabidopsis Biological Resource Center. The mutant
avpl-3 (FLAG_291B12) was a T-DNA insertion mutant in the Wassilewskija (Ws) background and
obtained from INRA Arabidopsis T-DNA mutant library. Mutants with multiple gene-knockout events
were generated by genetic crosses, and homozygous mutant plants were screened from F2 generation
and identified by genomic PCR using primers listed in Supplementary Table S1.

4.2. Phenotypic Analysis

For on-plate growth assays, seeds of different genotypes were sterilized with 75% ethanol for
10 min, washed in sterilized water for three times, and sown on Murashige and Skoog (MS) medium
containing 2% sucrose (Sigma) and solidified with 0.8% phytoblend (Caisson Labs). The plates were
incubated at 4 °C in darkness for two days and then were positioned vertically at 22 °C in growth
chamber with a 14 h light/10 h dark photoperiod. After germination, five-day-old seedlings were
transferred onto agarose-solidified media containing various ions as indicated in the figure legends
and were grown under 14 h light/10 h dark photoperiod.

For phenotypic assay in the hydroponics, 10-day-old seedlings geminated on MS plate were
transferred to 1/6 strength MS solution and were grown under the 14 h light/10 h dark condition in
the plant growth chamber. Fresh liquid solutions were replaced once a week. After two-week culture,
the plants were treated with 1/6 MS solutions supplemented with 15 mM MgCl,.

4.3. Crude Membrane Preparation and Enzymatic Activity Assays

Two-week-old hydroponically grown plants were treated with 1/6 MS solutions containing
0 or 15 mM MgCl,. After two-day treatment, leaves of all the plants were collected to prepare crude
membrane as described previously [48]. Plant materials were ground at 4 °C with cold homogenization
buffer containing 350 mM sucrose, 70 mM Tris-HCI (pH 8.0), 3 mM NayEDTA, 0.2% (w/v) BSA, 1.5%
(w/v) PVP-40, 5 mM DTT, 10% (v/v) glycerol, 1 mM PMSF and 1 x protease inhibitor mixture (Roche).
The homogenate was filtered through four layers of cheesecloth and centrifuged at 4000 g for 20 min
at4 °C. The supernatant was then centrifuged at 100,000 x g for 1 h. The obtained pellet was suspended
in 350 mM sucrose, 10 mM Tris-Mes (pH 7.0), 2 mM DTT and 1x protease inhibitor mixture.

Pyrophosphate hydrolysis was measured as described in previous studies [48]. The assay solution
for PPi hydrolysis activity contained 25 mM Tris-Mes (pH 7.5), 2mM MgSOy, 100 uM NapyMoOy, 0.1%
Brij 58, and 200 pM NayP,0O;. PPase activity was expressed as the difference of phosphate (Pi) release
measured in the absence and the presence of 50 mM KCl. After incubation at 28 °C for 40 min, 40 mM
citric acid was added to terminate reactions. For the measurement of inorganic Pi amount, freshly
prepared AAM solution (50% (v/v) acetone, 2.5 mM ammoniummolybdate, 1.25 M H>SO,) was added
to the reaction solution, vortexed and colorimetrically examined at 355 nm.
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4.4. Quantification of Pyrophosphate in Plants

Two-week-old hydroponically grown plants were transferred to 1/6 MS solutions containing
0 or 15 mM MgCl,. After two-day treatment, leaves of all the plants were collected and PPi was
extracted from leaf tissue as described previously [49]. Leaf samples were ground to powder in liquid
nitrogen, suspended with three volumes of pure water, heated at 85 °C for 15 min, and then centrifuged
at 15,000 rpm for 10 min. The supernatants were collected and then centrifuged at 40,000 rpm for
10 min. The obtained supernatants were diluted with pure water and subjected to PPi assay using a
PPi Assay Kit (Sigma, St. Louis, MO, USA) according to the manufacturer’s instructions. Fluorescence
was monitored with a Safire 2 plate reader set at 316 nm for excitation and 456 nm for emission
(Tecan, Mannedorf, Switzerland).

4.5. Measurements of Mg and Ca Content

One-week-old Arabidopsis seedlings were transferred onto 1/6-strength MS medium
supplemented with 0 or 8 mM MgCl,. After a seven-day treatment, seedlings of wild-type and
mutant plants were collected and pooled into roots and shoots. The samples were washed with 18 M()
water for three to five times, dried for 48 h at 80 °C, milled to fine powder, weighed, and digested with
concentrated HNOj; (Sigma-Aldrich, Milwaukee, WI, USA) in 100°C water bath for 1 h. Mg2+ and
Ca?* concentrations were determined using an ICP mass spectrometer (PerkinElmer NexION 300).
Each sample was tested three times.

4.6. Statistical Analysis of the Data

All data in this work were obtained from at least three independent experiments. Data were
subjected to statistical analyses using Student’s t-test (p < 0.05) or one-way analysis of variance
(ANOVA) followed by Duncan’s multiple range test (p < 0.05).

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/
11/3617/s1. Figure S1. Molecular identification of avp1-4 mutant. Figure S2. The avp1-4 mutant is specifically

sensitive to Mg?2*. Figure S3. Functional complementation of avp1-4. Table S1. Primers Used in This Study.
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