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A unified and improved Chebotarev density theorem

Jesse Thorner and Asif Zaman

We establish an unconditional effective Chebotarev density theorem that improves uniformly over the
well-known result of Lagarias and Odlyzko. As a consequence, we give a new asymptotic form of the
Chebotarev density theorem that can count much smaller primes with arbitrary log-power savings, even
in the case where a Landau—Siegel zero is present. Our main theorem also interpolates the strongest
unconditional upper bound for the least prime ideal with a given Artin symbol as well as the Chebotarev
analogue of the Brun-Titchmarsh theorem proved by the authors.

1. Introduction and statement of results

1A. Introduction. Let L/F be a Galois extension of number fields with Galois group G. For each prime
ideal p of F that is unramified in L, we use the Artin symbol [L/TF] to denote the conjugacy class of G
consisting of the set of Frobenius automorphisms attached to the prime ideals 3 of L which lie over p.
For any conjugacy class C C G, define the function

7c(x) =me(x, L/F) =#{Npjgp < x: p unramified in , [£5] = C}, (1-1)

where Nr/q is the absolute norm of F//Q. The Chebotarev density theorem states that
IC]| .
wc(x) ~ —Li(x) asx — oo.
|G|
It follows from work of V.K. Murty [1997, Section 4] that there exists an absolute, effective, and

positive constant ¢ such that

we(x) = %(Li(x) — 6, Li(x?) + O(xe_cl\/%)), log x

which refines a well-known result of Lagarias and Odlyzko [1977, Theorem 1.2]. Here, Dy is the absolute

log D7 )2
>>(gn—”+nL(lognL)2, (1-2)
L

discriminant of L, ny = [L : Q] is the degree of L over Q, 8; is a possible Landau—Siegel zero of the
Dedekind zeta function ¢, (s) of L, and 6 = 6,(C) € {—1, 0, 1} depends on C; in particular, 8, (C) =0 if
and only if 8; does not exist. For comparison, Lagarias and Odlyzko [1977, Theorem 1.1] proved that the
generalized Riemann hypothesis for ¢y (s) implies the more uniform result

C
me(x) = %(Li(X) + O (V/xlog(Dpx"))), x> (log D)*(loglog D). (1-3)

MSC2010: 11R44.
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As of now, the best bound for §; is due to Stark [1974, Theorem 1°, p. 148]; it implies that
1—B1> (n}" log DL—i—Dz/"L)*I, (1-4)

Therefore, in order to ensure that % Li(x) dominates all other terms in (1-2), one must take the range of

x to be

log x > ny '(log D) +ny(lognp)? + (1 — B1) 7! (1-5)

and apply (1-4) if B; exists. Otherwise, one omits the last term in (1-5) if 81 does not exist. Regardless,
(1-5) is very prohibitive in many applications where uniformity in L/F is crucial. Thus it often helps
in applications to have upper and lower bounds for ¢ (x) of order Li(x) in ranges of x which are more
commensurate with (1-3). Lagarias, Montgomery, and Odlyzko [1979] made substantial progress on
these problems; their work has been improved upon by Weiss [1983], the authors [Thorner and Zaman
2017; 2018], and Zaman [2017]. In particular, it follows from the joint work of the authors [Thorner
and Zaman 2017; 2018] that there exist absolute, effective constants A > 2 and B > 2 such that if Dy is
sufficiently large, then

1 IC| IC]

— Li(x) € e (x) < (2+0(1))E

S Li for x > (Dyn"")5, 1-6
DA (Gl i(x) forx > (Drn}") (1-6)

where the o(1) term tends to zero as (log x)/ log(DLn'zL) tends to inﬁnity.1

To summarize the above discussion, suppose that we are in the worst case scenario with 6; = 1 and
B1 is as bad as (1-4) permits. If one is willing to sacrifice an asymptotic equality for ¢ (x) in order to
obtain estimates in noticeably better ranges than (1-5), then one might use (1-6). On the other hand, if
one needs an asymptotic equality for ¢ (x), then one uses (1-2) in the prohibitive range (1-5).

1B. Results. Our main result, Theorem 1.4, is a new asymptotic equality for ¢ (x) which interpolates
both of the aforementioned options while providing several new options. In other words, we prove a
new asymptotic equality for 7¢ (x) from which one may deduce both (1-2) and (1-6). First, we present a
simplified version of the main result.

Theorem 1.1. Let L/ F be a Galois extension of number fields with Galois group G, and let C € G be a
conjugacy class. Let 81 denote the Landau—Siegel zero of the Dedekind zeta function ¢y (s), if it exists.
There exist absolute and effective constants c; > 0 and c3 > 0 such that if L # Q and x > (DLn'zL)CZ, then

el _ calogx _@bwwﬁ»
me(x) = |G|(L1()c) 61 Li(x ))(1+0<6Xp[ log(DLn'™ }JFGXP[ n'/? ’

where 01 = 60, (C) € {—1,0, 1}. In particular, 8; = 0 precisely when B does not exist.

IThe term n'iL is usually negligible compared to a power of Dy . If not, one might appeal to [Zaman 2017, Theorem 1.3.1]
which states that 7¢ (x) > DZA % Li(x) for x > Df.
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The inequality

|: (C310gx)1/2i| s |: c3logx ]
Xp| —————— exp| —————— |,
nz/z log(Dyn7*

holds when log x > (log DL)Z/nL + nz(log nr)?, so we see that Theorem 1.1 recovers (1-2) and is

therefore a uniform improvement over it. Also, it follows from the mean value theorem and (1-4) that

log(Dyn7")
l/nL +n*log Dy

Li(x) — 61 Li(x") > ((1 — 1) log(DLn}H)) Lix) > Li(x). -7

With this lower bound at our disposal, one can see that Theorem 1.1 recovers (1-6). Thus Theorem 1.1
unifies and improves both (1-2) and (1-6).

As noted above, if one wants 1= | GI LLi (x) to dominate all other terms in (1-2), then one must take x in
the range (1-5). However, one can plainly see that

%(Li(x) — 6, Li(xP1)) (1-8)

dominates all other terms in Theorem 1.1 for all x in the claimed range, provided that c; is suitably
large compared to c3. At first glance, it may seem awkward that we adjoin the contribution from S to
the “main term” when it is classically viewed as an error term. But without eliminating the existence of
p1, it is well known that in situations where 6; # 0 and x is small, say logx < log(Dn}"), the term
—0, lIC\ Li(x#1) is more properly treated as a secondary term than an error term. When 6; = 1 and g4
is especially close to 1, this secondary term causes serious difficulties in the proof of Linnik’s bound
[1944] for the least prime in an arithmetic progression. Fortunately, it follows from (1-7) that regardless
of whether B; exists, we have

Li(x) <z Li(x) —6; Li(x*") < 2 Li(x). 1-9)

Therefore, in the range of x where — @91 Li(x#1) acts like a secondary term, (1-9) shows that Theorem 1.1
recovers upper and lower bounds of order Li(x) precisely because (1-8) dominates all other terms in
Theorem 1.1. This perspective is implicit in Linnik’s work. On the other hand, when x is sufficiently large
in terms of L/ F per (1-5), the contribution from S, can be safely absorbed into the O-term in Theorem 1.1.
In light of these observations, we believe that viewing (1-8) as the “main term” in Theorem 1.1 helps to
clarify the role of the contribution from ; when one transitions from small values of x to large values of x.

Upon considering the O-term in Theorem 1.1, we see that Theorem 1.1 noticeably improves the range

of x in which we have an asymptotic equality for w¢(x).

Corollary 1.2. If log x /log(Dpn}") — 00, then 7 (x) ~ g1 (Li(x) — 6; Li(xf")).

Theorem 1.1 also produces a new asymptotic equality in which the error term saves an arbitrarily large
power of log x in a much stronger range of x than (1-2).

Corollary 1.3. Let A > 1. If logx >4 (log Dy)(loglog Dy) +ny(logny)?, then

e (x) = {6 Li(x) — 6 Lix) (14 0a((logx) ™). (1-10)
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In order to state the main result from which Theorem 1.1 follows, we introduce some additional notation.
Let H C G be an abelian subgroup of G such that HNC is nonempty, and let K = L be the fixed field of H.
The characters x in the dual group H are Hecke characters; we write the conductor of x as f,. Define

Q = Q(L/K) = max Nk afy. (1-11)
xeH

We write the L-function associated to such a Hecke character as L(s, x, L/K). From work of Stark
[1974], at most one real Hecke character x; € H has an associated Hecke L-function L(s, x1, L/K) with
a Landau-Siegel zero 8y =1 — X/ log(Dk Qn';(’(), where 0 < 1| < %

Theorem 1.4. Let L/ F be a Galois extension of number fields with Galois group G, and let C C G be a
conjugacy class. Let H € G be an abelian subgroup such that C N H is nonempty, let K be the fixed field
of H, and choose gc € CNH. If x > (Dg Qnr;(")"z, then

I s _erloax koY)
me() = 15 (L) — 01 Licx ))(1+0(exp[ og(Dx O ]+exp[ N :

where 01 = x1(gc) if By exists and 61 = 0 otherwise and Q is given by (1-11). The constants ¢, and c3 are
the same as in Theorem 1.1.

Remark 1.5. As a group-theoretic quantity, 8; depends on the choice of gc € C N H. However, if 61 # 0,
then the existence of 81 implies that 6, is well defined.

1C. An application. While it is aesthetically appealing to be able to encapsulate the work in [Lagarias
et al. 1979; Lagarias and Odlyzko 1977; Murty 1997; Thorner and Zaman 2017; 2018; Weiss 1983]
with a single asymptotic equality, Theorem 1.4 can make progress in certain sieve-theoretic problems
when one must compute the local densities. As an example, we prove a new result in the study of primes
represented by binary quadratic forms. Let

f(u,v)= au® + buv + cv? € Z[u, v]

be a positive definite binary quadratic form of discriminant D = b*> — 4ac < 0. We do not assume that D
is fundamental. The group SL,(Z) naturally acts on such forms by (7 - f)(x) = f(Tx) for T € SL,(2Z).
The class number 4 (D) is the number of such forms up to SL,-equivalence. If f is primitive (that is,
(a, b, c)=1)thenitis a classical consequence of the Chebotarev density theorem and class field theory that
1 Li(x)
— 1p(au® +b )~ = asx — 0o, 1-12
stab (/)] ZZ p(au” +buv + cv?) (D) X ( )

u,veZ
au’+buv+cv?<x

where 1p is the indicator function for the odd primes and
stab(f) ={T e SL,(2): T - f = f}.

Note |stab(f)| = 2 unless D = —3 or —4 in which case it equals 6 and 4 respectively.
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We consider the question of imposing restrictions on the integers # and v which comprise a solution to
the equation p = f (u, v). In the special case of f(u, v) = u> 4 v2, Fouvry and Iwaniec [1997] proved
that there are infinitely many primes p such that p = u? 4 v? and u is prime. Their proof, which relies on
sieve methods, enables them to asymptotically count such primes.

One might ask whether their methods extend to all positive definite primitive f(u, v) with strong
uniformity in the discriminant D.> The answer is not clear to the authors. Nevertheless, Theorem 1.4
enables us to study the distribution of primes p = f(u, v) with some control over the divisors of # and v
while maintaining strong uniformity in D. We prove the following result in Section 7.

Theorem 1.6. Let D < —3 be an integer and let f (u, v) = au®+buv+cv? be a positive definite primitive
integral binary quadratic form with discriminant D = b> — 4ac. Let P be any integer dividing the product
of primes p < z. For all A > 1, there exists a sufficiently small constant n = n(A) > 0 such that if
3 <z <xWlogloex gug3 < |D| < x"/loglogz tpep

Li(x) — Li(x?1)

—A
D) {1+ 04((logz)~")}. (1-13)

1
— 1p(au® + buv + cv?) =84 (P
stab( /)] Z; plaw’ s+ by av) =57(P)

au’+buv+cv?<x
(uv,P)=1

Here, By is a real simple zero of the Dedekind zeta function Sawp)®) (if it exists),
2—1,.(p)—1,¢
af(P)zl‘[(1_ plalP) — 1Ly (”)>, (1-14)
plP p— (;)

(%) is the Legendre symbol for p # 2, (%) is defined by (7-6), and the term Li(x?") is omitted if B does

not exist.

Remark 1.7. The constant § 7 (P) is always nonnegative. It is possible that 6 (P) = 0 due to the local
factor at p = 2 in the product but this occurs precisely when the form f(u, v) does not represent any
odd primes. Since 1p is the indicator function for the odd primes, (1-13) trivially holds in this case. The
details of this casework are verified in Section 7A1.

While it is natural to think of P as equal to the product of primes up to z, we immediately obtain
from Theorem 1.6 the following corollary when P is a fixed divisor of the product of primes up to z and
z — oo arbitrarily slowly.

Corollary 1.8. Keep the assumptions of Theorem 1.6. If the integer P > 1 is fixed, then

1 Li(x) — Li(x#") log x
- 1 24 p 2y s (P2 J
Stab ()] ;}; p(au”+ buv + cv”) r(P) D) as log| D] — 00
au2+b£¢v+cv2§x
(uv, P)=1

2Added in proof, 17 June 2019: Lam, Schindler, and Xiao [2018] recently extended Fouvry and Iwaniec’s result to all
positive-definite primitive binary quadratic forms. However, their error terms do not possess uniformity in the discriminant.
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In particular, there exists a prime p < |D|* and u, v € Z such that p = f(u, v), p{D, and (uv, P) =1,
where a = a(P) > 0 is a sufficiently large constant depending only on P.

In order to prove Theorem 1.6 with strong uniformity in z and | D], one needs asymptotic control over
sums like (1-12) (see (7-4) below) when x is as small as a polynomial in the discriminant, regardless
of whether £ /p)(s) has a Landau-Siegel zero. This is precisely what Theorem 1.4 provides. For
comparison, a slightly stronger version of (1-2) that follows from [Murty 1997] along with the effective
bound (1 —B;)~! « |D|'/? log| D| can produce (1-13) with the inferior ranges

3<|D|IK (logx)z/(log logx)2 and 3 <z <exp(cy/logx)

where ¢ > 0 is an absolute constant and ¢ > 0. As one can plainly see, Theorem 1.4 yields substantial
gains over earlier versions of the Chebotarev density theorem. See Remark 7.3 for further discussion.

1D. Overview of the methods. We now give an overview of how the proof of Theorem 1.4 differs from
the proofs in [Lagarias et al. 1979; Lagarias and Odlyzko 1977; Murty 1997; Thorner and Zaman 2017,
2018; Weiss 1983]. For convenience, we refer to

L Lit) -1 Li™)
|G|
as the “main term” in Theorem 1.4 and all other terms as the “error term”.

The key difference between the proof of (1-2) and the proof of Theorem 1.4 lies in the study of the
nontrivial low-lying zeros of ¢, (s). The standard zero-free region for ¢, (s) indicates that the low-lying
zeros of ¢y (s) lie further away from the edge of the critical strip {s € C: 0 < Re(s) < 1} than zeros of large
height. However, the treatments in [Lagarias and Odlyzko 1977; Murty 1997] handle the contribution
from the all of the nontrivial zeros by assuming that the low-lying zeros (other than B, if it exists) lie
just as close to the edge of the critical strip as zeros of large height. This unduly inflates the contribution
from the low-lying zeros, leading to the poor field uniformity in (1-2) along with the poor dependence on
the Landau-Siegel zero f; if it exists. Consequently, both the range of x and the quality the error term in
(1-2) directly depend on the quality of zero-free region available for ¢ (s).

In order to efficiently handle the contribution to ¢ (x) which arises from the low-lying zeros of ¢y (s),
we factor ¢ (s) as a product of Hecke L-functions associated to the Hecke characters of the abelian
extension L/K and apply a log-free zero density estimate and the zero repulsion phenomenon for these
L-functions. As in Linnik’s work on arithmetic progressions, one typically uses these tools to establish
upper and lower bounds of ¢ (x) when x is small instead of asymptotic equalities [Thorner and Zaman
2017; 2018; Weiss 1983]. In order to facilitate the analysis involving the log-free zero density estimate,
we weigh the contribution of each prime ideal counted by m¢(x) with a weight whose Mellin transform
has carefully chosen decay properties (Lemma 2.2). Similar variations are a critical component in the
proofs of (1-6) in [Thorner and Zaman 2017; 2018; Weiss 1983].

By using a log-free zero density estimate and the zero repulsion phenomenon, we ensure that the main
term in Theorem 1.4 always dominates the error term in Theorem 1.4 when x is at least a polynomial in
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Dg On’f, regardless of whether B; exists. As one can see from the ensuing analysis, the quality of the
zero-free region dictates the quality of the error term but has no direct impact on the valid range of x.
This “decoupling” feature contrasts with the proof of (1-2), where the quality of the zero-free region
simultaneously determines both the quality of the error term and the range of x in which the main term
dominates.

After we “decouple” the range of x from the influence of the zero-free region, we are finally prepared
to separate the contribution of the low-lying zeros from the contribution of the zeros with large height
using a dyadic decomposition. This leads to savings over (1-2) only because we have already ensured via
the log-free zero density estimate and zero repulsion that the main term in Theorem 1.4 dominate the
error term regardless of whether B; exists. An additional benefit of this argument is an expression for the
error term in Theorem 1.4 as a straightforward single-variable optimization problem involving x and the
zero-free region (Lemma 4.5 and (4-13)). This simplification allows us to easily determine the error term
with complete uniformity in Dg, [K : @], Q, and x (Lemma 4.6).

The fact that Theorem 1.4 holds for al/l Galois extensions L/ F is a fairly subtle matter. In the case
where F = @ and L/Q is a cyclotomic extension, the Chebotarev density theorem reduces to the prime
number theorem for arithmetic progressions. Stark’s bound for 8; (Theorem 3.3, a refinement of (1-4))
recovers a lower bound for 1 — 8; which is commensurate with the lower bound for 1 — §; that follows
from Dirichlet’s analytic class number formula for cyclotomic extensions; this suffices for our purposes.
In the cyclotomic setting, our proofs only need to quantify the zero repulsion from a Landau-Siegel zero
with a strong zero-free region for low-lying zeros (Theorem A.1 with ¢ <4). However, if L/ F is a Galois
extension where the root discriminant of L is especially small, which can happen in infinite class field
towers, then Stark’s lower bound for 1 — 8 is quite small. In this case, the approach which worked well
for cyclotomic extensions of () appears insufficient to prove Theorem 1.1 for all x in our claimed range.

To address this problem, we use a log-free zero density estimate for Hecke L-functions that naturally
incorporates the zero repulsion phenomenon. Roughly speaking, when f; is especially close to 1, the
quality of the log-free zero density estimate improves by a factor of 1 — By; this is stronger than the
classical formulation of the zero repulsion phenomenon. Therefore, if 1 — B happens to be as small as
Stark’s lower bound allows, the quality of the log-free zero density estimate increases dramatically. This
offsets the adverse effect of 8, in the small root discriminant case. The idea of incorporating the zero
repulsion phenomenon directly into the log-free zero density estimate goes back to Bombieri [1987] in
the case of Dirichlet characters. For Hecke L-functions over number fields, this was first proved by Weiss
(see Theorem 3.2 below). The details of this obstacle and why we genuinely need the particular log-free
zero density estimate in Theorem 3.2 are contained in the Appendix, especially Remark A.3.

2. Setup and notation

Throughout the paper, let ¢y, ¢z, c3, ... be a sequence of absolute, effective, and positive constants. All
implied constants in the inequalities f < g and f = O(g) are absolute and effective unless noted otherwise.
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Recall F' is a number field with ring of integers OF, absolute norm N = Nf,q, absolute discriminant
Dp = |disc(F/Q)|, and degree ny = [F : Q). Integral ideals will be denoted by n and prime ideals by p.
Moreover, L/ F is a Galois extension of number fields with Galois group G = Gal(L/F). For prime
ideals p of F unramified in L, the Artin symbol [L/TF] is the conjugacy class of Frobenius automorphisms
of G associated to prime ideals 13 of L lying above p.

2A. Prime counting functions. For a conjugacy class C of G and x > 2, let ¢ (x) be as in (1-1) and

define

24ioo L/ X3

_Z(Sa'lp5 L/F)_dss (2_1)
N

—100

_ I CIR
Vo) = Ve, L/F) =1 ;wozm /2

where ¢ runs over the irreducible Artin characters of G = Gal(L/F) and L(s, v, L/F) is the Artin
L-function of . It follows from Mellin inversion [Lagarias et al. 1979, p.283] that

Ye@) =Y Armlc(n), (2-2)
Nn<x
where _
logNp if n =/ for some prime ideal p and some integer j > 1,
Apm =1 b P ’ gy = @3)
0 otherwise.
Here, 0 < 1¢(n) <1 for all ideals n and for prime ideals p unramified in L and j > 1,
(1 if[EEY cc,
lc(p)) = { [ P ] - (2-4)
0 otherwise.

The prime counting functions ¢ and ¢ are related via partial summation.

Lemma 2.1. For x > 2,

x ¢ 1/2
e (x) = Ve (x) n V() di + 0(1og Dy + npx T\
log x Jx t(log1)? log x

Proof. Note the norm of the product of ramified prime ideals divides D and the number of prime ideals
p with norm equal to a given rational prime p is at most ng. Thus,

anl/Z
Te() = ) lc(p>+0(lo - +1ogDL).
J/x<Np=<x &

Define 6¢ (x) = ZNps . LIc(p) log Np. It follows by partial summation as well as the previous observations

that
Y Be(t 0
3 1ep) = / t (lg<t>)2 dH_lg(’gj
VX <Np<x VX g g

Finally, one can verify that |0¢c(x) — ¥c(x)| < npx'/? by trivially estimating the number of prime ideal
powers with norm at most x. Collecting all of these estimates yields the lemma. U
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2B. Choice of weight. We now define a weight function which will be used to count prime ideals with

norm between /x and x.

Lemma 2.2. Choose x >3, ¢ € (O, i), and a positive integer £ > 1. Define A = ¢/(2€1og x). There exists

a continuous function f(t) = f(t; x, €, €) of a real variable t such that:

() 0< f(t) <1forallt €eR,and f(t)=1for s <t <1.

(ii) The support of f is contained in the interval [% — @, 1+ logx].

(iii) Its Laplace transform F (z) = fR f (e ? dt is entire and is given by

1/2+2CA 2A 14
F(Z)=e_(1+2“)z.<1_e(/+ )Z)(l‘e ) @-5)

-z —2Az

(iv) Lets =0 +it,o > 0,1t € R and o be any real number satisfying 0 < o < {. Then

0¢,.0 ze (o4
IF(—slogx)| < — " .(14+x?). (=) .
|s|log x els|

Moreover, |F(—slogx)| < e®®x° and% < F(0) < %.

(V) If%<a§1andx210,then

X x? x1/?
F(—logx)+ F(—ologx) = <logx + alogx){l +0(e)} + 0(logx>' (2-6)

(vi) Lets = —% +it witht € R. Then

S5x1/4 120\ ¢ —en
|F(—slogx)| < oax <?) (L4272

Proof. These are the contents of [Thorner and Zaman 2018, Lemma 2.2] except for (2-6), which we now
prove. Let % < o < 1. From (iii), we observe that

X9 esa/@ -1 ¢ x0/2
F(—ologx) = +0 . 2-7)
ologx \ €0/t ologx
The two cases of F'(—logx)+ F(—o logx) are proved differently; we first handle the + case. It follows
from (2-7) that

X e/t — 1 ¢ x° P ¢ x0/2
F(—logx)+ F(—ologx) = + + 0 .
log x e/l ologx\ eo/t o logx

The desired asymptotic for F(—logx) + F(—o logx) now follows from the Taylor series expansion

P 4
W :1+0(O'8),

which is valid for 0 <o < 1.



1048 Jesse Thorner and Asif Zaman

For the case of F(—logx) — F(—o log x), we first observe that (2-7) implies

e/t — 1 ¢ X% /et 14
(log x)(F(—logx) — F(—o logx)) = x ——— ) +0u'. (2-8)
e/l o o/l
Set
es/ﬁ -1 eas/ﬁ -1
YV T oeg/t
so that @ > b > 1. With this convention, we rewrite (2-8) as
o
(log x) (F(—log x) — F(—o logx)) = xa’ — —pt + 0 (x'/?). (2-9)
g
Since a > b > 1, it follows from the bound a® — b* < (a — b) - £a® that
o o o o o
xa® — x—bz = (x — x—)aﬁ + x—(a‘Z — be) = (x — x—)aﬁ + O(x—(a —b)EaZ). (2-10)
o o o o o

Since 43'1 <o <1, it follows from taking Taylor series expansions that a® = 1+ O(¢) and

n(l —o)(e/0)"
(n+1)!

M2

_y U =a"eE/0" e
a—b_; arr S <(1=o0).

n=1

We apply these two Taylor expansions to (2-9) and (2-10) to obtain

o o

(log x)(F(—logx) — F(—o logx)) = (x — x—)(1 +0(@E)+0 (x—a — 0)8) +0ux"?. (@2-11)
o o

-2

Finally, we observe that since 0 ~“x° < x for o > % and x > 10, we have that

g o o o
x—(l—a):a(x—z—x—)fo(x—x—>.
o o o o

We apply this observation to (2-11) to obtain

o

(log x)(F(—logx) — F(—o logx)) = (x — %)(1 +0(e) + 0(x'?). (2-12)

The desired result follows by dividing both sides of (2-12) by log x. (]

Let £ > 2 be an integer, x > 3, and ¢ € (O, }‘) Define

- ” logN
el /)= Ve, L/F: f) = ZAFm)lc(n)f( i’fgx"), (2-13)

where f = f(-;x,¢,¢) is given by Lemma 2.2. To understand ¢, it suffices to study the smooth
variant Jrc.

Lemma 2.3. Let £ > 2 be an integer, x > 3, and ¢ € (0, %) Then

Ye(x) < Pe(x; f)+ O0mpx'"?) < e (xed).
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Moreover, e (x; f) = ¥c(x) + O (npx'/? 4+ ex).

Proof. By Lemma 2.2(i,ii) and definitions (2-2) and (2-13), we observe that

Y Armlcm) < Yelx; f) < pelxed).

J/x<Nn<x

The lemma now follows from (2-2) and the trivial estimate

Y ArMIcm) <np Y Ap(r) <np(y—z) for2<z<y. O

z<Nn<y z<n=<y

2C. Dedekind zeta functions and Hecke L-functions. Now, assume L/K is an abelian extension of
number fields. The Dedekind zeta function ¢z (s) satisfies

() =[] LG x. L/K), (2-14)
X

where x runs over the irreducible 1-dimensional Artin characters of Gal(L/K). By class field theory,
each Artin L-function L(s, x, L/K) is equal to a Hecke L-function L(s, x, K), where (abusing notation)
X 1s a certain primitive Hecke character of K. For simplicity, write L(s, x) in place of L(s, x, L/K)
or L(s, x, K). Let the integral f,, € Ok denote the conductor associated to x. For each y, there exist
nonnegative integers a() and b(x) satisfying a(x) + b(x) = nk such that if we define

a(x) b(x)
y(s, x) = [n_ir(%)} |:n_(5+1)/2F(—S42_1)i|

1 if x is trivial,

and

5()():{

0 otherwise,

then &(s, x) := [s(1 —5)1°%) (DgNF, )2y (s, x)L(s, x) satisfies the functional equation

E(s, x) =05 =5, X)), (2-15)

where () is a complex number with unit modulus. Furthermore, £ (s, x) is an entire function of order 1
which does not vanish at s = 0. Note L(s, x) has a simple pole at s = 1 if and only if x is trivial. The
nontrivial zeros p of L(s, x) (which are the zeros of £(s, x)) satisfy 0 < Re(p) < 1, and the trivial zeros w
of L(s, x) (which offset the poles of y (s, x)) are at the nonnegative integers, each with order at most ng.

The Dedekind zeta function &7 (s) possesses the same qualities (by considering the case K = L and x
trivial). Namely, its completed L-function is

£L(s) = [s(1—)1D} [T (5)]" [em) T ()] ¢.(s) (2-16)
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for certain integers ay, by > O satistying ay + by = [L : Q]. The trivial zeros w of ¢;(s) are at the
nonnegative integers with orders

ar, w=-2-4,...,
ord¢r(s) =1br w=-1,-3,..., 2-17)
S=w

ar—1 w=0.

Moreover, the conductor-discriminant formula states that

log D;. =Y " log(DgNf,). (2-18)
X

From (1-11) with @ = Q(L/K), it follows that

log Dp <[L: K]log(Dg Q). (2-19)
From this we deduce a somewhat crude bound for log Dy in terms of Dg, Q, and ng.
Lemma 2.4. If L/K is abelian, then log D < (Dg Qn'%)>.

Proof. By class field theory, L is contained in some ray class field L’ of K whose Artin conductor has
norm at most Q. From [Weiss 1983, Lemma 1.16], it follows that [L : K] <[L’: K] < Dx Qe®™x)_ The
result now follows from (2-19). O

We also record a few standard estimates for Hecke L-functions.

Lemma 2.5 [Lagarias and Odlyzko 1977, Lemma 5.4]. Ift € R and x is a Hecke character of K, then
#Hpo=B+iy:L(p,x)=0,0<B <1, |y —t| <1} Klog(DgNf,) +ng log(|t| + 3),

where the zeros p are counted with multiplicity.

Lemma 2.6 [Lagarias and Odlyzko 1977, Lemma 5.6]. Let x be a Hecke character of K. Then

/

L
—Z(S, x) K log(DgNfy) + nk log(|Im(s)| + 3)
uniformly for Re(s) = —%.

3. The distribution of zeros
For Sections 3 and 4, we will assume that the extension L/K is abelian. For notational simplicity, define
0 = Q(L/K) := DgQn}", (3-D

where Q@ = Q(L/K) is given by (1-11). Any sum Zx or product Hx is over the primitive Hecke
characters x associated with L /K per the factorization in (2-14). Here we list three key results regarding
the distribution of zeros of Hecke L-functions.



A unified and improved Chebotarev density theorem 1051

Theorem 3.1 (zero-free region). There exists c4 > 0 such that the Dedekind zeta function

c(s)=[]LG x. L/K)
X

has at most one zero in the region Re(s) > 1 — A(|Im(s)| + 3), where the function A satisfies
C4
Aty > —— t>3. 3-2
O 4oy Ttz (3-2)

If such an exceptional zero B exists then it is real, simple, and attached to the L-function of a real Hecke

character x;.
Proof. This is well known; see, for example, [Weiss 1983, Theorem 1.9]. O

We also refer to the exceptional zero B; as a Landau—Siegel zero. Now, for 0 <o <1, T > 1 and any
Hecke character y, define

N, T,x)=#p=8+iy :L(p,x)=0,0 <B<1,|y|<T}, (3-3)
where the zeros p are counted with multiplicity.

Theorem 3.2 (log-free zero density estimate). There exists an integer c¢s > 1 such that

Y N, T, x) < Bi(QT"*)=! =) (3-4)
X

uniformly forany 0 <o <1l and T > 1, where
By, = B, (T) =min{l, (1 — B1) log(QT"*)}. (3-5)

Proof. Let g9 > 0 be a sufficiently small absolute and effective constant. It follows from [Thorner and
Zaman 2017, Theorem 3.2] or its variant [Thorner and Zaman 2018, Theorem 4.5] thatif 1 —gg <o < 1
and T > 1, then
Y N0, T, x) < (QT")s1=)
X
regardless of whether B exists. Weiss [1983, Theorem 4.3] proved that if 8; exists, then for 1 —gg <o < 1
and T > 1,

ZN(U, T, x) < (1 —p1)1og(QT"*)(QT" ) s1=2),
X

Thus for T > 1, (3-4) holds with B; given by (3-5) in the range 1 — g9 < 0 < 1. By enlarging cs if
necessary and using Stark’s bound from Theorem 3.3, one can extend (3-4) to the remaining interval
0 <o <1 —¢p by employing the trivial bound that follows from Lemma 2.5. (]

Theorems 3.1 and 3.2 comprise the three principles used to prove Linnik’s theorem on the least prime
in an arithmetic progression: a zero-free region, a log-free zero density estimate, and a quantitative form
of the zero repulsion phenomenon. Theorem 3.2 combines the second and third principles by following
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the ideas of Bombieri [1987], and this is crucial to our arguments for certain choices of Galois extensions
(see the Appendix).

We record an effective lower bound for the size of 1 — 8; which follows from [Stark 1974, Theorem 1°,
p-148].

Theorem 3.3 (Stark’s bound). Let 81 =1 — A1/ log Q be a real zero of a real Hecke character x of the
abelian extension L/K. Then 1; > Q2.

Proof. This follows readily from (1-4) for 1 — 8 when 8 is the real zero of a Dedekind zeta function. If x
is trivial then consider the Dedekind zeta function ¢k (s). If x is quadratic then consider the Dedekind
zeta function ¢x (s)L(s, x, L/K) corresponding to the quadratic extension of K defined by yx. U

As we shall see, these three theorems yield a unified Chebotarev density theorem which produces an
asymptotic count for primes even in the presence of a Landau—Siegel zero.

4. Weighted counts of primes in abelian extensions

4A. Main technical result. The proof of Theorem 1.4 rests on the analysis on the weighted prime
counting function Velxs f) = ve(x, L/K; f) given by (2-13), where f is given by Lemma 2.2 and
L/K is abelian. The goal of this section is to prove the following proposition.

Proposition 4.1. Assume L/K is abelian with Galois group G. Let C C G be a conjugacy class of G.
Let f = f(-; x, 4, ) be defined as in Lemma 2.2 with

e=80x"18 ¢ =dcsng. (4-1)
If2<Q < x1/66¢s) gnd ¢ < 4—11, then
G| - B _ca logx
%wc (i f) = (x - (C)X,B_>(1 +0(e 0 gm0z ingy) (4-2)
1

Remark 4.2. The constants ¢4 and cs are defined in Theorems 3.1 and 3.2 respectively.

While f and its parameters are chosen in Proposition 4.1, we will assume throughout this section that
€€ (O, %) and ¢ > 2 are arbitrary, unless otherwise specified. The arguments leading to Proposition 4.1
are divided into natural steps: shifting a contour, estimating the arising zeros with the log-free zero density
estimate, and optimizing the error term with a classical zero-free region.

4B. Shifting the contour.

Lemma 4.3. If x > 3, then
1Gl e(x; f)
|IC| logx

= F(~logx) — x1(C)F (—p1logx) = ¥ X(C) Y F(—py logx) + 0(

X Px

(2¢/e)logD;,  np
x/4log x logx )’
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where the sum _" is over all nontrivial zeros py # B1 of L(s, x), counted with multiplicity. Here the term
F (=B log x) may be omitted if the exceptional zero 1 does not exist.

Proof. By (2-1), (2-13), Lemma 2.2 and a standard Mellin inversion calculation,

o e 1) =S RO, where I = 22 /Hm (5 ) F(=slogx)d (4-3)
- = s where = — ——(s, —s10gx)ds. -
ey v Tl fye L e

For each Hecke character x, shift the contour 7, to the line Re(s) = —%. Note F is entire by Lemma 2.2(iii),

so we need only consider the zeros and poles of L(s, x). We pick up the simple pole at s = 1 of L(s, x)
when y is trivial and the trivial zero at s = 0 of L(s, x) of order at most ng. Moreover, we also pick
up all of the nontrivial zeros p, of L(s, x). For the remaining contour along Re(s) = —%, we apply
Lemma 2.6, Minkowski’s estimate ng < log Dk, and Lemma 2.2(vi) to deduce that

1 —1/2+4i00 L’ 20 Zl DN
_ ng/ f(s,X,L/K)F(—slogx)ds <<( /€) o;g/i K fX).
X

2ri ) 12-ico

Combining all of these observations yields

2
(2¢/¢) log(DKfo)) (4-4)

—1 _
(logx)™ I, =8(x)F(—logx) — Z F(—pylogx) + O(F(O)nK + x1/4log x

Px

Here, p, runs over all nontrivial zeros of L(s, x), including B if it exists. Substituting (4-4) into (4-3)
and dividing through by log x, we obtain the desired result but with an error term of

|F(0)|ng _ (2¢/6)"
O(WXX:IX(C)H_ T log le(C)llog(DKfo)

As L/K is abelian, the characters x are 1-dimensional so |x(C)| = 1. Thus, applying the conductor-
discriminant formula (2-18), the observation ng Y X 1=[L:K]ng =ny, and Lemma 2.2(iv), we obtain
the desired error term. O

4C. Estimating the zeros. Now we estimate the sum over nontrivial zeros p in Lemma 4.3, beginning
with those p of small modulus.
Lemma 4.4. If x > 3, then

Z Z |F(—py logx)| < x"/*1log Dy.

X Px

lox|<1/4
Proof. From Lemmas 2.2(iv) and 2.5,
Z Z |F(—p, logx)| < Z Z x4 x4 Z(log(DKNfX) +nk).

Ipx\<1/4 \pxl<1/4

The result now follows from Minkowski’s estimate nx < log Dg and (2-18). U
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Next, we use the log-free zero density estimate to analyze the remaining contribution.

Lemma 4.5. Keep the assumptions and notation of Lemma 4.3. Select ¢ and € as in (4-1) and assume
e < %. For2 <Q < x1/Bcs)

logx Y~ Y |F(=pylogx)| < vpxe W72, (4-5)
X Ox
loy|=1/4
where
by = (I1—-BlogQ if i ex.ists, 4-6)
1 otherwise,
and n is given by
nx) = ;Izlg[A(t) log x +logt]. 4-7)

Proof. We dyadically estimate the zeros. For j > 1,set To=0and T} = 2/=! for j > 1. Consider the sum

log x
Zp== OIS (4-8)
Py= ﬂx'HV)(
T] 1<|Vx|<T
lox1=1/4

for j > 1. First, we estimate the contribution of each zero p = p, appearing in Z;. Let p = B +iy satisfy
Tj—1 <|y| < T; and |p| > 1, so |p| = max{T;_y, 1} > T;/4 and |p| > |y |+ 3. Thus, Lemma 2.2(iv)
with @ = £(1 — ) and our choice of ¢ imply that

log x KB e(1-p) ~
g |F(—plogx)| < W(Tm) T, 1/2(”/| +3)"12. x—1=p)2, (x3/8Tj£)—(l—ﬂ).

Since Q < x'/B¢) and ¢ = 4¢sn, it follows that
10%u«x-,ologx)l T2 Iyl +3)7 2702 7250, (4-9)
From Theorem 3.1 and (4-7), we deduce
(y|+ 3)—1/2x—(1—ﬁ)/2 <(ly|+ 3)—1/2x—A(|y|+3)/2 < e /2

Note the right-hand side is uniform over all nontrivial zeros p appearing in (4-5). Combining (4-9) and
the above inequality with (4-8), we deduce that

— 1/2 ¢ (1—
Z <Le n(x)/ZT / Z Z (QT;”() 2es(1=p)

ﬂx"‘”’x
l<|V)(|<T
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Defining N(o, T) =) X N(o, T, x), we use partial summation and Theorem 3.2 to see that
1
"2 7, <</ (QT!*) ™" dN (1 -, T))
' 0
1
< [(QT;’K)—ZCSN(o, T)) +log(QT}¥) fo (QT/) S N(1 —a, T;)da]

1
< Bl(Tj)[(QTfK)“‘S +1og(QT}*) / Q7)™ da}
0
< B(T)).
If a Landau—Siegel zero does not exist then B (7;) = 1 = vy. Otherwise, if a Landau-Siegel zero exists

then one can verify by (3-5) and a direct calculation that

B(THT; < (1 1) - supllog(Qr" ) ~/*] < (1 — p1) log @ = .

t>1
The supremum occurs at t < 1 since ng < log Q. Therefore,

- Bi(T)) 1 - _j -
Y zZj<e "y T L e MR T eI,
jzl jzl1 ' J izl

which yields the lemma by definition (4-8). (Il

4D. Error term with a classical zero-free region. The quality of the error term in Lemma 4.5, and hence
in Proposition 4.1, is reduced to computing 7(x). This is a single-variable optimization problem.

log x
Lemma 4.6. Let 1 be defined by (4-7). If x > 2 then e < ¢~ “he0 f ¢=v/clogx)/nk

Proof. Tt follows from Theorem 3.1, (4-7), and a change of variables t = ¢“ that

c4log x
log Q +ngu

Note that ¢, (u) — oo as u — oo. By standard calculus arguments, one can verify that

n(x) = inf d(u)  where ¢ (u) =

calogx if) < x <exp(122 Q)z),

10g Q Cank
n(x) = 2 (4-10)
1 log Q)
I i oxp(U22)
This proves the lemma. O

4E. Proof of Proposition 4.1. Choose ¢ and ¢ as in (4-1) and continue to assume & < 5 ! By Lemmas
4.3-4.5, it follows for 2 < Q < x!/(36¢5) that

G
%‘pdx )= (log x)[F(—logx) — x1(C)F (=B logx)] + O (vixe "2 £ £(x)),

where £(x) = x~1/4(2¢/e)* log Dy + ny + x'/*(logx)(log D;). From (4-1) and Minkowski’s estimate
ny K log D, we see that £(x) < x1/4(log Dpr)(ogx). From Lemma 2.4, log D <« 0% < x'19 gsince
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x> 03¢ and ¢5 > 1. Hence, £(x) < x'/2. Using Lemma 2.2(v), (4-1), and noting 81 > 1 we deduce that

Bi
'la'wdx H= (x - xl(c>xﬁ—>(1 +O0(ngx” /P2 L O(uixe "2 161 @11
1

for 2 < Q < x!/36¢s Now, we claim that
xh

X — Xl(C)ﬁ— > vpx > x4 (4-12)

If B; does not exist, then v} = 1 and (4-12) is immediate. If 8, exists and (1 — ;) log x < 1, then since
x> 0% ande™ >1—1for0 <1t < 1, we have

P (=B N
x—x1(C)— > x(l — ) > (1—pBpx log(—> > (1—pB1)xlog Q =vx.
B Bi e

Otherwise, f; exists and (1 — 8;)logx > 1 so B > % implies that

1 B1

Thus, the claim (4-12) follows upon noting that v; 3> Q2 > x~!/4 by Stark’s bound Theorem 3.3 and
the condition x > 0365, Combining (4-12) with (4-11), it follows that

b x—(1=BD
x—Xl(C)IB—zx(l— )zx(l—2e_1)>>x>> ViX,

Bi
%‘/’c( = <x - Xl(c));_]>(1 + 0 (e7"9/2 gy~ 1/ G2esnx)yy (4-13)

Finally, we apply Lemma 4.6 and note n g x ~1/32657k)  x=1/G0¢snk) o=/ callog)/@ni) for x > (36¢s,
This completes the proof of Proposition 4.1. O
5. Proof of Theorems 1.1 and 1.4

5A. Abelian extensions. First, we prove Theorem 1.4 in the case of abelian extensions.

Theorem 5.1. Assume L/K is abelian with Galois group G. Let C C G be a conjugacy class. Define Q
by (3-1). for2 < Q < x'/,

we(x, L/K) = %(Ll(x)—X1<C)L1<xﬁ'>><1+0(e Fi0 4 ov/ealoe /i) (5-1)

Here B, is a putative exceptional zero with associated real Hecke character x1 of L/K.

Proof. Write g(x) =x — x1(C)x?1/B;. Select ¢ as in (4-1). Note the assumption 2 < Q < xl/e guarantees
£ < i provided c; is sufficiently large. From Proposition 4.1 and Lemma 2.3, it follows that

C ¢4 logx
Yelx) < %g(x)(l +0(e” 3 logQ +e 4/04(logx)/4n1<)) for x > Q36c5 (5-2)
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On the other hand, writing y = xe®, Proposition 4.1 and Lemma 2.3 also imply

C _ <4 logy
Ve(y) = %g(ye‘@)(l +O(e HD 4 o/l angy)

for y > 203%s. By (4-12) and elementary arguments,

Bi
lg(ye ™) —g(y)e F| < yﬁ—lwﬁl — o) L ye(l — By) < £8(y).

In particular, g(ye=®) = g(y)(1 + O(g)). From our choice of ¢ in (4-1) and the condition y > 2036,
one can see that & <« ngy~1/325k « y=1/300esnk o p=n/callogy)/ing gq

Ye(y) > gg(}’)(l + 0(6_%4‘]‘?%é +e Vv C4(1°gy)/4”1<)) for y > 2Q36C5.

|G|

Comparing the above with (5-2), we conclude that

Yelx) = %g(x)(l + 0(676741100@% _|_e—\/c4(10gX)/4n1<))

for x > Q40"5. By partial summation (Lemma 2.1) and the observation that, for % <o <1,

x° X ta—l x7 1 xl/2
+/ dt = / ——dt =Li(x°)+ O , (5-3)
ologx J 5 o(logt)? o2 logt log x
it follows for x > Q%% that

G _c4 logx .

%ﬂc () = (Li(x) = x1(C) Li(xP)) (1 + O(e™ * 1 4 ¢ Vesloen Sy 4 g,(x),

where &y(x) =log Dy + ngx'/?/ log x. By Lemma 2.4 and the observation that ng <« log x, one can
verify that &(x) < x1/2 for x > Q%% Hence, by (4-12), & (x) can be absorbed into the error term of

Section 5A. As c; is sufficiently large, this completes the proof of Theorem 5.1. U

5B. Proof of Theorem 1.4. Now we finish the proof of Theorem 1.4 for any Galois extension L/F with
any Galois group G. Using well-known arguments from class field theory, we reduce to the case of
abelian extensions.

Lemma 5.2 (Murty, Murty and Saradha). Let L/F be a Galois extension of number fields with Galois
group G, and let C C G be a conjugacy class. Let H be a subgroup of G such that C N H is nonempty,
and let K be the fixed field of L by H. Let g € C N H, and let Cy(g) denote the conjugacy class of H
which contains g. If x > 2, then

nc(x,L/F)—Bﬂrrc (x,L/K) L an‘/2+ilogDL .
|Gl |Cul™ ™" ~ |G| log2

Proof. This is carried out during the proof of [Murty et al. 1988, Proposition 3.9]. ]
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Now, we apply Lemma 5.2 and subsequently Theorem 5.1 to ¢, (x, L/K) of the abelian extension
L/K. Consequently, for 2 < O < x1/e,

|G| ¢4 logx

et L/ F) = Lit) = xi(C) LiGeP)(1+ 0(e™ 4 10 4 ¢ Veiloe0/81)) 1 0 x1/2 4 log Dy,

(5-4)
where Q = Q(L/K) is defined by (3-1). Since we may assume ¢, > 20, it follows from Lemma 2.4
and Minkowski’s estimate n; <« log Dy that npx'/?2 4+ log D) K x/3 for x > 0°¢. From (4-12), this
estimate may be absorbed into the first error term of (5-4) since x>/873/4 = x~1/8 « g~/ c4(lo2X)/8nk g
completes the proof of Theorem 1.4. ]

Theorem 1.4 implies Theorem 1.1. Fix g € C, let H in Theorem 1.4 be the cyclic group generated by g,
and let K be the fixed field of H. Clearly ng <ny, and the centered equation immediately below [Thorner
and Zaman 2017, Equation 1-7] states Di/lHl <DgQ< DZ/WHD. Theorem 1.1 now follows. O

6. Reduced composition of beta-sieves

Before proceeding to the proof of Theorem 1.6, we require some sieve machinery that follows from
standard results. The setup and discussion here closely follow [Friedlander and Iwaniec 2010, Sections 5.9
and 6.3-6.5]. Let A = (1) and A" = (1)) be beta sieve weights with the same sifting level z and same
level of distribution R. That is, A/, and A/} satisfy

M=A=1, A1, i<,

and are supported on squarefree numbers d < R consisting of prime factors < z. Let

__logR
~ logz

N

be the sifting variable for both sieves. Let g’ and g” be multiplicative functions satisfying
0<g(p<1, 0<g'(p<1, gp +g'(p)<1 forall primes p. (6-1)
Assume there exists K > 1 and « > 0 such that, for all 2 < w < z, we have

/ —1 K
l_[ (1_ g'(p) ) §K<10gz> ’
1-g'(p)—g"(p) logw

w<p<z

//( ) —1 1 K (6-2)
0
(- i) =o(22)
w<p<z _g(p)_g (P) ogw
The goal of this section is to estimate the reduced composition given by
G = ) dyhig (d)g" (o). 63)

(dy,dr)=1
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This expression can arise as the main term when two different sieves are applied to two different sequences
that are linearly independent. Keeping this setup, the remainder of this section will be dedicated to the
proof of the following theorem.

Theorem 6.1. Assume s > 9« + 1+ 10log K, (6-1) holds, and (6-2) holds. If X and X' are upper bound

beta sieves, then

DD Mg (g () < 1_[<1 —¢'(p)—g" (P + K 1P.

(dy,d2)=1

If KX is a lower bound beta sieve and X' is an upper bound beta sieve, then

DD kg (d)g (d) = l_[(l — g (p)— g (p){1 — K1),

(d1,d2)=1

Assume A is a lower bound beta sieve and A’ is an upper bound beta sieve. The other case is entirely
analogous. Thus, if 0’ = 1% A" and 6” = 1 % 1" then

0y =6=1 and 6,<0<6 forn>2. (6-4)
First, we apply [Friedlander and Iwaniec 2010, Lemma 5.6] to (6-3) and, keeping with their notation, we
see that
G=Y 36,008 bg" b) ] =g (p)—g"(p)). (6-5)
(b1,b2)=1 pibiby

Define i, h” and §', §” to be multiplicative functions supported on squarefree numbers with

7 g/(p) = g//(p) ~/ g/(p) ~1/ g//(p)
h = y h = y =, = —
(P) 1—g'(p)—g"(p) (P) 1—g'(p)—g"(p) £(p) 1—g"(p) (P 1—g(p)
Thus we obtain the usual relations
7 g/(p) = g//(P)
h =_° 7 d h == =7 6-6
=1 7 =5 g"(p) ©0

Note /' (p), h"(p) = 0 and 0 < g'(p), §"(p) < 1 by (6-1). Inserting these definitions into (6-5), we

observe that
= (]‘[(1 —g'(p)— g”(p))) D 6,600 ()R (by).
p

(b1,b2)=1

If (b1, by) # 1 then the expression 9[;19;/2 ' (b1)h" (by) is nonpositive by (6-4), so we may introduce all of
these terms at the cost of a lower bound for G. Thus

G > (H(l —g'(p) - g”(p))) (Z eg.fz/(bl)> (Z 047" (b )) (6-7)
p by

The two sums in (6-7) are prepared for standard beta-sieve analysis.
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Lemma 6.2. If X is a lower bound beta-sieve with B =9« + 1 and s > B then

> o () = 1— K.
b

If N is an upper bound beta-sieve with 8 =9« + 1 and s > B then

Z@gil”(b) < 1+e9K—SK10.
b

Proof. This statement is essentially the fundamental lemma [Friedlander and Iwaniec 2010, Lemma 6.8].
To make the comparison clear with [loc. cit., Sections 6.3-6.5], one begins with [loc. cit., Equation 6.40]
with their D, &, g replaced by our R, &', g’ (or R, h”, ", respectively). Per the definition of V (z) on
[loc. cit., p. 56], it follows that
Ve =[Ta-gwy.
p<z

Thus the assumption [loc. cit., Equation 5.38] corresponds to our (6-2). Next, one defines V), just as in
the equation at the top of [loc. cit., p. 63]; in doing so, we obtain [loc. cit., Equations 6.43 and 6.44].
Finally, using the same truncation parameters, the analysis of [loc. cit., Section 6.5] leading up to [loc. cit.,
Lemma 6.8] yields our result. O

Now, we apply Lemma 6.2 to the sum over b; (the lower bound sieve A) in (6-7). Note that the
assumption s > 9k + 1 + 10log K implies that this sum over b is positive. By the positivity of / and
(6-4), we may trivially estimate the sum over b, in (6-7) by

D R (b0, = h"(1) 6] =1.
by

This proves the lower bound in Theorem 6.1. For the upper bound, we follow the same arguments and
apply Lemma 6.2 twice (once to each sieve) in these final steps. (]

7. Restricted primes represented by binary quadratic forms
We recall the setup in Section 1C. Let
fu,v)= au® + buv + cv® € Zlu, v]

be a positive definite binary quadratic form of discriminant D = b? —4ac < 0, not necessarily fundamental.
The group SL,(Z) naturally acts on such forms by (T - f)(x) = f(Tx) for T € SL;(Z). The class
number 4 (D) is the number of such forms up to SL,-equivalence. We assume that f is primitive (that is,
(a,b,c) =1), and we define

stab(f) ={T €SLy(2): T - f = f}.

Note |stab(f)| = 2 unless D = —3 or —4 in which case it equals 6 and 4 respectively.
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7A. Proof of Theorem 1.6. Recall by assumption that 3 < z < x7/102192% where n = 5(A) > 0 is
sufficiently small. Further, P is any integer dividing the product of primes < z. Let 1 < R < x!/10 be
a parameter yet to be specified. Let A = (1)) and A" = (1) be sieve weights supported on squarefree
integers d | P satisfying

N=AT=1, W<l A<l ford=1, A,=2;=0 ford>R. (7-1)

We approximate the condition (uv, P) =1 in (1-13) by considering the sieved sum

S(x) =S(x; X, X := |Stab(f)|221[p(f(u U))(Z'\m)(zkifz)' (7-2)

d] | u dz | v
f(u v)<x
By swapping the order of summation,
S =YY Ay Mgy Ady.ay (), (7-3)
di,d>
(dy,d2)=1
where
1
Ay () = ———— > "> 1p(f(u, v)). (7-4)
[stab(f)] 4= &
d | u,d2_| v

Before computing the congruence sums Ay, 4,(x), we introduce the local densities g’ and g”. These are
multiplicative functions defined by

D\l . D\W—1 .
— (= if p| P and p1c, , — (= if p| P and p1a,
0 otherwise, 0 otherwise.
Here ( ) is the usual Legendre symbol for p # 2 and
D 0 if 2| D,
(E) =11 if D=1 (mod 8), (7-6)

~1 if D=5 (mod8).

Our main result on the Chebotarev density theorem, Theorem 1.4, yields the following key lemma whose
proof is postponed to Section 7B.

Lemma 7.1. Let y > 0 and v > 0 be a sufficiently small absolute constants, and let dy, dy be relatively
prime integers dividing P. If |d\d;D| < xV then

Li(x) — Li(x#")

Adl,dz(x) =g/(d1)g”(d2) h(D)

{14 O (ea,a,(x))} + O(V/x log x), (7-7)
where B is a simple real zero of the Dedekind zeta function $aw/D) (s) (if it exists) and

log x
logld D|

gq(x) = e4(x; D) = exp[—ﬂ } +exp[— (@ logx)'/?]  ford > 1. (7-8)
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Remark 7.2. For the remainder of the proof of Theorem 1.6, the constant ©* may be allowed to vary from
line-to-line. This will occurs finitely many times, so this is no cause for concern.

Remark 7.3. For the sieve to succeed, one crucially requires an asymptotic equality for Ay, 4,(x) as
in (7-7) with small remainder terms. Proceeding via the Chebotarev density theorem, one might use a
stronger version of (1-2) in [Murty 1997] to obtain the asymptotic

808 () 1)+ 0(xe= V) for logx > (logldidaD])? + ——.  (7-9)

A0 =" ) -y

Currently, (1 — B~ <« |D|'/? log| D] is the best unconditional effective bound for ;. Thus x must be
quite large with respect to | D|, d1, and d»; this adversely impacts the permissible ranges of |D| and z in
Theorem 1.6. To improve the range of x, one might instead appeal to variants of (1-6) found in [Thorner
and Zaman 2017; 2018; Weiss 1983] but this only yields lower and upper bounds for A4, 4, (x), rendering
the sieve powerless. Fortunately, Theorem 1.4 addresses all of these obstacles simultaneously. Regardless
of whether B exists, it maintains an asymptotic with an improved range of x that is polynomial in |D|, dy,
and d, while keeping satisfactory control on the error terms. This allows us to strengthen the uniformity
of both z and | D| in Theorem 1.6 beyond what earlier versions of the Chebotarev density theorem permit.

Now, set the level of distribution to be
R = g v 081082 (7-10)

Recall the constant n = 7(A) > 0 should be thought of as very small. Since z < x"/1°219¢% and |D| <
x"/ loglogz by assumption, we have that R < x /10 and also |d1d> D| < x*V" for any integers d;, d» < R.
Thus, by Lemma 7.1 and (7-1), it follows that

Li(x) — Li(x#1)

_ A A 3/4 -
Sx)=(G+O0(R)) (D) + 07, (7-11)
where
AR/, ” T(d)
G=) Y hyrpe @) d), R=) o) 1
i T

Here 7 is the divisor function and ¢ is Euler phi function. We obtained R by observing that

DO a8 @) (da)eaya, (x) < Z £4(x) Z g'dg"(dy) <R

dy,da<R d<R dydr=
didy | P d|P (dy,dr)= 1
(d1,d2)=1

since g'(d1)g" (d2) < 1/(p(d1)¢(d2)) = 1/¢(d) from (7-5) and Y 4,0,=a 1 < t(d). Now, we proceed to
(dy,dr)=1
calculate the main term G and remainder terms K. v
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7A1. Main term G. For the main term G, suppose we have chosen a lower bound sieve for the sum in

(1-13); namely, suppose A is a lower bound beta sieve and A’ is an upper bound beta sieve, each with

level of distribution R. Our aim is to apply the Fundamental Lemma in the form of Theorem 6.1. One

can see that g’ and g” each satisfy (6-2) with k = 1 and K absolutely bounded. Moreover, our choice of

sieve has a sufficiently large sifting variable s = log R/log z > n~! because 1 > 0 is sufficiently small.
We claim that we may assume

g (p)+¢"(p) <1 forall primes p

and hence g’ and g” also satisfy (6-1). From (7-5), the only concern occurs when p =2 and 2| P. We
prove the claim by checking cases and verifying that g’(2) + ¢g”(2) > 1 only if Theorem 1.6 is trivially
true.

» Suppose D =5 (mod 8). By (7-5), we have g’(2) + ¢"(2) < % + % <1.

e Suppose D=1 (mod 8) sob=1 (mod 2) and ac=0 (mod 2). If a+b+c=0 (mod 2) then the sum
in (1-13) is necessarily empty because 1p only detects odd primes. In this case, a and ¢ have opposite
parity so g’(2) + g”(2) = 1. Hence, 8 ¢(P) = 0 by (1-14) and Theorem 1.6 is therefore trivially true.
Otherwise, if a +b 4+ c =1 (mod 2) then a and c have the same parity. As ac =0 (mod 2), it must
be that a = ¢ =0 (mod 2) implying g’(2) + ¢”(2) =0 < 1 by definition (7-5).

o Suppose 2| D so b =0 (mod 2). If one of a or ¢ is even then g'(2) + g"(2) < % < 1. Otherwise, if
both a and ¢ are odd then g’(2) + ¢”(2) =1 and a + b + ¢ = 0 (mod 2). This implies § /(P) =0
and also the sum in (1-13) is necessarily empty so Theorem 1.6 is trivially true.

This proves the claim. Therefore, by Theorem 6.1 and (7-10), it follows that
G2 87(P){1+ 0a((loge)™) (7-12)

since n =n(A) is sufficiently small. If A and A’ are both upper bound beta sieves with level of distribution
x!/19 then one similarly obtains the reverse inequality.

7A2. Remainder terms R. We estimate R dyadically. By the Cauchy—Schwarz inequality and standard
estimates for T and ¢, we see for 0 < N < [2log R/log 7] that

7(d) 1\'? T(d)2d\ '?
X w(d)g"(x““”“(”( 2 E) ( 2 so<d>2>

N<d<zV N<d<zV1 N<d<z
d| P pld=p=<z
N\ 12
<<SZN+1(x)((N+1)logz)3/2< > 3) .
ZN§d<ZN+1
pld=p=z

By (7-10), one has that R"/1°2l02R < 7 < R where 5’ > 0 is sufficiently small depending only on 7. In
other words, log R /log z <« loglog z. Thus, we may apply Hildebrand’s estimate [1986, Theorem 1] for
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z-smooth numbers via partial summation to conclude from (7-8) that the above is

log x log x
<L (e~ O Wb Togz +e —? ogin] + e ?V10ex) h (NY(N + 1) log? 2,
where p is the Dickman—de Bruijn function. Recall we allow the constant % > 0 to change from line-to-line
and be replaced by a smaller value if necessary. Summing this estimate over 0 < N < [2log R/log 7]
and using the crude estimate p(N) < N~V for N > 1, we deduce that

log x

clogx log x
R KL (ma>1< ¢ s N~V*+2)10g? z + (e VToez 4 ¢~V ToniD + e "VIexy og? ¢
N>

< (e_ﬁ logxll(;gzlogx +e_19112§x Yo k‘)‘;lgl te ﬁ,/logx) log z.
Since |D| < x"/10glogz apd 7 < x7/1oglogx with 5 = n(A) > 0 sufficiently small, we have that
R <4 (log2)™". (7-13)

7A3. Concluding the proof. Inserting (7-12) and (7-13) into (7-11) along with the fact that §¢(P) >
(log z)~2 from Mertens’ estimate, we conclude that

1p(au’® + buv + cv?) Li(x) — Li(x?1) 4 3
> 8 (P)————" {14 04((logz) "M} + 0(x*%.
Z; stab (/)] d n(D) Ao
au’+buv+cv?<x
(uv,P)=1

By using an upper bound sieve instead (as mentioned at the end of Section 7A1), one also obtains the
reverse inequality. Thus, it remains to show the secondary error term O (x*/#) may be absorbed into the
primary error term. If 6 s (P) = O then the arguments in Section 7A1 imply Theorem 1.6 trivially true
so we may assume 8 (P) > 0. By the effective lower bound that 1 — ) >, |D|~1/27¢, the fact that
h(D) <, |D|'/>*¢, and the assumption that | D| < x"/ 1081022 we see

Li(x) —Li(xP) s
— D > x

As §7(P) > (log z) 72, this implies the claim and hence proves Theorem 1.6. (]

7B. Proof of Lemma 7.1. The pair (d;, d») induces another form fy, 4, given by

fdl,dz(sy Z) = f(dls, dzt).

Note its discriminant is D(d;d»)%. With this definition, it follows that

Adya () = Y H(s, D€ p= fuanls, D) (7-14)

1
[stab(f)] £

Observe
Aga,(x) K1 if (dy,c) #1or(dy,a) #1
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since, in this case, fg, 4, 1s not primitive and hence represents an absolutely bounded number of primes.
This trivially establishes Lemma 7.1 in this case. To evaluate Ay, 4, (x) for all other d; and d», we use
class field theory.

Lemma 7.4. Let Ok be the ring of integers of K = Q(v/D). Ford > 1, let Oy be the order of discriminant
—Dd? in K and let Ly be the ring class field of O4. If F is a primitive binary quadratic form of
discriminant —Dd* then

|0 | = [stab(F)].

Moreover, if Cr is the conjugacy class corresponding to F in the Galois group of Ly /K then

#(s,0) €2’ p="F(s,0} =|0)|-#{p S Ok : Np=p, [ME] =Cr} for ptDd.

Here [L“’p/K] is the Artin symbol of p and N = N q is the absolute norm of K /Q.

Proof. These are straightforward consequences of the theory for positive definite binary quadratic forms,
so we only sketch the details. Standard references include for example [Cassels 1978; Cox 1989]. First,
one can verify that O = {£1} unless Oy is the ring of integers for Q(i) or Q(+/=3). Similarly, the
SL;-automorphism group of F' is { :i:((l) (1)) } unless F is properly equivalent to either x>+ y? or x2+xy+y?.
These are respectively the unique reduced forms of discriminant —4 or —3. These remaining two cases
can be checked by direct calculation.

The second claim follows from the first claim and the one-to-one correspondence between inequivalent
representations of a prime p by F and degree 1 prime ideals p € Ok in the class Cr. For more details,
see [Cox 1989, Theorem 7.7]. O

Now, assuming (dj, ¢) = (d2,a) = 1, we return to computing Ay, 4,(x). It follows that fz 4, is
primitive so by Lemma 7.4 with F' = fy, 4, and d = d1d>,we deduce that

1 T«
Ag g (x) = —lstab(f)| E |Od]d2| + 0( E 1), (7-15)
Np<x p| Ddidy
deg(p)=1

where Z% runs over prime ideals p in Ok unramified in Lg,q, satisfying [(Lg,a,/K)/p]l = Cy, , . Note,
for the primes p | Ddd, in (7-15), we have used that each prime p is represented by f with absolutely
bounded multiplicity. We may add the remaining degree 2 prime ideals p to the f-marked sum with error
at most O (|0 4, 1v/xlogx) = O(/x log x). Further, we have

> 1< log|Dddy| < logx
p|Ddidy
since |d1dr D| < x7. Collecting these observations, it follows that

[
A = 12 14+0 1 . 7-16
dy.dy (%) — f)leZ:x + O (y/xlogx) (7-16)
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We invoke Theorem 1.4 to compute the sum in (7-16), thus

ZT | L) =6 L")
~ h(D(dd)?)

{1+ 0(eq,4,(x))} for |didaD| < x7, (7-17)
Np<x
where €4,4,(x) is defined by (7-8) and y > 0 is fixed and sufficiently small. We make two simplifications
for (7-17). First, we claim that 8; = 1 if the exceptional zero 8 exists. By a theorem of Heilbronn [1972]
generalized by Stark [1974, Theorem 3], since B is a real simple zero of ¢ idy (s) and Ly, 4, is Galois
over ( with K being its only quadratic subfield, it follows that ¢x (8;) = 0. Hence, the exceptional Hecke

character x; of K from Theorem 1.4 is trivial implying 6; = 1. Second, we have for d > 1 that
h(Dd*) = h(—mxd]_[<1 — <2) 1). (7-18)

[0*:0;] pld pJ)p
For a proof, see for example [Cox 1989, Theorem 7.4 and Corollary 7.28].

Finally, with these observations, Lemma 7.1 follows by inserting (7-17) and (7-18) into (7-16) and
noting that [0 : O;1- |0 | = |0} | = [stab(f)| from Lemma 7.4. O

Appendix: Error term with an exceptional zero

Theorem 3.2 states that if 7 > 1, then
Y N, T, x) < Bi(QT"™)*"=), By =min{1, (1 - B1) log(QT")}. (A-1)
X
This clearly implies that regardless of whether g exists, we have
Y N@, T, ) < (QT")1=, (A-2)
X
If B; exists, Theorem 3.2 produces the following strong zero-free region:

Theorem A.1 (zero repulsion). Suppose the exceptional zero By of Theorem 3.1 exists. There exists ce > 0
such that if A is given in Theorem 3.1, then

1 cglog(l(d = B1) log(Qr™)]™h }
2’ log(Q1"x) '

Let ¢ > 1 be an integer. In the context of arithmetic progressions, in which case L = Q(e*"/7)

A(t) > min{

and F = K = Q, it is preferable to use (A-2) and Theorem A.1 instead of (A-1), as one can typically
obtain numerically superior results with the former. However, in the context of arithmetic progressions,
one has the benefit of working with characters of an extension which is abelian over (1, in which case
Theorem 3.3 gives an adequate upper bound for B; (should it exist). However, for abelian extensions
L/K where the root discriminant of K is rather small, Theorem 3.3 gives an upper bound for 8; which
is not commensurate with the corresponding result for cyclotomic extensions of Q. In fact, this weak
upper bound leads us to actually require a version of the log-free zero density estimate that improves as
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B1 approaches 1 to handle the case when K has a small root discriminant. This is why we use (A-1) in
our proofs instead of using (A-2) and Theorem A.1 separately.

For comparison with Lemma 4.6, we quantify the effect of (A-2) and Theorem A.1 on the error term
in Lemma 4.5 and subsequently (4-13) in the proof of Proposition 4.1. Since the calculations are tedious,
we omit the proof.

Lemma A.2. Let n be defined by (4-7). Suppose the exceptional zero 1 =1 — A1 /log Q of Theorem 3.1

exists. There exists absolute constants c7, cg, cg > 0 such that if .| < c7 and Q < xles

e W) « x71/2+k%0(6—% +e*63«/(logx)/n1<) ifa > Q720/n1<’ (A-3)
e 1) =172 1 o= 103/1081730) (= Fiigs 4 pmesy/Tog ) k) if g < Q~20/nK (A-4)

Remark A.3. Recall the definition of v; in (4-6). From (4-11) and (4-12), one can see it is critical to
prove an estimate at least as strong as

vixe 19 = o(ryx). (A-5)

Notice that the density estimate in (A-1) decays linearly with respect to 1 — 8; (that is, vi = A1), so we
easily obtain (A-5). Suppose we instead use (A-2), which is tantamount to the trivial estimate v; < 1 when
B exists. From (A-3), one obtains (A-5) when A; > Q~2%/7x _ Otherwise, from (A-4), if A; < Q 2/
then we can at best show xe 7% = o(eflo IOg(l/M)x). The situation 1; < Q~2%/7« is not uniformly
excluded by Stark’s bound (1-4). For example, when the root discriminant D;(/ "K is bounded and the

extension L /K is unramified (that is, @ = 1), then
Q100/n,< _ (DKQ)IOO/”Kn}(OO < n}(()o

and Stark’s bound (1-4) implies Al_l <« n'i¥ log Dg so it may very well be the case that Al_l >n }(00 >
Q'%%/nk This situation with a bounded root discriminant is entirely possible as Minkowski’s unconditional
estimate ng < log Dk is tight when varying over all number fields K. Infinite class field towers are well
known sources of this scenario. Thus, we cannot see how to unconditionally obtain the desired linear
decay demanded by (A-5) with only (A-2) and Theorem A.1.
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