High Performance Distributed Systems (Best Paper Nominees)

HPDC ’19, June 22-29, 2019, Phoenix, AZ, USA

Kleio: A Hybrid Memory Page Scheduler with Machine

Intelligence
Thaleia Dimitra Doudali Sergey Blagodurov Abhinav Vishnu
Georgia Institute of Technology Advanced Micro Devices, Inc. Advanced Micro Devices, Inc.
thdoudali@gatech.edu Sergey.Blagodurov@amd.com Abhinav.Vishnu@amd.com
Sudhanva Gurumurthi Ada Gavrilovska
Advanced Micro Devices, Inc. Georgia Institute of Technology
Sudhanva.Gurumurthi@amd.com ada@cc.gatech.edu
ABSTRACT KEYWORDS

The increasing demand of big data analytics for more main memory
capacity in datacenters and exascale computing environments is
driving the integration of heterogeneous memory technologies. The
new technologies exhibit vastly greater differences in access laten-
cies, bandwidth and capacity compared to the traditional NUMA
systems. Leveraging this heterogeneity while also delivering appli-
cation performance enhancements requires intelligent data place-
ment. We present Kleio, a page scheduler with machine intelligence
for applications that execute across hybrid memory components.
Kleio is a hybrid page scheduler that combines existing, lightweight,
history-based data tiering methods for hybrid memory, with novel
intelligent placement decisions based on deep neural networks. We
contribute new understanding toward the scope of benefits that
can be achieved by using intelligent page scheduling in comparison
to existing history-based approaches, and towards the choice of the
deep learning algorithms and their parameters that are effective for
this problem space. Kleio incorporates a new method for prioritizing
pages that leads to highest performance boost, while limiting the
resulting system resource overheads. Our performance evaluation
indicates that Kleio reduces on average 80% of the performance gap
between the existing solutions and an oracle with knowledge of
future access pattern. Kleio provides hybrid memory systems with
fast and effective neural network training and prediction accuracy
levels, which bring significant application performance improve-
ments with limited resource overheads, so as to lay the grounds for
its practical integration in future systems.

CCS CONCEPTS

« Computer systems organization — Heterogeneous (hybrid)
systems; « Computing methodologies — Machine learning
approaches; - Hardware — Memory and dense storage; Anal-
ysis and design of emerging devices and systems; « General
and reference — Performance;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HPDC ’19, June 22-29, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6670-0/19/06...$15.00
https://doi.org/10.1145/3307681.3325398

37

Data Tiering; Emerging Memory Technologies; Heterogeneous
Memory Systems; Hybrid Memory Systems; Long Short Term Mem-
ory Networks; Machine Intelligence; Machine Learning; Non Volatile
Memory; Page Scheduler; Recurrent Neural Networks;

ACM Reference Format:

Thaleia Dimitra Doudali, Sergey Blagodurov, Abhinav Vishnu, Sudhanva
Gurumurthi, and Ada Gavrilovska. 2019. Kleio: A Hybrid Memory Page
Scheduler with Machine Intelligence. In The 28th International Symposium
on High-Performance Parallel and Distributed Computing (HPDC ’19), June
22-29, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3307681.3325398

1 INTRODUCTION

Modern systems are frequently designed using heterogeneous mem-
ory components. These memories are typically leveraged for ex-
tending main memory capacity or for caching purposes. There are
natural trade-offs in the hybrid memory systems (HMS) compris-
ing heterogeneous components. Typically deeper memory (further
from the compute unit (CPU/GPU) has more capacity albeit at larger
latency and reduced bandwidth.

We consider one such HMS scenario comprising of DRAM and
Non Volatile Memory (NVM) and focus on the problem of extending
main memory capacity. An important artifact of HMS is addressing
the limitations of increased latency and decreased bandwidth with
deeper memories. In our case, a page scheduler - the memory
management layer of operating and runtime systems - is respon-
sible for the page migration across the heterogeneous memory
components. An effective page scheduler is responsible for ensur-
ing that hot pages — the ones that are accessed frequently — are readily
available in faster memory (DRAM). This is an intricate task, espe-
cially it is a complex combination of access pattern of pages in an
application, and its runtime parameters (input size, strong/weak
scaling, etc.). To address this challenge, several researchers have
considered solutions whose implementation can be integrated in
the hardware-, compiler-, Operating System-, runtime-, hypervisor-
or application profiling-level [7, 9, 11, 15, 20, 27-29]. A common
theme among these approaches is that they rely exclusively on
historic information about page accesses. Specifically, the state-
of-the-art [20, 27, 28] in system-level dynamic page management
solutions for HMS utilize the immediate observed behavior to make
decisions on the best future page placement. However, as we show
in this paper, the mispredictions regarding future page access re-
sulting from use of historic information alone, can leave an up to

High Performance Distributed Systems (Best Paper Nominees)

Application

(Page Scheduler)

hot pages rest of the pages
DRAM NVM @
Hybrid Memory System

Figure 1: The high cost of DRAM in large capacities limits its
future use and makes a case for denser but cheaper technolo-
gies (e.g., NVM) to be used in extending the system’s memory
capacity. In such a hybrid system the page scheduler period-
ically migrates pages such that the ones that are frequently
accessed get allocated in the fastest available memory tech-
nology (e.g., DRAM) until the capacity is full.

55% gap in the obtained versus attainable application performance,
thus failing to fully leverage the aggregate HMS resources.

An Operating System (OS) level memory management solution
may be implemented inside the OS kernel’s memory manager, or
on the user level with OS system calls for page migration, similar to
Linux move_pages(). In this potential implementation, the current
state-of-the-art History page scheduler [20] would periodically
migrate pages, such that those that are hot for the current sched-
uling epoch, get allocated in DRAM until capacity is full, with the
hope to be frequently accessed during the next scheduling epoch
(Figure 1).

Although the History page scheduler is relatively straightfor-
ward and practical to implement, its effectiveness in providing
applications with fast (i.e., in-DRAM) data accesses inherently de-
pends on the application data access behavior. When comparing
with an Oracle page scheduler, which uses a-priori knowledge
to periodically migrate application pages such that those that are
indeed highly accessed in the next scheduling epoch (hot pages) get
allocated in DRAM until capacity is full, we observe that a history-
based page scheduler will result in significant reduction in fast
memory accesses and subsequent application slowdown (Section 2).
The exact impact depends on application data access behavior and
the capacities and performance characteristics of the different mem-
ories. This illustrates an important point: Purely history-based page
scheduling methods are limited in the performance opportunities
they can provide to applications running on hybrid memory systems.
Instead, they must be augmented with more intelligent, predictive
methods.

Why a solution with Machine Intelligence (MI)?

As shown in Section 2, the immediately observed memory access
behavior is insufficient in capturing the necessary information that
predicts future behavior for making clever placement decisions.
Yet, a larger window of accesses should allow the ability to cap-
ture the historic information (long term access, and also leverage
the recent accesses (short term access) for effective page placement.
There are a few design possibilities: 1) Use simple methods such
as Markov chains for handling the temporal aspect [25], 2) use
advanced techniques with machine intelligence that provide mech-
anisms to handle temporal data capturing both short and long term

38

HPDC ’19, June 22-29, 2019, Phoenix, AZ, USA

page access patterns. Such techniques are reinforcement learning
and deep neural networks (recurrent neural / long short term mem-
ory networks), which are currently widely explored to solve various
systems problems as we summarize in Section 8. In this work, we
explore these techniques and choose the one that achieves the goals
specified at the end of Section 2.

Paper Contributions

The primary goal of this work is using machine intelligence to build
a hybrid memory page scheduler that can bridge the performance
gap between the current state-of-the-art History and the ideal but
unrealistic Oracle page scheduler. We build a new page scheduler
- Kleio - and we answer important questions concerning how to
achieve an effective solution (i.e., one that maximizes the extent
to which the performance gap is bridged), and a practical solution
(i.e., one that can be realized while expending only a controlled or
limited amount of resources on the typically compute-intensive
machine intelligence processing tasks).

The specific contributions of this paper are the following:

e Gap in current solutions: We show the significant room for ap-
plication performance improvement that is feasible in hybrid
memory systems via clever data placement. This is due to the
fact that predominantly used solutions, which look at recent
memory access activity, are not computationally robust so as to
capture complex page access patterns (Section 2).
MI-based page scheduling: We identify Recurrent Neural Net-
works (RNNs) as an effective and practical technique for the
page scheduling problem (Section 3). We show that RNN train-
ing on a per application page granularity is highly accurate and
leads to significant performance improvements even when ap-
plied to a subset of pages (Section 4). While not exhaustively
exploring all possible DNN algorithms, we present insights on
the important tradeoffs that must be considered when select-
ing an MI approach: its computational and space complexity
and its applicability for the feature set which describes the page
scheduling problem.

e Kleio: We design Kleio!, a practical, hybrid MI-based page sched-
uler. Kleio is hybrid because it combines existing history-based
page scheduling, when such more lightweight methods are effec-
tive, with RNN-based machine intelligence, when history-based
methods fail. Kleio is practical because it incorporates a new
method for identifying pages where MI-based scheduling leads
to most significant performance boost and prioritizing the use
of system resources for these pages (Section 5).

e Performance improvements: Using a range of workloads from
popular suites, we show that Kleio can bridge on average 80%
of the performance gap, that exists between the history-based
page scheduling and oracular knowledge of the access pattern
of a small set of cleverly selected application pages (Sections 6
and 7).

The name is inspired by ancient Greek mythology, where Kleio is the muse of history,
daughter of Mnemosyne, goddess of memory.

High Performance Distributed Systems (Best Paper Nominees)

HPDC ’19, June 22-29, 2019, Phoenix, AZ, USA

EEN .l-in-DRAM HEE 1/8 A 1/16 N 1/32 PZ] 1/64 [1/128 1/256
Oracle Page Scheduler across variable DRAM/NVM capacity ratios
1004 T 1
E 3
3]
=T 50
Sf
0_
2 60
=3
3£ 401
g=
& g 201
e

<
I

\u\esh xsbe“déac \PIOP P \>\ac\6 \)06\1“3C

4 Al -
ca““e3 Cobr@ ded“&u\da“\,wbnd\a“c Kmea™ Kan Leukoc\f Luﬁ“‘a‘ (a#“acewapt‘oﬁsgmea“

(a) The Oracle page scheduler periodically migrates application pages such that DRAM hosts the pages with the highest access counts in the

current scheduling epoch until capacity is full.

BN linDRAM EEE 1/8

= 1/16

B /32 2] 1/64 [1/128 1/256

History Page Scheduler across variable DRAM/NVM capacity ratios

100
23
i3]
== 50
oOFf
0_
Z 60
oz
S .£ 40
o=
& g 207
9
= 0.

e I,
\ules®)(S\oenc“éac\&ro" BFS \35\6"“0\ Sdytrac

(b) The History page scheduler periodically migrates application pages such that DRAM hosts the pages with the hlghest access counts in the

previous scheduling epoch until capacity is full.

Figure 2: Application performance for decreasing ratio of DRAM to NVM and fixed overall capacity to be the per application
memory footprint. Section 6 includes detailed explanation of the experimental methodology.

2 MOTIVATION

We first provide experimental results to illustrate the scope of the
problem addressed with Kleio. The goal is to illustrate the impor-
tance of page scheduling for different applications and the gap that
exists with current history-based approaches. We use the appli-
cations summarized in Table 1, the experimental methodology is
described in detail in Section 6, and the scheduler description is
introduced in Section 1 as well as summarized in the caption of
Figure 2.

Figure 2a shows the performance achieved by an Oracle page
scheduler across decreasing availability of DRAM capacity. Even
in the case of a-priori knowledge of the workload’s access pattern,
the restricted DRAM capacity can severely impact performance,
especially when it is available only in smaller amounts (e.g., 1/256
DRAM/NVM ratio). We also validate the observation [10] that the
use of the minimum necessary DRAM capacity that is able to host
the hot pages across the scheduling epochs (i.e., 1/8 in our case) can
provide almost the same performance as if having infinite DRAM
capacity (i.e., all-in-DRAM).

Figure 2b shows how the placement methodology of the current
state-of-the-art History page scheduler can reduce performance
up to 55% (in the case of lulesh) and 13% on average. This is due to

39

the fact that the history-based scheduler is built on the observation
that applications preserve their page access pattern for certain
time intervals, which may span across multiple scheduling epochs.
Although this leads to good page placement decisions during such
epochs, it fails to capture changes in the workload’s memory access
behavior. For example, there are times where the subset of hot pages
may be completely disjoint between consecutive scheduling epochs,
as the application transitioned into computation that involves data
allocated in different memory areas. In this case, the performance
impact is significant and makes a case for more intelligent data
management using clever extrapolation of the past memory access
pattern and not just the immediately observed behavior.

Takeaways

We observed that even though restricted DRAM capacity can poten-
tially reduce application performance, the current state-of-the-art
page scheduling methodology is not intelligent enough to capture
all the necessary past information needed for predicting future
memory access behavior, which will allow for timely data place-
ment in DRAM. To address this, we choose to explore machine
intelligence techniques given their ability to learn complex combi-
nations of multi-featured information.

High Performance Distributed Systems (Best Paper Nominees)

Application Suite Domain (z ai%; Ei)(i)}::ehds.
Lulesh CORAL | Hydrodynamics | 847,252 206
XSBench CORAL Monte Carlo 136,098 856
blackscholes PARSEC | Finance 8,033 302
bodytrack PARSEC | Comp. Vision 13,259 389
canneal PARSEC | Engineering 56,974 398
dedup PARSEC | Storage 131,259 657
fluidanimate PARSEC | Animation 54,286 333
raytrace PARSEC | Visualization 22,890 347
swaptions PARSEC | Finance 12,633 491
BackProp Rodinia Pattern 35,083 117
BFS Rodinia | Graph 27,396 26
BPT Rodinia Filesystems 142,923 485
Kmeans Rodinia Data Mining 70,783 87
Knn Rodinia | Data Classifier 84,691 118
Leukocyte Rodinia | Medical 56,580 180
Cobra Windows | Video Transcode 83,720 168
HybridEncoder | Windows | Video Transcode 73,787 178
Luxmark Windows | Image Creation 53,491 108

Table 1: Workloads used for evaluation. Number of pages
X 4 KiloBytes will be the total application memory foot-
print. Scheduling epochs is the number of times that the
page scheduler was periodically invoked within the appli-
cation runtime, so as to reposition pages across the hybrid
memory subsystem.

We aim to achieve two important goals:

1. Bridge the performance gap between the Oracle and History
page schedulers.

2. Deliver low training and inference times by reducing the input
problem space. This would allow the approach to be possibly
integrated in an online solution.

In doing so, we contribute answers to the following questions:

1. Which machine intelligence technique to use (Section 3)?

2. How should we formalize the data input to the machine intelli-
gence algorithm, so that it adheres to the purpose of predicting
page access behavior to be used by a page scheduler (Section 4)?

3. How can we reduce the input problem space? How many are
the pages whose timely placement in DRAM significantly boosts
performance, while the History scheduler fails to properly man-
age them? Do all pages actually need machine intelligence based
management (Section 5)?

3 MACHINE INTELLIGENCE BACKGROUND

In this section, we explore the machine intelligence techniques that
seem to be a good fit when designing an application page scheduler
for data management over hybrid memory systems. Our goal is to
design a page scheduler that can learn more cleverly through past
information and make more intelligent page placement decisions
across the scheduling epochs, compared to the existing History page
scheduler, as depicted in Figure 1 and described in Sections 1, 2.

3.1 Reinforcement Learning

First, we explored deep reinforcement learning [13, 22, 23], a ma-
chine intelligence technique that enables an agent to learn through

40

HPDC ’19, June 22-29, 2019, Phoenix, AZ, USA

Loss .
Real —_— Predicted Value
Value
T i, a6 oY Dense
‘\t]t) '\hq 2 [\ g Ut Layer
Back h‘ Y [h‘ ; (’h"‘; K :)
Propagation *~¢ - N 1, T.

L s 1 uLsm L] Lsma] R

psali sl e
(\‘ t,) L h 3 L h‘ L h‘)
f T T T
u LSTM |J u LSTM |J I_,l LSTM |J Ll LSTM JLaR;'e': :
e =

Input Sequence
Xih XX X P q

Figure 3: Example layout of a Recurrent Neural Network
(RNN), using Long Short Term Memory (LSTM) neurons.

taking actions in a defined environment, in order to maximize a
reward entity via the received feedback.

In more detail, the page scheduler (agent) periodically interrupts
the execution of the application to take an action, that is to mi-
grate pages across the memory components. Then, the application
resumes execution (environment) and during the next scheduling
epoch (interrupt) the page scheduler receives its reward, that is
the DRAM hit rate with the most recent page placement (state). In
this way, the page scheduler learns the dynamic data layout that
optimizes application performance across its runtime.

Why it is not a good fit. Although the approach of reinforcement
learning seems to be a great fit into the problem description of a
hybrid memory page scheduler, it cannot be realistically adapted.
This is due to the prohibitively large amount of possible actions
the agent (page scheduler) can take. More specifically, a single
action of a page scheduler involves taking a placement decision
for each individual application page. For example, if there are two
memory components and N pages, then there are 2V possible
placements, thus actions to choose from. Considering Table 1, that
summarizes the number of pages across our pool of applications,
N can be in the order of hundred thousands. In conclusion, the
problem space becomes not only exponential, but also depends on
the number of application pages, which made us drop the approach
of reinforcement learning for the context of our problem.

3.2 Recurrent Neural Networks

Another machine intelligence approach, which seemed appropriate
for the purpose of the hybrid memory page scheduler, is Recurrent
Neural Networks (RNNs). Different from reinforcement learning,
where interaction with an environment facilitates learning, RNNs
are able to find long-term dependencies in a sequence of data points
and make predictions about future data behavior.

In the context of the page scheduler, these data points can be the
sequence of pages accessed throughout an application execution
time interval. The page scheduler can deploy an RNN in order to
learn the page access pattern and make predictions about future
page accesses. Using those predictions the page scheduler can de-
termine which pages should be prioritized for allocation in the

High Performance Distributed Systems (Best Paper Nominees)

most appropriate memory component. For example, future highly
accessed pages should be allocated in the lowest access latency
memory technology. We choose to adapt this machine intelligence
technique, since it has already been used to solve similar problems,
like hardware memory prefetching [12]. In contrast with reinforce-
ment learning, where the problem space was growing exponentially
to the number of application pages, in the case of RNNs it grows
linearly with the number of pages. Furthermore, in Section 4 we
show how it can be significantly reduced for the purpose of fast
and efficient learning.

RNN Functionality. Next, we present the internal functionality
of RNNSs on a very high level. Currently, a widely used type of RNN
is the Long Short Term Memory (LSTM) Network, that given a
sequence of data points from time ¢ — h up to time ¢, can make a
value prediction for time ¢ + 1, where h is the length of retained
history. For example, if the sequence represents the weather forecast
of a city from April to November, the LSTM can make a weather
prediction for December. In more detail, a single LSTM neuron
takes the input sequence and converts it into an internal state
ht, via a non-linear combination of the weights and biases of its
internal ‘gates’. There are the ‘input’, ‘output’ and ‘forget’ gates that
dictate what information gets filtered from the input and propagated
towards the output. In this way, a single LSTM neuron is able to
capture past data information into an internal state representation
and make predictions about future data points.

An RNN can be constructed via the combination of multiple
LSTM neurons on a single layer, stacked LSTM layers together with
regular Dense layers, as depicted in Figure 3. The input sequence
is split into subsequences of history length h, in a rolling window
fashion. During a training epoch, all input subsequences are fed
into the network, which then makes a single value prediction for
each subsequence. The difference between the predicted and actual
values is captured through the loss function and back-propagated
into the network, where its weights and biases are getting updated
according to the learning rate. Training can terminate when there
is no reduction in the loss, thus the network cannot make any
predictions closer to the actual value. In Section 6 we describe the
network layout, hyper-parameter values and further fine-tuning
techniques that will facilitate learning for the provided input data.

4 NEURAL NETWORK INPUT

When using neural networks, an important step is choosing the
features which describe the problem and are to be used as inputs.
In this section, we discuss the representation of the data sequence
related to memory access behaviors to be fed into the RNN and
the interpretation of the predicted value, as this is crucial for the
training time and accuracy of the generated model. We further
explore possible ways to reduce the input problem space and enable
faster and more resource-efficient learning.

Input Data. The data we have available for each application is a
memory access trace, as depicted in Figure 4. More specifically, it
is the sequence of the page accesses that were serviced from main
memory and not the processor’s hardware caches, as they happened
throughout the application run time. In Section 6 we describe in

41

HPDC ’19, June 22-29, 2019, Phoenix, AZ, USA

Memory Access Trace of bodytrack

<
0, <
0, 0
% %

<

Page ID (Space)
&

%

)

2000000 3000000 4000000

Memory Access (Time)

1000000

Figure 4: Example memory access trace, from the PARSEC
suite. For every consecutive memory access (x-axis) we plot
the page accessed (y-axis). The vertical gray lines correspond
to the scheduling epoch time intervals.

detail the way we acquire the trace and the exact information it
contains.

Learning Objective. The aim of the RNN training is to be able to
make predictions with respect to the number of future memory
accesses, so as to aggregate the accesses on an application page
granularity and then determine an ordering of heavily accessed
pages. These predictions need to happen periodically, when the
page scheduler is invoked, so that the appropriate page migrations
are determined and executed. That is future hot pages need to be
migrated to the memory technology component with lowest access
latency.

Training Time. One of our main considerations is to enable fast
learning via reduced training times and resource utilization opti-
mized techniques. The duration of training models can be critical
when considering use of machine intelligence in systems solutions,
which to be practical, must operate within limited time and compu-
tational resource budgets. Undoubtedly the use of computationally
robust technologies, like GPUs, TPUs, custom RNN accelerators,
can accelerate learning. However, in this paper our primary goal is
to explore ways to enable faster learning via the training method-
ology, that can further be boosted via appropriate hardware.

4.1 Across Pages Prediction

The most intuitive way to learn from a memory access trace is to
feed it ‘as-is’ into the RNN, following the x-axis in Figure 4. In
this case, the RNN looks into a subsequence of page accesses and
predicts the page to be accessed next. Such an RNN use case is
used by Hashemi et al. [12], for the purpose of prefetching future
memory address accesses.

This approach has several limitations:

1. Large training time. To begin with, the input trace usually
contains millions of memory accesses, especially at the data input
scales of High Performance Computing applications. This makes
training time prohibitively large, in the order of couple days, at
least when using the hardware setup described in Section 6.

High Performance Distributed Systems (Best Paper Nominees)

2. Low prediction accuracy. Furthermore, when the output value
space is significantly large (number of different pages), the RNN
prediction accuracy tends to be low. Neural networks work better
with normalized inputs (e.g., between 0 and 1 [12]). However, when
normalizing hundred thousand values in such a way (total number
of pages according to Table 1), there will be vast information loss.
This is the reason why Hashemi et al. [12], choose to reduce the
output value space (number of different memory addresses), by dis-
cretizing it into frequently appearing values (classes), and training
different RNNs across clusters of the address space covered by the
application. Most importantly, they accept top-k predictions at a
time, so as to increase the chances of a correct prediction. Although
this is acceptable for the purpose of prefetching, it is not the case
for a page placement decision, where a single prediction is needed,
in order to accumulate the number of per page accesses.

3. Not an exact fit for the page scheduler description. As de-
scribed in Section 1, the page scheduler operates periodically, ag-
gregating the per page access counts during an application runtime
interval referred to as scheduling epoch. Then the scheduler will
determine the appropriate page ordering and issue the necessary
migrations across the memory components. However, the number
of memory accesses differs across the scheduling epochs, as it is
visible by the vertical lines in Figure 4, where only 10% of the total
memory accesses happened during the first half of the scheduling
epochs. This is subject to the code executed during that time with
respect to its computation to data access ratio and the technology
parameters of the processor and memory regarding the time it takes
to execute an operation, load data, etc. Throughout our application
pool, we observe that just 10% of the total memory accesses happen,
on average, throughout the first 37% of the scheduling epochs. Thus,
there is no way to know before-hand how many accesses are going
to happen in the next scheduling epoch, that is how far in the future
the RNN should make predictions for (unless we train a different
RNN for that purpose!).

In conclusion, we reject the idea to treat the input access trace
as-is, given the restrictions described above. Next, we will see how
we can extract the necessary information from the trace, so as to
enable faster and accurate learning, that is also more suitable for
the functionality of a page scheduler.

4.2 Per Page Prediction

Instead of predicting which page is going to be accessed next (across
pages prediction), we flip the problem and explore the case of pre-
dicting when a page is going to be accessed next (per page predic-
tion). So instead of predicting the y-value following the x-axis, we
take each y-value (page) and predict the sum of accesses across
the scheduling epoch intervals on the x-axis. Thus, we propose
training individual RNNs for every single application page. So, we
feed into the per page RNN the sequence of access counts across
the scheduling epochs and predict the number of accesses that the
page will receive in the next scheduling epoch. In contrast with the
prediction across page, the per page prediction:

1. Fits the page scheduler description. The above transforma-
tion of the input access trace fits exactly the functionality of the
page scheduler, which will aggregate the page access counts on
a scheduling epoch interval, so as to order frequently accessed

42

HPDC ’19, June 22-29, 2019, Phoenix, AZ, USA

page access counts

Hot Page Ordering |

hotpages .~ _iest pages
|[DRAM | NVM |
Hybrid Memory System

Figure 5: Kleio is a hybrid memory page scheduler, that com-
bines the current state-of-the-art page placement methodol-
ogy together with machine intelligence based management
of the page subset, whose timely placement in the appro-
priate memory component is crucial for application perfor-
mance.

pages and appropriately migrate them across the hybrid memory
components.

2. Enables high prediction accuracy. Depending on the epoch
duration and hotness of the page, the maximum number of accesses
per epoch is in the order of hundreds, which is orders of magnitude
less than problem space that the prediction across pages needed
to capture, normalize and predict. Thus, this output value range is
more suitable for RNN training.

3. Allows for low training times. Having a different RNN model
per page, when the total number of pages can be in the order of hun-
dred thousands, is similar to having a single RNN model that makes
predictions across all these pages, as described earlier, since the in-
put problem size remains the same, as depicted in Figure 4. Similarly
to clustering techniques of the address space into memory regions
and focusing on the frequently appearing memory addresses, as
Hashemi et al. [12] did, there is scope to focus on the pages that are
critical to application performance, which will significantly reduce
the number of RNN models and overall training time, thus resource
consumption.

In Section 5 we describe in detail, the methodology of selecting
the most appropriate pages for training with respect to reaching a
desired level of application performance.

5 SOLUTION

We propose Kleio, a page scheduler for hybrid memory systems,
that leverages the existing state-of-the-art data management solu-
tions and optimizes application performance by delivering machine
intelligence based placement decisions for a cleverly selected page
subset.

Kleio Overview. Figure 5, summarizes Kleio’s internal function-

ality. Kleio takes the following actions periodically, that is on every

scheduling epoch:

1. Identifies the subset of application pages that are important to
performance, through its page selector component, described in
detail later on.

High Performance Distributed Systems (Best Paper Nominees)

HPDC ’19, June 22-29, 2019, Phoenix, AZ, USA

Pages Misplaced by History Page Scheduler across variable DRAM/NVM capacity ratios

B 15 M 1/16

132

rZ1 1/64 [1/128 1/256

D
q
D
q
D
q

\lesh)asble“(’\"ga APTOP oFS " oves

cksen \ood\l'“ack gpl gan“ea\ Cobr?

B

e .
mean® yan Leu\‘oC\JteLuﬂ“af\‘(a\;“’“ceswav“o“s gme2?

Figure 6: Percentage of pages misplaced at least one time across the scheduling epochs by the History page scheduler. This
is the set of pages that need machine intelligence based management. This observation is crucial since it highlights that the
problem space of per page RNN training can be significantly reduced as the size of available DRAM does.

lulesh
100 4 == xsbench
=e= BackProp
90 1 ..@- BFS
== blackscholes
o 80 1 === hodytrack
=] —e: BPT
@ 701 - canneal
g 60 —o— Cobra
s =o= dedup
< 50+ == fluidanimate
o --@-- HybridEncoder
e 40 - —8= Kmeans
mmgm= Knn
30 DRAM/NVM = 1/8 =&+ |eukocyte
1/32 for lulesh and xsbench @ Luxmark
20 —— raytrace
=—8= swaptions

N EEEEEEEES
Percentage of ordered pages misplaced by History
and managed by Oracle

Figure 7: DRAM hit rate when an Oracle Page scheduler man-
ages the misplaced-by-History pages and the History page
scheduler manages the rest. Pages are ordered in descending
performance benefit. Clever management of even a small
percentage of these pages, can give most of the performance
benefits we would have by managing cleverly all pages.

2. Trains an individual RNN for each of the important pages, in or-
der to predict the page access counts for the following scheduling
epoch.

3. For the rest of the pages, Kleio assumes that they will preserve
their access counts in the following epoch, as the current state-
of-the-art History page scheduler does, as described in Section 1.

4. At this point, Kleio has accumulated the per page access counts
for the next scheduling epoch. It then orders the pages in de-
scending access frequency order, prioritizing DRAM allocation
for the hot pages, until capacity is full. This methodology is pre-
dominantly used for performance optimal data tiering in hybrid
memory systems [9, 11, 27].

Following the above steps, Kleio is able to bridge the performance
gap between the Oracle and History page schedulers, as described
in Section 1. Full evaluation of Kleio, with respect to the machine
intelligence accuracy and application performance optimization is
done is Section 7.

43

5.1 Page Selector

We first describe the page selector component in Kleio. Its design
is driven by the following observations regarding the importance
of correct page placement to application performance:

o There is only a certain subset of pages that needs more clever
data management, than what the existing history-based solutions
can provide. That subset is significantly small for limited DRAM
capacity.

Pages that need machine intelligence based management, can be

ordered with respect to the performance impact of their place-

ment into the appropriate memory component. We define a

benefit metric that enables the page ordering, prioritizing pages

with high access counts and number of misplacements by the

History page scheduler.

o Intelligent management of the pages following the aforemen-
tioned ordering does not correspond to linear performance im-
provement. In contrast, intelligent placement for only (a small)
part of them can bring most of the performance benefits we
would get by applying intelligent placement across all applica-
tion pages.

We define a ‘misplacement’ of a page by the History scheduler,
when at the start of a scheduling epoch, a page was supposed to be
allocated in DRAM, but it was not, because of wrong hotness pre-
diction. Figure 6 depicts the percentage of application pages, which
are misplaced by the History page scheduler, at least during one
scheduling epoch, across reducing DRAM capacity. This signifies
the set of pages that need more clever management. In combination
with the actual per application page count summarized in Table 1
and the limited DRAM capacity, the number of such pages can be in
the order of hundreds. This drastically reduces the problem space
of RNN training.

However, even by reducing the number of such pages, there
still may not be enough resources or time to train per page RNN
models. Thus, there needs to be a priority ordering of these pages,
so as to cleverly manage those that can give the biggest application
performance boost, when timely placed into DRAM. For this reason,
we capture the importance of a page in the benefit that its correct
placement would provide to application performance. The benefit
increases with the hotness of a page, similarly to prioritizing fre-
quently accessed pages for DRAM allocations across the scheduling
epochs. However, we also need to take into account the number of
misplacements-by-the-history-scheduler each page received, as the
timely placement of a page in DRAM together with its hotness, will

High Performance Distributed Systems (Best Paper Nominees)

! =il
i DRAM:NVM : : ALL pages I'; performance
| e i goal

History Page 1. Misplacements |

Scheduler

i
'
i
1
1
1
1
1
1
1
I \
1
1
1
1
1
1
1
1
i
\

‘\‘ | 2. Benefit Ordering |

Oracle Page “‘ l
Scheduler \’1 3. Performance Curve |<—‘—

1

\
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
T

important pages

rest pages

Figure 8: Kleio’s page selector component is able to identify
the pages whose machine intelligence based management
will bring the highest application performance improve-
ments, while enabling focused and practical RNN training,.

boost performance. To this extent, we define the following benefit
factor for prioritizing the pages in need of RNN training.

Benefit = Number of accesses X Number of misplacements

Next, we capture the range of application performance boost
we would get, if we could manage part of the aforementioned mis-
placed pages with the Oracle page scheduler and the rest with the
History page scheduler, since it already places hot pages in DRAM
in time. This will set the upper limit of the performance boost we
can get with RNN training of the misplaced pages. Figure 7 captures
this performance improvement. When the Oracle scheduler man-
ages 0% of the misplaced pages, it is equivalent to all pages being
managed by the History scheduler, thus is the lowest bound of per-
formance. In contrast, when the Oracle scheduler manages 100% of
the misplaced pages, it is equivalent to the Oracle managing all the
application pages, since the rest of the pages were not misplaced by
the History scheduler. That sets the upper bound of performance
we can have on a per application basis. We observe a non-linear re-
lation between the set of pages and the performance enhancement.
This is due to the page ordering with respect to the defined benefit
factor, that is able to prioritize hot pages, whose timely DRAM
allocation guarantees significant performance improvement. For
example, in the case where the curve shows a distinct knee, the
pages after the knee, received far less accesses, thus their timely
DRAM placement will bring trivial benefit to the DRAM hit rate.

Kleio’s page selector component captures the above observations
and provides insight into the relation between the number of pages
that need RNN training together with a best case scenario of corre-
sponding application performance improvement. Figure 8 summa-
rizes the work flow of the page selector component.

6 METHODOLOGY
6.1 Applications

Table 1 summarizes the set of workloads we used to motivate and
evaluate Kleio, spanning across domains with representative com-
putation kernels and stressing different components of the sys-
tem (e.g., memory, CPU, GPU). We included workloads from the
CORAL [1] suite, the PARSEC [3] suite utilizing the simlarge input

44

HPDC ’19, June 22-29, 2019, Phoenix, AZ, USA

sizes, and Rodinia [5], with the default input data sizes. Finally, we
also included few Windows desktop applications.

Concerning the memory footprint of these applications, Table 1
includes this information as a multiple of 4 KB pages, that gives a
range of couple hundred MBs. Such significant memory footprint
(e.g., relative to the cycle-level memory simulations) is necessary
for our analysis, so as to capture the use case where the data will
span across multiple main memory components, due to the limited
capacity of available DRAM in future hybrid memory systems.

Regarding the application runtime, it is again summarized in
Table 1, as a multiple of the scheduling epoch intervals, when the
page scheduler is periodically triggered throughout application ex-
ecution. Our applications serve a variety of short and long running
executions. Due to the difference in the trace collection methodol-
ogy, for the CORAL workloads the scheduling epoch interval is 1
second, whereas for the rest is 0.01 seconds.

6.2 Memory Access Trace Collection

For each application we collect detailed traces of the data accesses
that missed the last level of processor hardware caches and resulted
in main memory accesses. For the CORAL workloads we used
the Instruction Based Sampling (IBS) that is available on AMD’s
processors. This mechanism samples every Nth micro-operation,
that goes through the processor’s pipeline, out of which we filter
the loads and stores. For the rest of the workloads, we collected
unsampled traces for memory accesses that miss the last level cache
on a system with an AMD A10-5800K APU clocked at 3.8GHz and
16GB memory. The information included for each individual access
is a timestamp, the physical and virtual memory address, the CPU
core ID, the application thread ID, whether the access was a load or
a store and a hit or miss. For the purpose of our analysis, we extract
the 4 KB virtual page ID, that corresponds to the virtual memory
address accessed and we group memory accesses into scheduling
epoch intervals according to the timestamp, as depicted in Figure 4.

6.3 Hybrid Memory System Simulation

We simulate a hybrid memory system that contains a fast mem-
ory component (i.e., DRAM) and one with lower access latency
(i.e., NVM). Both memory technologies serve as flat main memory,
as they are part of a continuous physical memory address space.
Table 2 summarizes the technology parameters of the simulated
memory types. The capacity of the memory system is assumed to
be the application’s memory footprint. For example, when we refer
to a DRAM/NVM capacity ratio of 1/16, we mean that DRAM will
have space to accommodate 1/16 of the application pages and NVM
will service the rest.

Apart from gathering the DRAM hit rate as an application perfor-
mance metric, we also use the analytical model used by Meswani et
al. [20] to extrapolate the application runtime, based on the number
of accesses that are serviced from DRAM and NVM appropriately.
In the case of the CORAL workloads, the number of accesses is
properly adjusted based on the sampling rate. The model uses the
Leading Loads method, which splits the application runtime into
the time to perform computations and the time to satisfy memory
requests, via the use of hardware performance counters. Regarding
the time to service a memory request, the method maps it to the

High Performance Distributed Systems (Best Paper Nominees)

Technology | R/'W BW (GB/s) | Seq. & Rand. R/W Latency (ns)
DRAM 19.2/19.2 8/8 & 50/50
NVM 10.24/1.024 8/8 & 100/1000

Table 2: Technology parameters used in the simulated hy-
brid memory system, differentiating for Reads (R) and
Writes (W) and sequential versus random accesses.

time spent servicing the leading (first out of many) load request
that misses the last level hardware cache. This load time depends
on the memory technology that serviced the request (e.g., DRAM
versus NVM), whose differences are summarized in Table 2. This
gives us a worst case performance estimate, since it does not take
into account actions that reduce latency, such as parallel compu-
tation or prefetching. Also, we assume dedicated DMA engines
that allow seamless page migration, which is overlapped with the
computation, as explored in [14, 19].

6.4 Neural Network Details

Neural Network Layout. Figure 3 gives a visual representation
of the RNN we deployed, consisting of LSTM neurons. The network
consists of two stacked RNN layers with 128 LSTM neurons each,
followed by a Dense Layer. The history length is 16, thus the input
data series is split in sequences of length 16, on a rolling window
fashion, while 70% of them are used as a training dataset and 30% of
them for validation. The neural network tries to minimize the mean
squared error (loss) between the predicted and actual values, using
the Adam [16] optimizer on a learning rate of 0.001. The model
training stops, if the loss for the validation dataset is not reduced
for 20 consecutive training epochs. The duration and accuracy of
the trained models is reported in Section 7.

Data Manipulation. As described in Section 4.2, the RNN input
corresponds to a sequence of per page access counts during consecu-
tive scheduling epochs, while the output is the predicted number of
accesses the page will receive during the next epoch. The predicted
number will then be used by the page scheduler to determine the
hotness order across all pages. Thus, there is room for the prediction
to be slightly different than the actual number of accesses, as long
as it will not influence the hotness order of the page, and therefore
its placement decision, on the particular scheduling epoch.

Therefore, we normalize the input sequences between 0 and
1, since RNNs work better in this case as observed by Hashemi
et al. [12] and then denormalize the data for the final prediction.
Different from [12], there is no need for us to make predictions over
distinct integers, treating the prediction problem as classification.
Our experiments with the classification approach, highlighted the
possibility of misprediction with a great margin from the actual
value and gave reasoning as to why Hashemi et al. [12] chose to
consider top-k predictions at a time. Although this approach works
great with the prefetching logic, where more data can be prefetched
even if they do not end up being accessed, this is not necessary for
the purpose of our predictions.

It is important to observe that, even though the input data (memory
access trace) is the same between this work and [12], the prediction
use case transforms the way they should be manipulated for RNN
training and the accepted level of prediction accuracy.

45

HPDC ’19, June 22-29, 2019, Phoenix, AZ, USA

Implementation. We use the Keras [6] high level API to deploy
the described RNN layout, using the existing implementations for
the LSTM neurons, the network layers connectivity, the Adam op-
timizer and model training, applying any default hyper-parameter
values if not explicitly mentioned above. The backend RNN execu-
tion engine is Tensorflow [2].

Hardware Testbed. We conduct experiments using an AMD ma-
chine with 512 GB memory and 64 Opteron™ 6370P CPU cores of
2 GHz each. CPUs have been used to accelerate RNN-based deep
learning models [32]. Kleio speeds up the training by intelligently
selecting to train the application pages that will bring actual per-
formance benefits. Instead, a more naive approach would rely on
accelerators and rack-scale size machines in order to accommodate
RNNss for all pages, wasting resources for training models whose
predictions have trivial performance impact or can be achieved by
simple history-based policies.

7 EVALUATION

In Section 5.1 and in particular in Figure 7, we showed the trend of
performance improvements Kleio can provide, assuming oracular
knowledge of the access counts of the pages that are in need of
machine intelligence based placement. In this section, we evalu-
ate Kleio with respect to the actual application performance im-
provements it can provide. We report how close to the Oracle page
scheduler Kleio can perform, when managing the pages that are
misplaced by the History page scheduler. We also summarize the
accuracy of the RNN predictions and the RNN training overheads.
Together with the achieved performance, these make a case for
Kleio’s practicality.

7.1 Application Performance

First, we evaluate the accuracy of Kleio’s RNN training with re-
spect to the corresponding application performance improvements,
which is what Kleio promises to deliver. As a reminder, Kleio iden-
tifies the pages that are misplaced by the History page scheduler
and applies RNN training in order to get predictions of their per
epoch access counts and determine the global page hotness or-
der for prioritizing DRAM allocations. If the RNN predictions are
extremely accurate, then it would be equivalent to having an Or-
acle page scheduler manage the misplaced pages. To this extent,
Figure 9a depicts the performance that Kleio can achieve when ap-
plying RNN training to 100 pages in the order defined by its page
selector component, for a given DRAM/NVM capacity ratio. We fix
DRAM/NVM=1/32 for the CORAL workloads and DRAM/NVM=1/8
for the rest, which is the capacity ratio for which the clever man-
agement of even a small number of pages, can bring significant
performance improvements (Figure 7). Performance is normalized
between 0%, when all pages are managed by History page scheduler
and 100%, when the selected pages are managed by Oracle and the
rest by History. In this way, we can understand the degree to which
the RNN predictions are sufficiently accurate, so as to provide all
the possible performance improvement.

We observe that in most cases, the RNN predictions are suf-
ficiently accurate to bring 80% of the possible performance im-
provement, on average and more than 95% for half of the appli-
cations that we considered. Unfortunately, there are cases such

High Performance Distributed Systems (Best Paper Nominees)

as bodytrack and raytrace, where less than 50% of the possible
speedup is achieved, in which case more pages need to be trained
so as to further provide significant speedup.

Overall, we prove that the accuracy of the RNN predictions is
such that it can deliver application performance similar to what
would be possible with oracular knowledge of the access frequency.
Kleio’s page selector is useful, so as to determine the number of
pages that is necessary to train in order to observe significant
performance improvements.

7.2 Prediction Accuracy

We next present the actual prediction accuracy of the per page RNN
training. Figure 9b depicts the distribution of the Mean Absolute
Error (MAE), in boxplot representation, between the cumulative
per epoch page access counts and the actual values, across the
trained application pages. For example, mean MAE of 30, means
that the RNN predicted 30 more accesses on average per epoch per
page. On the same graph, we treat the decisions of the History page
scheduler also as predictions and plot the corresponding MAE. The
History page scheduler predicts that on the next scheduling epoch
a page will receive the same access counts as to those of the current
epoch.

As expected, the History prediction can be far from reality, as it
is common for a page to convert from being frequently accessed
to not being accessed at all on two consecutive epochs, thus the
prediction MAE can be significantly high. In contrast, the RNN
is able to make better predictions via the efficient LSTM learning,
although still they may seem not as accurate enough. However, as
explained in Section 6, even if the per epoch access count prediction
is not extremely accurate, as long as it does not affect the correct
global page hotness order and actual page placement, there will
be no application performance impact of the prediction. This is
highlighted in Figure 9a, where for example Luxmark has a mean
MAE of 50, though still achieves 85% of the possible performance
improvements.

Figure 9c, further strengthens the above statement by showing
the percentage reduction of page misplacements achieved by Kleio
for the selected trained pages, compared to the History page sched-
uler across all pages. Although, Kleio still misplaces the selected
pages on some scheduling epochs, the per page access count during
those epochs is not big enough to drastically impact the DRAM hit
rate. Thus, Kleio manages to reduce on average 85% of the selected
pages misplacements across the application lifetime.

7.3 Resource Utilization

As summarized in Section 6, RNN training goes on until there is
no further reduction of the loss over the validation data for a cer-
tain number of training epochs. The duration of the training is
primarily affected by the network layout itself, that is the hyper-
parameter values and the length together with the number of the
input sequences. Thus, the more training data the longer it takes
to learn. Since we perform training on a per application and per
page granularity, the number of input sequences is the number of
scheduling epochs, divided by the history length hyperparameter.
Looking back at Table 1, this number will be in the order of couple
hundreds, which enables fast training times.

46

HPDC ’19, June 22-29, 2019, Phoenix, AZ, USA

Performance improvement
via RNN predictions for DRAM/NVM = 1/8

100 1 = = — = =
[O) H M H - o
=g - I
<<] H
[
== L H
T
DRAM/NVM = 1/32 for lulesh and xsbench
Emn- = T — = =
oz M M 1 M n M M
S<
O 50
L;:’_rv
£
£ o T [l A< o
\“\ei\}%c ‘eﬁ gg % &&ég"%\‘&&“@&“ N ‘4 ua 9‘}@“@

(a) Performance achieved by machine intelligence based manage-
ment of the first 100 most important to performance pages, while a
History page scheduler manages the rest. Hit rate is normalized be-
tween 0, that is the worst-case where all application pages are man-
aged by History and 100, that is the ideal case where Oracle manages
these 100 pages. Kleio can deliver over 80% (gmean) of the perfor-
mance improvements that an Oracle page scheduler would for the
selected pages.

Prediction MAE for DRAM/NVM = 1/8

S DRAM/NVM = 1/32 for lulesh’and xsbench

= —— History

L 15

o 190 - @ — Kleio

5

2 100 %.

9

2

< 50 % %I

c

5L rlas Abdh Ll
o 2o,

W %\ac*y(ﬁgs‘éf’c Aﬂ“%?‘a““e@“‘ § ““%‘%\@ e\;\kﬁ« SR

(b) Prediction accuracy of the number of access counts across the
scheduling epochs for the selected trained pages.

Reduction i in page m|’s\ﬁ>lacements for DRAM/NVM =1/8

=.1/32 for lulesh and xsbench

Percentage

we %% c?%\,;‘l\"é“é&“%(?&““io‘oék 3‘\\‘% «\63‘7{&‘4\» @‘l‘«a@‘g‘(\‘aﬂ

(c) Reduction in the number of page misplacements via the achieved
RNN prediction accuracy, compared to the History page scheduler.

Figure 9: Evaluation of the application performance Kleio
can deliver.

More specifically, we report the following average metrics across
pages and across applications, for the given hardware testbed de-
scribed in Section 6. Training lasts on average for 120 training
epochs, that translates into a time duration of 2 hours per model,
when all models are trained at the same time, utilizing all system’s
resources. As far as memory utilization during training is concerned,
the maximum observed per model was in the order of tens of GBs.
Finally, regarding the storage overheads of saving the models after
training, for the purpose of future inference and analysis, using the
Hierarchical Data Format (.hdf5) available from the Keras library,
it was less than 0.5 MB per model. Regarding the resource utiliza-
tion for the purpose of inference, it was trivial and the duration
instantaneous (3-4 seconds).

High Performance Distributed Systems (Best Paper Nominees)

Putting all this information together, there is no doubt that the
hardware resource requirements of RNN training are significant,
especially as far as memory consumption is concerned. However,
training times in the order of couple hours are generally considered
to be low, for machine intelligence purposes. Furthermore, the
training time can be further reduced using more computationally
robust hardware. Either way, the user may be limited with respect
to how many per page models can train, given the available system
resources.

Kleio has provisioned for the case of limited hardware resources
through its page selector component, that provides the user with in-
formation regarding which pages to prioritize for RNN training and
the corresponding expected application performance improvements.

Reaching our initial Goals.

1. Kleio promises to bridge the performance gap between the Ora-
cle and History page schedulers, delivering on average 80% of
the theoretically possible performance when managing selected
pages, through the achieved RNN prediction accuracy.

2. Kleio delivers low training and inference times, via deploying
RNN models for cleverly selected application pages, whose timely
placement in DRAM significantly boosts performance. Kleio
shows that not all pages are in need of intelligent data manage-
ment, drastically reducing the input problem space.

8 RELATED WORK

Kleio is a research artifact that utilizes neural networks in order to
enable learning of a workload’s memory access behavior for the
purpose of application page placement across a hybrid memory
system. In this section, we describe some of the machine intelligence
approaches used in the system’s community, focusing either on
other relevant problems or just other aspects of data management
in hybrid memory systems.

Regarding the usage of RNNs in the system software stack or
in hardware, there has already been a significant amount of re-
search. To begin with, RNNs have been proposed for the purpose
of memory prefetching by Hashemi et al. [12] as well as Zeng et
al. [31]. We have made multiple points in Sections 4 and 6 about
how differently we deploy RNNs and the importance of considering
the manipulation of the input data to be appropriate for the use
case of the trained model. Concerning other use cases of RNNs, the
authors of Desh [8] deploy them in order to predict node failures
in Supercomputing environments, so as to timely migrate com-
putation towards live nodes. In addition, RNNs can be utilized in
order to learn I/O block level access patterns, so as to optimize
the performance of flash storage device usage [4]. Furthermore,
RNNss could also be used over standard resource usage statistics
and kernel-level events, so as to predict future resource usage of
applications [26]. Finally, the authors of DeepCache [24] build a
content caching framework utilizing RNNs and in particular the
LSTM Encoder - Decoder model.

Regarding hybrid memory data management, we already refer
to a significant number of solutions without machine intelligence
in Section 1, such as [20, 27, 28]. As far as proposals with machine
intelligence are concerned, the authors of Tahoe [29] explore super-
vised machine learning techniques (multiple linear regression and

47

HPDC ’19, June 22-29, 2019, Phoenix, AZ, USA

artificial neural networks), in order to predict application perfor-
mance baselines that will be part of the data object placement cost
across the hybrid memory components. Moreover, an alternative
approach to hybrid memory and distributed memory designs is to
leverage the knowledge about specific application algorithms to
direct data placement, rather than make the scheduling decisions
based on memory access trace data (thus treating the workloads as
ablack box). Additionally, Wu et al. [30] demonstrate that algorithm
features, common numerical operations, and algorithm structures
can be leveraged to direct data placement for conjugate gradient,
fast Fourier transform, and LU decomposition for a matrix. They
also introduce a hardware customized DMA mechanism for bulk
data movement which is complimentary to this work. The k-means
NUMA Optimized Routine (knor) library [21] optimizes k-means
for modern NUMA architectures and minimizes synchronization
barriers.

With respect to similar system problems, Selecta [17] utilizes
latent factor collaborative filtering, in order to find the configuration
of cloud compute and storage resources that provides optimal cost-
to-performance trade-offs. Finally, Kraska et al. [18] demonstrate
the benefits of having machine intelligence based data indexing
and argue that the replacement of parts of the data management
stack with machine Intelligence based components will provide
significant performance benefits.

9 SUMMARY

We present Kleio, a page scheduler with machine intelligence for
applications that execute over hybrid memory systems. Kleio lever-
ages the current state-of-the-art scheduling methodology based
on the intuitive observations that frequently accessed pages need
to be placed in the fastest memory component and the fact that
such pages will remain frequently accessed for a period of time.
Going a step further than existing solutions, Kleio applies recurrent
neural network training to detect page access behavior, that cannot
be captured by the above observations, such as sudden changes
in the access frequency of a page. Furthermore, Kleio drastically
reduces the number of pages that need neural network training,
by detecting the ones whose clever placement will actually bene-
fit application performance. In this way, Kleio delivers a practical
machine intelligence solution and achieves performance improve-
ments close to the ones established by having a-priori knowledge
of the workload’s memory access pattern.

ACKNOWLEDGMENTS

This work was partially supported by NSF award SPX-1822972,
the DOE ECP project on Simple Interfaces for Complex Memories
(SICM) and the DOE SSIO Unity project.

AMD, the AMD Arrow logo, AMD Opteron, and combinations
thereof are trademarks of Advanced Micro Devices, Inc. Windows
is a registered trademark of Microsoft Corporation. Other product
names used in this publication are for identification purposes only
and may be trademarks of their respective companies.

© 2019 Advanced Micro Devices, Inc. All rights reserved.

High Performance Distributed Systems (Best Paper Nominees)

REFERENCES

[1] 2018. CORAL Benchmark Codes. https://asc.llnl.gov/CORAL-benchmarks/.
[2] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

[10

[11

[12

(13

[14

[15

]

]

]

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
http://tensorflow.org/ Software available from tensorflow.org.

Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D. Dissertation.
Princeton University.

Chandranil Chakraborttii, Vikas Sinha, and Heiner Litz. 2018. SSD QoS Im-
provements Through Machine Learning. In Proceedings of the ACM Sympo-
sium on Cloud Computing (SoCC ’18). ACM, New York, NY, USA, 511-511.
https://doi.org/10.1145/3267809.3275453

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A Benchmark Suite for Heterogeneous
Computing. In Proceedings of the 2009 IEEE International Symposium on Workload
Characterization (ISWC) (ISWC "09). IEEE Computer Society, Washington, DC,
USA, 44-54. https://doi.org/10.1109/TISWC.2009.5306797

Francois Chollet et al. 2015. Keras. https://keras.io.

Chiachen Chou, Aamer Jaleel, and Moinuddin Qureshi. 2017. BATMAN: Tech-
niques for Maximizing System Bandwidth of Memory Systems with stacked-
DRAM. In Proceedings of the International Symposium on Memory Systems (MEM-
SYS ’17). ACM, New York, NY, USA, 268-280. https://doi.org/10.1145/3132402.
3132404

Anwesha Das, Frank Mueller, Charles Siegel, and Abhinav Vishnu. 2018. Desh:
Deep Learning for System Health Prediction of Lead Times to Failure in HPC.
In Proceedings of the 27th International Symposium on High-Performance Parallel
and Distributed Computing (HPDC ’18). ACM, New York, NY, USA, 40-51. https:
//doi.org/10.1145/3208040.3208051

Thaleia Dimitra Doudali and Ada Gavrilovska. 2017. CoMerge: Toward Efficient
Data Placement in Shared Heterogeneous Memory Systems. In Proceedings of
the International Symposium on Memory Systems (MEMSYS °17). ACM, New York,
NY, USA, 251-261. https://doi.org/10.1145/3132402.3132418

Thaleia Dimitra Doudali and Ada Gavrilovska. 2018. Mnemo: Boosting Memory
Cost Efficiency in Hybrid Memory Systems. In Proceedings of the ACM Symposium
on Cloud Computing (SoCC ’18). ACM, New York, NY, USA, 523-523. https:
//doi.org/10.1145/3267809.3275465

Subramanya R. Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan Sundaram,
Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten Schwan. 2016. Data
Tiering in Heterogeneous Memory Systems. In Proceedings of the Eleventh Euro-
pean Conference on Computer Systems (EuroSys ’16). ACM, New York, NY, USA,
Article 15, 16 pages. https://doi.org/10.1145/2901318.2901344

Milad Hashemi, Kevin Swersky, Jamie Smith, Grant Ayers, Heiner Litz, Jichuan
Chang, Christos Kozyrakis, and Parthasarathy Ranganathan. 2018. Learning
Memory Access Patterns. In Proceedings of the 35th International Conference on
Machine Learning (Proceedings of Machine Learning Research), Jennifer Dy and
Andreas Krause (Eds.), Vol. 80. PMLR, StockholmsmAdssan, Stockholm Sweden,
1919-1928. http://proceedings.mlr.press/v80/hashemil8a.html

Engin Ipek, Onur Mutlu, José F. Martinez, and Rich Caruana. 2008. Self-
Optimizing Memory Controllers: A Reinforcement Learning Approach. SIGARCH
Comput. Archit. News 36, 3 (June 2008), 39-50. https://doi.org/10.1145/1394608.
1382172

Stefan Kaestle, Reto Achermann, Timothy Roscoe, and Tim Harris. 2015.
Shoal: Smart Allocation and Replication of Memory For Parallel Programs. In
2015 USENIX Annual Technical Conference (USENIX ATC 15). USENIX Associ-
ation, Santa Clara, CA, 263-276. https://www.usenix.org/conference/atc15/
technical-session/presentation/kaestle

Sudarsun Kannan, Ada Gavrilovska, Vishal Gupta, and Karsten Schwan. 2017.
HeteroOS - OS Design for Heterogeneous Memory Management in Datacenter.
In 44th International Symposium on Computer Architecture (ISCA’17). Toronto,
ON.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimiza-
tion. CoRR abs/1412.6980 (2014). arXiv:1412.6980 http://arxiv.org/abs/1412.6980

48

(17]

[18

[19

[20]

)
=

[22

[23

[25]

[26

[28

[29

[30

[31

[32

HPDC ’19, June 22-29, 2019, Phoenix, AZ, USA

Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2018. Selecta: Heterogeneous
Cloud Storage Configuration for Data Analytics. In Proceedings of the 2018 USENIX
Conference on Usenix Annual Technical Conference (USENIX ATC ’18). USENIX
Association, Berkeley, CA, USA, 759-773. http://dl.acm.org/citation.cfm?id=
3277355.3277429

Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2017. The
Case for Learned Index Structures. CoRR abs/1712.01208 (2017). arXiv:1712.01208

http://arxiv.org/abs/1712.01208
Felix Xiaozhu Lin and Xu Liu. 2016. Memif: Towards Programming Heteroge-

neous Memory Asynchronously. SIGARCH Comput. Archit. News 44, 2 (March
2016), 369-383. https://doi.org/10.1145/2980024.2872401

M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski, and G. H. Loh.
2015. Heterogeneous memory architectures: A HW/SW approach for mixing
die-stacked and off-package memories. In 2015 IEEE 21st International Symposium
on High Performance Computer Architecture (HPCA), Vol. 00. 126-136. https:
//doi.org/10.1109/HPCA.2015.7056027

Disa Mhembere, Da Zheng, Carey E. Priebe, Joshua T. Vogelstein, and Randal
Burns. 2017. Knor: A NUMA-Optimized In-Memory, Distributed and Semi-
External-Memory K-means Library. In Proceedings of the 26th International Sym-
posium on High-Performance Parallel and Distributed Computing (HPDC ’17). ACM,
New York, NY, USA, 67-78. https://doi.org/10.1145/3078597.3078607

Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio,
Benoit Steiner, Yuefeng Zhou, Naveen Kumar, Rasmus Larsen, and Jeff Dean.
2017. Device Placement Optimization with Reinforcement Learning. https:
//arxiv.org/abs/1706.04972

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518, 7540
(Feb. 2015), 529-533. http://dx.doi.org/10.1038/nature14236

Arvind Narayanan, Saurabh Verma, Eman Ramadan, Pariya Babaie, and Zhi-
Li Zhang. 2018. DeepCache: A Deep Learning Based Framework For Content
Caching. In Proceedings of the 2018 Workshop on Network Meets Al & ML (NetAI'18).
ACM, New York, NY, USA, 48-53. https://doi.org/10.1145/3229543.3229555
Mark Oskin and Gabriel H. Loh. 2015. A Software-Managed Approach to Die-
Stacked DRAM. In Proceedings of the 2015 International Conference on Parallel
Architecture and Compilation (PACT) (PACT ’15). IEEE Computer Society, Wash-
ington, DC, USA, 188-200. https://doi.org/10.1109/PACT.2015.30

Florian Schmidt, Mathias Niepert, and Felipe Huici. 2018. Representation Learning
for Resource Usage Prediction. CoRR abs/1802.00673 (2018). arXiv:1802.00673
http://arxiv.org/abs/1802.00673

Du Shen, Xu Liu, and Felix Xiaozhu Lin. 2016. Characterizing Emerging Het-
erogeneous Memory. In Proceedings of the 2016 ACM SIGPLAN International
Symposium on Memory Management (ISMM 2016). ACM, New York, NY, USA,
13-23. https://doi.org/10.1145/2926697.2926702

Kai Wu, Yingchao Huang, and Dong Li. 2017. Unimem: Runtime Data Manage-
menton Non-volatile Memory-based Heterogeneous Main Memory. In Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC '17). ACM, New York, NY, USA, Article 58, 14 pages.
https://doi.org/10.1145/3126908.3126923

Kai Wu, Jie Ren, and Dong Li. 2018. Runtime Data Management on Non-volatile
Memory-based Heterogeneous Memory for Task-parallel Programs. In Proceed-
ings of the International Conference for High Performance Computing, Network-
ing, Storage, and Analysis (SC '18). IEEE Press, Piscataway, NJ, USA, Article 31,
13 pages. http://dlLacm.org/citation.cfm?id=3291656.3291698

Panruo Wu, Dong Li, Zizhong Chen, Jeffrey S. Vetter, and Sparsh Mittal. 2016.
Algorithm-Directed Data Placement in Explicitly Managed Non-Volatile Memory.
In Proceedings of the 25th ACM International Symposium on High-Performance
Parallel and Distributed Computing (HPDC ’16). ACM, New York, NY, USA, 141-
152. https://doi.org/10.1145/2907294.2907321

Yuan Zeng and Xiaochen Guo. 2017. Long Short Term Memory Based Hard-
ware Prefetcher: A Case Study. In Proceedings of the International Symposium
on Memory Systems (MEMSYS ’17). ACM, New York, NY, USA, 305-311. https:
//doi.org/10.1145/3132402.3132405

Minjia Zhang, Samyam Rajbhandari, Wenhan Wang, and Yuxiong He. 2018.
DeepCPU: Serving RNN-based Deep Learning Models 10x Faster. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18). USENIX Association, Boston, MA,
951-965. https://www.usenix.org/conference/atc18/presentation/zhang- minjia

