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ABSTRACT

The increasing demand of big data analytics for more main memory
capacity in datacenters and exascale computing environments is
driving the integration of heterogeneous memory technologies. The
new technologies exhibit vastly greater di�erences in access laten-
cies, bandwidth and capacity compared to the traditional NUMA
systems. Leveraging this heterogeneity while also delivering appli-
cation performance enhancements requires intelligent data place-
ment.We presentKleio, a page scheduler withmachine intelligence
for applications that execute across hybrid memory components.
Kleio is a hybrid page scheduler that combines existing, lightweight,
history-based data tiering methods for hybrid memory, with novel
intelligent placement decisions based on deep neural networks. We
contribute new understanding toward the scope of bene�ts that
can be achieved by using intelligent page scheduling in comparison
to existing history-based approaches, and towards the choice of the
deep learning algorithms and their parameters that are e�ective for
this problem space. Kleio incorporates a newmethod for prioritizing
pages that leads to highest performance boost, while limiting the
resulting system resource overheads. Our performance evaluation
indicates that Kleio reduces on average 80% of the performance gap
between the existing solutions and an oracle with knowledge of
future access pattern. Kleio provides hybrid memory systems with
fast and e�ective neural network training and prediction accuracy
levels, which bring signi�cant application performance improve-
ments with limited resource overheads, so as to lay the grounds for
its practical integration in future systems.
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1 INTRODUCTION

Modern systems are frequently designed using heterogeneous mem-
ory components. These memories are typically leveraged for ex-
tending main memory capacity or for caching purposes. There are
natural trade-o�s in the hybrid memory systems (HMS) compris-
ing heterogeneous components. Typically deeper memory (further
from the compute unit (CPU/GPU) hasmore capacity albeit at larger
latency and reduced bandwidth.

We consider one such HMS scenario comprising of DRAM and
Non Volatile Memory (NVM) and focus on the problem of extending
main memory capacity. An important artifact of HMS is addressing
the limitations of increased latency and decreased bandwidth with
deeper memories. In our case, a page scheduler – the memory
management layer of operating and runtime systems – is respon-
sible for the page migration across the heterogeneous memory
components. An e�ective page scheduler is responsible for ensur-
ing that hot pages – the ones that are accessed frequently – are readily
available in faster memory (DRAM). This is an intricate task, espe-
cially it is a complex combination of access pattern of pages in an
application, and its runtime parameters (input size, strong/weak
scaling, etc.). To address this challenge, several researchers have
considered solutions whose implementation can be integrated in
the hardware-, compiler-, Operating System-, runtime-, hypervisor-
or application pro�ling-level [7, 9, 11, 15, 20, 27–29]. A common
theme among these approaches is that they rely exclusively on
historic information about page accesses. Speci�cally, the state-
of-the-art [20, 27, 28] in system-level dynamic page management
solutions for HMS utilize the immediate observed behavior to make
decisions on the best future page placement. However, as we show
in this paper, the mispredictions regarding future page access re-
sulting from use of historic information alone, can leave an up to
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Technology R/W BW (GB/s) Seq. & Rand. R/W Latency (ns)

DRAM 19.2/19.2 8/8 & 50/50

NVM 10.24/1.024 8/8 & 100/1000

Table 2: Technology parameters used in the simulated hy-

brid memory system, di�erentiating for Reads (R) and

Writes (W) and sequential versus random accesses.

time spent servicing the leading (�rst out of many) load request
that misses the last level hardware cache. This load time depends
on the memory technology that serviced the request (e.g., DRAM
versus NVM), whose di�erences are summarized in Table 2. This
gives us a worst case performance estimate, since it does not take
into account actions that reduce latency, such as parallel compu-
tation or prefetching. Also, we assume dedicated DMA engines
that allow seamless page migration, which is overlapped with the
computation, as explored in [14, 19].

6.4 Neural Network Details

Neural Network Layout. Figure 3 gives a visual representation
of the RNN we deployed, consisting of LSTM neurons. The network
consists of two stacked RNN layers with 128 LSTM neurons each,
followed by a Dense Layer. The history length is 16, thus the input
data series is split in sequences of length 16, on a rolling window
fashion, while 70% of them are used as a training dataset and 30% of
them for validation. The neural network tries to minimize themean

squared error (loss) between the predicted and actual values, using
the Adam [16] optimizer on a learning rate of 0.001. The model
training stops, if the loss for the validation dataset is not reduced
for 20 consecutive training epochs. The duration and accuracy of
the trained models is reported in Section 7.

Data Manipulation. As described in Section 4.2, the RNN input
corresponds to a sequence of per page access counts during consecu-
tive scheduling epochs, while the output is the predicted number of
accesses the page will receive during the next epoch. The predicted
number will then be used by the page scheduler to determine the
hotness order across all pages. Thus, there is room for the prediction
to be slightly di�erent than the actual number of accesses, as long
as it will not in�uence the hotness order of the page, and therefore
its placement decision, on the particular scheduling epoch.

Therefore, we normalize the input sequences between 0 and
1, since RNNs work better in this case as observed by Hashemi
et al. [12] and then denormalize the data for the �nal prediction.
Di�erent from [12], there is no need for us to make predictions over
distinct integers, treating the prediction problem as classi�cation.
Our experiments with the classi�cation approach, highlighted the
possibility of misprediction with a great margin from the actual
value and gave reasoning as to why Hashemi et al. [12] chose to
consider top-k predictions at a time. Although this approach works
great with the prefetching logic, where more data can be prefetched
even if they do not end up being accessed, this is not necessary for
the purpose of our predictions.

It is important to observe that, even though the input data (memory

access trace) is the same between this work and [12], the prediction

use case transforms the way they should be manipulated for RNN

training and the accepted level of prediction accuracy.

Implementation. We use the Keras [6] high level API to deploy
the described RNN layout, using the existing implementations for
the LSTM neurons, the network layers connectivity, the Adam op-
timizer and model training, applying any default hyper-parameter
values if not explicitly mentioned above. The backend RNN execu-
tion engine is Tensor�ow [2].

Hardware Testbed.We conduct experiments using an AMD ma-
chine with 512 GB memory and 64 Opteron™ 6370P CPU cores of
2 GHz each. CPUs have been used to accelerate RNN-based deep
learning models [32]. Kleio speeds up the training by intelligently
selecting to train the application pages that will bring actual per-
formance bene�ts. Instead, a more naive approach would rely on
accelerators and rack-scale size machines in order to accommodate
RNNs for all pages, wasting resources for training models whose
predictions have trivial performance impact or can be achieved by
simple history-based policies.

7 EVALUATION

In Section 5.1 and in particular in Figure 7, we showed the trend of
performance improvements Kleio can provide, assuming oracular
knowledge of the access counts of the pages that are in need of
machine intelligence based placement. In this section, we evalu-
ate Kleio with respect to the actual application performance im-
provements it can provide. We report how close to the Oracle page
scheduler Kleio can perform, when managing the pages that are
misplaced by the History page scheduler. We also summarize the
accuracy of the RNN predictions and the RNN training overheads.
Together with the achieved performance, these make a case for
Kleio’s practicality.

7.1 Application Performance

First, we evaluate the accuracy of Kleio’s RNN training with re-
spect to the corresponding application performance improvements,
which is what Kleio promises to deliver. As a reminder, Kleio iden-
ti�es the pages that are misplaced by the History page scheduler
and applies RNN training in order to get predictions of their per
epoch access counts and determine the global page hotness or-
der for prioritizing DRAM allocations. If the RNN predictions are
extremely accurate, then it would be equivalent to having an Or-
acle page scheduler manage the misplaced pages. To this extent,
Figure 9a depicts the performance that Kleio can achieve when ap-
plying RNN training to 100 pages in the order de�ned by its page
selector component, for a given DRAM/NVM capacity ratio. We �x
DRAM/NVM=1/32 for the CORALworkloads and DRAM/NVM=1/8
for the rest, which is the capacity ratio for which the clever man-
agement of even a small number of pages, can bring signi�cant
performance improvements (Figure 7). Performance is normalized
between 0%, when all pages are managed by History page scheduler
and 100%, when the selected pages are managed by Oracle and the
rest by History. In this way, we can understand the degree to which
the RNN predictions are su�ciently accurate, so as to provide all
the possible performance improvement.

We observe that in most cases, the RNN predictions are suf-
�ciently accurate to bring 80% of the possible performance im-
provement, on average and more than 95% for half of the appli-
cations that we considered. Unfortunately, there are cases such
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Putting all this information together, there is no doubt that the
hardware resource requirements of RNN training are signi�cant,
especially as far as memory consumption is concerned. However,
training times in the order of couple hours are generally considered
to be low, for machine intelligence purposes. Furthermore, the
training time can be further reduced using more computationally
robust hardware. Either way, the user may be limited with respect
to how many per page models can train, given the available system
resources.

Kleio has provisioned for the case of limited hardware resources

through its page selector component, that provides the user with in-

formation regarding which pages to prioritize for RNN training and

the corresponding expected application performance improvements.

Reaching our initial Goals.

1. Kleio promises to bridge the performance gap between the Ora-
cle and History page schedulers, delivering on average 80% of
the theoretically possible performance when managing selected
pages, through the achieved RNN prediction accuracy.

2. Kleio delivers low training and inference times, via deploying
RNNmodels for cleverly selected application pages, whose timely
placement in DRAM signi�cantly boosts performance. Kleio
shows that not all pages are in need of intelligent data manage-
ment, drastically reducing the input problem space.

8 RELATEDWORK

Kleio is a research artifact that utilizes neural networks in order to
enable learning of a workload’s memory access behavior for the
purpose of application page placement across a hybrid memory
system. In this section, we describe some of themachine intelligence
approaches used in the system’s community, focusing either on
other relevant problems or just other aspects of data management
in hybrid memory systems.

Regarding the usage of RNNs in the system software stack or
in hardware, there has already been a signi�cant amount of re-
search. To begin with, RNNs have been proposed for the purpose
of memory prefetching by Hashemi et al. [12] as well as Zeng et

al. [31]. We have made multiple points in Sections 4 and 6 about
how di�erently we deploy RNNs and the importance of considering
the manipulation of the input data to be appropriate for the use
case of the trained model. Concerning other use cases of RNNs, the
authors of Desh [8] deploy them in order to predict node failures
in Supercomputing environments, so as to timely migrate com-
putation towards live nodes. In addition, RNNs can be utilized in
order to learn I/O block level access patterns, so as to optimize
the performance of �ash storage device usage [4]. Furthermore,
RNNs could also be used over standard resource usage statistics
and kernel-level events, so as to predict future resource usage of
applications [26]. Finally, the authors of DeepCache [24] build a
content caching framework utilizing RNNs and in particular the
LSTM Encoder - Decoder model.

Regarding hybrid memory data management, we already refer
to a signi�cant number of solutions without machine intelligence
in Section 1, such as [20, 27, 28]. As far as proposals with machine
intelligence are concerned, the authors of Tahoe [29] explore super-
vised machine learning techniques (multiple linear regression and

arti�cial neural networks), in order to predict application perfor-
mance baselines that will be part of the data object placement cost
across the hybrid memory components. Moreover, an alternative
approach to hybrid memory and distributed memory designs is to
leverage the knowledge about speci�c application algorithms to
direct data placement, rather than make the scheduling decisions
based on memory access trace data (thus treating the workloads as
a black box). Additionally, Wu et al. [30] demonstrate that algorithm
features, common numerical operations, and algorithm structures
can be leveraged to direct data placement for conjugate gradient,
fast Fourier transform, and LU decomposition for a matrix. They
also introduce a hardware customized DMA mechanism for bulk
data movement which is complimentary to this work. The k-means
NUMA Optimized Routine (knor) library [21] optimizes k-means
for modern NUMA architectures and minimizes synchronization
barriers.

With respect to similar system problems, Selecta [17] utilizes
latent factor collaborative �ltering, in order to �nd the con�guration
of cloud compute and storage resources that provides optimal cost-
to-performance trade-o�s. Finally, Kraska et al. [18] demonstrate
the bene�ts of having machine intelligence based data indexing
and argue that the replacement of parts of the data management
stack with machine Intelligence based components will provide
signi�cant performance bene�ts.

9 SUMMARY

We present Kleio, a page scheduler with machine intelligence for
applications that execute over hybrid memory systems. Kleio lever-
ages the current state-of-the-art scheduling methodology based
on the intuitive observations that frequently accessed pages need
to be placed in the fastest memory component and the fact that
such pages will remain frequently accessed for a period of time.
Going a step further than existing solutions, Kleio applies recurrent
neural network training to detect page access behavior, that cannot
be captured by the above observations, such as sudden changes
in the access frequency of a page. Furthermore, Kleio drastically
reduces the number of pages that need neural network training,
by detecting the ones whose clever placement will actually bene-
�t application performance. In this way, Kleio delivers a practical
machine intelligence solution and achieves performance improve-
ments close to the ones established by having a-priori knowledge
of the workload’s memory access pattern.
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