
Kleio: A Hybrid Memory Page Scheduler with Machine
Intelligence

Thaleia Dimitra Doudali
Georgia Institute of Technology

thdoudali@gatech.edu

Sergey Blagodurov
Advanced Micro Devices, Inc.
Sergey.Blagodurov@amd.com

Abhinav Vishnu
Advanced Micro Devices, Inc.
Abhinav.Vishnu@amd.com

Sudhanva Gurumurthi
Advanced Micro Devices, Inc.

Sudhanva.Gurumurthi@amd.com

Ada Gavrilovska
Georgia Institute of Technology

ada@cc.gatech.edu

ABSTRACT

The increasing demand of big data analytics for more main memory
capacity in datacenters and exascale computing environments is
driving the integration of heterogeneous memory technologies. The
new technologies exhibit vastly greater di�erences in access laten-
cies, bandwidth and capacity compared to the traditional NUMA
systems. Leveraging this heterogeneity while also delivering appli-
cation performance enhancements requires intelligent data place-
ment.We presentKleio, a page scheduler withmachine intelligence
for applications that execute across hybrid memory components.
Kleio is a hybrid page scheduler that combines existing, lightweight,
history-based data tiering methods for hybrid memory, with novel
intelligent placement decisions based on deep neural networks. We
contribute new understanding toward the scope of bene�ts that
can be achieved by using intelligent page scheduling in comparison
to existing history-based approaches, and towards the choice of the
deep learning algorithms and their parameters that are e�ective for
this problem space. Kleio incorporates a newmethod for prioritizing
pages that leads to highest performance boost, while limiting the
resulting system resource overheads. Our performance evaluation
indicates that Kleio reduces on average 80% of the performance gap
between the existing solutions and an oracle with knowledge of
future access pattern. Kleio provides hybrid memory systems with
fast and e�ective neural network training and prediction accuracy
levels, which bring signi�cant application performance improve-
ments with limited resource overheads, so as to lay the grounds for
its practical integration in future systems.

CCS CONCEPTS

•Computer systems organization→Heterogeneous (hybrid)

systems; • Computing methodologies → Machine learning

approaches; •Hardware→Memory and dense storage;Anal-
ysis and design of emerging devices and systems; • General
and reference → Performance;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6670-0/19/06. . . $15.00
https://doi.org/10.1145/3307681.3325398

KEYWORDS

Data Tiering; Emerging Memory Technologies; Heterogeneous
Memory Systems; Hybrid Memory Systems; Long Short TermMem-
oryNetworks;Machine Intelligence;Machine Learning; NonVolatile
Memory; Page Scheduler; Recurrent Neural Networks;

ACM Reference Format:

Thaleia Dimitra Doudali, Sergey Blagodurov, Abhinav Vishnu, Sudhanva
Gurumurthi, and Ada Gavrilovska. 2019. Kleio: A Hybrid Memory Page
Scheduler with Machine Intelligence. In The 28th International Symposium

on High-Performance Parallel and Distributed Computing (HPDC ’19), June

22–29, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3307681.3325398

1 INTRODUCTION

Modern systems are frequently designed using heterogeneous mem-
ory components. These memories are typically leveraged for ex-
tending main memory capacity or for caching purposes. There are
natural trade-o�s in the hybrid memory systems (HMS) compris-
ing heterogeneous components. Typically deeper memory (further
from the compute unit (CPU/GPU) hasmore capacity albeit at larger
latency and reduced bandwidth.

We consider one such HMS scenario comprising of DRAM and
Non Volatile Memory (NVM) and focus on the problem of extending
main memory capacity. An important artifact of HMS is addressing
the limitations of increased latency and decreased bandwidth with
deeper memories. In our case, a page scheduler – the memory
management layer of operating and runtime systems – is respon-
sible for the page migration across the heterogeneous memory
components. An e�ective page scheduler is responsible for ensur-
ing that hot pages – the ones that are accessed frequently – are readily
available in faster memory (DRAM). This is an intricate task, espe-
cially it is a complex combination of access pattern of pages in an
application, and its runtime parameters (input size, strong/weak
scaling, etc.). To address this challenge, several researchers have
considered solutions whose implementation can be integrated in
the hardware-, compiler-, Operating System-, runtime-, hypervisor-
or application pro�ling-level [7, 9, 11, 15, 20, 27–29]. A common
theme among these approaches is that they rely exclusively on
historic information about page accesses. Speci�cally, the state-
of-the-art [20, 27, 28] in system-level dynamic page management
solutions for HMS utilize the immediate observed behavior to make
decisions on the best future page placement. However, as we show
in this paper, the mispredictions regarding future page access re-
sulting from use of historic information alone, can leave an up to

High Performance Distributed Systems (Best Paper Nominees) HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

37

Technology R/W BW (GB/s) Seq. & Rand. R/W Latency (ns)

DRAM 19.2/19.2 8/8 & 50/50

NVM 10.24/1.024 8/8 & 100/1000

Table 2: Technology parameters used in the simulated hy-

brid memory system, di�erentiating for Reads (R) and

Writes (W) and sequential versus random accesses.

time spent servicing the leading (�rst out of many) load request
that misses the last level hardware cache. This load time depends
on the memory technology that serviced the request (e.g., DRAM
versus NVM), whose di�erences are summarized in Table 2. This
gives us a worst case performance estimate, since it does not take
into account actions that reduce latency, such as parallel compu-
tation or prefetching. Also, we assume dedicated DMA engines
that allow seamless page migration, which is overlapped with the
computation, as explored in [14, 19].

6.4 Neural Network Details

Neural Network Layout. Figure 3 gives a visual representation
of the RNN we deployed, consisting of LSTM neurons. The network
consists of two stacked RNN layers with 128 LSTM neurons each,
followed by a Dense Layer. The history length is 16, thus the input
data series is split in sequences of length 16, on a rolling window
fashion, while 70% of them are used as a training dataset and 30% of
them for validation. The neural network tries to minimize themean

squared error (loss) between the predicted and actual values, using
the Adam [16] optimizer on a learning rate of 0.001. The model
training stops, if the loss for the validation dataset is not reduced
for 20 consecutive training epochs. The duration and accuracy of
the trained models is reported in Section 7.

Data Manipulation. As described in Section 4.2, the RNN input
corresponds to a sequence of per page access counts during consecu-
tive scheduling epochs, while the output is the predicted number of
accesses the page will receive during the next epoch. The predicted
number will then be used by the page scheduler to determine the
hotness order across all pages. Thus, there is room for the prediction
to be slightly di�erent than the actual number of accesses, as long
as it will not in�uence the hotness order of the page, and therefore
its placement decision, on the particular scheduling epoch.

Therefore, we normalize the input sequences between 0 and
1, since RNNs work better in this case as observed by Hashemi
et al. [12] and then denormalize the data for the �nal prediction.
Di�erent from [12], there is no need for us to make predictions over
distinct integers, treating the prediction problem as classi�cation.
Our experiments with the classi�cation approach, highlighted the
possibility of misprediction with a great margin from the actual
value and gave reasoning as to why Hashemi et al. [12] chose to
consider top-k predictions at a time. Although this approach works
great with the prefetching logic, where more data can be prefetched
even if they do not end up being accessed, this is not necessary for
the purpose of our predictions.

It is important to observe that, even though the input data (memory

access trace) is the same between this work and [12], the prediction

use case transforms the way they should be manipulated for RNN

training and the accepted level of prediction accuracy.

Implementation. We use the Keras [6] high level API to deploy
the described RNN layout, using the existing implementations for
the LSTM neurons, the network layers connectivity, the Adam op-
timizer and model training, applying any default hyper-parameter
values if not explicitly mentioned above. The backend RNN execu-
tion engine is Tensor�ow [2].

Hardware Testbed.We conduct experiments using an AMD ma-
chine with 512 GB memory and 64 Opteron™ 6370P CPU cores of
2 GHz each. CPUs have been used to accelerate RNN-based deep
learning models [32]. Kleio speeds up the training by intelligently
selecting to train the application pages that will bring actual per-
formance bene�ts. Instead, a more naive approach would rely on
accelerators and rack-scale size machines in order to accommodate
RNNs for all pages, wasting resources for training models whose
predictions have trivial performance impact or can be achieved by
simple history-based policies.

7 EVALUATION

In Section 5.1 and in particular in Figure 7, we showed the trend of
performance improvements Kleio can provide, assuming oracular
knowledge of the access counts of the pages that are in need of
machine intelligence based placement. In this section, we evalu-
ate Kleio with respect to the actual application performance im-
provements it can provide. We report how close to the Oracle page
scheduler Kleio can perform, when managing the pages that are
misplaced by the History page scheduler. We also summarize the
accuracy of the RNN predictions and the RNN training overheads.
Together with the achieved performance, these make a case for
Kleio’s practicality.

7.1 Application Performance

First, we evaluate the accuracy of Kleio’s RNN training with re-
spect to the corresponding application performance improvements,
which is what Kleio promises to deliver. As a reminder, Kleio iden-
ti�es the pages that are misplaced by the History page scheduler
and applies RNN training in order to get predictions of their per
epoch access counts and determine the global page hotness or-
der for prioritizing DRAM allocations. If the RNN predictions are
extremely accurate, then it would be equivalent to having an Or-
acle page scheduler manage the misplaced pages. To this extent,
Figure 9a depicts the performance that Kleio can achieve when ap-
plying RNN training to 100 pages in the order de�ned by its page
selector component, for a given DRAM/NVM capacity ratio. We �x
DRAM/NVM=1/32 for the CORALworkloads and DRAM/NVM=1/8
for the rest, which is the capacity ratio for which the clever man-
agement of even a small number of pages, can bring signi�cant
performance improvements (Figure 7). Performance is normalized
between 0%, when all pages are managed by History page scheduler
and 100%, when the selected pages are managed by Oracle and the
rest by History. In this way, we can understand the degree to which
the RNN predictions are su�ciently accurate, so as to provide all
the possible performance improvement.

We observe that in most cases, the RNN predictions are suf-
�ciently accurate to bring 80% of the possible performance im-
provement, on average and more than 95% for half of the appli-
cations that we considered. Unfortunately, there are cases such

High Performance Distributed Systems (Best Paper Nominees) HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

45

Putting all this information together, there is no doubt that the
hardware resource requirements of RNN training are signi�cant,
especially as far as memory consumption is concerned. However,
training times in the order of couple hours are generally considered
to be low, for machine intelligence purposes. Furthermore, the
training time can be further reduced using more computationally
robust hardware. Either way, the user may be limited with respect
to how many per page models can train, given the available system
resources.

Kleio has provisioned for the case of limited hardware resources

through its page selector component, that provides the user with in-

formation regarding which pages to prioritize for RNN training and

the corresponding expected application performance improvements.

Reaching our initial Goals.

1. Kleio promises to bridge the performance gap between the Ora-
cle and History page schedulers, delivering on average 80% of
the theoretically possible performance when managing selected
pages, through the achieved RNN prediction accuracy.

2. Kleio delivers low training and inference times, via deploying
RNNmodels for cleverly selected application pages, whose timely
placement in DRAM signi�cantly boosts performance. Kleio
shows that not all pages are in need of intelligent data manage-
ment, drastically reducing the input problem space.

8 RELATEDWORK

Kleio is a research artifact that utilizes neural networks in order to
enable learning of a workload’s memory access behavior for the
purpose of application page placement across a hybrid memory
system. In this section, we describe some of themachine intelligence
approaches used in the system’s community, focusing either on
other relevant problems or just other aspects of data management
in hybrid memory systems.

Regarding the usage of RNNs in the system software stack or
in hardware, there has already been a signi�cant amount of re-
search. To begin with, RNNs have been proposed for the purpose
of memory prefetching by Hashemi et al. [12] as well as Zeng et

al. [31]. We have made multiple points in Sections 4 and 6 about
how di�erently we deploy RNNs and the importance of considering
the manipulation of the input data to be appropriate for the use
case of the trained model. Concerning other use cases of RNNs, the
authors of Desh [8] deploy them in order to predict node failures
in Supercomputing environments, so as to timely migrate com-
putation towards live nodes. In addition, RNNs can be utilized in
order to learn I/O block level access patterns, so as to optimize
the performance of �ash storage device usage [4]. Furthermore,
RNNs could also be used over standard resource usage statistics
and kernel-level events, so as to predict future resource usage of
applications [26]. Finally, the authors of DeepCache [24] build a
content caching framework utilizing RNNs and in particular the
LSTM Encoder - Decoder model.

Regarding hybrid memory data management, we already refer
to a signi�cant number of solutions without machine intelligence
in Section 1, such as [20, 27, 28]. As far as proposals with machine
intelligence are concerned, the authors of Tahoe [29] explore super-
vised machine learning techniques (multiple linear regression and

arti�cial neural networks), in order to predict application perfor-
mance baselines that will be part of the data object placement cost
across the hybrid memory components. Moreover, an alternative
approach to hybrid memory and distributed memory designs is to
leverage the knowledge about speci�c application algorithms to
direct data placement, rather than make the scheduling decisions
based on memory access trace data (thus treating the workloads as
a black box). Additionally, Wu et al. [30] demonstrate that algorithm
features, common numerical operations, and algorithm structures
can be leveraged to direct data placement for conjugate gradient,
fast Fourier transform, and LU decomposition for a matrix. They
also introduce a hardware customized DMA mechanism for bulk
data movement which is complimentary to this work. The k-means
NUMA Optimized Routine (knor) library [21] optimizes k-means
for modern NUMA architectures and minimizes synchronization
barriers.

With respect to similar system problems, Selecta [17] utilizes
latent factor collaborative �ltering, in order to �nd the con�guration
of cloud compute and storage resources that provides optimal cost-
to-performance trade-o�s. Finally, Kraska et al. [18] demonstrate
the bene�ts of having machine intelligence based data indexing
and argue that the replacement of parts of the data management
stack with machine Intelligence based components will provide
signi�cant performance bene�ts.

9 SUMMARY

We present Kleio, a page scheduler with machine intelligence for
applications that execute over hybrid memory systems. Kleio lever-
ages the current state-of-the-art scheduling methodology based
on the intuitive observations that frequently accessed pages need
to be placed in the fastest memory component and the fact that
such pages will remain frequently accessed for a period of time.
Going a step further than existing solutions, Kleio applies recurrent
neural network training to detect page access behavior, that cannot
be captured by the above observations, such as sudden changes
in the access frequency of a page. Furthermore, Kleio drastically
reduces the number of pages that need neural network training,
by detecting the ones whose clever placement will actually bene-
�t application performance. In this way, Kleio delivers a practical
machine intelligence solution and achieves performance improve-
ments close to the ones established by having a-priori knowledge
of the workload’s memory access pattern.

ACKNOWLEDGMENTS

This work was partially supported by NSF award SPX-1822972,
the DOE ECP project on Simple Interfaces for Complex Memories
(SICM) and the DOE SSIO Unity project.
AMD, the AMD Arrow logo, AMD Opteron, and combinations
thereof are trademarks of Advanced Micro Devices, Inc. Windows
is a registered trademark of Microsoft Corporation. Other product
names used in this publication are for identi�cation purposes only
and may be trademarks of their respective companies.

© 2019 Advanced Micro Devices, Inc. All rights reserved.

High Performance Distributed Systems (Best Paper Nominees) HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

47

REFERENCES
[1] 2018. CORAL Benchmark Codes. https://asc.llnl.gov/CORAL-benchmarks/.
[2] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Je�rey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geo�rey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
http://tensor�ow.org/ Software available from tensor�ow.org.

[3] Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D. Dissertation.
Princeton University.

[4] Chandranil Chakraborttii, Vikas Sinha, and Heiner Litz. 2018. SSD QoS Im-
provements Through Machine Learning. In Proceedings of the ACM Sympo-
sium on Cloud Computing (SoCC ’18). ACM, New York, NY, USA, 511–511.
https://doi.org/10.1145/3267809.3275453

[5] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, JeremyW. Shea�er, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A Benchmark Suite for Heterogeneous
Computing. In Proceedings of the 2009 IEEE International Symposium on Workload
Characterization (IISWC) (IISWC ’09). IEEE Computer Society, Washington, DC,
USA, 44–54. https://doi.org/10.1109/IISWC.2009.5306797

[6] François Chollet et al. 2015. Keras. https://keras.io.
[7] Chiachen Chou, Aamer Jaleel, and Moinuddin Qureshi. 2017. BATMAN: Tech-

niques for Maximizing System Bandwidth of Memory Systems with stacked-
DRAM. In Proceedings of the International Symposium on Memory Systems (MEM-
SYS ’17). ACM, New York, NY, USA, 268–280. https://doi.org/10.1145/3132402.
3132404

[8] Anwesha Das, Frank Mueller, Charles Siegel, and Abhinav Vishnu. 2018. Desh:
Deep Learning for System Health Prediction of Lead Times to Failure in HPC.
In Proceedings of the 27th International Symposium on High-Performance Parallel
and Distributed Computing (HPDC ’18). ACM, New York, NY, USA, 40–51. https:
//doi.org/10.1145/3208040.3208051

[9] Thaleia Dimitra Doudali and Ada Gavrilovska. 2017. CoMerge: Toward E�cient
Data Placement in Shared Heterogeneous Memory Systems. In Proceedings of
the International Symposium on Memory Systems (MEMSYS ’17). ACM, New York,
NY, USA, 251–261. https://doi.org/10.1145/3132402.3132418

[10] Thaleia Dimitra Doudali and Ada Gavrilovska. 2018. Mnemo: Boosting Memory
Cost E�ciency in Hybrid Memory Systems. In Proceedings of the ACM Symposium
on Cloud Computing (SoCC ’18). ACM, New York, NY, USA, 523–523. https:
//doi.org/10.1145/3267809.3275465

[11] Subramanya R. Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan Sundaram,
Nadathur Satish, Rajesh Sankaran, Je� Jackson, and Karsten Schwan. 2016. Data
Tiering in Heterogeneous Memory Systems. In Proceedings of the Eleventh Euro-
pean Conference on Computer Systems (EuroSys ’16). ACM, New York, NY, USA,
Article 15, 16 pages. https://doi.org/10.1145/2901318.2901344

[12] Milad Hashemi, Kevin Swersky, Jamie Smith, Grant Ayers, Heiner Litz, Jichuan
Chang, Christos Kozyrakis, and Parthasarathy Ranganathan. 2018. Learning
Memory Access Patterns. In Proceedings of the 35th International Conference on
Machine Learning (Proceedings of Machine Learning Research), Jennifer Dy and
Andreas Krause (Eds.), Vol. 80. PMLR, StockholmsmÃďssan, Stockholm Sweden,
1919–1928. http://proceedings.mlr.press/v80/hashemi18a.html

[13] Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana. 2008. Self-
Optimizing Memory Controllers: A Reinforcement Learning Approach. SIGARCH
Comput. Archit. News 36, 3 (June 2008), 39–50. https://doi.org/10.1145/1394608.
1382172

[14] Stefan Kaestle, Reto Achermann, Timothy Roscoe, and Tim Harris. 2015.
Shoal: Smart Allocation and Replication of Memory For Parallel Programs. In
2015 USENIX Annual Technical Conference (USENIX ATC 15). USENIX Associ-
ation, Santa Clara, CA, 263–276. https://www.usenix.org/conference/atc15/
technical-session/presentation/kaestle

[15] Sudarsun Kannan, Ada Gavrilovska, Vishal Gupta, and Karsten Schwan. 2017.
HeteroOS - OS Design for Heterogeneous Memory Management in Datacenter.
In 44th International Symposium on Computer Architecture (ISCA’17). Toronto,
ON.

[16] Diederik P. Kingma and JimmyBa. 2014. Adam: AMethod for Stochastic Optimiza-
tion. CoRR abs/1412.6980 (2014). arXiv:1412.6980 http://arxiv.org/abs/1412.6980

[17] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2018. Selecta: Heterogeneous
Cloud Storage Con�guration for Data Analytics. In Proceedings of the 2018 USENIX
Conference on Usenix Annual Technical Conference (USENIX ATC ’18). USENIX
Association, Berkeley, CA, USA, 759–773. http://dl.acm.org/citation.cfm?id=
3277355.3277429

[18] Tim Kraska, Alex Beutel, Ed H. Chi, Je�rey Dean, and Neoklis Polyzotis. 2017. The
Case for Learned Index Structures. CoRR abs/1712.01208 (2017). arXiv:1712.01208
http://arxiv.org/abs/1712.01208

[19] Felix Xiaozhu Lin and Xu Liu. 2016. Memif: Towards Programming Heteroge-
neous Memory Asynchronously. SIGARCH Comput. Archit. News 44, 2 (March
2016), 369–383. https://doi.org/10.1145/2980024.2872401

[20] M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski, and G. H. Loh.
2015. Heterogeneous memory architectures: A HW/SW approach for mixing
die-stacked and o�-package memories. In 2015 IEEE 21st International Symposium
on High Performance Computer Architecture (HPCA), Vol. 00. 126–136. https:
//doi.org/10.1109/HPCA.2015.7056027

[21] Disa Mhembere, Da Zheng, Carey E. Priebe, Joshua T. Vogelstein, and Randal
Burns. 2017. Knor: A NUMA-Optimized In-Memory, Distributed and Semi-
External-Memory K-means Library. In Proceedings of the 26th International Sym-
posium on High-Performance Parallel and Distributed Computing (HPDC ’17). ACM,
New York, NY, USA, 67–78. https://doi.org/10.1145/3078597.3078607

[22] Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio,
Benoit Steiner, Yuefeng Zhou, Naveen Kumar, Rasmus Larsen, and Je� Dean.
2017. Device Placement Optimization with Reinforcement Learning. https:
//arxiv.org/abs/1706.04972

[23] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518, 7540
(Feb. 2015), 529–533. http://dx.doi.org/10.1038/nature14236

[24] Arvind Narayanan, Saurabh Verma, Eman Ramadan, Pariya Babaie, and Zhi-
Li Zhang. 2018. DeepCache: A Deep Learning Based Framework For Content
Caching. In Proceedings of the 2018Workshop on NetworkMeets AI &ML (NetAI’18).
ACM, New York, NY, USA, 48–53. https://doi.org/10.1145/3229543.3229555

[25] Mark Oskin and Gabriel H. Loh. 2015. A Software-Managed Approach to Die-
Stacked DRAM. In Proceedings of the 2015 International Conference on Parallel
Architecture and Compilation (PACT) (PACT ’15). IEEE Computer Society, Wash-
ington, DC, USA, 188–200. https://doi.org/10.1109/PACT.2015.30

[26] Florian Schmidt,Mathias Niepert, and FelipeHuici. 2018. Representation Learning
for Resource Usage Prediction. CoRR abs/1802.00673 (2018). arXiv:1802.00673
http://arxiv.org/abs/1802.00673

[27] Du Shen, Xu Liu, and Felix Xiaozhu Lin. 2016. Characterizing Emerging Het-
erogeneous Memory. In Proceedings of the 2016 ACM SIGPLAN International
Symposium on Memory Management (ISMM 2016). ACM, New York, NY, USA,
13–23. https://doi.org/10.1145/2926697.2926702

[28] Kai Wu, Yingchao Huang, and Dong Li. 2017. Unimem: Runtime Data Manage-
menton Non-volatile Memory-based Heterogeneous Main Memory. In Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’17). ACM, New York, NY, USA, Article 58, 14 pages.
https://doi.org/10.1145/3126908.3126923

[29] Kai Wu, Jie Ren, and Dong Li. 2018. Runtime Data Management on Non-volatile
Memory-based Heterogeneous Memory for Task-parallel Programs. In Proceed-
ings of the International Conference for High Performance Computing, Network-
ing, Storage, and Analysis (SC ’18). IEEE Press, Piscataway, NJ, USA, Article 31,
13 pages. http://dl.acm.org/citation.cfm?id=3291656.3291698

[30] Panruo Wu, Dong Li, Zizhong Chen, Je�rey S. Vetter, and Sparsh Mittal. 2016.
Algorithm-Directed Data Placement in Explicitly Managed Non-Volatile Memory.
In Proceedings of the 25th ACM International Symposium on High-Performance
Parallel and Distributed Computing (HPDC ’16). ACM, New York, NY, USA, 141–
152. https://doi.org/10.1145/2907294.2907321

[31] Yuan Zeng and Xiaochen Guo. 2017. Long Short Term Memory Based Hard-
ware Prefetcher: A Case Study. In Proceedings of the International Symposium
on Memory Systems (MEMSYS ’17). ACM, New York, NY, USA, 305–311. https:
//doi.org/10.1145/3132402.3132405

[32] Minjia Zhang, Samyam Rajbhandari, Wenhan Wang, and Yuxiong He. 2018.
DeepCPU: Serving RNN-based Deep Learning Models 10x Faster. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18). USENIX Association, Boston, MA,
951–965. https://www.usenix.org/conference/atc18/presentation/zhang-minjia

High Performance Distributed Systems (Best Paper Nominees) HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA

48

