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We introduce the notion of a holonomic D-module on a 
smooth (idealized) logarithmic scheme and show that Verdier 
duality can be extended to this context. In contrast to the 
classical case, the pushforward of a holonomic module along 
an open immersion is in general not holonomic. We intro-
duce a “perverse” t-structure on the category of coherent 
logarithmic D-modules which makes the dualizing functor 
t-exact on holonomic modules. Conversely this t-exactness 
characterizes holonomic modules among all coherent logarith-
mic D-modules. We also introduce logarithmic versions of the 
Gabber and Kashiwara–Malgrange filtrations.
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1. Introduction

Logarithmic geometry [14,1] is an enhanced version of algebraic geometry, where on 
top of the usual scheme structure one also has an additional sheaf of monoids, that 
keeps track of additional data of interest. A prototypical example is a smooth variety X
equipped with a simple normal crossings divisor D, that is thought of as a “boundary” 
in X. In this case the log structure on X is essentially equivalent to the datum of D. 
More exotic examples are given by fibers of a morphism of pairs (X, D) → (Y, E) of this 
kind.

One of the main reasons for working with log schemes is that sometimes a variety 
is singular in the classical sense, but can be equipped with a log structure that makes 
it “smooth” in the logarithmic category, for an appropriate meaning of the term. With 
smoothness comes an array of useful tools that are otherwise unavailable. For example, 
every toric variety has a canonical log structure, and the resulting log scheme is smooth 
in the logarithmic sense. If one allows the base field to acquire a non-trivial log structure 
as well (or if one considers idealized log structures), then even more varieties become 
smooth in this generalized sense.

One instance of this phenomenon is that a smooth log scheme always has a locally free 
sheaf of differentials. Thus the language of logarithmic geometric lends itself very well to 
the study of bundles with a logarithmic connection. For the purpose of this introduction, 
let us fix a smooth complex log scheme X. For example, X might be given by a smooth 
complex variety together with a boundary given by a simple normal crossings divisor 
D. In this setting a log integrable system on X is a coherent sheaf with a connection 
which potentially has logarithmic singularities along D. Kato–Nakayama, Illusie [15,12]
and Ogus [22] extended the classical Riemann–Hilbert correspondence to log integrable 
systems. In essence, they establish an equivalence between the category of log integrable 
systems and “locally constant sheaves” on the so-called Kato–Nakayama space X log

attached to X.
The category of coherent sheaves with logarithmic connection can naturally be ex-

tended to the category of logarithmic D-modules. The basic formalism for logarithmic 
D-modules is entirely parallel to the one for D-modules in classical geometry, so it is 
natural to ask whether the Riemann–Hilbert correspondence can be extended to an 
equivalence between some category of “regular holonomic” logarithmic D-modules and 
some notion of “perverse” sheaves on X log.

Holonomic D-modules in logarithmic geometry. In this paper, as a first step towards 
this conjectural Riemann–Hilbert correspondence, we define and investigate a category 
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of holonomic logarithmic D-modules. Before we go into details let us show with an 
example why this is not entirely trivial.

Let X be the log line, i.e. the variety A1 with the logarithmic structure given by 
the divisor {0}. In this case the sheaf DX of logarithmic differential operators is the 
subsheaf of the usual sheaf of differential operators generated by the coordinate x and 
the log vector field x ∂

∂x . Thus for example the structure sheaf and the skyscraper C at 
the origin (with action x ∂

∂x · 1 = 0) are examples of logarithmic D-modules on the log 
line.

The characteristic variety of such modules can be defined as in the classical case. It is a 
conical subvariety of the logarithmic cotangent bundle. Since both the structure sheaf and 
the skyscraper at the origin are coherent OX-modules, their characteristic varieties are 
contained in the zero section. Hence their dimensions are one and zero respectively. We 
see from this example that we cannot expect the classical Bernstein inequality (stating 
that the dimension of the characteristic variety is always at least equal to the dimension 
of X) to hold in the logarithmic context. On the other hand, since both of these sheaves 
are log integrable systems, they should certainly be considered to be “holonomic”.

Geometrically, we can see the failure of the Bernstein inequality as the fact that 
the logarithmic cotangent bundle only has a canonical Poisson structure, rather than a 
canonical symplectic structure.

In the simple example above one can define Verdier duality in the usual way as 
(shifted) derived Hom to DX , twisted by a line bundle. A simple computation (see 
Example 4.1) shows that the dual of OX is concentrated in cohomological degree 0, 
while the dual of the skyscraper is concentrated in degree 1. This is in contrast with the 
fundamental fact in the classical theory that holonomic D-modules can be characterized 
as those coherent D-modules for which the dual is concentrated in degree 0. This state-
ment ultimately underlies the existence of most of the six functor formalism for classical 
holonomic D-modules.

Finally, again for the case of the log line X = A1, consider the open embedding j : U =
X \ {0} ↪→ X. The structure sheaf OU is a holonomic DU -module, but the pushforward 
j∗OU = C[x, x−1] cannot be a holonomic logarithmic DX-module. Indeed, it is not even 
coherent. Thus one cannot hope that the pushforward always preserves holonomicity. 
Related to this is the fact that in the logarithmic context holonomic D-modules are 
generally no longer artinian. For example the holonomic DX-module OX has the infinite 
descending chain of submodules OX ⊇ xOX ⊇ x2OX ⊇ · · · .

In this paper we provide solutions to these problems. Firstly we note that the issue 
with the skyscraper at the origin in the above example is that the support is too small 
when measured classically. However, the support is entirely contained in a log stratum. 
Hence we should view the characteristic variety as an idealized log variety and measure 
its dimension as such. With this we can prove the following logarithmic version of the 
Bernstein inequality (Theorem 3.21):

log dim Ch(F) ≥ log dimX.
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In other words, the Bernstein inequality holds if we use a log geometric version of the 
dimension. We call a logarithmic D-module holonomic if this is an equality.

For the example of the log line A1, any subset of the fiber of the log cotangent 
bundle over the origin has log dimension one more than classical dimension. Thus the 
characteristic variety of the skyscraper C at the origin, which is just the origin itself, has 
log dimension 1. So this sheaf is holonomic. On the other hand the characteristic variety 
of the skyscraper C[x ∂

∂x ] is the whole fiber over the origin of the cotangent bundle and 
thus has log dimension 2. So in contrast to the classical theory the skyscraper C[x ∂

∂x ] is 
not holonomic. Indeed this meshes well with expectations on the constructible side via 
the conjectural Riemann–Hilbert correspondence.

Since we only require the spaces in this paper to be logarithmically smooth (and 
hence the underlying classical scheme is allowed to have singularities), the definition of 
duality needs some care. Fortunately, we can adapt the existing theory of rigid dualizing 
complexes from non-commutative geometry. This does however leave open the problem of 
duality not restricting to an exact autoequivalence of the holonomic abelian subcategory. 
A major part of this paper is devoted to a solution of this issue.

Inspired by the work of Kashiwara [13] we define a kind of perverse t-structure on the 
derived category of logarithmic D-modules, which we call the log perverse t-structure. 
(We will recall the definition of a t-structure in Section 4.) The upshot is that the duality 
functor is exact when viewed as a functor from holonomic modules to the heart of the log 
perverse t-structure and vice-versa, that this characterizes the subcategory of holonomic 
modules. For example this can be used to generalize the classical proof that proper 
pushforward preserves holonomicity given in [21, Section 5.4].

This still leaves the unfortunate fact that the pushforward of a holonomic logarithmic 
D-modules does not need to be holonomic – or even coherent – in general. In some cases, 
such as the example of C[x, x−1] mentioned above, this can be solved by introducing 
a generalization of the Kashiwara–Malgrange V-filtration, a topic that we will treat in 
detail in future work. However, as Remark 5.3 shows, sometimes it is impossible to find 
any extension of a holonomic module from an open subvariety. This is mainly a problem 
when one wants to reduce a statement to the compact case. The upshot is that one has 
to be quite careful when compactifying, cf. Remark 5.3.

Finally, let us mention that since the category of holonomic logarithmic D-modules is 
not self-dual under Verdier duality, neither is the expected category of “perverse sheaves” 
on the constructible side of the logarithmic Riemann–Hilbert correspondence. In fact 
the existence of the log perverse t-structure implies that there exist two categories of 
“perverse sheaves”, corresponding to holonomic D-modules either via the de-Rham or 
the solution functor. This might explain why these categories so far have not appeared 
in the literature. We will discuss the constructible side in a separate upcoming paper.

Outline of the paper. Let us briefly outline the content of each section of this paper. In 
Section 2 we collect and review existing results from logarithmic geometry and the theory 
of non-commutative dualizing complexes. This also serves to fix notation. In Section 3
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we define and examine the various categories of logarithmic D-modules. In particular, 
Section 3.2 contains many of the main lemmas of how logarithmic D-modules behave 
with respect to restriction and local cohomology along log strata. The main result is a 
vanishing theorem for local cohomology along such strata. Finally, in Section 3.3, we show 
the logarithmic Bernstein inequality and define the category of holonomic logarithmic 
D-modules.

The rest of the paper concerns the pay-off of this work. In Section 4 we define the 
log perverse t-structure and study its interaction with duality. In Section 5, we intro-
duce logarithmic analogues of the Gabber and Sato–Kashiwara filtrations of holonomic 
D-modules.

Future plans. As noted above, our main goal is to extend the Riemann–Hilbert correspon-
dence for logarithmic connections of Illusie–Kato–Nakayama and Ogus to logarithmic 
D-modules. Thus in future work we will define categories of perverse sheaves on the Kato–
Nakayama space and investigate the interaction of the “enhanced” de Rham functor of 
[22] with the constructions in the present paper on the one hand and the yet-to-be-
defined category of constructible sheaves on the Kato–Nakayama space. Of particular 
importance will be a generalized version of the Malgrange–Kashiwara V-filtration, which 
corresponds to the “Λ-filtration” on the constructible side. This will also yield further 
insight into the behaviour of nearby cycles in the logarithmic setting, generalizing the 
results of [12]. Moreover, we intend to investigate how root stacks [7,25] and parabolic 
sheaves interact with this picture, especially in view of their relationship with the Kato–
Nakayama space [8,26,24].

We are also interested in applications of the theory of logarithmic D-modules to ge-
ometric representation theory (where the classical theory of D-modules already plays a 
very important role). In particular, we plan to use the theory in the investigations of 
the first-named author on the cohomological support theory of D-modules [18]. Recently 
Ben-Zvi and Ganev reformulated the celebrated Beilinson–Bernstein localization theorem 
in terms of filtered D-modules on the wonderful compactification [4]. This construction 
might be best viewed via the logarithmic structure on the wonderful compactification 
and it will be interesting to see its interaction with a logarithmic Riemann–Hilbert cor-
respondence. Finally, we expect that the constructions of this paper have analogues in 
positive characteristic and arithmetic situations.

Acknowledgments. The work of C.K. was partially supported by the National Science 
Foundation under Grant No. 1638352, as well as the Giorgio and Elena Petronio Fel-
lowship Fund. M.T. was partially supported by a PIMS postdoctoral fellowship. We are 
grateful to Nathan Ilten for useful exchanges, and to the anonymous referee for several 
helpful comments.

Notations and assumptions. Unless stated otherwise, throughout this note X will denote 
a separated, smooth (in the logarithmic sense) idealized log scheme, of finite type over an 
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algebraically closed base field k of characteristic 0. Such an X comes with a stratification 
in locally closed subschemes. We will write Xk for the closure in X of the union of all 
strata of codimension k, and call this subset a “logarithmic stratum”. Thus we have a 
descending sequence of closed subschemes

X = X0 ⊇ X1 ⊇ · · · ⊇ Xdim X ⊇ Xdim X+1 = ∅.

For convenience we set Xk = X for k < 0 and Xk = ∅ for k > dimX. We usually 
endow each Xk with the induced idealized log structure, making it a smooth idealized 
log scheme. We will write TX and T ∗X for the logarithmic tangent and cotangent 
bundle respectively. Similarly, ΩX will be the sheaf of logarithmic differentials and ωX

the logarithmic canonical bundle.
Unless mentioned otherwise all functors between categories of sheaves are derived, 

even though we drop the markers R and L. In particular, Hom is the (right) derived 
internal Hom and ⊗ the (left) derived tensor product.

Unless mentioned otherwise, the term “DX-module” will always mean a logarithmic 
D-module with respect to the log structure on X.

2. Preliminaries

In this section we gather for the convenience of the reader the basic definitions and 
some facts about log geometry and coherent duality that are required for the rest of the 
paper.

2.1. Smooth (idealized) logarithmic schemes

We refer to [14,1,23] for more detailed treatments of logarithmic geometry. On top of 
logarithmic schemes, we will often have to use idealized logarithmic schemes, a variant 
of the notion, first introduced by Ogus (to the best of our knowledge).

All monoids in this paper will be commutative, and the operation will be written 
additively. They will also always be fine and saturated (see [23, Section I.1.3] for the 
definitions). Given a monoid P , we will denote by k[P ] the monoid algebra of P , i.e. the 
k-algebra generated by variables tp with p ∈ P , with relations t0 = 1 and tp+p′ = tp · tp′

for every p, p′ ∈ P .

Definition 2.1. A smooth log scheme is a pair (X, D) consisting of a scheme X equipped 
with a closed subscheme D ⊆ X, with the following property: around every point x ∈
X, the pair (X, D) is étale locally isomorphic to an affine normal toric variety AP =
SpecC[P ], equipped with its reduced toric boundary ΔP .

Note that every such X has to be smooth away from D, but can be singular along 
the boundary. Another name used in the literature for the open immersion X \D ⊆ X

is toroidal embedding [16].
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If (X, D) is a smooth log scheme, the sheaf M = {f ∈ OX | f |X\D ∈ O×
X\D} is a sheaf 

of (multiplicative) submonoids of OX . Together with the inclusion M ⊆ OX , this sheaf 
of monoids gives a log structure on the scheme X, essentially equivalent to the datum 
of D.

Definition 2.2. A log scheme is a triple (X, M, α), where X is a scheme, M is a sheaf of 
monoids on the small étale site of X, and α : M → OX is a homomorphism of monoids, 
where OX is equipped with multiplication of sections, such that the induced morphism 
α|α−1O×

X
: α−1O×

X → O×
X is an isomorphism.

Every smooth log scheme is in particular a log scheme, but log schemes are more gen-
eral. In particular a log structure (M, α) can be pulled back along arbitrary morphisms of 
schemes, something that cannot be done with pairs (X, D): given a log scheme (X, M, α)
and a morphism of schemes f : Y → X, one can pull back M and α to Y , obtaining a 
homomorphism of sheaves of monoids

f−1α : f−1M → f−1OX → OY ,

but this is not a log structure in general. It can be made into one in a universal way, by 
considering the pushout f∗M = f−1M⊕(f−1α)−1O×

Y
O×

Y with the induced homomorphism 
to OY . In particular, the log structure associated with a pair (X, D) as above can be 
restricted to components of D.

The quotient sheaf M = M/O×
X is called the characteristic sheaf of the log scheme 

(X, M, α). If the stalks of M are fine and saturated (in particular this is true if the log 
scheme is smooth), then the stalks of the associated sheaf of groups Mgp are torsion-free 
abelian groups of finite rank.

A morphism of log schemes (X, M, α) → (Y, N, β) is a morphism of schemes f : X →
Y , together with a homomorphism of monoids f � : f−1N → M , such that the composite 
f−1N → M → OX coincides with the composite f−1N → f−1OY → OX . Such a 
morphism is called strict if f � induces an isomorphism f−1N

∼=−→ M .
The category of log schemes contains the category of schemes as a full subcategory: 

every scheme X has a trivial log structure, given by the sheaf of monoids M = O×
X with 

the inclusion j : O×
X ↪→ OX . Every log scheme (X, M, α) admits a canonical map to the 

corresponding trivial log scheme (X, O×
X , j). The functor that equips a scheme with the 

trivial log structure is right adjoint to the forgetful functor from log schemes to schemes.
We also recall the concept of a chart: assume that X is a scheme, P is a monoid 

and φ : P → O(X) is a homomorphism of monoids. Then we obtain a homomorphism 
of sheaves of monoids P → OX (where P denotes the constant sheaf with stalks P ), 
and by applying the same construction outlined above for the pullback log structure, 
this induces a log structure Mφ → OX on X. If (X, M, α) is a log scheme, a chart is a 

homomorphism of monoids P → M(X), giving φ : P → M(X) α(X)−−−→ O(X) such that 
the induced morphism of log structures Mφ → M is an isomorphism. For every fine 
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monoid P , the log structure on AP induced as described above by the toric boundary 
ΔP has a chart, given by the tautological homomorphism of monoids P → k[P ].

A chart for (X, M, α) is the same thing as a strict morphism X → AP for some fine 
monoid P . The existence of local models in Definition 2.1 is precisely the requirement 
that étale locally on X there are charts X → AP , that are moreover étale.

Every smooth log scheme has a stratification {Sk}k∈N, given by the locally closed 
subsets Sk ⊆ X where the sheaf of free abelian groups Mgp has rank k. We will denote 
by Xk the Zariski closure of Sk in X. This is the subset of X of points where the rank 
of Mgp is at least k. We will refer to the Xk as logarithmic strata of X. There is a 
descending chain of inclusions

X = X0 ⊇ X1 ⊇ · · · ⊇ Xdim X ⊇ Xdim X+1 = ∅.

Unless otherwise mentioned, these closed subsets will always be equipped with the re-
duced subscheme structure. The subscheme Xk (if it is non-empty) has codimension k
in X, and for every k the scheme Xk \Xk+1 is classically smooth (because this is true 
for the orbit stratification of toric varieties).

Definition 2.3. Let Z be a closed subset of a smooth log scheme X. Then the log dimen-
sion of Z is

log dimZ = max
k

(
dim(Z ∩Xk) + k

)
.

In particular note that the log dimension of X itself coincides with dimX.
As we mentioned, in order to work on the log strata we will need to consider more 

general log schemes, étale locally modelled on the boundary of an affine toric variety 
rather than on the whole variety. These objects are also smooth, but in an even laxer 
sense than smooth log schemes. Recall that an ideal of a monoid is a subset K ⊆ P , 
such that i + p ∈ K for every i ∈ K and p ∈ P .

Definition 2.4. An idealized log scheme is a pair consisting of a log scheme (X, M, α), 
and a sheaf of ideals I ⊆ M such that α(I) ⊆ {0} ⊆ OX .

Every log scheme can be made into an idealized log scheme, via the empty sheaf 
of ideals I = ∅ ⊆ M . For every idealized log scheme (X, M, α, I) there is a canonical 
morphism (X, M, α, I) → (X, M, α, ∅), and the resulting functor from log schemes to 
idealized log schemes is the right adjoint of the forgetful functor from idealized log 
schemes to log schemes.

For a fine saturated monoid P with an ideal K, set AP,K = Speck[P ]/〈K〉, where 
〈K〉 denotes the ideal of k[P ] generated by elements of the form ti with i ∈ K. This is 
an idealized log scheme: if αP,K : MP,K → OAP,K

denotes the tautological log structure 
on AP,K ⊆ AP , then the sheaf of ideals of MP,K generated by the image in MP,K of the 
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subsheaf K ⊆ P via the chart morphism P → MP,K is sent to 0 by αP,K . More generally, 
a chart for an idealized log scheme (X, M, α, I) is a strict morphism X → AP,K , where 
P is a fine saturated monoid and K ⊆ P is an ideal, such that the image of the induced 
morphism K → M generates the sheaf of ideals I ⊆ M .

If (X, M, α) is a smooth log scheme, the closed subsets j : Xk ↪→ X are naturally 
idealized log schemes: the log structure is the pullback of the log structure of the ambient, 
and the sheaf of ideals I ⊆ j∗M is the subsheaf (j∗α−1){0}.

In analogy with Definition 2.1, we define smoothness for idealized log schemes by 
asking that they be locally modelled on idealized log schemes of the form AP,K .

Definition 2.5. An idealized log scheme (X, M, α, I) is smooth if étale locally around 
every point x ∈ X there is a strict morphism X → AP,K for some fine saturated monoid 
P and ideal K ⊆ P , which is moreover étale.

Note that by definition every idealized log scheme of the form AP,K is smooth. In 
particular, if {tpi = 0} is a set of monomial equations for the boundary ΔP with the 
reduced structure, then AP,〈pi〉 is a smooth idealized log scheme whose underlying scheme 
is ΔP . At the other extreme, if P is sharp, for the “maximal ideal” K = P \ {0}, the 
underlying scheme of the smooth idealized log scheme AP,P\{0} is the torus-fixed point 
of the toric variety AP (with non-trivial log structure, with monoid M = P ⊕ k×). For 
P = N, the log scheme AN,N\{0} (i.e. the origin of A1 equipped with the pullback log 
structure) is usually called the standard log point.

The closed subschemes Xk of a smooth log scheme, equipped with the idealized log 
structure described above, are smooth idealized log schemes. Conversely, every smooth 
idealized log scheme can be étale locally embedded as a closed subscheme of a smooth 
log scheme (basically by definition).

Remark 2.6. There is a general notion of smoothness (usually called “log smoothness”) 
of morphisms of (idealized) log schemes. The requirements in the above definitions are 
equivalent to asking that the structure morphism from the (idealized) log scheme to 
Spec k equipped with the trivial log (and idealized) structure is smooth. We opted to 
give ad hoc definitions in this paper, because we do not need the “full” machinery.

Smooth idealized log schemes also admit stratifications. From now on, let us assume 
that all smooth idealized log schemes are also connected. In this case, the stalks of the 
sheaf Mgp have the same rank r on a dense open subset of X. We call this number the 
generic rank of (X, M, α, I).

If we define Sk and Xk as the subsets of X where the rank of Mgp is exactly (resp. 
at least) r + k, we have a descending chain of closed subsets

X = X0 ⊇ X1 ⊇ · · · ⊇ Xdim X ⊇ Xdim X+1 = ∅.
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As in the non-idealized case, these closed subsets will be always equipped with the 
reduced subscheme structure.

Definition 2.7. Let Z be a closed subset of a smooth idealized log scheme X, with generic 
rank r. Then the log dimension of Z is

log dimZ = max
k

(
dim(Z ∩Xk) + k

)
+ r.

In particular, the log dimension of X itself is dimX + r.

Notation. From now on, in order to lighten the notation we will denote a (possibly 
idealized) log scheme (X, M, α, I) just by X, and use subscripts for the other symbols 
(i.e. we will write MX , αX , IX) if necessary. Unless there is risk of confusion, we will 
denote the underlying scheme of the log scheme X again by X. If there is such a risk, 
we will denote the underlying scheme by X.

2.2. Logarithmic differentials

Every log scheme carries a sheaf of logarithmic differentials, constructed in analogy 
with the sheaf of Kähler differentials in the non-logarithmic case. This gives rise in 
particular to a logarithmic cotangent bundle and a sheaf of differential operators, that 
we use to define and study D-modules, as in the classical theory.

Definition 2.8. Let X be a smooth log scheme. The logarithmic tangent sheaf TX of X
is the subsheaf of the usual tangent sheaf, consisting of the k-derivations of OX that 
preserve the ideal defining the closed subscheme X1 ⊆ X.

This agrees with a more general construction, that applies to arbitrary logarithmic 
schemes [23, Section IV.1]. Given an arbitrary log scheme X, one can define a concept 
of logarithmic derivation with values into an OX -module [23, Definition IV.1.2.1]. The 
tangent sheaf TX is then the sheaf of logarithmic derivations with values in OX .

As in the classical case, there is an OX -module with a universal logarithmic derivation, 
that can be explicitly constructed as the quotient

ΩX = (Ω1
X/k ⊕ (OX ⊗Z Mgp))/K

where Ω1
X/k is the usual sheaf of Kähler differentials on the scheme X, and K is the sub-

module generated by sections of the form (dα(m), 0) −(0, α(m) ⊗m) for m ∈ M . If X ad-
mits local charts (which will be always true for us), this is a coherent OX -module, called 
the logarithmic cotangent sheaf. The dual of ΩX is the logarithmic tangent sheaf TX . See 
[23, Theorem IV.1.2.4] for details about the construction.

If X is a smooth variety and D ⊆ X is simple normal crossings, Ω(X,D) coincides with 
the usual sheaf of logarithmic differential forms on (X, D), i.e. the sheaf of meromorphic 
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differential forms on X with poles of order at most one along components of D. This 
is locally generated by differential forms of the form dg for g ∈ OX and d log f = df/f

where f is a local equation of D.
In the idealized case the sheaf ΩX is still defined using the formula above (i.e. by 

disregarding the idealized structure). In this case though, its dual TX is not a subsheaf 
of the usual tangent sheaf, because it has sections coming from sections of the sheaf M
that map to zero in OX . For example, if X is the standard log point, the usual tangent 
sheaf has rank 0, while the sheaf of logarithmic derivations TX has rank 1, and it is 
generated by the restriction of the derivation x ∂

∂x from A1.
In both cases, the sheaf TX has a Lie bracket, that we will denote by [−, −] : TX ×

TX → TX as usual. See [23, Section V.2.1] for details. Moreover, as in the classical 
case, a morphism of (idealized) log schemes f : X → Y induces a canonical morphism of 
sheaves f∗ΩY → ΩX (cf. [23, Proposition IV.1.2.15]).

Example 2.9. If X = AP is an affine toric variety, then one can check that ΩX is isomor-
phic to the locally free sheaf OX ⊗Z P gp (see [23, Proposition IV.1.1.4]).

Moreover, for every ideal K ⊆ P , for the idealized log scheme Y = AP,K we also have 
ΩY = OY ⊗Z P gp. Note that this is still locally free, but if K is non-trivial it has bigger 
rank than the dimension of Y . Moreover, we have ΩY

∼= j∗ΩX where j : Y → X is the 
closed embedding.

The behaviour of the previous example generalizes in particular to restriction to strata 
of smooth log schemes. In order to prove this, we reduce to the case of affine toric varieties 
via the following proposition.

Proposition 2.10 ([23, Corollary IV.3.2.4]). Let f : X → Y be a strict and classically 
étale morphism of (idealized) log schemes. Then the canonical morphism f∗ΩY → ΩX

is an isomorphism. �
Proposition 2.11. Let X be a smooth idealized log scheme, and j : Xk ↪→ X the log 
stratum of codimension k. Then the canonical morphism of OXk-modules j∗ΩX → ΩXk

is an isomorphism.

Proof. The preceding proposition reduces the statement to the case of an affine toric 
variety AP , which follows from [23, Corollary IV.2.3.3], after noticing that every log 
stratum is defined by an ideal of the monoid P . �

Note that the isomorphism of the last proposition is a “logarithmic” phenomenon, that 
has no analogue in the classical setting. Moreover, as a consequence also the canonical 
morphism between logarithmic tangent sheaves TXk → j∗TX is an isomorphism.
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Proposition 2.12. Let X be a smooth idealized log scheme. Then the log cotangent sheaf 
and the log tangent sheaf are locally free. Their rank coincides with the log dimension 
of X.

Proof. This follows directly from the case of (idealized) toric varieties mentioned in 
Example 2.9. �

The geometric vector bundles associated with TX and ΩX will be denoted by TX
and T ∗X respectively. We will have no use for the “ordinary” tangent and cotangent 
sheaves (or bundles) of X, so there will be no risk of confusion. We will usually denote 
by π : T ∗X → X the projection from the log cotangent bundle, and we will always tacitly 
equip T ∗X with the log structure obtained from X by pulling back along π.

As in the classical case, the wedge powers Ωi
X =

∧i ΩX of ΩX play an important role. 
In particular, the top wedge power ωX = Ωlog dim X

X is the logarithmic canonical bundle
of X. Another consequence of Proposition 2.11 is that the natural map j∗Ωi

X → Ωi
Xk

for the embedding j : Xk → X of a log stratum is an isomorphism for every i and k. 
In particular the natural map j∗ωX → ωXk is an isomorphism (note that log dimXk =
log dimX for every k).

2.3. Differential algebras

In this section we gather some results about modules over arbitrary sheaves of differ-
ential OX -algebras. Thus we will temporarily forget the log structure, and until the end 
of this section X will be a separated noetherian scheme of finite type over a fixed field k. 
We fix a quasi-coherent sheaf D of differential OX -algebras. Thus D is endowed with an 
increasing filtration F of OX -sub-bimodules indexed by N, compatible with the multi-
plication, such that the associated graded grD is a commutative finite type OX-algebra. 
In particular, D is a differential quasi-coherent OX-ring of finite type in the sense of [31, 
Definition 5.2]. We set Y = SpecOX

grD and let π : Y → X be the projection map.
For a finitely generated D-module F we can as usual (locally) pick a good filtration 

on F and consider its associated graded as an OY -module. The (topological) support of 
grF does not depend on the choice of good filtration and will be denoted by Ch(F). For 
F ∈ Db

coh(D) we set Ch(F) =
⋃

� Ch(H�(F)).
As usual, given a good filtration of F , a short exact sequence

0 → G → F → H → 0

of coherent D-modules induces good filtrations on G and H and a short exact sequence 
of the associated graded modules. Thus,

Ch(F) = Ch(G) ∪ Ch(H).

In particular, if F ′ is a subquotient of F , then Ch(F ′) ⊆ Ch(F).
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In this situation Yekutieli and Zhang, based on previous work by van den Bergh [29], 
introduced the notion of a rigid dualizing complex [31, Definition 3.7]. The existence of a 
rigid dualizing complex is guaranteed by [31, Theorem 0.3]. We fix a choice of such and 
denote it by R. Let us write

D = HomD(−, R) : Db
coh(D) → Db

coh(Dop)

for the corresponding dualizing functor, which by definition is an equivalence. The follow-
ing proposition is well known under the additional assumption that Y is smooth (cf. [5, 
Section 2]).

Proposition 2.13. Let F be a coherent D-module. Then,

(i) DF ∈ D≥n
coh(Dop) if and only if n ≤ − dim Ch(F).

(ii) dim Ch
(
H�(DF)

)
≤ −� for all � ∈ Z.

Proof. Both statements are local, so that it suffices to prove the corresponding state-
ments for rings. By [30, Theorem 8.1], DF ∈ D≥n

coh(Dop) if and only if n is less or equal 
than the negative of the Gelfand–Kirillov dimension of F . By [20, Corollary 1.4] this is 
the same as the Gelfand–Kirillov dimension of grF for some good filtration of F . That 
in turn is the same as the Krull dimension of grF [19, Proposition 7.9]. Statement (i) 
follows.

Similarly, (ii) is a restatement of [30, Theorem 0.3] under the same equivalences. �
Corollary 2.14. Let F ∈ Db

coh(D). Then DF ∈ D≥n
coh(Dop) if and only if

dim Ch(H�(F)) ≤ −n− �

for all � ∈ Z.

Proof. Let us first assume that dim Ch(H�(F)) ≤ −n − � for all � ∈ Z. We induct on 
the cohomological amplitude of F . If F is just a shift of a coherent D-module, then the 
assertion is just a shift of Proposition 2.13(i). Otherwise let p be the smallest integer 
such that Hp(F) �= 0. Consider the distinguished triangle

Hp(F)[−p] → F → τ>pF

and dualize to obtain the triangle

D(τ>pF) → DF → D(Hp(F)[−p]).

By induction, both of the outer terms lie in cohomological degrees at least n. Thus so 
does the middle term.
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For the converse implication let us replace F by DF and D by Dop, so that we assume 
that F ∈ D≥n

coh(D) and we have to show that dim Ch(H�(DF)) ≤ −n − � for all � ∈ Z. 
Again we induct on the cohomological amplitude of F . If F is just a shift of a coherent 
D-module, then the assertion is just a shift of Proposition 2.13(ii). Otherwise let p be 
the smallest integer such that Hp(F) �= 0 and consider the distinguished triangle

Hp(F)[−p] → F → τ>pF .

Applying duality, we get the triangle

D(τ>pF) → DF → D(Hp(F)[−p]).

The corresponding long exact sequence on cohomology sheaves shows that the cohomol-
ogy sheaves of DF fit into short exact sequences with subquotients of the cohomologies 
of the outer complexes. Hence

Ch(H�(DF)) ⊆ Ch(H�(D(Hp(F)[−p]))) ∪ Ch(H�(D(τ>pF))),

and the statement follows by induction. �
Corollary 2.15. Let F ∈ D+Coh(D). Then F ∈ D≥n

coh(D) if and only if

dim Ch(H�(DF)) ≤ −n− �

for all � ∈ Z.

Proof. For F ∈ Db
coh(D), this is just the dual of Corollary 2.14. If F is only bounded 

below the statement follows by taking the limit over all truncations τ<kF . �
Lemma 2.16. Let F ∈ Db

coh(D). Then dim Ch(DF) = dim Ch(F).

Proof. By symmetry we only have to show that dimCh(DF) ≤ dim Ch(F). By a stan-
dard induction argument it further suffices to show this assuming that F ∈ Coh(D) is 
a coherent D-module. Set d = dim Ch(F). Then by Proposition 2.13 we immediately see 
that

dim Ch(DF) = max
−d≤�≤0

dim Ch
(
H�(DF)

)
≤ max

−d≤�≤0
−� = d. �

3. Logarithmic D-modules

We will start by introducing the basic formalism of logarithmic D-modules and ex-
ploring some of their properties. It will turn out that for purposes of induction we will 
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need to consider D-modules supported on a log stratum of X. As explained in the pre-
liminaries, the log strata of X have a natural structure as separated smooth idealized log 
schemes and hence we need to consider D-modules on such.

After introducing the basics, we will discuss how logarithmic D-modules interact with 
restriction to log strata. The general idea is that when crossing to a deeper log stratum, 
coherent DX -modules behave very similarly to coherent OX -modules.

3.1. Logarithmic D-modules and operations on them

Let X be a separated smooth idealized log scheme over k. The basic set-up of loga-
rithmic D-modules is very similar to that of D-modules on smooth varieties. Thus we 
will only give a brief outline and trust that the reader can fill in the details and proofs 
from any standard reference on D-modules (such as the book [11]).

3.1.1. Higher-order logarithmic differential operators
Let us start by describing higher-order differential operators on smooth (idealized) log 

schemes. If X is a smooth log scheme, we denote by D≤n
X the subsheaf of the usual sheaf 

of differential operators of the scheme X, generated by the image of the sheaves T ⊗i
X

for 0 ≤ i ≤ n. We also set DX =
⋃

n D
≤n
X . This is the sheaf of logarithmic differential 

operators on X.
In order to write down an explicit local presentation of DX in terms of generators 

and relations, let us recall a bit of terminology and Lemma 3.3.4 of [2], that describes 
the tangent sheaf TX . Let X be a smooth log scheme and p ∈ X be a point, and denote 
by S the “locally closed log stratum” through p. In other words, S is the irreducible 
component of Xk \Xk+1 that contains p, where k is the rank of the free abelian group 
M

gp
p . Then (logarithmic) coordinates or parameters of X at p are given by a finite set 

x1, . . . , xn ∈ OX,p of elements that give a system of parameters (i.e. a regular sequence 
of maximal length) in OS,p, together with an embedding u : Mp ↪→ OX,p lifting to the 
inclusion Mp ⊆ OX,p (note that Mgp

p is a finitely generated free abelian group).
Étale locally around p there is a strict classically smooth morphism X → AMp

sending 
p to the torus fixed point of AMp

. By smoothness, étale locally around p this map can 
be identified with the projection An × AMp

→ AMp
. The coordinates x1, . . . , xn ∈ OX,p

correspond then to coordinates of An in this local picture.

Proposition 3.1. Let X be a smooth log scheme, p ∈ X a closed point, and x1, . . . , xn ∈
OX,p and u : Mp ↪→ OX,p logarithmic coordinates at p. Then there is a canonical iso-
morphism

TX,p
∼= D(Np) ⊕

(⊕
i

OX,p ·
∂

∂xi

)
where
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• ∂
∂xi

is the unique section of TX,p that is zero on u(Mp) and such that ∂
∂xi

xj = δij, 
and

• Np = HomZ(Mgp
p , OX,p) and for L ∈ Np, the element DL ∈ TX,p is the unique 

derivation such that DL(u(m)) = L(m) · u(m) for every m ∈ Mp and DL(xi) = 0
for all i.

The map D : Np → TX,p is denoted by D in [2]. More precisely, from the proof of 
Lemma 3.3.4 in [2] it follows that if m1, . . . , mk are elements of Mp that form a basis of 
M

gp
p , then TX,p is freely generated by ∂

∂x1
, . . . , ∂

∂xn
and ∂ log(u(m1)), . . . , ∂ log(u(mk)), 

where ∂ log(u(mi)) = “mi
∂

∂mi
” is the element of D(Np) associated to the homomorphism 

in Np sending mi to 1 and every other mj to 0.
In order to keep the notation light, we will denote ∂

∂xi
by ∂i and ∂ log(u(mi)) by ∂mi

. 
Note that since TX is locally free, we can extend generators of this presentation to a 
neighbourhood of p.

Corollary 3.2. Let X be a smooth log scheme, p ∈ X a closed point, and choose logarith-
mic coordinates around p as above.

Then étale locally around p, the sheaf DX can be described as the (non-commutative) 
algebra generated by xi for 0 ≤ i ≤ n, by tm with m ∈ Mp, by symbols ∂i for 0 ≤ i ≤ n

and ∂mi
, where m1, . . . , mk are elements of Mp that form a basis of Mgp

p , subject to the 
following relations:

[xi, xj ] = 0 for all 0 ≤ i, j ≤ n

[tm, tm
′
] = 0 for all m,m′ ∈ Mp

tm+m′
= tm · tm′

for all m,m′ ∈ Mp

[∂i, ∂j ] = 0 for all 1 ≤ i, j ≤ n

[∂i, ∂mj
] = 0 for all 0 ≤ i ≤ n and 0 ≤ j ≤ k

[∂mi
, ∂mj

] = 0 for all 1 ≤ i, j ≤ k

[∂i, xj ] = δij for all 0 ≤ i, j ≤ n

[∂mi
, tm] = ait

m for all 0 ≤ i ≤ k and m =∑
i aimi ∈ Mp

[∂i, tm] = 0 for all 0 ≤ i ≤ n and m ∈ Mp

[∂mi
, xj ] = 0 for all 0 ≤ i ≤ k and 0 ≤ j ≤ n

The variables xi and tm of the statement should of course be identified with the 
generators of the algebra k[x1, . . . , xn, Mp], that describes the structure sheaf OX close 
to the point p.

Example 3.3. If X = A1 = Spec k[x] with the toric log structure, then DX is generated 
by x and ∂, with [∂, x] = x. In more standard notation, ∂ should be denoted by x ∂ .
∂x
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If X is idealized, we can define DX as follows: étale locally around every point we can 
embed X in a toric variety AP , and restrict the sheaf DAP

to X. One can check that 
these locally defined sheaves are canonically isomorphic on double intersections of the 
fixed étale cover of X, and by étale descent for quasi-coherent sheaves of algebras we 
obtain a global sheaf DX . This construction is justified by Proposition 2.11.

Locally around a closed point p ∈ X we can find a classically smooth morphism 
X → AP,K for P = Mp and some ideal K ⊆ P , and hence étale locally around p we 
can identify X with An×AP,K for some n. In this case, logarithmic coordinates at p are 
given by the coordinates x1, . . . , xn of An (corresponding to elements of OX,p giving a 
system of parameters of OS,p, where S is the locally closed log stratum through p), and 
by a map u : Mp → OX,p lifting to Mp → OX,p (that in this case need not be injective).

As a consequence of Proposition 2.11, we have:

Corollary 3.4. Let X be a smooth idealized log scheme, p ∈ X a closed point, and choose 
logarithmic coordinates around p as above. Moreover let K ⊆ Mp be the ideal defining 
the idealized structure on X.

Then étale locally around p, the sheaf DX can be described as the (non-commutative) 
algebra generated by xi for 0 ≤ i ≤ n, by tm with m ∈ Mp, by symbols ∂i for 0 ≤ i ≤ n

and ∂mi
, where m1, . . . , mk are elements of Mp that form a basis of Mgp

p , subject to all 
the relations as in Corollary 3.2, and also to tk = 0 for k ∈ K.

Proof. This is an immediate combination of Proposition 2.11 and Corollary 3.2. �
Example 3.5. If X is the standard log point, then DX is a k-algebra, freely generated 
by a single element ∂. Of course, ∂ is the restriction to the origin of the generator x ∂

∂x

of Example 3.3. In particular, in contrast with the situation for usual differentials, the 
element x ∂

∂x does not become zero when x = 0.

In analogy with the classical case, we will endow DX with the order filtration, i.e. the 
filtration for which the generators xi and tm are in degree 0 and ∂i and ∂mj

are in degree 
1. This makes DX into a quasi-coherent differential OX -algebra in the sense of Section 2.3. 
The corresponding associated graded is isomorphic to π∗OT∗X , where π : T ∗X → X is 
the log cotangent bundle. In particular it follows that DX is left and right noetherian 
(cf. [11, Proposition D.1.4]).

3.1.2. Logarithmic D-modules
Let X be a separated smooth idealized log scheme of finite type over k. A logarithmic 

D-module on X will be a sheaf F of left modules for the sheaf of algebras DX . A homo-
morphism of log D-modules is a homomorphism of sheaves of left DX-modules. We will 
denote the category of log D-modules on X by Mod(DX). In the rest of the paper we will 
suppress the word “logarithmic”, and just use “D-module” or “DX-module”. Ordinary 
D-modules will not play any role, so there is no risk of confusion.
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As in the classical case, we have the following equivalent characterization of D-
modules:

Proposition 3.6. Let F be a sheaf of OX-modules. Then a structure of D-module on F
corresponds to a k-linear morphism ∇ : TX → Endk(F) satisfying:

(i) ∇fθ(s) = f∇θ(s) for f ∈ OX , θ ∈ TX , s ∈ F ,
(ii) ∇θ(fs) = θ(f)s + f∇θ(s) for f ∈ OX , θ ∈ TX , s ∈ F ,
(iii) ∇[θ1,θ2](s) = [∇θ1 , ∇θ2 ](s) for θ1, θ2 ∈ TX , s ∈ F .

There is also a category of right DX-modules, usually identified with Mod(Dop
X ), and 

one can switch between left and right DX-modules by tensoring with the log canonical 
bundle.

In fact, ωX has a natural structure of a right DX-module via the Lie derivative: for 
θ ∈ TX , define (Lie θ)ω for ω ∈ ωX by

((Lie θ)ω)(θ1, . . . , θn) = θ(ω(θ1, . . . , θn)) −
n∑

i=1
ω(θ1, . . . , [θ, θi], . . . , θn)

where θi ∈ TX , and n = log dimX. The identities

• (Lie [θ1, θ2])ω = (Lie θ1)((Lie θ2)ω) − (Lie θ2)((Lie θ1)ω),
• (Lie θ)(fω) = f((Lie θ)ω) + θ(f)ω,
• (Lie fθ)ω = (Lie θ)(fω)

show (using the analogue for right DX-modules of Proposition 3.6) that ωθ = −(Lie θ)ω
defines a structure of right DX-module on ωX .

For a left DX -module F , the tensor product ωX ⊗OX
F can be endowed with a 

structure of right DX-module: for sections ω ∈ ωX , s ∈ F and θ ∈ TX , set (ω ⊗ s)θ =
ωθ ⊗ s − ω ⊗ θs.

Lemma 3.7. The functor F �→ ωX⊗OX
F from Mod(DX) to Mod(Dop

X ) is an equivalence 
of categories with quasi-inverse given by G �→ ω∨

X ⊗OX
G = HomOX

(ωX , G).

These functors are sometimes called the side-changing operations.

Proof. The action of θ ∈ TX on a section φ ∈ HomOX
(ωX , G) is given by (θφ)(s) =

−φ(s)θ + φ(sθ). Exactly as in the classical case one immediately checks that the two 
functors are quasi-inverse to each other. �

We call a DX -module quasi-coherent if it is so as an OX -module. A DX -module F
will be called coherent if locally on X, F can be written as a cokernel
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Dn
X → Dm

X → F → 0

of a morphism of free DX-modules of finite rank. Since DX is noetherian, this notion 
of coherence is equivalent to the stronger one, requiring that F be locally finitely gen-
erated, and that every local finitely generated subsheaf of F be finitely presented. We 
write Modcoh(DX) for the category of coherent D-modules and Db

coh(DX) for the full 
subcategory of D(DX) consisting of complexes with finitely many nonzero cohomology 
sheaves, all of which are coherent. As in the classical case, one proves that this is the 
same as the bounded derived category of Modcoh(DX), cf. [6, Proposition VI.2.11]. This 
follows from the following lemma, which again can be proven as in the classical case, 
cf. [6, Lemma VI.2.3].

Lemma 3.8. Let F be a quasi-coherent DX-module. Then the following hold:

(i) If F is coherent, then it is generated as a DX-module by an OX-coherent 
OX-submodule.

(ii) Let U ⊆ X be open and such that F|U is DU -coherent. Then there exists a 
DX-coherent submodule F̃ such that F̃ |U = F|U .

(iii) F is the filtered colimit of its DX-coherent submodules. �
If F ∈ Modcoh(DX) is a coherent D-module we can choose a good filtration on it. As 

in the classical case, Lemma 3.8 implies that one can choose a global filtration, cf. [11, 
Theorem 2.1.3]. The associated graded is then a coherent grDX -module and its support 
is called the characteristic variety Ch(F) ⊆ T ∗X of F . We will only ever consider Ch(F)
as a topological space and hence always endow it with the induced reduced structure. 
Let us remark that dimT ∗X = dimX + log dimX.

Remark 3.9. If Ch(F) is contained in the zero section T ∗
XX of the cotangent bundle, then 

as in the proof of [11, Proposition 2.2.5] any good filtration of F must stabilize after 
finitely many steps and hence F is OX -coherent. Thus the subcategory of Modcoh(DX)
of modules with characteristic variety contained in T ∗

XX is the same as Ogus’s category 
MICcoh(X/C) of coherent sheaves equipped with a log connection [22].

3.1.3. Duality
We fix a rigid dualizing complex R for DX as in Section 2.3. If the underlying 

classical scheme X is smooth, then it has been shown in [9] that R ∼= DX ⊗OX

HomOX
(ωX , ωX)[dimX + log dimX]. We will show in future work how to extend this 

formula to general log smooth, but not necessarily smooth, varieties (even though in 
that case ωX might not be a line bundle). In order to match the classical (i.e. trivial log 
structure) setting, we introduce a shift in the duality functor and define the dual of any 
F ∈ D(DX) as

DVe
X F = HomD (F ,R)[− log dimX] ⊗OX

ω∨
X
X
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= HomDX
(F ,R⊗OX

ω∨
X [− log dimX]),

where we tensor with ω∨
X to obtain a functor of left DX -modules. By definition DVe

X

restricts to an involutive anti-autoequivalence of Db
coh(DX).

Remark 3.10. It might be confusing that we have to introduce a shift by − log dimX

(compared to dimX in the classical setting). This is because if X is a smooth complex 
variety, then the rigid dualizing complex is already concentrated in cohomological degree 
− dimX − log dimX. For good behaviour in the idealized case the shift by − log dimX

proves to be more natural than the alternative of a shift by − dimX. For example on 
the standard log point, the dualizing complex R is DX [1], so that DVe

X OX = OX [−1]. If 
p is the canonical map from the log point to the usual point then one easily computes 
that the pushforward along p (see Section 3.1.4) of OX is the cohomology of S1, shifted 
down by 1. Thus our convention ensures (at least in this case) that pushforward along 
proper maps commutes with duality.

Lemma 3.11. For any F , G ∈ Db
coh(DX) there exists an isomorphism of kX-modules

HomOX
(F ,G) ∼= DVe

X

(
F ⊗OX

DVe
X G

)
.

We note that here HomOX
(F , G) is a left DX -module by the usual construction, cf. [11, 

Proposition 1.2.9].

Proof. By Tensor-Hom adjunction we have

DVe
X (F ⊗OX

DVe
X G) ∼= HomDX

(F ⊗OX
DVe

X G, R⊗OX
ω∨
X [− log dimX])

∼= HomOX
(F , DVe

X DVe
X G)

∼= HomOX
(F , G). �

3.1.4. Pullback and pushforward
In the remainder of this subsection all functors will be underived unless noted other-

wise.
Let f : X → Y be a morphism of smooth idealized log schemes. The definition of the 

pullback of a DY -module along f exactly mirrors the definition of the pullback in the 
classical setting. Let us give an explicit description.

For a DX -module F ∈ Mod(DY ) let

f∗F = OX ⊗f−1OY
f−1F ,

be the O-module pullback. In order to define a DX-module structure on f∗F , it suffices 
to specify the action ∇θ of each θ ∈ TX (Proposition 3.6). For this we use the map

TX → f∗TY , θ �→ θ̃
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dual to the canonical map f∗Ω1
Y → Ω1

X . Then for θ ∈ TX we define

θ(ψ ⊗ s) = θ(ψ) ⊗ s + ψθ̃(s), ψ ∈ OX , s ∈ F .

Here if θ̃ =
∑

φj ⊗ θj (where φj ∈ OX , θj ∈ TY ) we set ψθ̃(s) =
∑

ψφj ⊗ θj(s). In 
particular this endows the sheaf

DX→Y = f∗DY = OX ⊗f−1OY
f−1DY

with the structure of a (DX , f−1DY )-bimodule and we have an isomorphism of 
DX -modules

f∗F ∼= DX→Y ⊗f−1DY
f−1F .

Definition 3.12. For a morphism f : X → Y of smooth idealized log schemes we define 
the naive pullback f∗ : D−(DY ) → D−(DX) by

M �→ DX→Y ⊗L

f−1DY
f−1(M).

Remark 3.13. Unlike in the classical setting, the !-pullback f ! is not simply a shift of the 
naive pullback. To see why this is the case let us consider a smooth log variety X with 
structure map p : X → pt. Then it is easy to see that the pushforward p• : Mod(DX) →
Vect (see Definition 3.14) is represented by OX . Thus the six-functor formalism would 
imply that (up to shift) f !k = DVe

X OX . On the other hand, at least if the underlying 
variety X is smooth, then by the discussion in Section 3.1.3 DVe

X OX = HomOX
(ωX , ωX)

which in general differs from f∗k = OX .
For the purpose of the present work the naive pullback will be sufficient.

Similarly, the pushforward of a DX-module along f can again be defined as in the clas-
sical case. Thus, given a right D-module F , we get a right f−1DY -module F⊗DX

DX→Y

and hence a right DY -module f∗(F ⊗DX
DX→Y ) (where f∗ is the sheaf theoretic direct 

image functor). In order to get a functor of left D-modules we apply the side-changing 
operations. Thus we arrive at

ω∨
Y ⊗OY

f∗((ωX ⊗OX
F) ⊗DX

DX→Y ) ∼= ω∨
Y ⊗OY

f∗((ωX ⊗OX
DX→Y ) ⊗DX

F)
∼= f∗((ωX ⊗OX

DX→Y ⊗f−1OY
f−1ω∨

Y ) ⊗DX
F),

where the first isomorphism follows by the analogue of [11, Lemma 1.2.11]. As in the 
classical case we define the (f−1DY , DX)-bimodule

DY←X = ωX ⊗OX
DX→Y ⊗f−1OY

f−1ω∨
Y .
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Definition 3.14. For a morphism f : X → Y of smooth idealized log schemes we have a, 
potentially only partially defined, direct image functor f• : Db(DX) → D(DY ) given by

F �→ f•F = Rf∗(DY←X ⊗L

DX
F).

Remark 3.15. Since the underlying classical scheme X might have singularities, the ring 
DX does not necessarily need to be of finite global dimension. Thus the result of the 
tensor product in the above definition might not be bounded below, so that we cannot 
apply the right derived functor of f∗ to it. In this paper we will only consider situations 
where the pushforward is defined on the whole category. We will return to this issue in 
future work.

3.2. Restrictions to log strata

The purpose of this section is to prove a version of [13, Proposition 5.2]. In effect we 
can view this as obtaining a refinement of Corollary 2.14 for local cohomology along log 
strata.

Let i : Xk → X be the inclusion of a log stratum, endowed with the induced idealized 
log structure. Let I be the sheaf of ideals defining Xk. By [2, Lemma 3.3.4(4)]), the 
sheaf I, and hence also OXk = OX/I, has a canonical DX-module structure. From the 
presentation of DX discussed in (3.1.1) we have canonical isomorphisms

DXk→X
∼= OXk ⊗OX

DX
∼= DXk .

Similarly, recall that we have ωXk
∼= OXk ⊗OX

ωX . Thus the pushforward i• is well-
defined and coincides with the O-module pushforward. In particular we have for any 
F ∈ D(DX),

i•i
∗F ∼= OXk ⊗OX

F ,

where the latter has a natural structure of left DX-module.

Remark 3.16. It follows from this that Kashiwara’s equivalence for DX -modules sup-
ported on a closed subvariety cannot hold for general log varieties. As an example, 
consider the log line X = A1 and let i be the inclusion of the origin endowed with the in-
duced idealized log structure. Then for example i•i∗(OX/xnOX) is not quasi-isomorphic 
to OX/xnOX . Moreover for n > 0 there cannot be any sheaf F whose pushforward is 
isomorphic to OX/xnOX even as OX -modules.

By Proposition 2.11 we have an identification of log cotangent spaces T ∗Xk =
T ∗X|Xk = T ∗X ×X Xk ⊆ T ∗X. For any subspace Y of T ∗X we set Y |Xk = Y ∩ T ∗Xk. 
Consider now the short exact sequence of right modules
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0 → IDX → DX → DX

/
IDX

→ 0.

By the above, we know that DX/IDX
∼= DXk , compatibly with the filtrations. Thus 

the induced short exact sequence

0 → gr(IDX) → grDX → grDXk → 0

shows that gr(IDX) is the sheaf of ideals of OT∗X defining T ∗Xk.

Lemma 3.17. Let F be a coherent DX-module and let i : Xk ↪→ X be the inclusion of a 
log stratum. Then, under the identification T ∗Xk = T ∗X|Xk we have

(i) Ch(H0(i∗F)) = Ch(F)|Xk ;
(ii) Ch(H�(i∗F)) ⊆ Ch(F)|Xk for all � ∈ Z.

Proof. Let I be the sheaf of ideals defining Xk. As noted above, I is a coherent 
DX -module and hence the same is true for IF . Consider now the short exact sequence 
of DX -modules

0 → IF → F → F/IF → 0.

The module IF is the same as (IDX)F , where (IDX) is a sheaf of (right) ideals of DX . 
We have gr(IF) ∼= gr(IDX) grF . Thus we get a short exact sequence

0 → gr(IDX) grF → grF → gr(F/IF) → 0,

and hence an isomorphism

gr(F/IF) ∼= grF
/

gr(IDX) grF ∼= grF ⊗OT∗X
OT∗Xk ,

showing the first statement.
For the second statement it now suffices to show that the characteristic varieties of 

Hi(F ⊗OX
OXk) are contained in Ch(F). Since the statement is local, we can assume 

that X is affine and hence has the resolution property (i.e. every coherent sheaf admits a 
surjection from a vector bundle). Thus we can compute the tensor product via a locally 
free resolution of OXk , which implies that Hi(F ⊗OX

OXk) is locally a subquotient of a 
direct sum of copies of F . The statement follows. �

It is well known that for a coherent OX-module F with supp(F) = Z ∪Z ′ with Z, Z ′

closed there exists a short exact sequence of coherent sheaves 0 → G → F → G′ → 0
with supp(G) ⊆ Z and suppG′ ⊆ Z ′ [28, Tag 01YC]. The following statement is an 
adaptation of this to DX -modules, but only when one of the supports is a log stratum.
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Lemma 3.18. Let F ∈ Modcoh(DX) and assume that there exists a closed subscheme Z
of T ∗X such that Ch(F) is contained in T ∗X|Xk ∪ Z for some k. Then there exist a 
short exact sequence of coherent DX-modules

0 → G → F → G′ → 0

with Ch(G′) ⊆ T ∗X|Xk and Ch(G) ⊆ Z.

Proof. All functors in this proof will be between the abelian categories, i.e. underived. 
Let I ⊆ OX be the sheaf of ideals defining the reduced subscheme structure on Xk. Set 
G′
n = (OX/In) ⊗OX

F = (DX/InDX) ⊗DX
F and Gn = InF = ker(F → G′

n). That is, 
for each n we have a short exact sequence

0 → Gn → F → G′
n → 0.

Clearly supp(G′
n) ⊆ Xk and hence Ch(G′

n) ⊆ T ∗X|Xk . We have to show that Ch(Gn) ⊆ Z

for n � 0 or equivalently that grGn|T∗X\Z = 0.
By the proof of Lemma 3.17, we have

grG′
n
∼= (OT∗X/InOT∗X) ⊗OT∗X

grF .

Thus the short exact sequence

0 → grGn → grF → grG′
n → 0

shows that grGn
∼= (InOT∗X) grF . Thus also grGn|T∗X\Z ∼= (InOT∗X) grF|T∗X\Z . As 

grF|T∗X\Z is supported on T ∗X|Xk , (InOT∗X) grF|T∗X\Z has to vanish for n � 0 [28, 
Tag 01Y9]. In other words, supp grGn ⊆ Z for some n, as required. �

The following statements are adapted from similar statements in [13, Section 5], specif-
ically from Proposition 5.2, Lemma 5.3 and Proposition 5.4. We want to emphasize that 
they are only true for restrictions to the strata Xk. The analogous statements for arbi-
trary closed subschemes fail.

Lemma 3.19. Let F ∈ D−
coh(DX). Then under the identification T ∗Xk ↪→ T ∗X we have 

an equality of characteristic varieties

Ch(τ≥�F)|Xk = Ch
(
τ≥�(OX/I ⊗OX

F)
)
,

for every � ∈ Z, where I is the sheaf of ideals defining the reduced subscheme structure 
on Xk.

Proof. The inclusion Ch
(
τ≥�(OX/I ⊗OX

F)
)
⊆ Ch(τ≥�F)|Xk follows immediately by 

induction from Lemma 3.17(ii).
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For the other inclusion fix any point x ∈ Ch(τ≥�F)|Xk and let j be the largest integer 
such that x ∈ Ch(Hj(F)). Let i : Xk ↪→ X be the inclusion. By Lemma 3.17 we see that 
x ∈ Ch(H0(i∗Hj(F))). Hence from the spectral sequence

H−p(i∗Hq(F)) ⇒ Hp+q(i∗F)

and the maximality of j it follows that

x ∈ Ch(Hj(i∗F)) = Ch(Hj(OX/I ⊗OX
F)) ⊆ Ch(τ≥�(OX/I ⊗OX

F))

as required. �
We are now ready to state and prove the main proposition of this section.

Proposition 3.20. Let F ∈ Db
coh(DX) and let k and n be integers. Then ΓXk(F) ∈

D≥n
qc (OX) if and only if

dim Ch
(
H�(DVe

X F)
)∣∣

Xk ≤ log dimX − n− �

for all � ∈ Z.

Proof. By [10, Proposition VII.1.2], ΓXk(F) ∈ D≥n
qc (OX) if and only if

HomOX
(OX/I, F) ∈ D≥n(kX),

where I is the sheaf of ideals defining Xk with the reduced subscheme structure. We 
note that by Lemma 3.11 we have an isomorphism of kX-modules

HomOX
(OX/I, F) ∼= DVe

X

(
OX/I ⊗OX

DVe
X F

)
.

Hence it suffices to show that the latter is contained in D≥n(kX). By Corollary 2.15 this 
is equivalent to

dim Ch
(
H�

(
OX/I ⊗OX

DVe
X F

))
≤ log dimX − n− �

for all � ∈ Z. Thus the statement follows from Lemma 3.19. �
3.3. Holonomic log D-modules

In the classical case the Bernstein inequality says that dim Ch(F) ≥ dimX. However 
this is no longer true in the logarithmic setting. For example, the characteristic variety 
of the skyscraper C at the origin of the log line A1 (say with x ∂

∂x acting by 0) is just the 
origin, and hence 0-dimensional. As the following proposition shows, the reason is that 
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we should account for the logarithmic structure and use the log dimension to measure 
characteristic varieties.

Recall that we regard T ∗X as a log scheme, equipped with the pullback of the log 
structure of X via the projection π : T ∗X → X.

Theorem 3.21 (Logarithmic Bernstein inequality). Let F be a coherent DX-module. Then 
if Z is any irreducible component of Ch(F),

log dimZ ≥ log dimX.

Note that if X is not idealized, then log dimX = dimX, and the above inequality 
reads log dimZ ≥ dimX.

Proof. Let k be the largest integer such that Z ⊆ T ∗Xk. By Lemma 3.17(i) we can 
replace X by Xk (with the induced idealized log structure) and F by its restriction to 
assume without loss of generality that Z intersects the open log stratum U non-trivially.

It suffices to show that log dimZ|U ≥ log dimU = log dimX. Thus we replace X
by U and F by F|U and assume that X consists of a single stratum. In this case X is 
classically smooth. Locally from the description of the ring of differential operators in 
Corollary 3.4 we have an isomorphism

DX
∼= DX [∂m1 , . . . , ∂md

],

where DX is just the usual algebra of differential operators on the classical scheme X and 
d = log dimX − dimX. We note that the generators ∂mi

all commute with everything.
From [5, Theorem 3.4 on page 43] it follows that the (left) global dimension of DX is

gldimDX = gldimDX + d = dimX + d = log dimX

and

gldim grDX = gldim grDX + d = 2 dimX + d = dimX + log dimX.

Thus from [5, Corollary 7.2 on page 73] we obtain that

dimZ ≥ gldim grDX − gldimDX = dimX

and hence finally

log dimZ = dimZ + d ≥ log dimX. �
Definition 3.22. A coherent DX -module F is called holonomic if log dim Ch(F) =
log dimX. An element of Db

coh(DX) is called holonomic if all its cohomology modules 
are holonomic.
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Remark 3.23. If the underlying classical scheme X is smooth then we have a forgetful 
functor from DX -modules to DX -modules via the pullback along the canonical map 
X → X. If X is a smooth log scheme, then this comes from the inclusion DX ⊆ DX . 
This forgetful functor does however not preserve holonomicity, as the example of the 
skyscraper k[ ∂

∂x ] at the origin of A1 shows. On the other hand it is not too hard to see 
that the pushforward along the map X → X does preserve holonomicity.

Proposition 3.24. For any F ∈ Db
coh(DX) one has log dimF = log dimDVe

X F . In partic-
ular F is holonomic if and only if DVe

X F is holonomic.

Proof. By duality it is sufficient to show that log dimDVe
X F ≤ log dimF . As usual, 

we can assume that F ∈ Modcoh(DX). It suffices to show that for any k ≥ 0 we 
have dim Ch(DVe

X F)|Xk ≤ dim Ch(F)|Xk . By Lemma 3.17 the left hand side is equal to 
dim Ch(DXk ⊗DX

DVe
X F). There is a canonical isomorphism

DXk ⊗DX
HomDX

(F , R) ∼= HomDX
(HomDX

(DXk , F), R),

where R is the dualizing complex. As duality preserves the dimension of the characteristic 
variety (Lemma 2.16) it thus is enough to show that Ch(HomDX

(DXk , F)) is contained in 
Ch(F)|Xk . This follows from the fact that grExti(DXk , F) is isomorphic to a subquotient 
of ExtiOT∗X

(OT∗Xk , grF) [11, Lemma D.2.4]. �
4. The log perverse t-structure

A fundamental property of holonomic D-modules in the classical setting is that their 
duals are concentrated in cohomological degree 0. Indeed, this property can be used to 
characterize the holonomic D-modules among all coherent ones. As the following example 
shows, this is no longer true in the logarithmic setting.

Example 4.1. Let X = A1 be the log line (with log structure given by the origin). The 
module OX has a free resolution

DX
·x ∂

∂x−−−→ DX

and hence dual (as right DX-module and up to a twist by a line bundle)

HomDX
(OX ,DX)[1] =

(
DX

x ∂
∂x ·−−−→ DX

)
[1] = OX

(where the complex now is in degrees 0 and 1, as opposed to −1 and 0). On the other 
hand the skyscraper C0 at the origin with x ∂

∂x acting by zero has a free resolution

DX
·(x, 1−x ∂

∂x )−−−−−−−−→ D2
X

·
(
x ∂

∂x
x

)
−−−−−−→ DX .
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Thus the dual is

HomDX
(C0,DX)[1] =

(
C[x, x ∂

∂x ]/(x, 1 − x ∂
∂x )

)
[−1] = C0[−1],

where now x ∂
∂x acts (on the right) as the identity.

In contrast, the dual of the non-holonomic skyscraper C[x ∂
∂x ], by a similar computa-

tion, is concentrated in cohomological degree 0.

It turns out that this example is typical. That is, the failure of DVe
X to send holonomic 

modules to sheaves is entirely due to shifts concentrated along the log strata. We can 
thus correct this failure by using a “perverse” t-structure on the dual side.

Recall that a t-structure on a triangulated category D consists of a pair of full sub-
categories (D≤0, D≥1) subject to the following conditions:

• D≤0[1] ⊆ D≤0 and D≥1[−1] ⊆ D≥1.
• HomD(D≤0, D≥1) = 0.
• Each object X ∈ D can be embedded in a distinguished triangle

A → X → B (1)

with A ∈ D≤0 and B ∈ D≥1.

T-structures were introduced in [3] in order to define perverse sheaves. The prototypical 
example is given by the standard t-structure of a derived category D = D(A) of an 
abelian category A, where D≤0 (resp. D≥1) consists of the complexes whose cohomolo-
gies vanish in positive (resp. non-positive) degrees.

Let us quickly recap the main properties of a t-structure: For any integer n we set 
D≤n = D≤0[−n] and D≥n = D≥1[−n + 1]. Then the inclusion D≤n ↪→ D has a right 
adjoint, often denoted τ≤n : D → D≤n, while D≥n ↪→ D has a left adjoint, often denoted 
τ≥n : D → D≥n. In particular, the distinguished triangle (1) is unique up to isomorphism 
and given by A = τ≤0(X) and B = τ≥1(X). The intersection D♥ = D≤0 ∩ D≥0 is an 
abelian subcategory, called the heart of the t-structure, and the functor

Hn = τ≤n ◦ τ≥n = τ≥n ◦ τ≤n : D → D♥

is a cohomological functor. In this paper we use the unadorned notation τ≤n and τ≥n

for the truncation functors of the standard t-structure, while the functors for other 
t-structures will have added superscripts.

We come now to the central definition of this paper, the t-structure of log perverse 
DX-modules. Write rX = log dimX − dimX for the generic rank of Mgp

X (the reader 
only interested in non-idealized log varieties may always assume that rX = 0). Define 
two full subcategories of the derived category Db

qc(DX) of quasi-coherent DX-modules 
by
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pD≤0
qc (DX) =

{
F ∈ Db

qc(DX) : suppHk+rX (F) ⊆ Xk for all k
}
,

pD≥0
qc (DX) =

{
F ∈ Db

qc(DX) : ΓXk(F) ∈ D≥k+rX
qc (X) for all k

}
.

This t-structure should be thought of as a perverse t-structure with respect to the log 
stratification. For example on the standard log line the structure sheaf OX is in the heart 
pD≤0

qc (DX) ∩ pD≥0
qc (DX) and so is any skyscraper module at the origin when placed in 

cohomological degree 1. We do however not impose any smoothness condition within the 
individual strata. Thus for example the unshifted skyscraper D-modules at any point in 
A1 \ {0} are log perverse.

Theorem 4.2. The pair (pD≤0
qc (DX), pD≥0

qc (DX)) forms a t-structure on Db
qc(DX).

Proof. This is just [13, Theorem 3.5] with Φk = Xk and a shift by rX . �
Definition 4.3. We write

Modp(DX) = pD≤0
qc (DX) ∩ pD≥0

qc (DX) ⊆ Db
qc(DX)

for the heart of the log perverse t-structure and call its objects log perverse DX-modules. 
The corresponding truncation functors are denoted by τp

≤i and τp
≥i and the cohomology 

functors by pHn = τp
≤n ◦ τp

≥n.

Remark 4.4. The log perverse t-structure does not restrict to a t-structure on Db
coh(DX), 

i.e. the pair 
(pD≤n

qc (DX) ∩ Db
coh(DX), pD≥n

qc (DX) ∩ Db
coh(DX)

)
does not form a t-

structure. For example the sheaf in Remark 5.2 does not have coherent perverse co-
homology modules.

The definition of pD≥0
qc (DX) is additionally motivated by the following proposition, 

which enhances Proposition 3.20 to a statement about log dimension. (Of course, as for 
any t-structure, fixing pD≥0

qc (DX) uniquely determines pD>0
qc (DX).)

Proposition 4.5. Let F ∈ Db
coh(DX). Then ΓXkF ∈ pD≥n

qc (DX) if and only if

log dim Ch
(
H�(DVe

X F)
)∣∣

Xk ≤ log dimX − n− �

for all � ∈ Z.

Proof. By definition, ΓXkF ∈ pD≥n
qc (DX) if and only if ΓXk+iF ∈ D≥n+k+i+rX

qc (X) for 
all i ≥ 0. By Proposition 3.20 this is the case if and only if

log dim Ch
(
H�(DVe

X F)
)∣∣

Xk = max
i≥0

dim Ch
(
H�(DVe

X F)
)∣∣

Xk+i + k + i + rX

≤ log dimX − n− � for all � ∈ Z. �
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With the definitions of the log perverse t-structure in place, we can now state the 
interplay between holonomicity and duality in the logarithmic setting.

Theorem 4.6. A coherent DX-module F ∈ Modcoh(DX) is holonomic if and only if 
DVe

X (F) ∈ Modp(DX). Conversely, a coherent log perverse DX-module G ∈ Modp(DX)
is holonomic if and only if DVe

X (G) ∈ Modcoh(DX).

We split the main arguments of the proof into a series of lemmas.

Lemma 4.7. Let F be a coherent DX-module. Then, suppF ⊆ Xdim X−dim Ch(F).

Here we use the convention that Xk = X for k ≤ 0. The quantity dimX−dim Ch(F), 
if positive, can be seen as measuring how much the classical Bernstein inequality fails. 
The lemma then says that the more it fails, the deeper in the log stratification the 
support of F must be located.

Proof. Let U = X \Xdim X−dim Ch(F) and set G = F|U . If G is non-zero, then

log dim Ch(G) < dim Ch(G) + (dimX − dim Ch(G)) + (log dimX − dimX)

= log dimX = log dimU,

in contradiction to Theorem 3.21. �
Lemma 4.8. Let F ∈ D≥0

coh(DX). Then DVe
X F ∈ pD≤0

qc (DX).

Proof. We have to show that suppHk(DVe
X F) is contained in Xk. By Proposition 3.20

we know that

dim Ch
(
Hk(DVe

X F)
)
≤ log dimX − k for all k.

Thus it follows from Lemma 4.7 that the support of Hk(DVe
X F) is contained in 

Xdim X−(log dim X−k) = Xk−rX . �
Lemma 4.9. Let F ∈ Modcoh(DX) be a coherent DX-module and let n be any integer. 
Then log dim Ch(F) ≤ log dimX + n if and only if DVe

X F ∈ pD≥−n
qc (DX).

Proof. This is just Proposition 4.5 applied to DVe
X F . �

Lemma 4.10. If F ∈ Db
coh(DX) is contained in pD≥0

qc (DX), then DVe
X F ∈ D≤0

coh(DX).

Proof. By Proposition 4.5,

log dim Ch
(
H�(DVe

X F)) ≤ log dimX − �
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Thus by the logarithmic Bernstein inequality (Theorem 3.21) H�(DVe
X F) has to vanish 

for � > 0. �
Lemma 4.11. Let F ∈ Modp(DX) be coherent. If log dim Ch(F) ≤ log dimX + n, then 
DVe

X F ∈ D≥−n
coh (DX).

Proof. By assumption, suppH�+rX (F) is contained in X� for all integers �. Thus 
log dim Ch(F) ≤ log dimX + n implies

dim Ch
(
H�+rX (F)

)
≤ log dimX − �− rX + n.

Hence the result follows from Proposition 3.20. �
Theorem 4.6 is now an immediate consequence of Lemmas 4.8 through 4.11.

Corollary 4.12. If F ∈ Db
coh(DX) is holonomic, then so is pHn(F) for any n.

Proof. We will show that if G ∈ Db
coh(DX) is holonomic, then pHn(DVe

X G) has holonomic 
cohomology. Then the statement follows with G = DVe

X F as DVe
X preserves holonomicity.

Using the spectral sequence pHp(Hq(F)) ⇒ pHp+q (see [17, Theorem IV.5.1]), we can 
reduce to G being concentrated in a single cohomological degree. But then by Theorem 4.6
DVe

X G is concentrated in a single perverse degree and the statement is trivial. �
5. Two filtrations

Given a coherent DX-module F one often wants to find the maximal holonomic sub-
module. More generally, one is interested in filtering F by submodules with increasing 
log dimension of the associated characteristic varieties.

Definition 5.1. For a coherent DX-module F we let GiF denote the largest submodule G
of F with log dim Ch(G) ≤ log dimX + i. This defines an increasing filtration G• on F , 
called the log Gabber filtration.

We remark that such a largest submodule GiF indeed exists because DX is noetherian 
and for G, H ⊆ F we have Ch(G ∪ H) = Ch(G) ∪ Ch(H).

Remark 5.2. In the classical setting the filtration G• is quite well behaved. In particular 
G0 never vanishes, i.e. every coherent D-module has a holonomic submodule. In the 
logarithmic setting this is no longer necessarily the case.

Consider the example of the standard log plane X = A2, i.e. the defining divisor is 
given by the coordinate axes. The DX-module F = DX/DX(x − y, x ∂

∂x + y ∂
∂y ) is con-

centrated along the diagonal and has a 2-dimensional characteristic variety. As the fiber 
of Ch(F) over the origin is 1-dimensional, log dim Ch(F) = 3 and F is not holonomic. 
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Consider now G0F . As Ch(G0F) is closed and conical, G0F has to vanish in some neigh-
borhood of the origin as otherwise the fiber of Ch(G0F) over the origin would again be 
1-dimensional. Thus G0F has to vanish and F has no holonomic submodule.

Remark 5.3. By the same argument the restriction of F to A2 \ 0 (which is holonomic) 
has no holonomic extension to A2. Thus in general if X ⊆ X̄ is a (possibly partial) 
compactification, one cannot expect that holonomic D-modules on X always extend to 
holonomic D-modules on X̄. This is in contrast with the classical situation, where such 
an extension is always possible. Fundamentally, this is the result of a possibly non-generic 
interaction of the log structure of X̄ with the characteristic variety of any module.

However we can prove the following local statement: For any normal toric variety 
X with its toric log structure and any holonomic DX-module F on X, there exists a 
compact smooth log variety Y , containing X as an open subvariety, and a holonomic 
DY -module F̃ such that F̃ |X = F . This follows by carefully choosing a compactification 
via toric methods, using Tevelev’s Lemma [27, Lemma 2.2] to control how the support 
of F intersects the new boundary, and an application of Lemma 3.18. It will be fleshed 
out further in upcoming work.

In the classical case one obtains good behaviour of the Gabber filtration by comparing 
it to the Sato–Kashiwara filtration which is defined in an intrinsically functorial way. In 
the logarithmic setting, one needs to use log perverse t-structure to define this filtration. 
However the fact that this t-structure does not restrict to the coherent subcategory means 
that the filtration is not always well-defined. Thus we make the following definition.

Definition 5.4. A coherent complex F ∈ Db
coh(DX) is called p-coherent if each perverse 

cohomology object pHn(F) is coherent.

By Corollary 4.12, every holonomic complex is p-coherent.

Lemma 5.5. If F ∈ Modp(DX) is coherent then

log dim Ch
(
H log dim X−log dim Ch(F)(DVe

X F)) = log dim Ch(F).

Proof. By Proposition 4.5,

log dim Ch
(
H log dim X−�(DVe

X F)) ≤ �

and by Lemma 4.11

H log dim X−�(DVe
X F) = 0 for � > log dim Ch(F).

Thus, as log dim Ch(DVe
X F) = log dim Ch(F) (Proposition 3.24), necessarily

log dim Ch
(
H log dim X−log dim Ch(F)(DVe

X F)) = log dimF . �
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For p-coherent sheaves one has the following dual statement to Proposition 4.5.

Proposition 5.6. Let F ∈ Db
coh(DX) and assume that DVe

X F is p-coherent. If F ∈ D≥n
qc (X)

then

log dim Ch
(pH�(DVe

X F)
)
≤ log dimX − n− �

for all � ∈ Z.

Proof. For simplicity let us assume that n = 0. The general statement is just a shift of 
this special case.

Set d� = log dim Ch
(pH�(DVe

X F)
)
− (log dimX − �) and dmax = max� d�. If dmax ≤ 0

there is nothing to prove. Otherwise let j be any index with dj = dmax. By Lemma 4.11, 
Proposition 4.5 and Lemma 5.5 we have for all � ∈ Z

DVe
X

(pH�(DVe
X F)[−�]

)
∈ D≥−d�

qc (X),

log dim Ch
(
H−i

(
DVe

X

(pH�(DVe
X F)[−�]

)))
≤ log dimX − � + i for all i ∈ Z,

and

log dim Ch
(
H−d�

(
DVe

X

(pH�(DVe
X F)[−�]

)))
= log dimX − � + d�.

Applying duality to the triangle

pHj(DVe
X F)[−j] → τp

≥jD
Ve
X F → τp

≥j+1D
Ve
X F

gives the exact sequence

0 → H−dmax(
DVe

X τp
≥jD

Ve
X F

)
→ H−dmax(

DVe
X

(pHj(DVe
X F)[−j]

))
→ H−dmax+1(DVe

X τp
≥j+1D

Ve
X F

)
.

By the discussion above,

log dim Ch
(
H−dmax+1(DVe

X τp
≥j+1D

Ve
X F

))
≤ log dimX − (j + 1) + dmax

� log dimH−dmax(
DVe

X

(pHj(DVe
X F)[−j]

))
.

Thus the last morphism cannot be injective and hence H−dmax(DVe
X τp

≤jD
Ve
X F) �= 0. Con-

versely, DVe
X τp

<jD
Ve
X F ∈ D≥−dmax

qc (X). The long exact sequence coming from the triangle

DVe
X τp

≥jD
Ve
X F → DVe

X DVe
X F → DVe

X τp
<jD

Ve
X F
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thus contains the sequence

0 → H−dmax
(DVe

X τp
≥jD

Ve
X F) → H−dmax

(F).

As dmax > 0 the term H−dmax(F) vanishes by assumption, yielding a contradiction. �
Definition and Lemma 5.7. For a coherent DX-module F such that DVe

X F is p-coherent 
let SiF be the image of the canonical morphism

H0(DVe
X τp

≥−iD
Ve
X F) → H0(DVe

X ◦ DVe
X F) = F .

Then S is an increasing filtration on F , which we call the log Sato–Kashiwara filtration.

Before we prove that this is actually a filtration, let us state our reason for introducing 
the log Sato–Kashiwara filtration, i.e. that it coincides with the log Gabber filtration.

Theorem 5.8. Let F be a coherent DX-module and assume that DVe
X F is p-coherent. Then 

log Gabber and log Sato–Kashiwara filtrations of F agree, i.e.

GiF = SiF for all i ∈ Z.

Lemma 5.9. Suppose F ∈ Modcoh(DX) is a coherent DX-module such that DVe
X is p-

coherent. Then

DVe
X

(pH�(DVe
X F)

)
∈ D≥�

coh(DX)

for all � ∈ Z.

Proof. Follows from Proposition 5.6 and Lemma 4.9. �
Proof that Si is an increasing filtration. To start, let us remark that since DVe

X F is p-
coherent and hence τp

≥−i preserves coherence, SiF is indeed well-defined. Let us note 
that by Lemma 4.9, Slog dim Ch(F)F = F . We have to show that SiF ⊆ Si+1F for all i. 
Consider the distinguished triangle

pH−(i+1)(DVeF)[i + 1] → τp
≥−(i+1)(D

VeF) → τp
≥−i(D

VeF),

apply duality and consider the corresponding long exact sequence on cohomology

H−(i+1)−1(DVe
X (pH−(i+1)(DVeF))

)
→ H0(DVe

X τp
≥−i(D

VeF)
)

→ H0(DVe
X τp

≥−(i+1)(D
VeF)

)
.

The first term vanishes by Lemma 5.9. Thus we see that SiF ⊆ Si+1F . �
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We point out that from the proof it follows in particular that the morphism 
H0(DVe

X τp
≥−iD

Ve
X F) → F defining the log Sato–Kashiwara filtration is injective.

Proof of Theorem 5.8. Fix a coherent DX -module F . By Proposition 4.5 we have

log dim Ch(SiF) = log dim Ch
(
H0(DVe

X τp
≥−iD

Ve
X F)

)
≤ log dimX + i,

or in other words SiF ⊆ GiF .
Let us now show that GiF ⊆ SiF by induction on i. By the log Bernstein inequality 

and Lemma 4.8 respectively, both filtrations vanish for i < 0, providing the base case. 
Assume now that Gi−1F ⊆ Si−1F . If Gi−1F = GiF , then by induction

GiF = Gi−1F ⊆ Si−1F ⊆ SiF .

So assume that Gi−1F � GiF . The definition of Si is functorial, so that the inclusion 
GiF ↪→ F gives

Si(GiF) ↪→ Si(F)

and it suffices to show that Si(GiF) = GiF . As Gi−1F � GiF we see that 
log dim Ch(GiF) has to be equal to log dimX + i. Thus the result follows from 
Slog dim Ch(G)−log dim XG = G for any coherent G (cf. Lemma 4.9). �
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