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A B S T R A C T

Generally, in most areas, groundwater level is deep and heat sources (e.g., energy piles) are embedded in un-
saturated soil media. Therefore, in order to accurately analyze the soil response close to heat sources, both heat
and moisture transport in unsaturated soil domain should be considered. Thermal loading changes the moisture
content in the porous media. In this study, the energy conservation and mass fluid continuity equations derived
from hydrothermal analysis of a partially saturated soil medium are considered in cylindrical coordinate system.
To make the analytical solution possible, partial differential equations (PDEs) are turned into ordinary differ-
ential equations (ODEs), through linearization of the governing equations, and separation of variables. An
analytical solution for the non-homogeneous system surrounding a heat source in unsaturated porous media is
developed using Green's function. Energy piles are considered to be the heat source in this study. Results show
the moisture transport in the soil medium depends on the duration of the thermal loading and relaxation time.
Analytical results determine different influence zones for temperature and moisture content variations sur-
rounding a heat source.

1. Introduction

Soil temperature increments close to heat sources (e.g., energy
piles) alter the moisture content, and consequently changes the matric
suction, and soil resistance parameters. Therefore, to determine the
interaction of energy piles and surrounding soil, coupled thermo-hydro-
mechanical analysis should be performed. Several researchers pre-
sented the coupled governing nonlinear partial differential equations
for thermo-hydro-mechanical behavior of porous media (Gawin et al.,
1996; Baggio et al., 1997; Gatmiri and Delage, 1997; Khalili and Loret,
2001; Wu et al., 2004). Among those, Gawin et al. and Khalili and Loret
used the effective stress concept (Gawin et al., 1996; Khalili and Loret,
2001), Baggio et al. considered the derivations of thermodynamic
equilibrium equations (Baggio et al., 1997), Gatmiri and Delage em-
ployed a new concept called thermal void ratio state surface (Gatmiri
and Delage, 1997), and Wu et al. considered the thermal softening
phenomenon (Wu et al., 2004) in order to drive the governing equa-
tions. According to literature, soil thermal displacements can be ne-
glected in order to study the heat transfer mechanism in the ground and
predict the soil temperature response. Heat conduction is commonly
considered in literature as the major heat transfer mechanism in the
ground surrounding energy piles. Eskilson and Claesson developed a

model to predict the performance of heat pump systems in porous
media (Eskilson and Claesson, 1988). Zeng et al. provided analytical
solutions for the heat transfer from geothermal boreholes to the sur-
rounding soil (Zeng et al., 2002, 2003). Lamarche and Beauchamp
developed an analytical solution for the short time response of vertical
boreholes (Lamarche and Beauchamp, 2007). Ghasemi-Fare and Basu
presented a semi-analytical model to predict the energy efficiency of
the energy piles considering variable inlet temperature (Ghasemi-Fare
and Basu, 2013; Fare and Basu, 2013). In a separate study, they pre-
dicted the soil temperature response for both short term and long term
close to the energy piles (Ghasemi-Fare and Basu, 2016). According to
the results presented by Ghasemi-Fare and Basu, and Spilter et al., pore
fluid flow alters the soil temperature response, and energy harvested
from the ground (Ghasemi-Fare and Basu, 2018; Spitler et al., 2016).
Only a few researchers studied both heat and moisture (fluid) flow in
soil media close to the heat sources (e.g., energy piles). In one of the
early studies Philip and De Vries analyzed the heat and moisture
transport in undeformable soils (Philip and De Vries, 1957). De Vries
developed differential equations derived by Philip and de Vries in 1957
for the heat and moisture transport in porous media under the com-
bined effects of gravity, temperature gradient and moisture content (De
Vries, 1958). Taylor and Cary presented a linear model to anticipate the
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heat and moisture movement in porous materials based on the theory of
irreversible thermo-dynamics (Taylor and Cary, 1964). Thomas devel-
oped a two-dimensional model for heat and moisture transport by
considering gravity effects in unsaturated soils (Thomas, 1985).

Governing partial differential equations of heat and mass transfer in
both deformable and non-deformable porous media are generally
nonlinear PDEs. Therefore, to make the analytical solution, possible
simplified assumptions have to be considered. Using different techni-
ques and considering the assumptions, the governing PDEs can be
converted to linear equations and then closed form solution can be
presented. These methods have always been key factors for developing
accurate and practical results for preliminary design calculations
(Selvadurai, 2007).

Recently, several researchers presented closed form solutions for the
flow in the porous media (e.g., soil) at different conditions. Rockhold
et al. presented an exact integral solution for the 1-D steady state ver-
tical water flow in layered soils (Rockhold et al., 1997). Shao et al.
developed a closed form solution considering both heat conduction and
convection in soils using Fourier transformation (Shao et al., 1998). Pan
provided the complete Green's function for multilayered and por-
oelastic half-space in isotropic condition (Pan, 1999). Taguchi and
Kurashige developed the solutions for a 3-D infinite saturated porous
media considering step-function forces and a transversely isotropic
material (Taguchi and Kurashige, 2002). Gatmiri and Jabbari predicted
the soil response for unsaturated deformable porous media with linear
elastic behavior utilizing Green's function method for both 2D and 3D
conditions (Gatmiri and Jabbari, 2005a,b). Chen and Ledesma pre-
sented a solution for a coupled heat and moisture transfer in waste
repository in partially saturated clay barriers (Chen and Ledesma,
2007). Maghoul et al. used Laplace transformation and proposed a 3D
analytical solution for the heat transport in an unsaturated deformable
porous medium with linear elastic behavior (Maghoul et al., 2009).
However, changes in moisture content in unsaturated soil close to
geothermal piles/boreholes have not been completely studied in lit-
erature.

In this study, induced heat and moisture flow in non-deformable soil
medium surrounding geothermal piles/boreholes are analytically ana-
lyzed. To provide the general solution different initial amount of water
content can be considered. We provide a new solution method to study
heat and moisture transport in unsaturated medium. The model pro-
vides exact closed form solution which can be used to: (1) better un-
derstand the heat and moisture transport in unsaturated soil media; and
to (2) provide a validation tool for the numerical models. Note, the
analytical solution has lower computational cost and can provide the

general response. Partial differential equations provided by Philip and
De Vries (Philip and De Vries, 1957) are solved in 2-D axisymmetric
condition. An energy pile is considered to be as the heat source (heat
generation term) in the porous medium in this model. Analytical so-
lution is provided by separating the variables and using Green's func-
tion method. The advantages of the current method is providing a
general solution which can consider various types of boundary condi-
tions, initial conditions, and heat sources. The variations of temperature
and water content with respect to time, depth and radius are studied
thoroughly and the amounts of errors in this model are estimated.

2. Governing equations

The governing partial differential equations derived from hydro-
thermal analysis of non-deformable porous media presented by Philip
and De Vries (Philip and De Vries, 1957) is simplified in the following
equations.

2.1. Energy (heat) conservation equation

The energy (heat) equation governed by Fourier's Law is presented
in Eq. (1).

= +c T
t

T P D Q*
*

* . ( *) *v
2

(1)

where T* is temperature, D v is the isothermal vapor diffusivity, ρc is the
volumetric heat capacity of the porous medium, λ is the thermal con-
ductivity, P is the latent heat of vaporization, ρ is the mass density and
the subscript * stands for dimensional variables. Note, hydrostatic
condition is assumed in this study and therefore the heat convection
flow can be neglected.

The last term in the equation represents the evaporation term.
Hartley and Black showed that the evaporation has very minimal effect
on the soil temperature response in the domain (Hartley and Black,
1981), although it may depend on many parameters including perme-
ability of the soil (Olivella and Gens, 2000). Therefore, in order to
analytically solve the equation, the nonlinear evaporation term is ne-
glected in this study. The energy conservation equation is presented in
Eq. (2). As mentioned earlier, a heat generation term is considered to
model the heat flux from the energy piles.

= +T
t c

T Q*
*

* *
2

(2)

where °Q*
C
s is the source term. The heat generation term depends on

Nomenclature

T temperature
ρc volumetric heat capacity of the porous medium
P latent heat of vaporization
Q a source term
ν a negative constant
DT thermal moisture diffusivity
z axial distance from the origin
a radius of the energy pile
L radius of the domain
G Green's function
α a separation constant
TH solution of the homogeneous energy conservation equa-

tion
J0 the Bessel function of order 0 of the first kind
∇ the nabla operator
f(r, z) initial condition for energy conservation equation
χ the Lewis number

ϕ(x) an arbitrary function of x
D v isothermal vapor diffusivity
λ thermal conductivity
ρ mass density
C a constant
θ volumetric water content
Dθ isothermal moisture diffusivity
r radial distance from the origin
h height of the energy pile
H height of the domain
* the sign of dimensional variables
ξ a separation constant
θH solution of the homogeneous mass continuity equation
Y0 the Bessel function of order 0 of the second kind
∥∥ indicating the norm of an eigenfunction
g(r, z) initial condition for mass continuity equation
σ a coefficient of the Posnov number
Bi constant coefficients
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the type of the heat source. It can be a constant or a function of time and
space. In order to model the heat relaxation (recovery) period, an ex-
ponential function according to Eq. (3) can be considered as a heat
source term.

=Q C t* * exp( ) (3)

In which °C*
C
s and ν are constant and ν is a non-positive number

(zero represents a heating mode with constant source term, and a ne-
gative value represents the relaxation period). t is the dimensionless
time.

For the negative value of ν heat generation term attenuates and
reaches to zero. Considering such a heat source, it is expected that the
soil temperature increases with time and reaches to a peak point and
then drops to its initial value.

2.2. Mass fluid continuity equation

Mass continuity equation is governed by the Darcy's Law. The
continuity equation can be written in terms of volumetric water content
according to Eq. (4).

= +
t

D D T*
*

* *T
2 2

(4)

where θ* is volumetric water content. DT and Dθ are thermal and iso-
thermal moisture diffusivity, respectively.

3. Boundary and initial conditions

Different source terms, non-homogeneous boundaries, and initial
conditions can change the equilibrium state. Since the mass fluid con-
tinuity equation is linear, the effects of above mentioned parameters on
the media can be individually studied. Then the effects of variations of
parameters on soil temperature can be predicted using superposition
theorem. Considering homogeneous initial and boundary conditions,
the method of separation of variables can be used (Ã-zisik and Özışık,
1993). Note, mathematically an equation in which the right side is
equal to zero can be defined as a homogeneous equation.

Fig. 1 shows the schematic geometry of the model including the
energy pile. The geometry, boundary and initial conditions and the
governing equations are symmetric with respect to the z axis. Therefore,
PDEs are solved for the axisymmetric condition. Temperature, and
volumetric water content at r*= L* and z*=H* are kept constant
during the analysis, while heat source is placed at the center of the
model (Lamarche, 2011; Gao et al., 2016; Li et al., 2005). Temperature,
and moisture content at the top boundary are also kept constant during
the analysis.

Boundary and initial conditions considered in this research are

presented as below.

= = = =T r z T r H t T L z t T r t T* ( *, *, 0) * ( *, *, *) * ( *, *, *) * ( *, 0, *) 0 (5)

= = = =r z r H t L z t r t* ( *, *, 0) * ( *, *, *) * ( *, *, *) * ( *, 0, *) 0 (6)

4. Theory and calculations

Green's function G(r, z, t ∣ r′, z′, τ) estimates the variation of tem-
perature with time at different locations (r, z), due to presence of point
source load of unit strength, located at the point (r′, z′), which releases
thermal energy spontaneously at time t= τ (Ã-zisik and Özışık, 1993).
Green's function is the response of the Dirac delta function. Therefore,
integrating the product of Green's function and the generation term
over the area of the source and over time (e.g., from τ to t), predicts the
soil temperature surrounding a geothermal pile/borehole at time t.
However, it is necessary to initially solve the homogenous equations. In
order to solve the homogeneous PDEs, the method of separation of
variables is used. This method predicts the exact solution for linear
PDEs with homogeneous boundary conditions (Jeffrey, 2001). Ozisik
explained this method in detail for the heat conduction equation (Ã-
zisik and Özışık, 1993).

Dimensionless variables used in this study are defined as follows
(Chen and Ledesma, 2007).

= = = = =r r
a

z z
a

H H
a

L L
a

h h
a

*
*

, *
*

, *
*

, *
*

, *
*

,
(7)

= = = = =

=

t D t
a

T T T
T D

T D
D

C C a
D T

*
*

, * , * , , ,

* *

c T
2

0

0

0

0

0

0
2

0 (8)

where a* and h* are radius and height of the energy pile respectively, χ
is the Lewis number which is the ratio of the heat diffusivity over the
isothermal moisture diffusivity, σ is a coefficient of the Posnov number
which is a ratio of the thermal moisture diffusivity over the isothermal
moisture diffusivity.

Dimensionless PDEs, boundary and initial conditions are defined in
Eqs. (9)–(13) using dimensionless variables:

= +T
t

T Q1 2
(9)

where

=Q C texp( ) (10)

= +
t

T2 2
(11)

Fig. 1. Schematic geometry of the model including energy pile in an unsaturated soil layer.
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= = = =T r z T r H t T L z t T r t( , , 0) ( , , ) ( , , ) ( , 0, ) 0 (12)

= = = =r z r H t L z t r t( , , 0) ( , , ) ( , , ) ( , 0, ) 0 (13)

The nabla operator in two-dimensional axisymmetric cylindrical
coordinate system is defined in Eq. (14).

= + +
r r r z

12
2

2

2

2 (14)

Eqs. (9) and (11) in cylindrical axisymmetric domain can be presented
in Eqs. (15) and (16).

= + + +T
t

T
r r

T
r

T
z

Q1 12

2

2

2 (15)

= + + + + +
t r r r z

T
r r

T
r

T
z

1 12

2

2

2

2

2

2

2 (16)

4.1. Solution for energy conservation equation

In order to obtain the Green's function, the homogeneous energy
conservation equation presented in Eq. (17) should be solved.

= + +T
t

T
r r

T
r

T
z

1 12

2

2

2 (17)

The solution procedure is commenced with assuming a separation of
variables with respect to time and locations for the homogeneous
equation. The separation of variables is presented below:

=T r z t T r z t( , , ) ( , ) ( )H 1 (18)

where TH is the solution of the homogeneous equation.
By combining Eqs. (17) and (18) the general PDE can be expressed

as:

+ + = =
T

T
r r

T
r

T
z t

1 1 1 1 d
d1

2
1

2
1

2
1

2
2

(19)

where α is a separation constant and will be calculated further.
The PDE with respect to time (t) is presented in Eq. (20).

+ = =
t

t ed
d

0 ( ) t2 2

(20)

Then a new separation of variables for T1(r, z) is assumed as below

=T r z R r Z z( , ) ( ) ( )1 (21)

T1(r, z) can be expressed by combining Eq. (21) with the original PDE.

+ + + =
R

R
r r

R
r Z

Z
z

1 d
d

1 d
d

1 d
d

0
2

2

2

2
2

(22)

The aforementioned separation equations are solved in this study and
particular solutions are obtained by applying boundary conditions.

= + = = +
Z

Z
z

Z
z

Z Z z B z B z1 d
d

d
d

0 ( , ) sin( ) cos( )
2

2
2

2

2
2

1 2

(23)

Where η is obtained using boundary conditions. Eq. (23) is a second
order ODE with two independent solutions in the form of Sine and
Cosine functions. Solving Eq. (23) and considering the boundary con-
dition, the value of η in Eq. (24) can be predicted.

= = = =
=

Z Z H n
H

Z z n
H

z(0) ( ) 0 , ( , ) sinn
n 1 (24)

and

+ = + + =

= +
R

R
r r

R
r

R
r r

R
r

R

R r B J r B Y r

1 d
d

1 d
d

d
d

1 d
d

0

( , ) ( ) ( )

2

2
2

2

2
2

3 0 4 0 (25)

Eqs. (23) and (25) can be considered as Sturm-Liouville equations

(Jeffrey, 2001).
Eq. (25) is the order 0 of the Bessel equation, and its solutions, J0(βr)

and Y0(βr) are the Bessel functions of order 0 of the first and second
kind, respectively. The amount of Bessel function of order 0 of the
second kind at r=0 is infinity (Jeffrey, 2001); however, temperature
and volumetric water content are limited values. Therefore, the solution
for Eq. (25) is a coefficient of first order Bessel function only (B4= 0).

Considering boundary condition at r= L, the unknown coefficient
can be determined. Solving the governing equations for an axisym-
metric domain discussed above results in no specific value for boundary
conditions at r=0.

= = =
=

R L
L

R r J
L

r( , ) 0 Zero ( , ) Zero
m

m

m

m

1
0

(26)

where Zerom is the mth zero of first order Bessel function.
The homogeneous solution is expressed as

= = +
= =

T r z t C n
H

z J
L

r e( , , ) sin Zero ,H
n m

m t

1 1
1 0

2 2 22

(27)

where C1 can be predicted using initial condition.

=
( ) ( )

( ) ( )
C

r z J r f r z r z

z J r

sin ( , )d d

sin

L H
n
H L

n
H L

1 0 0

0
Zero

2
0

Zero 2

m

m
(28)

In which f(r, z) expresses the initial condition and ∥∥ indicates the norm
of the eigenfunction. The square of the norm with respect to the weight
function I(x) for Strum-Liouville equation is defined in Eq. (29)(Jeffrey,
2001)

=x I x x a x a( ) ( ) ( )dx,
a

a2 2
1 2

1

2

(29)

where ϕ(x) is an arbitrary function.
Therefore, the homogeneous solution becomes

=
= =

( ) ( ) ( ) ( )
( ) ( )

T r z t r f r z

z J r e z J r

z J r
r z

( , , ) ( , )

sin sin

sin
d d

H
n m

L H

n
H L

t n
H L

n
H L

1 1
0 0

0
Zero

0
Zero

2
0

Zero 2

m m

m

2

(30)

According to Eq. (31) Green's function at τ=0 is obtained from
homogeneous solution (Ã-zisik and Özışık, 1993).

= =T r z t r G r z t r z f r z r z( , , ) ( , , | , , )| ( , )d dH
L H

T0 0 0 (31)

Ozisik has shown that Green's function G(r, t ∣ r′, τ) for the transient heat
conduction can be determined from G(r, t ∣ r′, 0) by substituting t with
(t− τ) (Ã-zisik and Özışık, 1993). Therefore, the Green's function for
energy conservation equation can be presented as

=
= =

( ) ( ) ( ) ( )
( ) ( )

G r z t r z

z J r e z J r

z J r

( , , | , , )

sin sin

sin

T
n m

n
H L

t n
H L

n
H L

1 1

0
Zero ( )

0
Zero

2
0

Zero 2

m m

m

2

(32)

where GT is the Green's function for energy conservation equation.
Solution of the energy conservation equation is obtained by in-

tegrating the Green's function multiplies by source term over the entire
domain from τ to t.
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=

= ×

×

= =

( ) ( )
( ) ( )

T r z t r G r z t r z r z A

z J r C

z J r

e e r n
H

z J
L

r A

( , , ) d ( , , | , , )gen( , , )d

sin

sin

d sin Zero d

t

A T

n m

n
H L

n
H L

t t
A

m

1 1

0
Zero

2
0

Zero 2

( )
0

m

m

2

(33)

4.2. Solution for mass continuity equation

The same procedure as described above is used to solve mass con-
tinuity equation.

Homogeneous equation to predict the changes in moisture content
can be expressed as:

=
t

2
(34)

By assuming new separation of variables, Eq. (35) can be considered.

=r z t r z t( , , ) ( , ) ( )H 1 (35)

where θH is the solution of the homogeneous equation.
Combining Eqs. (34) and (35), the PDEs can be explained as

+ + = =
r r r z t

1 1 1 d
d1

2
1

2
1

2
1

2
2

(36)

where ξ is a separation constant.
Homogeneous solution is achieved by solving separated equations.

+ = =
t

t ed
d

0 ( ) t2 2

(37)

Separation of variables for θ1(r, z) is assumed and presented in Eq. (38)

=r z M r N z( , ) ( ) ( )1 (38)

Then, the equation for θ1 becomes

+ + + =
M

M
r r

M
r N

N
z

1 d
d

1 d
d

1 d
d

0
2

2

2

2
2

(39)

Solution for the separated equations can be expressed in Eqs. (40)–(43)

= + = = +
N

N
z

N
z

N N z B z B z1 d
d

d
d

0 ( , ) sin( ) cos( )
2

2
2

2

2
2

5 6

(40)

= = = =
=

N N H p
H

N z p
H

z(0) ( ) 0 , ( , ) sinp
p 1 (41)

+ = + + =
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M

M
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M
r

µ M
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M
r

µ M
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d
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d

d
d

1 d
d

0
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2

2
2

2

2
2

7 0 8 0 (42)

= = =
=

M L µ
L

M µ r J
L

r( ) 0
Zero

, ( , )
Zero

q
q

q

q

1
0

(43)

The homogeneous solution is:

= = +
= =

r z t C p
H

z J
L

r e µ( , , ) sin
Zero

,H
p q

q t

1 1
2 0

2 2 22

(44)

where C2 can be predicted using the initial condition.

=
( )

( )
( )

( )
C

r z J r g r z r z

z J r

sin ( , )d d

sin

L H
p
H L

p
H L

2 0 0

0
Zero

2
0

Zero 2

q

q

(45)

while g(r, z) indicates the initial condition.

The homogeneous solution can be presented as

=
= =

( ) ( )
( )

( ) ( )
( )

r z t r g r z

z J r e z J r

z J r
r z

( , , ) ( , )
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d d
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p
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p
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2
0
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q q

q

2

(46)

By comparing Eqs. (46) and (47), Green's function can be predicted
according to Eq. (48) (Ã-zisik and Özışık, 1993).

= =r z t r G r z t r z g r z r z( , , ) ( , , | , , )| ( , )d dH
L H

0 0 0 (47)

=
= =

( ) ( )
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( )

G r z t r z
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sin sin
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p q

p
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p
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0
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2
0
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q q

q

2

(48)

where Gθ is Green's function for mass continuity equation.
The solution for mass continuity equation can be obtained using

Green's function.

=r z t r G r z t r z r z A( , , ) d ( , , | , , )gen( , , )d
t

A (49)

In which the generation term is

= + +r z t T
r r

T
r

T
z

gen( , , ) 12

2

2

2 (50)

5. Validation

In order to validate the analytical approach we used in this study,
the experimental observation in a vertical borehole ground heat ex-
changer model performed by Beier et al. (2011) is compared with the
results obtained from the analytical solution. A sandbox of
18 (m)× 1.8 (m)× 1.8 (m) with a borehole at the center was used in
the experiment. They placed a borehole in the center of the box and
monitored the temperature increments close to the borehole wall, and
away from the borehole. The constant heat input rate was considered in
the model. The details of the experimental setup information are pre-
sented in Beier et al. (2011). The experimental observations are com-
pared with the analytical solution with constant heat source. Physical
parameters and dimensions are adopted from Beier et al. (2011). The
heat source term Q is selected based on the temperature increments
provided by Beier et al. (2011) at the borehole wall. Fig. 2 presents the

Fig. 2. Comparison of the temperature obtained from the analytical solution
with experimental observations by Beier et al. (2011).
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comparison between the measured and predicted soil temperature in-
crements at different radiuses from the borehole. As it can be seen in the
figure, the predicted temperature using analytical method matches well
with the experimental measurements. The difference between the re-
corded experimental data and predicted temperature is less than 0.5 °C
(2% relative error).

6. Results and discussion

The proposed fundamental solution of the heat and moisture

transfer in unsaturated soil media is used to analyze the heat and water
flow surrounding a heat source. PDEs are solved for two different cases
with constant and variable heat sources. Case 1 represents a constant
heat source (same as the validation model) while heat source in case 2
attenuates. For the case 1: ν =0, and for case 2: ν =−0.5. Fig. 3 shows

Fig. 3. Variation of the source term with time for both cases.

Table 1
Geometry, initial and boundary conditions.

a* h* L* H* C* T0 θ0
(m) (m) (m) (m) °( )C

s
(°C)

1 15 50 50 5×10−5 20 0.5

Table 2
Hydrothermal parameters of an unsaturated soil layer (Provided by
Thomas (1985)).

C
DT Dθ

m2
s °

m2
s C

m2
s

8×10−7 10−9 10−6

Table 3
Dimensionless parameters resulted by Tables 1 and 2.

a h H L χ σ C

1.00 15.00 50.00 50.00 0.80 0.04 1.25

Fig. 4. Variation of temperature with time at z=10 and five different radiuses
for case 1.

Fig. 5. Variation of temperature with depth for case 1.

Fig. 6. Variation of temperature with radius for case 1.
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the variation of source terms over time for both cases.
All parameters considered in this study are given in Tables 1–3. To

present general solution, figures are presented based on dimensionless
variables.

Fig. 4 shows the variation of temperature surrounding the heat
source in time for case 1. According to the figure, temperature increases
gradually with time, then reaches to the steady state condition and
approaches to an asymptotic value. This is compatible with the results
presented by Man et al. (2010) where they only considered heat flow in
the soil surrounding an energy pile.

Dimensionless temperature variations along depth for case 1 and
case 2 are presented in Figs. 5 and 8, respectively. Temperature changes
in the ground surface is zero and then it gradually increases with depth
and reaches to the maximum value at z=13. Nearby the pile base,
there is a drastic reduction in temperature increments. This reduction
disappears over time. Dimensionless temperature finally reaches to zero

at the bottom boundary. Figs. 5(a) and 8(a) present temperature evo-
lution at different radius from the heat source considering constant and
variable heat sources, respectively.

Figs. 6 and 9 show the variation of temperature with radius for two
cases. As it can be seen in the figures, temperature decreases radially.
Note, the influence zone (where the dimensionless temperature incre-
ment is at least 1) depends on the thermal operation time. The di-
mensionless influence zones are 3, 7 and 30 for the time steps, re-
spectively, equal to 1, 10 and 1000 for the constant heat source.
However, for the case 2, the maximum influence radial zone is 10 and it
is happing at t=10. This behavior has been also observed in the nu-
merical model presented by Ghasemi-Fare and Basu (2013, 2016,
2018). Figs. 6(a) and 9(a) determine that soil temperature increments at
both z=10, and 15 are equal. The figures show soil temperature in-
creases with depth and then close to the bottom of the heat source

Fig. 7. Variation of temperature with time at z=10 and five different radiuses for case 2.

Fig. 8. Variation of temperature with depth for case 2.

Fig. 9. Variation of temperature with radius for case 2.
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temperature starts to drop. Results confirm that the heat transfer in an
unsaturated medium is mostly a radial phenomenon.

Fig. 7 illustrates the variation of temperature with time at five dif-
ferent locations for case 2. According to the figure, the temperature at
each point gradually increases with time and reaches to the maximum
value, and then it starts to decrease to get back to the initial condition.
As it can be seen in the figure, zones closer to the heat source reach to
the maximum value faster and there is a time lag for the farther zones.
By comparing Figs. 4 and 7 it can be seen that temperature in case 1
increases from t=1 to t=1000, however, in case 2 maximum soil
temperature at different locations occurred at different time steps. The
delay in maximum soil temperature can be clearly seen in Fig. 7 where
the maximum soil temperature for r=2, and r=5, respectively, oc-
cure at t=2, and t=10.

Figs. 10 and 13 present the variation of the water content with time
at z=10 for case 1, and case 2, respectively. As it can be seen in the

figures, water content close to the heat source at r=1 decreases with
time; however, for r=2, water content initially increases and then it
starts to drop. This shows the moisture moves away from the heat
source. According to the figures, for farther zones (r=4) water content
increases with time. This happens becasue, the water content is con-
tinuous in the domain, reduction in moisture content in the vicinity of
the heat source increases its value in farther zones.

Figs. 11 and 14 indicate the variation of volumetric water content
with depth for Case 1 and 2, respectively. Figs. 11(a) and 14(a) show
the variation of the water content with depth at t=500. The figures
show moisture content is almost identical along the depth of the heat
source at t=500. It is interesting to note that water content is higher
for r=3 compare to r=2 and 4, at t=500. This shows the moisture
flows away from the heat source and the maximum reaches to r=3 at
t=500.

Figs. 11(b) and 14(b) present the changes in moisture content with
depth at r=2 for different time steps. The results show that the water

Fig. 10. Variation of water content with time at z=10 and four different radiuses for case 1.

Fig. 11. Variation of water content with depth for case 1.
Fig. 12. Variation of water content with radius for case 1.

D.Y. Cherati and O. Ghasemi-Fare Geothermics 81 (2019) 224–234

231



content is almost same as the initial condition at t=10. This demon-
strates that the moisture movement takes more time and it starts with
some time lag after temperature changes in the soil media. According to
the results presented in Figs. 11(b) and 14(b) moisture content varies
differently in depth for longer time steps (e.g., t=1000). The reduc-
tions in water content are different at z=2, 5, and 13. This confirms
the presence of the vortex flow in unsaturated medium and demon-
strates that thermally induced moisture movement is not a radial phe-
nomenon. The results presented here is compatible with the results
from advanced numerical models (Ghasemi-Fare and Basu, 2018, 2017)
while the closed form solution in this paper can be used easily with
almost no computational cost. Note, this behavior has not been shown
analytically in literature.

Figs. 12 and 15 present the water content variations with radius for
case 1, and 2. Temperature increments close to the heat source results
in moisture movement from zones close to the heat source to farther
zones (from higher temperature to lower temperature). Figs. 12(a) and

15(a) clearly show water content is lower close to the heat source, and
reaches to a maximum value farther from the heat source. However,
there is always a zone far from the heat source in which the water
content is constant. The figure shows the influence zone at t=500 is
r=6 for all the depths. However, the influence zone depends on the
time step and according to Figs. 12(b) and 15(b) the influence zone is
expanding and reaches to r=10 for the current study in which the

Fig. 13. Variation of water content with time at z=10 and four different radiuses for case 2.

Fig. 14. Variation of water content with depth for case 2. Fig. 15. Variation of water content with radius for case 2.

Table 4
Values of T and θ for different values of m, n, p and q.

T and θ Values of m, n, p and q

1 to 20 1 to 100 1 to 200

T for ν=0 3.1522 1.5518 1.5520
T for ν=−0.5 2.4507 1.2996 1.3018
θ for ν=0 0.1631 0.0829 0.0837
θ for ν=−0.5 0.0798 0.0454 0.0461
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temperature reaches to nearly a steady state condition at t=1000.
According to Figs. 12 and 15, as expected, the reduction in moisture
content are higher for case 1. The reason is temperature increments are
higher surrounding the constant heat source. We should also note that
the raise in water content for farther zones are also higher in case 1
compare to case 2. This can be expected because as mentioned earlier,
the water content is continuous in the domain and higher reduction
close to the heat source results in higher water content in farther zones.
The closed form solution in this study can be used to predict both
temperature and water content in the porous media surrounding any
heat sources such as geothermal piles. The equations and the provided
solution will be a good source for the validation of numerical models.

7. Potential error sources

As mentioned, the employed methods in this research are exact.
Therefore, Eqs. (33) and (49) are exact closed form solutions of Eqs. (9)
and (11), respectively. But there might be a truncation error due to
cutting the parameters of m, n, p and q. According to the solutions, this
four parameters changes from 1 to infinity. However, in this study,
changes from 1 to 100 were considered. For different values of above
mentioned parameters, Table 4 indicates the values of temperature and
volumetric water content at z=10, r=2, and t=1 and 500 respec-
tively.

As can be seen, considering mentioned parameters from 1 to a value
greater than 100 have negligible effects on the results.

8. Conclusion

Analyzing the hydrothermal behavior of porous media and mod-
eling both heat and water flow is a complex problem. Such problems
are usually solved using numerical methods. However, easy to use
equations considering some simplifying assumptions are powerful tools
to do the preliminary study and design the complex problems. Besides,
numerical models have high computational cost. The analytical solu-
tions can be also used to validate numerical models. In this paper, a
convenient analytical solution is developed to study the heat and water
flow surrounding an energy pile in an unsaturated soil. The heat source
is used to represent the energy pile. The Green's function method is
employed to analytically predict the soil hydrothermal behavior. The
fundamental proposed solution can be employed to study the effects of
soil hydrothermal parameters on temperature and volumetric water
content profiles in unsaturated soil media. It was observed that at a
certain time, the water content reduces for the zones close to the energy
pile while it increases for farther zones (e.g., r=3 and r=4). It was
also observed that the maximum changes in water content happen at
the same depth which shows the maximum temperature interments. It
is interesting to note that the water content in soil media shows a dy-
namic response for longer time steps. The results confirm the presence
of a vortex which makes different volumetric moisture content along
the depth at t=1000. The results showed the influence zone in which
temperature increases during the thermal loading are, respectively,
r=30, and r=10 for the constant heat source, and a heat source
which attenuates with time. While the influence zone in which the
moisture content changes is independent of the heat source type and is
equal to r=10. However the magnitude of volumetric moisture con-
tent reductions and increments, are greater in case 1 in which tem-
perature gradient is higher.
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