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Structural hierarchy, in which materials possess distinct features on
multiple length scales, is ubiquitous in nature. Diverse biological
materials, such as bone, cellulose, and muscle, have as many as ten
hierarchical levels. Structural hierarchy confers many mechanical
advantages, including improved toughness and economy of material.
However, it also presents a problem: each hierarchical level adds a
new source of assembly errors, and substantially increases the infor-
mation required for proper assembly. This seems to conflict with the
prevalence of naturally occurring hierarchical structures, suggesting
that a common mechanical source of hierarchical robustness may
exist. However, our ability to identify such a unifying phenomenon
is limited by the lack of a general mechanical framework for struc-
tures exhibiting organization on disparate length scales. Here, we
use simulations to substantiate a generalized model for the tensile
stiffness of hierarchical filamentous networks with a nested, dilute
triangular lattice structure. Following seminal work by Maxwell and
others on criteria for stiff frames, we extend the concept of connec-
tivity in network mechanics, and find a similar dependence of mate-
rial stiffness upon each hierarchical level. Using this model, we find
that stiffness becomes less sensitive to errors in assembly with addi-
tional levels of hierarchy; though surprising, we show that this result
is analytically predictable from first principles, and thus potentially
model-independent. More broadly, this work helps account for the
success of hierarchical, filamentous materials in biology and materi-
als design, and offers a heuristic for ensuring that desired material
properties are achieved within the required tolerance.

network mechanics, evolution of biomaterials, structural hierarchy

L iving systems organize across many distinct levels, span-
ning from molecular to macroscopic scales. Such hierar-
chical arrangements endow organisms with many beneficial
material properties; they may have high strength-to-weight
ratios, exhibit strain stiffening, or be robust against fracture
(1-5). A seeming drawback of this approach, however, is the
enormous amount of information needed to specify the struc-
ture of highly hierarchical tissues and the increased number of
opportunities for stochastic errors. Even for a self-assembled
material, each hierarchical level likely increases the number
of local minima in the free energy landscape, increasing the
opportunity for kinetic errors in assembly (6, 7). While one
may reasonably fear that this cascade of errors will undermine
the reliable realization of self-assembled hierarchical materials,
structural hierarchy is employed effectively by organisms be-
longing to many diverse evolutionary lineages (2, 8, 9). Such
widespread success suggests the presence of an underlying
mechanism responsible for this emergent robustness. However,
the number of elements necessary to describe a hierarchical
structure grows geometrically with the number of hierarchical
levels; thus, a ten-level structure is currently computationally
inaccessible. While identification of the underlying principles
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responsible for hierarchical robustness would greatly aid in
explaining the ubiquity of natural hierarchical structures, this
objective first requires developing a mechanistic understanding
of how each scale contributes to a material’s overall properties.

To gain a foothold in the study of hierarchical materials
mechanics, we focus on a highly tractable model system: a
triangular lattice of nodes connected by harmonic springs.
Frames made of slender, elastic beams have long been of inter-
est in technical mechanics (10-18) and the physics of living
tissue (1-3, 9, 19-23), and recent work has demonstrated that
fibers can generically emerge from diverse building blocks (24).
Further, the mechanics of elastic networks are easily inter-
pretable through the Maxwell counting heuristic; briefly, to
constrain every degree of freedom in the network, there must
be 2d bonds per node, where d is the dimensionality of the
system (12, 25). While much work has been done to charac-
terize elastic networks constructed with a single important
length scale (10, 13-15, 26, 27), we lack a general characteri-
zation of elastic networks constructed with multiple disparate
length scales; a priori, it is unclear how Maxwell counting
applies to hierarchical structures. Are there distinct degrees
of freedom associated with ‘large’ nodes, just as there are with
‘small’ nodes? How do constraints on large and small length
scales compare? Identification of underlying mechanisms that
make hierarchical structures robust first requires developing a
comprehensible hierarchical model.

Here, we introduce a model system with a nested, dilute
triangular lattice structure, in which distinct network connec-
tivities can be defined on multiple scales. We examine the
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Fig. 1. a. A dilute triangular lattice with one level of structure. Missing bonds are
indicated with dashed lines. b. The same dilute triangular lattice, with each bond
replaced by a smaller-scale, dilute triangular lattice ¢. An extension to three levels of
structural hierarchy

dependence of tensile stiffness on each of these connectivities,
and capture this relationship with a simple model. Using this
model, we then assess the resilience of a hierarchical material’s
mechanical properties in the presence of random errors in
assembly.

Geometrical Characteristics of Model System. We consider an
extension of the well-studied dilute, triangular lattice in two
dimensions. Nodes arranged in a triangular Bravais lattice are
connected to nearest neighbors, and bonds are then removed
at random such that some fraction, referred to as the bond
portion, p, remains. The infinite triangular lattice has a
connectivity of 6 bonds per node when p = 1, while in two
dimensions Maxwell counting dictates a minimum connectivity
of 4 bonds per node; thus, the infinite, dilute triangular lattice
should lose stiffness when p falls below % Lattices of finite
size would require a slightly higher bond portion, due to the
presence of under-constrained nodes at the boundary. This
prediction has been thoroughly confirmed for ball-and-spring
networks, via simulation and mean field-theoretic approaches
(10, 13-15).

We create hierarchical triangular lattices through an itera-
tive process, in which the bonds of the lattice at one length
scale are in turn crafted from smaller-scale triangular lattices.
In principle, this process can be iterated ad infinitum; in
practice, if the number of large bonds is held constant, the
total number of nodes grows geometrically with the number
of hierarchical levels. This places a practical limit on the
number of levels that can be considered in simulations. We
have numerically constructed and simulated lattices with 1, 2,
and 3 levels of structural hierarchy (figure 1); bond portion is
independently set on each hierarchical level.

Hierarchical Model of Stiffness. We propose to model the stiff-
ness of our networks by generalizing the scaling law proposed
by Gaborczi, et al., for a single-scale, diluted triangular lattice
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(10). Gaborezi, et al., found that, for the ball-and-spring case,
components of the elastic constant tensor should have the form

k:p_p07 >
T—pe P = Pe [1}

0,p <pe

where p. is the minimum bond portion necessary for
marginal stiffness, and k is the value of the modulus when the
network is fully connected. We propose to describe large-scale
bonds using an effective stiffness with the form of Eq. (1),
and introduce piarge and psmair, the portion of bonds retained
on the large and small scales. Because of the finite width of
large-scale bonds, we will not assume that the minimum small-
or large-scale bond portions needed for marginal stiffness are
2 The stiffness of a large scale bond will be inherited from its

3
small-scale structure, such that the overall stiffness scales as:

K= k (plarge - pc,large) (psmall - pc,small) [2}
(1 - pc,large) (1 - pc,small)

where K is tensile stiffness and k is the stiffness for a
network fully connected on all scales. Now consider a general
network with N distinct length scales. The stiffness k; of
bonds at scale i will be inherited from the structure at scale
i — 1, so that

ki X Pi—1 — Peyi—1 3]

The overall stiffness for some general number N levels of
structural hierarchy will then be

N
K=k B2 4]
i=1 Pesi

Simulation Procedure. Networks were simulated in two dimen-
sions, with ball-and-spring interactions between pairs of con-
nected nodes. To measure stiffness, nodes along the tops of
networks were uniformly displaced along the vertical direction,
after which the y-coordinates of the top and bottom nodes
were fixed. Next, the x-coordinates of top and bottom nodes,
as well as both coordinates of all other points, were relaxed
using the FIRE algorithm (28). Each bond is modeled as a
fiber that resists stretching with a one-dimensional stretching
modulus, . Let each bond be a parametric curve r(s), where
s ranges from 0 to the length of the bond, and let @(s) be a
field describing the displacement of a point on the bond in the
strained state. The energy for a bond of length [ is described
by the functional

lu dit|”

A uniform, one-dimensional stretching modulus of unity
was assigned to each bond, and nodes were relaxed until the
RMS residual force in the network was less than 1 x 10710 in
units of stretching modulus in the case of the one and two-level
networks, and 1 x 1079 in units of stretching modulus for three
level networks. We extract the tensile stiffness by fitting plots
of elastic energy versus strain to parabolas.
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Fig. 2. a. Simulated stiffness plotted vs. bond portion for one length scale. b. Heat
map of simulated stiffness as a function of small and large bond portion for a two-level
network. Stiffness plotted in simulation units, as indicated in legend. ¢ Heat map of
simulated stiffness for a slice in bond portion space for three level networks with full
connectivity on the largest scale. Stiffness plotted in simulation units, as indicated
in legend. d Heat map of simulated stiffness for a slice in bond portion space for
three level networks with full connectivity on the smallest scale. Stiffness plotted in
simulation units, as indicated in legend. e. Stiffness normalized by maximum stiffness
for networks with one, two, and three levels of structure.

Simulation Results. We simulated 1-, 2-; and 3-level lattices
with a wide range of bond portions, and measured their stiff-
ness (Fig. 2). Large-scale bonds are 10 small-scale bonds long
and contain three rows of small-scale bonds. Before comparing
to our model, we must identify each critical bond portion for
1-, 2-, and 3-level lattices.

For the 1-level lattice, we recover the expected linear re-
lationship between stiffness and bond portion (Fig. 2a). We
find the critical bond portion to be 0.670 (see SI appendix).

For the 2-level lattice, we find that stiffness increases as
either the small or large bond portion is increased (Fig. 2b).
To determine the threshold bond portion for the large (small)
scale, we find those points in bond portion space for which the
small (large) bond portion is equal to 1. We then fit a plot
of large (small) bond portion vs. stiffness, and fit these data
to an equation of the form Eq. (1). We find that the critical
bond portions are 0.83 and 0.58 for the small and large scales,
respectively (see SI appendix). Initially, it may be surprising
to find that the critical bond portion on the large scale is less
than 0.67. However, as large scale bonds are endowed with a
finer scale structure, they acquire an effective bending stiffness,
rather than being governed strictly by harmonic, central force
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interactions. Notably, networks with bonds possessing bending
stiffness have been demonstrated to be rigid even below the
classic isostatic point (14, 15). Thus, it is crucial that p. be
directly measured, and not assumed from Maxwell counting.

For the 3-level lattice, we find that stiffness increases as
any bond portion is increased (Fig. 2¢c and d and SI appendix).
Following an approach similar to that used for the 2-level
lattice, we find the critical bond portions are 0.83, 0.72, and
0.62 for the small, medium, and large scales, respectively.

To test our model, we compare the stiffness obtained from
simulations to the stiffness predicted by our model. In Fig. 2e,
we plot stiffness values from our model against stiffness values
from simulations for one, two and three levels. For ease of com-
parison, stiffness values for an INV-level network are normalized
to the maximum attainable stiffness for an IV level network.
Each point in the plot compares a simulation result with its
model prediction counterpart. There are no free parameters in
our model; we normalize stiffnesses by the maximum values for
1-, 2-, or 3-level lattices, and use the identified critical bond
portions. We find remarkable agreement; linear fits between
simulated and predicted quantities have 72 values and slopes,
respectively, of 0.983 and 1.003 for one level, 0.989 and 1.01
for two levels, 0.988 and 0.98 for three levels, and 0.993 and 1
for all data combined.

Experimental Prospects. While the attempt to manipulate ac-
tual tissues as we have manipulated our networks may prove
elusive, we envision, as an accessible proof-of-principle exper-
iment, cutting networks described in this work from elastic
sheets. Such sheets would ideally have an out-of-plane thick-
ness that is large in comparison with the in-plane width of
bonds, to frustrate buckling, as described in (29). Exist-
ing work has also established tapering of bonds at junctions
as a useful technique for controlling the ratio of bending to
stretching stiffness (30).

Model Applicability. We next performed a series of tests and
analyses to determine how broadly our model can be applied.
As a first step, we varied the size and aspect ratio of large-scale
bonds. Up to this point we have shown results for networks
in which large-scale bonds are 10 small-scale bonds long and
contain three rows of small-scale bonds; however, we have also
considered two-level networks whose large-scale bonds are 20
small-scale bonds long and contain 5 rows of small-scale bonds.
In both cases, we find similarly strong agreement. More details
are provided in the SI appendix.

While these two systems captured the same phenomena,
we cannot test all possible configurations, and must instead
carefully consider the circumstances under which our model is
applicable. Large scale bonds can be too wide or too narrow. If
the width of large-scale bonds is too great in comparison with
their length, then the resulting structure will effectively be a
single-scale lattice with a regular array of small perforations.
If large-scale bonds contain two or fewer rows of small-scale
bonds, the coordination number of the network with all bonds
present will be four, making the network susceptible to im-
mediate loss of stiffness upon dilution of bonds. Moreover,
stretching of networks will lead to transverse contraction, pro-
ducing a lateral load on horizontal bonds. If large-scale bonds
buckle, our picture of a primarily stretching-stabilized network
will be invalid. We here propose methods to identify the range
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of aspect ratios for which our model should be expected to
apply.

We have performed tensile simulations to determine the
change in the displacement field of a single-scale lattice under
tension due to the presence of a hole of width w. Note that a
two-scale lattice with bonds of length [ and width w, in units
of small-scale bond length, may be viewed as a single-scale
network with a periodic array of equilateral triangular holes
with side length s = I — w+/3. We argue that our model, with
a separation of scales, is appropriate when the change to the
displacement field is of the order of the applied strain times
the small-scale bond length over a length equal to or greater
than the separation between neighboring holes. This analysis,
explained in detail in the SI appendix, yields:

lJw=z2+3/w [6]

Large-scale bonds may also be too narrow, and thus buckle.
Using the theory of slender rods as discussed in (31), we find
buckling will become a concern when the ratio of length to
width is of the order of the square root of the applied strain
(g); thus, to avoid buckling the ratio the ratio of length to
width must satisfy:

L

s ge 7]

In our case, large-scale bonds have length 10 and width /3,
in units of small-scale bond length, for an aspect ratio of 5.77.
This is above the limit separating hierarchical networks from
perforated sheets (3.73). Further, as strains used in simulations
do not exceed 5 x 1073, this aspect ratio is below the limit at
which buckling may be expected to occur (14.1). This places
us comfortably within the constraints on the applicability of
our model discussed above.

Thus, our proposed formulation for stiffness of a hierarchical
lattice is expected to apply to a wide range of networks. Cru-
cially, we observe that it accurately describes 1-, 2-; and 3-level
lattices (figure 2e), suggesting that the smallest length scale
can always be replaced by a network of even smaller bonds,
and the stiffness will remain the product of all excess bond
portions. This general formulation facilitates investigation of
highly hierarchical (e.g., 10-level) lattices.

Structural Error Tolerance. Now that we have obtained a gen-
eral relationship for the stiffness of a hierarchical structure,
we are primed to consider the possibility of random errors in
assembly, a likely complication in any real assembly process.
‘We focus in particular on how stochastic deviation from a tar-
geted set of connectivities (on all relevant length scales) results
in a deviation in network stiffness. We consider two distinct
regimes. In the first case, we consider a target point near the
isosurface along which stiffness vanishes. In the second, we
consider a target point in bond portion space far from both
the limiting case of full connectivity on any length scale and
from the contour of vanishing stiffness.

We first consider target points in bond portion space cor-
responding to marginally stiff structures. Such points are of
interest, as highly compliant materials have critical biological
roles (1), and are attracting increasing attention for applica-
tions (11). Such materials typically must not be susceptible to
critical transitions in their elastic moduli as a result of small
fluctuations in their fine-scale structure.
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We use a numerical technique to estimate the distribution
of stiffness arising from random errors. First we choose a
nominal point in bond portion space, such that a certain
target stiffness is achieved, and the excess bond portion is the
same for each length scale. We next add Gaussian random
noise to the bond portion on each length scale. The stiffness
of the resulting “noisy” point is then estimated by means of
an interpolated function computed from simulation data for 1-
and 2-level lattices, and a fitted model for 3-level lattices (Fig.
2); for lattices with more than 3 levels, we use Eq. (4). This
process is carried out for 50,000 trials.

Strikingly, the variance in stiffness is greatly reduced with
each additional level of hierarchical structure (Fig. 3a). Fur-
ther, the stiffness distribution for the single-level network
exhibits a large peak at zero, which is absent in the stiffness
distribution of the two and three-level networks. Thus, despite
having opportunities for errors at three separate stages of
assembly, the three-level network is more reliably constructed
than the one-level network, and can more readily avoid stochas-
tically generating a floppy network.

Next, we seek a general understanding of target points far
from any boundary in bond portion space (see SI appendix for
detailed derivation). For N levels, there is a nominal excess
bond portion, p., for each level; we consider identically and
independently distributed deviations from the nominal bond
portions according to a normal distribution with zero mean
and standard deviation o. Referring to Eq. (4), we define the
reduced stiffness:

Kk
k Hf\]:l (1 - pc’i)

With this definition we find the expected deviation in the
stiffness of a network with NN hierarchical levels to be:

K = 8]

AK __ VNo
K KUN
where the approximation holds when o < p.. For a target

K, this functional form predicts the optimal number of levels
to be

[9]

N*=|-2In(K)] [10]

where “| |7 denotes the floor.

To test our analytical result, we again use the above numer-
ical approach to calculate standard deviation in stiffness for
networks with one- to fifteen-hierarchical levels. For lattices
with more than 3 levels, we use Eq. (4) to estimate the stiffness
of the resulting “noisy” point. We find very good agreement
between the numerically generated data and our analytical
prediction (r? & 1 for the case shown in figure 3b.).

The above derivations were performed assuming identically
and independently distributed random errors in bond portion;
however, the results presented above do not strictly require
such stringent conditions. Similar robustness against fluctua-
tion in stiffness can occur for error rates that vary on different
scales, and for distributions of random errors in which errors
in bond portion on different length scales are correlated (see
ST appendix for an in-depth treatment).

Interestingly, investigating networks with different error
rate distributions allows us to identify a useful heuristic. Con-
sider a two-level network with the same error rate in its large-
scale bond portion as a one-level network. The two-level
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Fig. 3. a. Stiffness probability distribution functions estimated from histogram data
for networks with one, two, and three levels of structural hierarchy. Points in one, two,
and three-dimensional bond portion with the same minute nominal stiffness were
chosen, and Gaussian random variables were added to each bond portion. Note
the spike in the PDF for the one-level network at zero stiffness. In this case, we
consider a nominal stiffness of 0.025, and Gaussian random noise for each bond
portion with zero mean and a standard deviation of 0.005. Other cases are addressed
in the Sl appendix. b. Relative error in stiffness vs. levels of hierarchy is plotted for
K = 0.001, o = 0.0001. As additional levels of structural hierarchy are added,
the relative error in the tensile stiffness decreases precipitously at first, and the effect
saturates at a certain number of levels. Provided the assumptions leading to Eq. (9)

hold, our analytical theory and numerical approach are in close agreement (r2 = 1).

Here, the product of excess bond portions is 0.001, and the noise has amplitude
0.0001 on each scale. c. The number of all small-scale bonds in a network, divided
by the area enclosed by the outer perimeter of the network, is shown vs. number of
hierarchical levels for stiffness values of 0.02, 0.03 and 0.04, in units of stretching
modulus over small-scale bond length. Networks were chosen to have the same
bond portion on all three levels. In each case, increasing hierarchy leads to markedly
lower density of small-scale bonds, attesting to the ability of hierarchy to confer both
robustness and efficiency.
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network will have a smaller variance in its stiffness than the
one-level network as long as its small bond portion error rate
is less than three times larger than its large bond portion error
rate (note, this argument also works if the roles of the small-
and large-scales are swapped; see SI appendix for details).

These observations do not simply arise from the generic
properties of random variables. Although a relation of the
form Eq. (9) with N = 1 would hold for a general product
of random numbers, the dependence upon N of the divisor
indicates a scaling of the relative fluctuation specific to a
stiffness with the functional form of Eq. (4). To produce a
supple solid of a particular stiffness, the portion of bonds
that must be retained on each scale to achieve this stiffness
increases with increasing hierarchy. This can ensure that the
connectivity of the network on each scale exceeds the threshold
connectivity by an amount large in comparison with the the
typical fluctuations in connectivity.

We further find that hierarchical structures offer superior
economy of material, in keeping with previous studies (16).
To quantify this benefit, we define the number density, ns, of
small-scale bonds as follows: let Is be the length of a single
small-scale bond, N, denote the total number of small-scale
bonds, and A denote the area enclosed by the perimeter of
the network. Then, ns is given by

[11]

and has units of I;2. We regard small-scale bonds as the fun-
damental structural units of a network, such that ns provides a
measure of the number of connections per unit area needed to
achieve a target set of mechanical properties. To compare one-,
two-, and three-level networks, we chose target stiffness values,
and identified the points in bond portion space with equal bond
portions on each level corresponding to these stiffness values.
We then estimated accompanying values of ns for networks
with these bond portions by interpolation. For each stiffness
chosen, there was a sharp decline in the number of bonds per
unit area needed with increasing numbers of hierarchical lev-
els. This result emphasizes that hierarchical materials’ greater
error tolerance is a benefit inherent to their geometry, rather
than deriving from redundancy. A nested, modular assembly
process thus enables the creation of a structure that is both
more reliable and more frugal.

Discussion and Conclusion. Contrary to expectation, the elas-
tic moduli of hierarchical materials are more reliably controlled
than the elastic moduli of materials with one relevant length
scale. Thus, with respect to random errors, it is easier to
make hierarchical structures than to make single-length scale
structures. This finding may have wide-ranging implications
for evolutionary biology and materials design.

It may seem that evolving progressively larger, more com-
plex bodies is accompanied, and impeded, by a growing as-
sortment of mechanical challenges. To the contrary, this work
provides evidence that adding hierarchical complexity can ac-
tually reduce stochastic variation in material properties. This
effect decreases the need for co-evolving error correcting mech-
anisms, thus facilitating the evolution of new traits that are
‘good enough’ for an organism to survive.

Upon successful assembly, structural hierarchy is known to
endow materials with a host of desirable properties that are
unattainable with single-length scale structures. Our finding
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that hierarchy also reduces susceptibility to stochastic errors
suggests that bottom-up production processes for synthetic
hierarchical materials may produce finished products which
perform as intended despite modest, but discernible errors.

While we have explicitly addressed two-dimensional, lattice-
based networks in this study, we anticipate that our findings
will have broader applicability. Feng, et al., (13) have demon-
strated that an analogous model to Eq. (1) describes the
dependence of the elastic moduli of a dilute FCC lattice in
three dimensions on the portion of bonds retained. Moreover,
connectivity has been established as a useful control parameter
for predicting the mechanical properties of many disordered
solids, such as jammed packings of hard (32, 33) and soft (34)
particles, and networks of semi-flexible biopolymer networks
(21).

More generally, we have broadened the scope of Maxwell’s
visionary means of characterizing frames to account for struc-
tural hierarchy, facilitating the understanding of cases in which
it has proven difficult to relate materials’ emergent properties
to their fine-scale structure. While recent computational ad-
vancements have enabled study of biological macromolecules
over experimentally relevant time scales (35), comprehensive
understanding at the level of an organism demands a coarse-
graining procedure for which our model may offer a useful
road map. A generalized counting heuristic may also offer a
means of expediting feasible, yet cumbersome calculations in
materials design. Hierarchical materials necessarily have many
design attributes, but our accessible model may considerably
narrow the search of parameter space needed to reach a goal.

Materials and Methods

Network Creation. First, a large-scale lattice is created and diluted.
Dilution begins with the shuffling of all bonds, after which a random
minimum spanning tree is created using Kruskal’s algorithm. Bonds
are then drawn at random from those bonds not used to create the
spanning tree, and added to the network until the desired bond
portion is reached. Next, a small-scale lattice is overlaid such that
the large scale bond length is an integer multiple of the small-scale
bond length, and the position of each large-scale node coincides
with the position of a small-scale node. Each small-scale bond
lying within a large-scale bond is retained, after which small-scale
bonds are diluted to the desired bond portion. Small-scale bond
dilution is carried out in such a way that a system-spanning contact
network remains, no large-scale bond is severed, and all adjacent
large-scale bonds remain connected. In each successive iteration, a
smaller scale may then be introduced, with the previously smallest
scale taking the role of the large scale. This process is described
schematically in Figure 1.

Finding the critical bond portions. Critical bond portions for a net-
work with N levels are computed from simulation data for each
level by choosing all points in bond portion space for which the
network is fully connected on the other N —1 levels, and the stiffness
is non-zero. For each level, we then fit a plot of stiffness vs. the
bond portion of interest to an equation of the form Eq. (1). For
three-level networks, data for stiffness vs. bond portion for three
level networks were fit to a line of the form

K(p) =axp+ko (12]

and the x-intercept of this line was taken to be the critical bond
portion. For more details, please see the SI appendix.
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