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Structural hierarchy, in which materials possess distinct features on
multiple length scales, is ubiquitous in nature. Diverse biological
materials, such as bone, cellulose, and muscle, have as many as ten
hierarchical levels. Structural hierarchy confers many mechanical
advantages, including improved toughness and economy of material.
However, it also presents a problem: each hierarchical level adds a
new source of assembly errors, and substantially increases the infor-
mation required for proper assembly. This seems to conflict with the
prevalence of naturally occurring hierarchical structures, suggesting
that a common mechanical source of hierarchical robustness may
exist. However, our ability to identify such a unifying phenomenon
is limited by the lack of a general mechanical framework for struc-
tures exhibiting organization on disparate length scales. Here, we
use simulations to substantiate a generalized model for the tensile
stiffness of hierarchical filamentous networks with a nested, dilute
triangular lattice structure. Following seminal work by Maxwell and
others on criteria for stiff frames, we extend the concept of connec-
tivity in network mechanics, and find a similar dependence of mate-
rial stiffness upon each hierarchical level. Using this model, we find
that stiffness becomes less sensitive to errors in assembly with addi-
tional levels of hierarchy; though surprising, we show that this result
is analytically predictable from first principles, and thus potentially
model-independent. More broadly, this work helps account for the
success of hierarchical, filamentous materials in biology and materi-
als design, and offers a heuristic for ensuring that desired material
properties are achieved within the required tolerance.
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L iving systems organize across many distinct levels, span-1

ning from molecular to macroscopic scales. Such hierar-2

chical arrangements endow organisms with many beneficial3

material properties; they may have high strength-to-weight4

ratios, exhibit strain stiffening, or be robust against fracture5

(1–5). A seeming drawback of this approach, however, is the6

enormous amount of information needed to specify the struc-7

ture of highly hierarchical tissues and the increased number of8

opportunities for stochastic errors. Even for a self-assembled9

material, each hierarchical level likely increases the number10

of local minima in the free energy landscape, increasing the11

opportunity for kinetic errors in assembly (6, 7). While one12

may reasonably fear that this cascade of errors will undermine13

the reliable realization of self-assembled hierarchical materials,14

structural hierarchy is employed effectively by organisms be-15

longing to many diverse evolutionary lineages (2, 8, 9). Such16

widespread success suggests the presence of an underlying17

mechanism responsible for this emergent robustness. However,18

the number of elements necessary to describe a hierarchical19

structure grows geometrically with the number of hierarchical20

levels; thus, a ten-level structure is currently computationally21

inaccessible. While identification of the underlying principles22

responsible for hierarchical robustness would greatly aid in 23

explaining the ubiquity of natural hierarchical structures, this 24

objective first requires developing a mechanistic understanding 25

of how each scale contributes to a material’s overall properties. 26

To gain a foothold in the study of hierarchical materials 27

mechanics, we focus on a highly tractable model system: a 28

triangular lattice of nodes connected by harmonic springs. 29

Frames made of slender, elastic beams have long been of inter- 30

est in technical mechanics (10–18) and the physics of living 31

tissue (1–3, 9, 19–23), and recent work has demonstrated that 32

fibers can generically emerge from diverse building blocks (24). 33

Further, the mechanics of elastic networks are easily inter- 34

pretable through the Maxwell counting heuristic; briefly, to 35

constrain every degree of freedom in the network, there must 36

be 2d bonds per node, where d is the dimensionality of the 37

system (12, 25). While much work has been done to charac- 38

terize elastic networks constructed with a single important 39

length scale (10, 13–15, 26, 27), we lack a general characteri- 40

zation of elastic networks constructed with multiple disparate 41

length scales; a priori, it is unclear how Maxwell counting 42

applies to hierarchical structures. Are there distinct degrees 43

of freedom associated with ‘large’ nodes, just as there are with 44

‘small’ nodes? How do constraints on large and small length 45

scales compare? Identification of underlying mechanisms that 46

make hierarchical structures robust first requires developing a 47

comprehensible hierarchical model. 48

Here, we introduce a model system with a nested, dilute 49

triangular lattice structure, in which distinct network connec- 50

tivities can be defined on multiple scales. We examine the 51
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a. b.
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Fig. 1. a. A dilute triangular lattice with one level of structure. Missing bonds are
indicated with dashed lines. b. The same dilute triangular lattice, with each bond
replaced by a smaller-scale, dilute triangular lattice c. An extension to three levels of
structural hierarchy

dependence of tensile stiffness on each of these connectivities,52

and capture this relationship with a simple model. Using this53

model, we then assess the resilience of a hierarchical material’s54

mechanical properties in the presence of random errors in55

assembly.56

Geometrical Characteristics of Model System. We consider an57

extension of the well-studied dilute, triangular lattice in two58

dimensions. Nodes arranged in a triangular Bravais lattice are59

connected to nearest neighbors, and bonds are then removed60

at random such that some fraction, referred to as the bond61

portion, p, remains. The infinite triangular lattice has a62

connectivity of 6 bonds per node when p = 1, while in two63

dimensions Maxwell counting dictates a minimum connectivity64

of 4 bonds per node; thus, the infinite, dilute triangular lattice65

should lose stiffness when p falls below 2
3 . Lattices of finite66

size would require a slightly higher bond portion, due to the67

presence of under-constrained nodes at the boundary. This68

prediction has been thoroughly confirmed for ball-and-spring69

networks, via simulation and mean field-theoretic approaches70

(10, 13–15).71

We create hierarchical triangular lattices through an itera-72

tive process, in which the bonds of the lattice at one length73

scale are in turn crafted from smaller-scale triangular lattices.74

In principle, this process can be iterated ad infinitum; in75

practice, if the number of large bonds is held constant, the76

total number of nodes grows geometrically with the number77

of hierarchical levels. This places a practical limit on the78

number of levels that can be considered in simulations. We79

have numerically constructed and simulated lattices with 1, 2,80

and 3 levels of structural hierarchy (figure 1); bond portion is81

independently set on each hierarchical level.82

Hierarchical Model of Stiffness. We propose to model the stiff-83

ness of our networks by generalizing the scaling law proposed84

by Gaborczi, et al., for a single-scale, diluted triangular lattice85

(10). Gaborczi, et al., found that, for the ball-and-spring case, 86

components of the elastic constant tensor should have the form 87

K =
{
k p−pc

1−pc
,p ≥ pc

0, p < pc

[1] 88

where pc is the minimum bond portion necessary for 89

marginal stiffness, and k is the value of the modulus when the 90

network is fully connected. We propose to describe large-scale 91

bonds using an effective stiffness with the form of Eq. (1), 92

and introduce plarge and psmall, the portion of bonds retained 93

on the large and small scales. Because of the finite width of 94

large-scale bonds, we will not assume that the minimum small- 95

or large-scale bond portions needed for marginal stiffness are 96
2
3 . The stiffness of a large scale bond will be inherited from its 97

small-scale structure, such that the overall stiffness scales as: 98

K = k
(plarge − pc,large) (psmall − pc,small)

(1− pc,large) (1− pc,small)
[2] 99

where K is tensile stiffness and k is the stiffness for a 100

network fully connected on all scales. Now consider a general 101

network with N distinct length scales. The stiffness ki of 102

bonds at scale i will be inherited from the structure at scale 103

i− 1, so that 104

ki ∝ pi−1 − pc,i−1 [3] 105

The overall stiffness for some general number N levels of 106

structural hierarchy will then be 107

K = k

N∏
i=1

pi − pc,i

1− pc,i
. [4] 108

Simulation Procedure. Networks were simulated in two dimen- 109

sions, with ball-and-spring interactions between pairs of con- 110

nected nodes. To measure stiffness, nodes along the tops of 111

networks were uniformly displaced along the vertical direction, 112

after which the y-coordinates of the top and bottom nodes 113

were fixed. Next, the x-coordinates of top and bottom nodes, 114

as well as both coordinates of all other points, were relaxed 115

using the FIRE algorithm (28). Each bond is modeled as a 116

fiber that resists stretching with a one-dimensional stretching 117

modulus, µ. Let each bond be a parametric curve r(s), where 118

s ranges from 0 to the length of the bond, and let ~u(s) be a 119

field describing the displacement of a point on the bond in the 120

strained state. The energy for a bond of length l is described 121

by the functional 122

U =
∫ l

0

µ

2

∣∣∣∣d~uds
∣∣∣∣2 ds [5] 123

A uniform, one-dimensional stretching modulus of unity 124

was assigned to each bond, and nodes were relaxed until the 125

RMS residual force in the network was less than 1× 10−10 in 126

units of stretching modulus in the case of the one and two-level 127

networks, and 1×10−9 in units of stretching modulus for three 128

level networks. We extract the tensile stiffness by fitting plots 129

of elastic energy versus strain to parabolas. 130
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Fig. 2. a. Simulated stiffness plotted vs. bond portion for one length scale. b. Heat
map of simulated stiffness as a function of small and large bond portion for a two-level
network. Stiffness plotted in simulation units, as indicated in legend. c Heat map of
simulated stiffness for a slice in bond portion space for three level networks with full
connectivity on the largest scale. Stiffness plotted in simulation units, as indicated
in legend. d Heat map of simulated stiffness for a slice in bond portion space for
three level networks with full connectivity on the smallest scale. Stiffness plotted in
simulation units, as indicated in legend. e. Stiffness normalized by maximum stiffness
for networks with one, two, and three levels of structure.

Simulation Results. We simulated 1-, 2-, and 3-level lattices131

with a wide range of bond portions, and measured their stiff-132

ness (Fig. 2). Large-scale bonds are 10 small-scale bonds long133

and contain three rows of small-scale bonds. Before comparing134

to our model, we must identify each critical bond portion for135

1-, 2-, and 3-level lattices.136

For the 1-level lattice, we recover the expected linear re-137

lationship between stiffness and bond portion (Fig. 2a). We138

find the critical bond portion to be 0.670 (see SI appendix).139

For the 2-level lattice, we find that stiffness increases as140

either the small or large bond portion is increased (Fig. 2b).141

To determine the threshold bond portion for the large (small)142

scale, we find those points in bond portion space for which the143

small (large) bond portion is equal to 1. We then fit a plot144

of large (small) bond portion vs. stiffness, and fit these data145

to an equation of the form Eq. (1). We find that the critical146

bond portions are 0.83 and 0.58 for the small and large scales,147

respectively (see SI appendix). Initially, it may be surprising148

to find that the critical bond portion on the large scale is less149

than 0.67. However, as large scale bonds are endowed with a150

finer scale structure, they acquire an effective bending stiffness,151

rather than being governed strictly by harmonic, central force152

interactions. Notably, networks with bonds possessing bending 153

stiffness have been demonstrated to be rigid even below the 154

classic isostatic point (14, 15). Thus, it is crucial that pc be 155

directly measured, and not assumed from Maxwell counting. 156

For the 3-level lattice, we find that stiffness increases as 157

any bond portion is increased (Fig. 2c and d and SI appendix). 158

Following an approach similar to that used for the 2-level 159

lattice, we find the critical bond portions are 0.83, 0.72, and 160

0.62 for the small, medium, and large scales, respectively. 161

To test our model, we compare the stiffness obtained from 162

simulations to the stiffness predicted by our model. In Fig. 2e, 163

we plot stiffness values from our model against stiffness values 164

from simulations for one, two and three levels. For ease of com- 165

parison, stiffness values for an N -level network are normalized 166

to the maximum attainable stiffness for an N level network. 167

Each point in the plot compares a simulation result with its 168

model prediction counterpart. There are no free parameters in 169

our model; we normalize stiffnesses by the maximum values for 170

1-, 2-, or 3-level lattices, and use the identified critical bond 171

portions. We find remarkable agreement; linear fits between 172

simulated and predicted quantities have r2 values and slopes, 173

respectively, of 0.983 and 1.003 for one level, 0.989 and 1.01 174

for two levels, 0.988 and 0.98 for three levels, and 0.993 and 1 175

for all data combined. 176

Experimental Prospects. While the attempt to manipulate ac- 177

tual tissues as we have manipulated our networks may prove 178

elusive, we envision, as an accessible proof-of-principle exper- 179

iment, cutting networks described in this work from elastic 180

sheets. Such sheets would ideally have an out-of-plane thick- 181

ness that is large in comparison with the in-plane width of 182

bonds, to frustrate buckling, as described in (29). Exist- 183

ing work has also established tapering of bonds at junctions 184

as a useful technique for controlling the ratio of bending to 185

stretching stiffness (30). 186

Model Applicability. We next performed a series of tests and 187

analyses to determine how broadly our model can be applied. 188

As a first step, we varied the size and aspect ratio of large-scale 189

bonds. Up to this point we have shown results for networks 190

in which large-scale bonds are 10 small-scale bonds long and 191

contain three rows of small-scale bonds; however, we have also 192

considered two-level networks whose large-scale bonds are 20 193

small-scale bonds long and contain 5 rows of small-scale bonds. 194

In both cases, we find similarly strong agreement. More details 195

are provided in the SI appendix. 196

While these two systems captured the same phenomena, 197

we cannot test all possible configurations, and must instead 198

carefully consider the circumstances under which our model is 199

applicable. Large scale bonds can be too wide or too narrow. If 200

the width of large-scale bonds is too great in comparison with 201

their length, then the resulting structure will effectively be a 202

single-scale lattice with a regular array of small perforations. 203

If large-scale bonds contain two or fewer rows of small-scale 204

bonds, the coordination number of the network with all bonds 205

present will be four, making the network susceptible to im- 206

mediate loss of stiffness upon dilution of bonds. Moreover, 207

stretching of networks will lead to transverse contraction, pro- 208

ducing a lateral load on horizontal bonds. If large-scale bonds 209

buckle, our picture of a primarily stretching-stabilized network 210

will be invalid. We here propose methods to identify the range 211
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of aspect ratios for which our model should be expected to212

apply.213

We have performed tensile simulations to determine the214

change in the displacement field of a single-scale lattice under215

tension due to the presence of a hole of width w. Note that a216

two-scale lattice with bonds of length l and width w, in units217

of small-scale bond length, may be viewed as a single-scale218

network with a periodic array of equilateral triangular holes219

with side length s = l − w
√

3. We argue that our model, with220

a separation of scales, is appropriate when the change to the221

displacement field is of the order of the applied strain times222

the small-scale bond length over a length equal to or greater223

than the separation between neighboring holes. This analysis,224

explained in detail in the SI appendix, yields:225

l/w & 2 + 3/w [6]226

Large-scale bonds may also be too narrow, and thus buckle.227

Using the theory of slender rods as discussed in (31), we find228

buckling will become a concern when the ratio of length to229

width is of the order of the square root of the applied strain230

(ε); thus, to avoid buckling the ratio the ratio of length to231

width must satisfy:232

l

w
. ε−1/2 [7]233

In our case, large-scale bonds have length 10 and width
√

3,234

in units of small-scale bond length, for an aspect ratio of 5.77.235

This is above the limit separating hierarchical networks from236

perforated sheets (3.73). Further, as strains used in simulations237

do not exceed 5× 10−3, this aspect ratio is below the limit at238

which buckling may be expected to occur (14.1). This places239

us comfortably within the constraints on the applicability of240

our model discussed above.241

Thus, our proposed formulation for stiffness of a hierarchical242

lattice is expected to apply to a wide range of networks. Cru-243

cially, we observe that it accurately describes 1-, 2-, and 3-level244

lattices (figure 2e), suggesting that the smallest length scale245

can always be replaced by a network of even smaller bonds,246

and the stiffness will remain the product of all excess bond247

portions. This general formulation facilitates investigation of248

highly hierarchical (e.g., 10-level) lattices.249

Structural Error Tolerance. Now that we have obtained a gen-250

eral relationship for the stiffness of a hierarchical structure,251

we are primed to consider the possibility of random errors in252

assembly, a likely complication in any real assembly process.253

We focus in particular on how stochastic deviation from a tar-254

geted set of connectivities (on all relevant length scales) results255

in a deviation in network stiffness. We consider two distinct256

regimes. In the first case, we consider a target point near the257

isosurface along which stiffness vanishes. In the second, we258

consider a target point in bond portion space far from both259

the limiting case of full connectivity on any length scale and260

from the contour of vanishing stiffness.261

We first consider target points in bond portion space cor-262

responding to marginally stiff structures. Such points are of263

interest, as highly compliant materials have critical biological264

roles (1), and are attracting increasing attention for applica-265

tions (11). Such materials typically must not be susceptible to266

critical transitions in their elastic moduli as a result of small267

fluctuations in their fine-scale structure.268

We use a numerical technique to estimate the distribution 269

of stiffness arising from random errors. First we choose a 270

nominal point in bond portion space, such that a certain 271

target stiffness is achieved, and the excess bond portion is the 272

same for each length scale. We next add Gaussian random 273

noise to the bond portion on each length scale. The stiffness 274

of the resulting “noisy” point is then estimated by means of 275

an interpolated function computed from simulation data for 1- 276

and 2-level lattices, and a fitted model for 3-level lattices (Fig. 277

2); for lattices with more than 3 levels, we use Eq. (4). This 278

process is carried out for 50,000 trials. 279

Strikingly, the variance in stiffness is greatly reduced with 280

each additional level of hierarchical structure (Fig. 3a). Fur- 281

ther, the stiffness distribution for the single-level network 282

exhibits a large peak at zero, which is absent in the stiffness 283

distribution of the two and three-level networks. Thus, despite 284

having opportunities for errors at three separate stages of 285

assembly, the three-level network is more reliably constructed 286

than the one-level network, and can more readily avoid stochas- 287

tically generating a floppy network. 288

Next, we seek a general understanding of target points far 289

from any boundary in bond portion space (see SI appendix for 290

detailed derivation). For N levels, there is a nominal excess 291

bond portion, pe, for each level; we consider identically and 292

independently distributed deviations from the nominal bond 293

portions according to a normal distribution with zero mean 294

and standard deviation σ. Referring to Eq. (4), we define the 295

reduced stiffness: 296

K̄ = K

k
∏N

i=1 (1− pc,i)
[8] 297

With this definition we find the expected deviation in the 298

stiffness of a network with N hierarchical levels to be: 299

∆K̄
K̄
≈
√
Nσ

K̄1/N
[9] 300

where the approximation holds when σ � pe. For a target 301

K̄, this functional form predicts the optimal number of levels 302

to be 303

N∗ = b−2 ln
(
K̄
)
c [10] 304

where “b c” denotes the floor. 305

To test our analytical result, we again use the above numer- 306

ical approach to calculate standard deviation in stiffness for 307

networks with one- to fifteen-hierarchical levels. For lattices 308

with more than 3 levels, we use Eq. (4) to estimate the stiffness 309

of the resulting “noisy” point. We find very good agreement 310

between the numerically generated data and our analytical 311

prediction (r2 ≈ 1 for the case shown in figure 3b.). 312

The above derivations were performed assuming identically 313

and independently distributed random errors in bond portion; 314

however, the results presented above do not strictly require 315

such stringent conditions. Similar robustness against fluctua- 316

tion in stiffness can occur for error rates that vary on different 317

scales, and for distributions of random errors in which errors 318

in bond portion on different length scales are correlated (see 319

SI appendix for an in-depth treatment). 320

Interestingly, investigating networks with different error 321

rate distributions allows us to identify a useful heuristic. Con- 322

sider a two-level network with the same error rate in its large- 323

scale bond portion as a one-level network. The two-level 324
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a.

b.

c.

Fig. 3. a. Stiffness probability distribution functions estimated from histogram data
for networks with one, two, and three levels of structural hierarchy. Points in one, two,
and three-dimensional bond portion with the same minute nominal stiffness were
chosen, and Gaussian random variables were added to each bond portion. Note
the spike in the PDF for the one-level network at zero stiffness. In this case, we
consider a nominal stiffness of 0.025, and Gaussian random noise for each bond
portion with zero mean and a standard deviation of 0.005. Other cases are addressed
in the SI appendix. b. Relative error in stiffness vs. levels of hierarchy is plotted for
K̄ = 0.001, σ = 0.0001. As additional levels of structural hierarchy are added,
the relative error in the tensile stiffness decreases precipitously at first, and the effect
saturates at a certain number of levels. Provided the assumptions leading to Eq. (9)
hold, our analytical theory and numerical approach are in close agreement (r2 ≈ 1).
Here, the product of excess bond portions is 0.001, and the noise has amplitude
0.0001 on each scale. c. The number of all small-scale bonds in a network, divided
by the area enclosed by the outer perimeter of the network, is shown vs. number of
hierarchical levels for stiffness values of 0.02, 0.03 and 0.04, in units of stretching
modulus over small-scale bond length. Networks were chosen to have the same
bond portion on all three levels. In each case, increasing hierarchy leads to markedly
lower density of small-scale bonds, attesting to the ability of hierarchy to confer both
robustness and efficiency.

network will have a smaller variance in its stiffness than the 325

one-level network as long as its small bond portion error rate 326

is less than three times larger than its large bond portion error 327

rate (note, this argument also works if the roles of the small- 328

and large-scales are swapped; see SI appendix for details). 329

These observations do not simply arise from the generic 330

properties of random variables. Although a relation of the 331

form Eq. (9) with N = 1 would hold for a general product 332

of random numbers, the dependence upon N of the divisor 333

indicates a scaling of the relative fluctuation specific to a 334

stiffness with the functional form of Eq. (4). To produce a 335

supple solid of a particular stiffness, the portion of bonds 336

that must be retained on each scale to achieve this stiffness 337

increases with increasing hierarchy. This can ensure that the 338

connectivity of the network on each scale exceeds the threshold 339

connectivity by an amount large in comparison with the the 340

typical fluctuations in connectivity. 341

We further find that hierarchical structures offer superior 342

economy of material, in keeping with previous studies (16). 343

To quantify this benefit, we define the number density, ns, of 344

small-scale bonds as follows: let ls be the length of a single 345

small-scale bond, Ns denote the total number of small-scale 346

bonds, and A denote the area enclosed by the perimeter of 347

the network. Then, ns is given by 348

ns = Ns

A
[11] 349

and has units of l−2
s . We regard small-scale bonds as the fun- 350

damental structural units of a network, such that ns provides a 351

measure of the number of connections per unit area needed to 352

achieve a target set of mechanical properties. To compare one-, 353

two-, and three-level networks, we chose target stiffness values, 354

and identified the points in bond portion space with equal bond 355

portions on each level corresponding to these stiffness values. 356

We then estimated accompanying values of ns for networks 357

with these bond portions by interpolation. For each stiffness 358

chosen, there was a sharp decline in the number of bonds per 359

unit area needed with increasing numbers of hierarchical lev- 360

els. This result emphasizes that hierarchical materials’ greater 361

error tolerance is a benefit inherent to their geometry, rather 362

than deriving from redundancy. A nested, modular assembly 363

process thus enables the creation of a structure that is both 364

more reliable and more frugal. 365

Discussion and Conclusion. Contrary to expectation, the elas- 366

tic moduli of hierarchical materials are more reliably controlled 367

than the elastic moduli of materials with one relevant length 368

scale. Thus, with respect to random errors, it is easier to 369

make hierarchical structures than to make single-length scale 370

structures. This finding may have wide-ranging implications 371

for evolutionary biology and materials design. 372

It may seem that evolving progressively larger, more com- 373

plex bodies is accompanied, and impeded, by a growing as- 374

sortment of mechanical challenges. To the contrary, this work 375

provides evidence that adding hierarchical complexity can ac- 376

tually reduce stochastic variation in material properties. This 377

effect decreases the need for co-evolving error correcting mech- 378

anisms, thus facilitating the evolution of new traits that are 379

‘good enough’ for an organism to survive. 380

Upon successful assembly, structural hierarchy is known to 381

endow materials with a host of desirable properties that are 382

unattainable with single-length scale structures. Our finding 383
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that hierarchy also reduces susceptibility to stochastic errors384

suggests that bottom-up production processes for synthetic385

hierarchical materials may produce finished products which386

perform as intended despite modest, but discernible errors.387

While we have explicitly addressed two-dimensional, lattice-388

based networks in this study, we anticipate that our findings389

will have broader applicability. Feng, et al., (13) have demon-390

strated that an analogous model to Eq. (1) describes the391

dependence of the elastic moduli of a dilute FCC lattice in392

three dimensions on the portion of bonds retained. Moreover,393

connectivity has been established as a useful control parameter394

for predicting the mechanical properties of many disordered395

solids, such as jammed packings of hard (32, 33) and soft (34)396

particles, and networks of semi-flexible biopolymer networks397

(21).398

More generally, we have broadened the scope of Maxwell’s399

visionary means of characterizing frames to account for struc-400

tural hierarchy, facilitating the understanding of cases in which401

it has proven difficult to relate materials’ emergent properties402

to their fine-scale structure. While recent computational ad-403

vancements have enabled study of biological macromolecules404

over experimentally relevant time scales (35), comprehensive405

understanding at the level of an organism demands a coarse-406

graining procedure for which our model may offer a useful407

road map. A generalized counting heuristic may also offer a408

means of expediting feasible, yet cumbersome calculations in409

materials design. Hierarchical materials necessarily have many410

design attributes, but our accessible model may considerably411

narrow the search of parameter space needed to reach a goal.412

Materials and Methods413

414

Network Creation. First, a large-scale lattice is created and diluted.415

Dilution begins with the shuffling of all bonds, after which a random416

minimum spanning tree is created using Kruskal’s algorithm. Bonds417

are then drawn at random from those bonds not used to create the418

spanning tree, and added to the network until the desired bond419

portion is reached. Next, a small-scale lattice is overlaid such that420

the large scale bond length is an integer multiple of the small-scale421

bond length, and the position of each large-scale node coincides422

with the position of a small-scale node. Each small-scale bond423

lying within a large-scale bond is retained, after which small-scale424

bonds are diluted to the desired bond portion. Small-scale bond425

dilution is carried out in such a way that a system-spanning contact426

network remains, no large-scale bond is severed, and all adjacent427

large-scale bonds remain connected. In each successive iteration, a428

smaller scale may then be introduced, with the previously smallest429

scale taking the role of the large scale. This process is described430

schematically in Figure 1.431

Finding the critical bond portions. Critical bond portions for a net-432

work with N levels are computed from simulation data for each433

level by choosing all points in bond portion space for which the434

network is fully connected on the other N −1 levels, and the stiffness435

is non-zero. For each level, we then fit a plot of stiffness vs. the436

bond portion of interest to an equation of the form Eq. (1). For437

three-level networks, data for stiffness vs. bond portion for three438

level networks were fit to a line of the form439

K(p) = a ∗ p + k0 [12]440

and the x-intercept of this line was taken to be the critical bond441

portion. For more details, please see the SI appendix.442

ACKNOWLEDGMENTS. The authors thank Alberto Fernandez-443

Nieves and Zeb Rocklin for helpful comments. The authors acknowl-444

edge funding from Georgia Tech’s Soft Matter Incubator.445

1. Fratzl, P and Weinkamer, R. Nature’s hierarchical materials. Progress in Materials Science 446

52, 1263-1334 (2007). 447

2. Meyers, M. A., McKittrick, J. and Chen, P. Structural Biological Materials: Critical Mechanics- 448

Materials Connections. Science 339, 773-780 (2013). 449

3. Launey, M. E., Buehler, M. and Ritchie, R. O. On the Mechanistic Origins of Toughness in 450

Bone. Annual Review of Materials Research 40, 25-53 (2010). 451

4. Yao, H. and Gao, Huajian. Multi-scale cohesive laws in hierarchical materials. International 452

Journal of Solids and Structures 44, 8177-8193 (2007). 453

5. Sen, D. and Buehler, M. J. Structural hierarchies define toughness and defect-tolerance de- 454

spite simple and mechanically inferior brittle building blocks. Scientific Reports 1, Article 35 455

(2011). 456

6. Hormoz, S., and Brenner, M. P. Design Principles for self-assembly with short-range interac- 457

tions. Proceedings of the National Academy of Sciences 108, 5193-5198 (2011). 458

7. Zeravcic, Z., Manoharan, V. N., and Brenner, M. P. Size limits of self-assembled colloidal 459

structures made using specific interactions. Proceedings of the National Academy of Sci- 460

ences 111, 15918-15923 (2014). 461

8. Harris, J., Böhm, C. and Wolf, S. Universal structure motifs in biominerals: a lesson from 462

nature for the efficient design of bioinspired functional materials. Interface Focus 7, 20160120 463

(2017). 464

9. Dunlop, J. W. C., and Fratzl, P. Biological Composites. Annual Review of Materials Research 465

40, 1-24 (2010). 466

10. Garboczi, E. J. and Thorpe M. F. Effective-medium theory of percolation on central force 467

elastic networks. II. Further results. Physical Review B 31, 7276-7281 (1985). 468

11. Wegst, U., Bai, H., Saiz, E., Tomsia, A. and Ritchie, R. Bioinspired structural materials. Nature 469

Materials 14, 23-26 (2015). 470

12. Maxwell, J. C. On the calculation of the equilibrium and stiffness of frames. Philosophical 471

Magazine 27, 294-299 (1864). 472

13. Feng, S., Thorpe, M. F. and Garboczi, E., Effective-medium theory of percolation on central- 473

froce elastic networks. Physical Review B 31, 276-280 (1985). 474

14. Das, M., MacKintosh, F. C., and Levine, A. J. Effective Medium Theory of Semiflexible Fila- 475

mentous Networks. Physical Review Letters 99, 038101 (2007). 476

15. Mao, X., Stenull, O. and Lubensky, T. C. Effective-medium theory of a filamentous triangular 477

lattice. Physical Review E 87, 042601 (2013). 478

16. Lakes, R. Materials with structural hierarchy. Nature 361, 511-515 (1993). 479

17. Wilhelm, J. and Frey, E. Elasticity of Stiff Polymer Networks. PRL 91, 108103 (2003). 480

18. Feng, J., Levine, H., Mao, X., and Sander, L. Nonlinear elasticity of disordered fiber networks. 481

Soft Matter 12, 1419-1424 (2016). 482

19. Head, D. A., Levine, A. J., and MacKintosh, F. C. Distinct regimes of elastic response and 483

deformation modes of cross-linked cytoskeletal and semiflexible polymer networks. Physical 484

Review E 68, 061907 (2003). 485

20. Lindstrom, S. B., Vader, D. A., Kulachenko, A., and Weitz, D. A. Biopolymer network geome- 486

tries: Characterization, regeneration, and elastic properties. Physical Review E 82, 051905 487

(2010). 488

21. Broedersz, C. P. and MacKintosh, F. C., Modeling semiflexible polymer networks. Rev. Mod. 489

Phys. 86, 995-1036 (2014). 490

22. Amuasi, H. E., Heussingler, C. Vink, R.L.C. and Nonlinear and heterogeneous elasticity of 491

multiply crosslinked biopolymer networks. New Journal of Physics 17, 083035 (2015). 492

23. Licup, A. J., et al. Stress controls the mechanics of collagen networks. Proceedings of the 493

National Academy of Sciences 112, 9573-9578 (2015). 494

24. Lenz, M. and Witten, T. A. Geometrical frustration yields fibre formation in self-assembly. 495

Nature Physics 13, 1100-1105 (2017). 496

25. Broedersz, C. P., Mao, X., Lubensky, T. C., and MacKintosh, F. C. Criticality and isostaticity in 497

fibre networks. Nature Physics 7, 983-985 (2011). 498

26. Zhang, T., Schwarz, J. M. and Das, M. Mechanics of anisotropic spring networks. Physical 499

Review E 90, 062139 (2014) 500

27. Lubensky, T.C.,Kane, C.L., Mao, X., Souslov, A. Sun, K. Phonons and elasticity in critically 501

coordinated lattices. Reports on Progress in Physics 78, 073901 (2015). 502

28. Bitzek, E., Koskinen, P., Gaehler, F., Moseler, M. and Gumbsch, P. Structural Relaxation 503

Made Simple. Physical Review Letters 97, 170201 (2006). 504

29. Coulais, C., Sabbadini, A., Vink, F., and van Hecke, M. Multi-step self-guided pathways for 505

shape-changing metamaterials. Nature 561 512-515 (2018). 506

30. Rocks, J. W., Pashine, N., Bischofberger, I., Goodrich, C. P., Liu, A. J. and Nagel, S. R. 507

Designing allostery-inspired response in mechanical networks. Proceedings of the National 508

Academy of Sciences 114(10) 2520-2525 (2017). 509

31. Landau, L. D. and Lifshitz, E. M. Theory of Elasticity, Second Edition (Pergamon Press, Ox- 510

ford), pp. 97-98. 511

32. Liu, A. and Nagel, S. The Jamming Transition and the Marginally Jammed Solid. Annual 512

Review of Condensed Matter Physics 1, 347-69 (2010). 513

33. O’Hern, C., Liu, A. and Nagel, S. Jamming at zero temperature and zero applied stress: the 514

epitome of diorder. Phys Rev E 68, 011306 (2003). 515

34. van Hecke, M. Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J 516

Phys Condens Matter 22 033101 (2010). 517

35. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, 518

R. D., Kale, L., and Schulten, K. Scalable molecular dynamics with NAMD. Journal of Com- 519

putational Chemistry 26, 16 (2005). 520

6 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Michel et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

	Materials and Methods

