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Summary: Microbes drive most ecosystems and are modulated by viruses that impact their 
lifespan, gene flow and metabolic outputs. However, ecosystem-level impacts of viral 
community diversity remains difficult to assess due to classification issues and few reference 
genomes. Here we establish a ~12-fold expanded global ocean DNA virome dataset of 195,728 60 
viral populations, now including the Arctic Ocean, and validate that these populations form 
discrete genotypic clusters. Meta-community analyses revealed five ecological zones throughout 
the global ocean, including two distinct Arctic regions. Across the zones, local and global 
patterns and drivers in viral community diversity were established for both macrodiversity (inter-
population diversity) and microdiversity (intra-population genetic variation). These patterns 65 
sometimes, but not always, paralleled those from macro-organisms and revealed temperate and 
tropical surface waters and the Arctic as biodiversity hotspots and mechanistic hypotheses to 
explain them. Such further understanding of ocean viruses is critical for broader inclusion in 
ecosystem models.    
Introduction: 70 

Biodiversity is essential for maintaining ecosystem functions and services (reviewed by 
Tilman et al., 2014). In the oceans, the vast majority of biodiversity is contained within the 
microbial fraction containing prokaryotes and eukaryotic microbes, which represents ~60% of its 
biomass (Bar-On et al., 2018). Meta-analyses looking at changes in marine biodiversity show 
that biodiversity loss increasingly impairs the ocean’s capacity to produce food, maintain water 75 
quality, and recover from perturbations (Worm et al., 2006). To date, marine conservation efforts 
have focused on specific organismal communities, such as fisheries or coral reefs, rather than 
conserving whole ecosystem biodiversity. However, emerging studies across diverse 
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environments show that the stability and diversity of higher trophic level organisms rely upon 
diversity throughout the food web (e.g. Soliveres et al., 2016). Despite being the foundation of 80 
the food web, most marine microbial biodiversity numbers are based on a few well-studied 
locations (e.g., Hawaii Ocean Time Series, Bermuda Atlantic Time Series, and San Pedro Ocean 
Time Series). For ocean microbes and their viruses, global surveys that parallel century-old 
global terrestrial and decades-old marine macro-organismal global biodiversity surveys (Reiners 
et al., 2017) are only now emerging (e.g. de Vargas et al., 2015; Sunagawa et al., 2015; Brum et 85 
al., 2015; Roux et al., 2016; Ser-Giacomi et al., 2018;Table S1). Key to assessing biodiversity 
changes across marine ecosystems is improving our understanding of current microbial 
biodiversity levels, distribution patterns, and their ecological drivers. 

Despite their tiny size, viruses play a large role in marine ecosystems and food webs. For 
example, mortality due to viruses is credited with lysing approximately 20-40% of bacteria per 90 
day and releasing carbon and other nutrients that impact the food web (reviewed by Suttle, 
2007). Beyond mortality, viruses can alter evolutionary trajectories of microbial communities by 
transferring ~1029 genes per day globally (Paul, 1999) and biogeochemical cycling by 
metabolically reprogramming host photosynthesis, as well as central carbon metabolism and 
nitrogen and sulfur cycling (reviewed in Hurwitz & U'Ren, 2016). Finally, as the oceans are 95 
estimated to capture half of human-caused carbon emissions (Le Quéré et al., 2018), it is notable 
that genes-to-ecosystems modeling has placed viruses as central players of the ocean ‘biological 
pump’ (Guidi et al., 2016). Many of these discoveries are very recent as ocean viral genome 
sequence space is just now being explored at the level of viral macrodiversity, i.e., inter-
population diversity, throughout the global oceans -- at least for the most abundant double-100 
stranded DNA viruses sampled (Table S2).  

In spite of this progress in studying marine viral macrodiversity, virtually nothing is 
known about microdiversity, i.e., intra-population genetic variation. This is due to the 
controversy surrounding the existence of viral species (Gregory et al., 2016; Bobay et al., 2018). 
In eukaryotic organisms, where species boundaries are more widely accepted, such 105 
microdiversity has been studied and is thought to drive adaptation and speciation to promote and 
maintain stability in ecosystems (Hughes et al., 2008; Larkin & Martiny, 2017). This is likely 
also true in viruses since even a few mutations can alter host interactions and ecological and 
evolutionary dynamics for the genotype (e.g. Marston et al., 2012; Petrie et al., 2018). In nature, 
viral microdiversity measurements have been limited to marker genes (e.g. genes encoding major 110 
capsid proteins), which capture neither community-wide variability (Sullivan 2015) nor genome-
wide evidence of selection (e.g. Achtman & Wagner 2008). Recently, deeper metagenomic 
sequencing and population genetic theory-grounded species delimitations (Shapiro et al., 2012; 
Cadillo-Quiroz et al., 2012) have begun to reveal such microdiversity in microbes, and this has 
elucidated unknown features of speciation, adaptation, pathogenicity and transmission (e.g. 115 
Snitkin et al., 2011; Schloissnig et al., 2013; Rosen et al., 2015; Lee et al., 2017; Smillie et al., 
2018). Although parallel species delimitations are now available for viruses (Gregory et al., 
2016; Bobay et al., 2018), no datasets are yet available to explore genome-wide microdiversity 
in viruses, particularly at the global scale. 

Here we leverage the Tara Oceans global oceanographic research expedition sampling to 120 
establish a deeply-sequenced, global-scale ocean virome dataset and use it to assess the validity 
of the current viral population definition and to establish and explore baseline macro- and micro-
diversity patterns with their associated drivers across local to global scales. These data have been 
collected and analyzed in the context of the larger Tara Oceans Consortium systematically-
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sampled, global-scale, viruses-to-fish-larvae datasets (de Vargas et al., 2015; Sunagawa et al., 125 
2015; Brum et al., 2015; Lima-Mendez et al., 2015; Pesant et al. 2015; Roux et al., 2016), and 
help establish foundational ecological hypotheses for the field and a roadmap for the broader life 
sciences community to better study viruses in complex communities.  

Results & Discussion:  
The dataset. The Global Ocean Viromes 2.0 (GOV 2.0) dataset is derived from 3.95 Tb 130 

of sequencing across 145 samples distributed throughout the world’s oceans (Fig. 1A and Table 
S3; see Methods). These data build on the prior GOV dataset (Roux et al., 2016) by increased 
sequencing for mesopelagic samples (defined in our dataset as waters between 150m to 1,000m) 
and upgrading assemblies, both of which drastically improved sampling of the ocean viruses in 
these samples (results below). Additionally, we added 41 new samples derived from the Tara 135 
Oceans Polar Circle (TOPC) expedition, which traveled 25,000 km around the Arctic Ocean in 
2013. These 41 Arctic Ocean viromes were generated to represent the most significantly climate-
impacted region of the ocean, and an extreme environment. No such metagenome-based viral 
data exist for the Arctic region (Deming & Collins 2017), and more generally, for many 
planktonic organisms, systematic sampling is uneven throughout the Arctic Ocean (CAFF State 140 
of the Arctic Marine Biodiversity Report) due to geopolitical and physical challenges of 
sampling these regions.  

The first step to studying viral biodiversity from the assembled GOV 2.0 dataset (see 
Methods and Fig. S1A) was to identify contigs that likely derive from viruses using tools that 
collectively utilize homology to viral reference databases, probabilistic models on viral genomic 145 
features, and viral k-mer signatures (see Methods). These putative viral contigs were then 
assigned to ‘populations’, which are currently defined as viral contigs ≥10 kb where ≥70% of the 
shared genes have ≥95% average nucleotide identity (ANI) across its members (Brum et al., 
2015; Roux et al., 2016; Roux et al., 2018; population definition also discussed below). This 
process identified 195,728 viral populations in the GOV 2.0 dataset, which is a ~12-fold increase 150 
over the 15,280 identified in the original GOV dataset and assemblies (Roux et al., 2016) and 
augments prior marine viromic work (Tables S2). Of these original GOV viral populations, 
12,708 were represented by single contigs and, of these, most (92%) were recovered in GOV 2.0 
(Fig. 1B-inset), with average lengths increased 2.4-fold from 18 kbp to 44 kbp (Fig. 1B). 
Outside these GOV-known and now improved viral populations, an additional 180,448 new 155 
GOV 2.0 viral populations were identified -- derived mostly (58%) from improved assemblies 
and deeper sequencing of the original GOV samples, and the rest (42%) from the 41 new Arctic 
Ocean viromes. Finally, new methods to identify shorter viral contigs (see Methods) were 
applied and these identified another 292,402 contigs as viral (5-10 kb length and/or circular), 
which, when added to the earlier data and clustered at ≥95% ANI, resulted in a total of 488,130 160 
viral populations (N50= 15,395; L50=105,286; mean read depth per population = 17x). Ninety 
percent of the populations could not be taxonomically classified to a known viral family, but the 
10% that could were predominantly dsDNA viral families and bacteriophages (Fig. 1C, D).  

Although the focus of this study is DNA viruses, a remarkable diversity of RNA viruses 
has been described in nature, though largely outside of marine systems. For example, 165 
transcriptome sequencing from plants (Roossinck et al., 2010), arthropods (Shi et al., 2016), and 
birds and bats (reviewed in Greninger, 2018) have shown a genomic and phylogenetic diversity 
of RNA viruses far beyond those in culture (Shi et al., 2018). In the oceans, however, RNA viral 
diversity and abundance remains largely unknown. The few estimates of marine RNA virus 
abundance are based on the relative quantification of RNA and DNA from purified viral particles 170 
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and genome size extrapolations and suggest that up to half of the viral particles in seawater are 
RNA viruses (Steward et al., 2013, Miranda et al., 2016). Direct RNA virus counts are not yet 
available for any environment due to the lack of RNA-specific stains. To date, our understanding 
of marine RNA viral diversity is based on single-gene surveys that target subgroups of viruses 
(reviewed in Culley, 2018) and a few viromes generated from extracellular viral particles (Culley 175 
and Steward, 2007; Culley et al., 2006; Miranda et al., 2016; Steward et al., 2013; Urayama et 
al., 2018, Zeigler-Allen et al., 2017) or from RNA viral sequences identified in 
metatranscriptomes (Carradec et al., 2018; Moniruzzaman et al., 2017; Urayama et al., 2018; 
Zeigler-Allen et al., 2017). Together, these studies suggest that the marine RNA virosphere is 
composed of a large diversity of positive-polarity ssRNA and dsRNA viruses diverge from 180 
established taxa, with an apparent predominance of viruses that infect eukaryotes (Culley, 2018). 
Due to current methodological limitations, comprehensive, systematic assessments of marine 
RNA viral diversity on the global scale are not yet available, and are excluded from our analysis. 

Validating viral ‘population’ boundaries. Defining species is controversial for 
eukaryotes and prokaryotes (Kunz, 2013; Cohan, 2002; Fraser et al., 2009) and even more so for 185 
viruses (Bobay et al., 2018), largely because of the paradigm of rampant mosaicism stemming 
from rapidly evolving ssDNA and RNA viruses, whose evolutionary rates are much higher than 
dsDNA viruses [reviewed by (Duffy et al., 2008)]. The biological species concept, often referred 
to as the gold standard for defining species, defines species as interbreeding individuals that 
remain reproductively isolated from other such groups. To adapt this to prokaryotes and viruses, 190 
studies have explored patterns of gene flow to determine whether they might maintain discrete 
lineages as reproductive isolation does in eukaryotes. Indeed, gene flow and selection define 
clear boundaries between groups of bacteria, archaea and viruses, though the required scale of 
data are only available for cyanophages and mycophages among viruses (Shapiro et al., 2012; 
Cadillo-Quiroz et al., 2012; Gregory et al., 2016; Bobay et al., 2018).  195 

Because measuring gene flow requires extensive datasets not yet available for many 
groups, the term ‘species’ is rarely used for prokaryotes or viruses, and instead discrete lineages 
are described as ‘populations’. Separate from these population genetic theory grounded 
observations, evidence of discrete lineages, or sequence-discrete populations, is to use 
metagenomic read-mapping to evaluate naturally occurring sequence variation across organisms.  200 
Sequence-discrete populations have now been observed for prokaryotes (Konstantinidis & Tiedje 
2005) and more recently for some dsDNA viruses (viral-tagged metagenomes and 142 isolate 
genomes for marine cyanophages; Deng et al. 2014, Gregory et al. 2016; Table S4). Buoyed by 
this and signatures of at least some dsDNA viruses obeying the biological species concept 
(Bobay et al., 2018), viral ecologists have established the definition of viral populations 205 
described above (Brum et al., 2015; Roux et al., 2016; Roux et al., 2018). Notably, however, 
only deeply sequenced groups, cyano- and myco-phages, have been evaluated to date (Gregory 
et al., 2016; Bobay et al., 2018), and an emergent hypothesis suggests that phages evolve with 
different modes and tempos driven by differing temperate or obligately lytic lifestyles (Mavrich 
& Hatfull, 2017). Thus, there is a need to evaluate how generalizable this empirically-derived 210 
≥95% ANI cut-off viral population definition is in nature. 

To test this, we permissively mapped metagenomic reads against our 488,130 GOV 2.0 
viral populations by allowing ‘local’ matching as low as 18% nucleotide identity, and 
statistically identifying ‘breaks’ in the resulting read frequency histograms (see Methods). This 
revealed that, on average, the break occurred such that reads <92% nucleotide identity failed to 215 
map (Fig. 2C; full results Table S5), which resulted in a genome-wide signature of ≥95% ANI 
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for nearly all (99.9% or 487,875) of the GOV 2.0 viral populations, including the smaller <10 kb 
viral populations (Fig. 2D). This implies that the observed viral populations in the dataset are 
predominantly and detectably sequence-discrete. This result is consistent with data from viral-
tagged metagenomes (Deng et al., 2014) and gene-sharing networks of prokaryotic virus 220 
genomes (Iranzo et al., 2016, Bolduc et al., 2017), which also showed that sampled viral genome 
sequence space is clustered at each ‘species’ and ‘genus’ levels, respectively. Thus, while 
ssDNA and RNA viruses have variable and elevated genome evolutionary rates that can erode 
species boundaries [reviewed by (Duffy et al., 2008)], it appears that virtually all metagenome-
assembled dsDNA viral populations form discrete genotypic clusters and can be appropriately 225 
delineated via a ≥95% genome-wide ANI cut-off.  

Meta-community analysis reveals 5 ecological zones. Having organized this global 
sequence space into discrete and biologically meaningful populations, we next sought to use 
metagenome-derived abundance estimates to establish patterns and drivers of viral population 
diversity across the global ocean across multiple levels of ecological organization (Fig. 3). This 230 
revealed that the 145 GOV 2.0 viral communities robustly assorted into just five meta-
communities, denoted ecological zones, whether assessed using Bray-Curtis dissimilarity 
distances in principal coordinate analysis (Fig. 4A), non-metric multidimensional scaling (Fig. 
S2A), or hierarchical clustering (Fig. S2B) and after accounting for variable sample sizes (see 
Methods). We designated these 5 emergent ecological zones as the Arctic (ARC), Antarctic 235 
(ANT), bathypelagic (BATHY), temperate and tropical epipelagic (TT-EPI) and mesopelagic 
(TT-MES), and used these for further study. Depth ranges overlapped with those previously 
defined (Reygondeau, et al. 2018), with epipelagic, mesopelagic, and bathypelagic being waters 
of depths 0 to 150 meters, 150 to 1,000 meters, and deeper than 2,000 meters, respectively. 

Comparison of our virome-inferred ecological zones to those inferred for the oceans in 240 
other ways was telling. Our zones differed from traditional oceanographic biogeographical 
biomes (e.g. Longhurst), where four biomes and ~50 provinces have been designated across 
surface ocean waters based on annual cycles of nutrient chlorophyll a (Longhurst et al. 1995, 
Longhurst 2007), and from mesopelagic ecoregions and biogeochemical provinces based on 
biogeography and environmental climatology, respectively (Sutton, et al. 2017; Reygondeau, et 245 
al. 2018). However, they were similar to those observed for marine bacterial communities, which 
clustered by mid-latitude surface, high-latitude, and deep waters (Ghiglione et al., 2012). This 
implies that the physicochemical structuring of marine microbial communities is likely the most 
important factor in structuring marine viral communities, perhaps reflecting a relative stability in 
host range of viruses in the oceans (de Jonge et al. 2018). To evaluate this physicochemical 250 
structuring, we examined the universal predictors and drivers of viral ecological zones, across 
one (Fig. 5A) and multiple ordination dimensions (Fig. 5B; see Methods). This suggested that 
temperature was the major driver structuring these ecological zones, as previously shown from 
global microbial surveys (Sunagawa et al., 2015) and our own smaller ocean virome surveys, 
where we posited previously that temperature likely directly impacts microbial community 255 
structure, and indirectly viral community structure (Brum et al., 2015). Moreover, temperature 
has been shown to play an important role in virus-host interactions, especially in the Arctic 
(Maat et al., 2017). 

To look for specific viral adaptations in each ecological zone, we identified genes under 
positive selection by evaluating the ratio of non-synonymous to synonymous mutations observed 260 
in gene sequences using the pN/pS equation (Schloissnig et al., 2013). Of 1,139,501 genes tested 
from populations with enough coverage (≥10x mean read depth; mean number of populations 



 

7 
 

assessed per sample: 14,852 viral populations), 124,882 genes were identified as being under 
positive selection in at least one sample. Most (82%) of the positively selected genes were 
functionally unannotatable, with the remaining 18% annotatable as predominantly genes related 265 
to structure or DNA metabolism (Tables S6-S10). In model systems, such genes are often under 
strong selective pressures during adaptations to new hosts (Marston et al., 2012; Jian et al., 2012; 
Enav et al., 2018). Thus, we hypothesize that host availability in each ecological zone is a strong 
selective pressure on our marine viral populations. Given the lack of functional annotations for 
most of the genes, we clustered all translated GOV 2.0 viral genes into protein clusters (PCs) 270 
based on sequence homology (sensu Holm & Sander, 1998) to identify positively selected zone-
specific PCs. This resulted in 823,193 PCs, of which ~10% (79,588 PCs) appeared under 
positive selection, with a subset of these specific to a single zone  (ARC = 80%; ANT = 33%; 
BATHY = 37%; TT-EPI = 75%; TT-MES = 69% of positively selected PCs per zone; see 
Tables S6-10). These findings of many zone-specific positively-selected PCs is indicative of 275 
niche-differentiation. However, functional stories from these data are challenging as 85% of 
these zone-specific PCs were of unknown function, with the remaining mostly being the 
structural and DNA metabolism genes described above. This suggests that we have a lot to learn 
about the function of genes that most likely drive niche-differentiation across the ecological 
zones. 280 

Viral macro- and micro- diversity, and potential drivers, within and between 
ecological zones. To explore diversity patterns across ecological zones, we calculated per sample 
diversity using Shannon’s H’ for macrodiversity and a newly established method for community-
wide microdiversity. This new method for community-wide microdiversity is limited in that it 
can only assess well-sampled, abundant populations because it estimates the average nucleotide 285 
diversity (or π) from the mean of π from 100 randomly subsampled well-sequenced populations 
sampled 1,000 times (see Methods). These zone-normalized (see Methods) comparisons 
revealed that macrodiversity was highest in TT-EPI (p < 0.05), closely followed by the ARC, 
and lowest in TT-MES and ANT (Fig 4B –bottom), whereas microdiversity was highest in TT-
MES (p < 0.05) and lowest in ARC (Fig. 4B –left). At the zonal level, a negative trend between 290 
macro- and micro- diversity emerges (Fig. 4B-right), although we note that the small number of 
zonal points limits our statistical inferences, even in this global dataset.  

Recent work suggests that higher micro-diversity can impede the maintenance of macro-
diversity by promoting competitive exclusion (Hart et al., 2016). Thus we posit that, if the zonal 
level negative macro/micro diversity trends are real, this may result from increased 295 
intrapopulation niche variation that reduces interpopulation niche variation resulting in 
competitive exclusion by the superior competitors, which may occur slowly and may be why it 
only appears at this regional scale (Fig. S5). Because estimates of microdiversity in our dataset 
and even currently available single virus genomics approaches (Martínez-Hernández et al., 2017) 
remain limited to only the most abundant populations, testing such a hypothesis awaits critically-300 
needed advances and scalability in single-virus genomics technologies. 

At the per-sample level, however, macro- and micro- diversity were not correlated, even 
within each zone (Fig. 4B – right). Although these are the first data available for viruses, for 
larger organisms, macro- and micro-diversity are often correlated across habitats sharing similar 
species pools, presumably due to habitat characteristics altering immigration, drift, and selection 305 
(Vellend & Gerber, 2005). These ecological correlations are generally positive and significantly 
stronger in discrete habitats (e.g. islands) in contrast to more connected communities like the 
ocean [reviewed in (Vellend et al., 2014)]. Thus we posit that the lack of correlation between 
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marine viral macro- and micro- diversity at this per-sample level is driven by differences in local 
drivers (Fig. 4C). Consistent with this, local potential drivers differed as nutrients strongly (and 310 
negatively) correlated with viral macrodiversity, whereas photosynthetically active radiation 
(PAR; an indicator of productivity) best (and positively) correlated with viral microdiversity in 
the epipelagic waters (Fig. 4C).  

Mechanistically, these results suggest several possible hypotheses. We interpret that, at 
the viral macrodiversity level, decreased host diversity in algal blooms, which themselves rely 315 
on nutrient pulses (Farooq & Malfatti, 2007), could skew viral rank abundance curves towards 
dominance by increasing abundance of bloom-associated viral populations. Even though algal 
blooms were not targeted in the Tara Oceans expedition, we did find that viral macrodiversity 
negatively correlated with chlorophyll a (Fig. 5C), and particulate inorganic carbon 
concentration (PIC; Fig. 4C), which is commonly used as a proxy for coccolithophore 320 
abundance (Groom & Holligan, 1987). Additionally, viral macrodiversity negatively correlated 
with the relative abundance of coccolithophores based on the V9 region of the 18S rRNA genes 
in the sequencing reads (Fig. 4C). For viral microdiversity in epipelagic waters, we interpret that 
PAR is potentially the main driver (Fig. 4C). PAR is known to impact host diversity, particularly 
in nutrient-poor surface waters, by inhibiting photoautotrophs through overwhelming their 325 
photosystems with too many electrons that can back up and even damage the photosystems 
(Feng et al., 2015). Further PAR can inhibit the growth of the dominant heterotroph, SAR11 
(Ruiz-González et al., 2013), and can stimulate other key microbes such as Roseobacter, 
Gammaproteobacteria and NOR5 (Ruiz-González et al., 2013). We hypothesize that the shorter-
term impacts of high PAR in the surface waters on host communities may create new niches for 330 
viruses, whereby microdiversity increases to enable differentiation of existing viral populations. 
As above, advances in single-virus genomics would be invaluable for testing this hypothesis. 
 Viral macro- and micro- diversity, and potential drivers, against classical ecological 
gradients. Ecologists have long explored the relationship between diversity and geographic 
range, which in eukaryotes and bacteria are highly (and positively) correlated and thought to be 335 
due to the accumulation of niche-specific selective mutations across populations with large 
heterogeneous geographic ranges (i.e. the niche variation hypothesis; Van Valen, 1965, Hedrick, 
2006, Rosen et al., 2015). No parallel studies have looked at viruses. To explore this for viruses, 
we determined the geographic range of viral populations based on their distribution within and 
between ecological zones (Fig. 6A) and then calculated their average π (see Methods) to assess 340 
patterns in macro- and micro- diversity, respectively. Viral populations were designated as 
‘multi-zonal’ if they were observed in >1 ecological zone, ‘zone-specific regional’ if they were 
observed in only one zone, but >2 viral communities, or ‘zone-specific local’ if they were 
observed in only 1 viral community within a single zone.  

These analyses first revealed differences in the dominant viral geographic ranges across 345 
the different ecological zones. For example, multi-zonal viral populations dominated ANT and 
BATHY (>60% of viral populations found within zone), both across the zone (Fig. 6B) and 
within each station (Fig. S6), whereas zone-specific regional viral populations dominated TT-
EPI and ARC and the multi-zonal and zone specific viral populations were approximately 
equally represented in TT-MES (Fig. 6B). The high levels of zone-specific viral populations in 350 
TT-EPI and ARC, as well as the high levels of viral macrodiversity (Fig. 4B-bottom), are 
indicative of high endemism and suggest these regions may be biodiversity hotspots for marine 
viruses. In contrast, the ANT and BATHY are composed mostly of multi-zonal viral populations 
suggesting that they may be sink habitats that are more dependent on migration (sensu 
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Watkinson & Sutherland, 1995). However, across all ecological zones, viral population 355 
microdiversity decreased with virus geographic range (Fig. 6C; p < 0.05), presumably from 
varied ecologies providing differing selective niches for the single, widely-distributed population 
that then drive differentiation through isolation-by-environment processes (sensu Shapiro et al., 
2012). Such findings are new for viruses, but parallel the results for eukaryotes (Hedrick, 2006) 
and bacteria (Rosen et al., 2015) and suggest a universality to isolation-by-environment 360 
processes across organismal kingdoms and viruses. 

Ecologists have also long observed, across most flora and fauna, that there are latitudinal 
patterns in diversity across both terrestrial and marine environments. Briefly, the latitude 
diversity gradient suggests that both macro- and micro-diversity are highest at mid-latitudes and 
decrease poleward (Pianka 1966, Hillebrand 2004, Mannion et al., 2013, Miraldo et al., 2016). 365 
We found that both viral macro- and micro-diversity followed the latitude diversity gradient 
except in ARC, where both increased (Fig. 7A). This high equatorial macro- and micro-diversity 
was consistent across the Indian, Atlantic, and Pacific Oceans as expected (Fig. 7B & C). The 
Arctic Ocean, however, was not only unexpectedly elevated in diversity, but it also displayed a 
unique pattern. Specifically, two distinct zones – definable by climatology-derived water mass 370 
nutrient stoichiometry (N*; Fig. 7D; see Comparing ARC-H and ARC-L in Methods) – emerged 
as high (ARC-H) and low (ARC-L) diversity regions that were significantly differentiable at 
both macro- and micro-diversity levels (Fig. 7E). Further, ARC-H was characterized by low 
nutrient ratios (N*; >9X lower in ARC-H than ARC-L on average; p < 5E-04) and drove the 
divergence from the latitude diversity gradient (Fig. S7).  375 

Mechanistically, we interpret these observations as follows. Prior work in this region has 
shown (i) strong denitrification in the Bering Strait (Devol et al., 1997), which explains the low 
N* in the west, and (ii) increasing oligotrophy in the Beaufort Gyre due to increasing vertical 
stratification, which selects against larger algae and for smaller algae and bacteria in the ARC-H 
(Li et al., 2009). As above, we hypothesize that shorter-term increased host diversity results in 380 
increased viral macro- and micro-diversity in ARC-H. Though our GOV 2.0 dataset is 
confounded by seasonality of sampling, we posit that this elevated summer-time macro- and 
micro-diversity in ARC may fuel viral ecological differentiation and represent an unrecognized 
‘cradle’ of viral biodiversity beyond the tropics. Though this elevated diversity in the Arctic was 
surprising, together with a similar deviation seen in mollusks (Valdovinos et al., 2003) and 385 
recently reported in ray-finned fish (Rabosky et al., 2018), these results call into question 
whether this decades-old paradigm needs revisiting and suggests that polar regions may be 
important biodiversity hotspots for viruses, as well as larger organisms. 

Finally, as ocean exploration accelerates, patterns in diversity through the vertical layers 
of the ocean have become a focus. An emergent depth diversity gradient hypothesis suggests that 390 
macrodiversity decreases with depth (Costello & Chaudhary, 2017), which has been explored 
across the World Register of Marine Species that includes some microbes and viruses 
(http://www.marinespecies.org/), but microdiversity has not yet been explored for any organism. 
Overall, our virome-inferred diversity patterns were less obviously consistent with the depth 
diversity gradient, although deep water ocean data were limited (Fig. 7F). Briefly, viral 395 
macrodiversity largely followed the depth diversity gradient with high diversity in the surface 
waters and decreased diversity with depth, whereas viral microdiversity did not as it decreased 
until 200 m depth, but then sharply increased (Fig. 7F). This deep water increase coincided with 
an increase in bacterial macrodiversity in the mesopelagic region (Fig. S8A & B), and in TT-
MES, this bacterial macrodiversity correlated with viral microdiversity (Fig. S8C). 400 
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 If more extensive deep water sampling confirms these patterns, we see several scenarios 
that could explain these data. First, we hypothesize that viral microdiversity may, in part, be 
driven by an increase in macrodiversity of zone-specific bacterial populations in TT-MES, which 
we interpret as an expansion of host ‘niches’ available for infection that could drive 
diversification in viruses (Elena et al., 2009). Second, we hypothesize that the decrease in viral 405 
macrodiversity may be driven by increased viral microdiversity of some viral populations in the 
mesopelagic region that can promote competitive exclusion (sensu Hart et al., 2016) as discussed 
above. Alternatively, lower cell density in the mesopelagic layer (Sunagawa et al. 2015) may 
result in less encounters between “predator” and “prey”, reducing viral speciation (as a function 
of reduced number of viral generations), but selecting for viruses with broader host range. Again, 410 
testing these hypotheses will require technological advances to measure in situ host ranges and 
sensitivities of viruses and cells, respectively, at scales relevant to the diversity in nature. 

 
Conclusions: 

This study provides a systematic and global-scale view of patterns and drivers of marine 415 
viral macro- and micro- diversity that reveals three overarching advances. First, five ecological 
zones emerge for the global ocean, which contrasts known Longhurst biogeographic patterning 
in other organisms, but is consistent with observations from the largely co-sampled ocean 
microbiome (Sunagawa et al. 2015). Second, patterns and drivers of viral macro- and micro- 
diversity differ per-sample and positively correlate to geographic range. These findings offer 420 
hints at underlying mechanisms that impact these two levels of diversity that will guide 
researchers from discovery to hypothesis-testing as technologies, such as scalable single virus 
genomics and in situ host range assays, advance towards sampling scales relevant to those in 
nature. Third, epipelagic waters and the Arctic Ocean emerge from our work as biodiversity 
hotspots for viruses. While this is surprising given the latitude diversity gradient paradigm that 425 
the tropics rather than the poles are the cradles of diversity, it is in line with other observations in 
larger organisms (Valdovinos et al., 2003, Rabosky et al., 2018) and emphasizes the importance 
of these drastically climate-impacted Arctic regions for global biodiversity. Together, these 
advances, along with the parallel global-scale ecosystem-wide measurements of Tara Oceans 
(e.g. de Vargas et al., 2015; Sunagawa et al., 2015; Brum et al., 2015; Lima-Mendez et al., 2015; 430 
Roux et al., 2016) provide the foundation for incorporating viruses into emerging genes-to-
ecosystems models (e.g. Guidi et al. 2016, Garza et al., 2018) that guide ocean ecosystem 
management decisions that are likely needed if humans and the Earth System are to survive the 
current epoch of the planet-altering Anthropocene.  

 435 
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Main Text Figure Legends: 
 670 
Fig. 1. The Global Ocean Viromes 2.0. (A) Arctic projection of the global ocean highlighting 
the new sampling stations of viromes in the GOV 2.0 dataset. Datasets from non-arctic samples 
were previously published in (Brum et al., 2015; Roux et al., 2016). (B) Histograms of the 
average assembled contig lengths for viral populations >10 kb shared between GOV and GOV 
2.0. B-inset. More than 92% of the unbinned GOV viral populations were reassembled and 675 
identified in GOV 2.0 >10 kb populations. (C) Pie charts showing how many of the 488,130 total 
viral populations comprising GOV 2.0 can be annotated and, of those, their viral family level 
taxonomy. (D) Barplot showing the host affiliations for each viral population at the domain level. 

Fig. 2. GOV 2.0 viral population have discrete population boundaries. (A) Barplots showing 
the read mapping results for the most abundant viral population >10kb in length for each of the 680 
top four viral families. Despite differences in read boundaries across the representative viral 
populations, there is no difference in the average read boundaries across the different viral 
families. (B) Histogram showing the read distribution frequency break (i.e. read boundary) 
between spuriously mapped reads and legitimate reads mapping to the genome. (C) Histograms 
showing the average percent identity of reads mapped to each genome after removing spuriously 685 
mapped reads. 

Fig. 3. Ecological levels of organization. Schematic showing the different ecological levels of 
organization studied in this paper.  
 
Fig. 4. Viral communities partition into five ecological zones with different macro- and 690 
micro- diversity levels. (A) Principal coordinate analysis (PCoA) of a Bray-Curtis dissimilarity 
matrix calculated from GOV 2.0. Analyses show that viromes significantly (Permanova p = 
0.001) structure into five distinct global ecological zones: ARC, ANT, BATHY, TT-EPI, and 
TT-MES zones. Ellipses in the PCoA plot are drawn around the centroids of each group at 95% 
(inner) and 97.5% (outer) confidence intervals. Four outlier viromes that did not cluster with 695 
their ecological zones were removed (Fig. S3A) and all the sequencing reads were used (see Fig. 
S3B and Methods). (B – right) Scatterplots showing correlations between macro- (Shannon’s 
H’) and micro- (average π for viral populations with ≥ 10x median read depth coverage; see 
Methods) diversity values for each sample across GOV 2.0. The larger circles represent the 
average per zone. (B – left) Boxplots showing median and quartiles of average microdiversity 700 
per ecological zone. (B – bottom) Boxplots showing median and quartiles of macrodiversity for 
each ecological zone. Zonal samples were randomly downsampled to n = 5 to account for zone 
sampling difference. All pairwise comparisons shown were statistically significant (p<0.01) 
using two-tailed Mann-Whitney U-tests. (C) Positive (blue) and negative (red) Pearson’s 
correlation results comparing macro- (upper) and micro- (lower) diversity with different 705 
biogeographical and biogeochemical parameters at the global scale (see Fig. S4, Table S3 for all 
abbreviations, and Methods). The significance of the correlations is indicated by the size of the 
black circles on top of the bars, and the variables on the x-axis are ordered from the strongest to 
the weakest correlation with macrodiversity (except for the top four variables correlating with 
microdiversity for readability). 710 

Fig. 5. Ecological drivers of global viral macrodiversity. (A) Regression analysis between the 
first coordinate of a PCoA (Fig. 4A) and temperature showed that samples were separated by 
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their local temperatures with an r2 of 0.82. (B) Potential ecological drivers & predictors of beta-
diversity across GOV 2.0 for the first two dimensions (Goodness of fit r2 using a generalized 
additive model) and across all dimensions (Mantel test based on Spearman’s correlation). 715 
Temperature was uniformly reported as the best predictor of viral beta-diversity globally. (C) 
Regression analysis between viral macrodiversity at the deep chlorophyll maximum (DCM) 
layer and areal chlorophyll a concentration (after cube transformation) showed that the negative 
correlation between viral macrodiversity and nutrients (Fig. 4C) is mediated (at least partially) 
by primary productivity. The untransformed values are provided on the lower axis for reference. 720 
The Shannon’s H outlier 32_DCM (Fig. S3) and a chlorophyll a concentration outlier 
(173_DCM; Fig. 5D) have been excluded from the regression analysis. (D) Boxplot analysis of 
areal chlorophyll a concentrations showing a single outlier concentration that fell above the 
fourth quantile of the data points (function geom_boxplot of ggplot).  
 725 

Fig. 6. Size of geographic range positively correlates with microdiversity. (A) Venn diagram 
showing the number of viral populations found only in one zone (zone-specific) and those that 
are shared between and among the five ecological zones (multi-zonal). (B) Stacked barplots 
showing the number of multi-zonal, regional, and local viral populations found within the 
species pool of each ecological zone. (C) Boxplots showing median and quartiles of 730 
microdiversity (average π for viral populations with ≥ 10x median read depth coverage) per 
populations found within each zone defined as multi-zonal, regional, or local. Statistics were the 
same as in Fig. 2.  
 
Fig. 7. Viral macro- and micro- diversity global biodiversity trends. (A) Loess smooth plots 735 
showing the latitudinal distributions of macro- and micro-diversity. (B & C) Equirectangular 
projections of the globe showing macro- and micro-diversity levels within each sample, 
respectively, across the global ocean. Samples collected at different depths from the same 
latitude and longitude are overlaid and the colors representing their macro- and micro- diversity 
values are merged. (D) Arctic projection of the global ocean showing the geographical division 740 
between ARC-H and ARC-L stations. The patterns are largely concordant with the Arctic 
division by climatology-derived N*. While we did sample across different seasons, the 
calculated N* values are not dependent on the season (see impact of the coast, depth, and 
seasons in Methods). (E) Boxplots showing median and quartiles of macro- (left) and micro- 
(right) diversity of the ARC-H and ARC-L regions. Statistics were the same as in Fig. 2. (F) 745 
Loess smooth plots showing the depth distributions of macro- and micro- population diversity. 
On all the smooth plots, the line represents the Loess best fit, while the lighter band corresponds 
to the 95% confidence window of the fit. Abbreviations: N*, the departure from dissolved N:P 
stoichiometry in the Redfield ratio and a geochemical tracer of Pacific and Atlantic water mass 
(see Methods).  750 
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Main Text Figures: 
 

 
Fig. 1. The Global Ocean Viromes 2.0.  
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Fig. 2. GOV 2.0 viral population have discrete population boundaries.  
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 760 

Fig. 3. Ecological levels of organization.  
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Fig. 4. Viral communities partition into five ecological zones with different macro- and 
micro- diversity levels.  765 
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Fig. 5. Ecological drivers of global viral macrodiversity.  770 
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Fig. 6. Size of geographic range positively correlates with microdiversity.  775 
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Fig. 7. Viral macro- and micro- diversity global biodiversity trends.  
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STAR Methods Text 
 
Key Resources Table 
 785 

Reagent or Resource Source Identifier(s) 

Sequencing Reagents and Kits 

NEBNext DNA 
Sample Prep Master 
Mix  

New England Biolabs, Ipswich, MA Cat n° E6040S 

NEXTflex PCR free 
barcodes  

Bioo Scientific, Austin, TX Cat n° NOVA-514110 

Kapa Hifi Hot Start 
Library Amplification 
kit  

KAPA Biosystems, Wilmington, MA Cat n° KK2611 

DNA SMART 
ChIPSeq Kit  

Takara Bio USA, Mountain View, CA Cat N° 634865 

Deposited Data 

Tara Oceans Viromes 
Raw Reads Brum et al., 2015; Roux et al., 

2016 

 

European Nucleotide 
Archive (ENA) - see Table 
S3 for details 

Tara Oceans Polar 
Circle Raw Reads 

This paper European Nucleotide 
Archive (ENA) - see Table 
S3 for details 

Malaspania Viromes 
Raw Reads 

Roux et al., 2016 Integrated Microbial 
Genomes (IMG) with Joint 
Genome Institute - see Table 
S3 for details 

16S rRNA gene Tara 
Oceans data  

Logares et al., 2014 Supplementary materials in 
Logares et al., 2014 

Biogeographical and 
Physicochemical data 

Pesant et al., 2015 PANGAEA (Data Publisher 
for Earth & Environmental 
Science) - see Table S3 for 
details 

N* Arctic Data This paper  Table S3 



 

27 
 

Software and Algorithms 

nucmer 
(MUMmer3.23) 

Kurtz et al., 2004 https://sourceforge.net/projec
ts/mummer/ 

bbmap 37.57 
 

https://jgi.doe.gov/data-and-
tools/bbtools/ 

https://jgi.doe.gov/data-and-
tools/bbtools/ 

metaSPAdes 3.11 Nurk et al., 2017 https://github.com/ablab/spa
des/releases 

prodigal 2.6.1 Hyatt et al., 2010 https://github.com/hyattpd/Pr
odigal 

diamond Buchfink et al., 2014 https://github.com/bbuchfink
/diamond 

VirSorter v2 Roux et al., 2015 https://github.com/simroux/
VirSorter 

VirFinder Ren et al., 2017 https://github.com/jessieren/
VirFinder 

CAT Cambuy et al., 2016 https://github.com/dutilh/CA
T 

blast 2.4.0+ ftp://ftp.ncbi.nlm.nih.gov/blast/execut
ables/blast+/ 

ftp://ftp.ncbi.nlm.nih.gov/bla
st/executables/blast+/ 

vConTACT2 Jang et al., in press 2018 https://bitbucket.org/MAVE
RICLab/vcontact2 

bowtie2 Langmead & Salzberg, 2012 https://github.com/BenLang
mead/bowtie2 

BamM https://github.com/Ecogenomics/Bam
M 

https://github.com/Ecogeno
mics/BamM 

Bedtools Quinlan & Hall, 2010 https://github.com/arq5x/bed
tools2/blob/master/docs/cont
ent/overview.rst 

Vegan (R package) Dixon, 2003 https://cran.r-
project.org/web/packages/ve
gan/index.html 

BiodiversityR (R 
package) 

https://cran.r-
project.org/web/packages/Biodiversity

https://cran.r-
project.org/web/packages/Bi
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R/index.html odiversityR/index.html 

heatmap3 (R package) https://cran.r-
project.org/web/packages/heatmap3/in
dex.html 

https://cran.r-
project.org/web/packages/he
atmap3/index.html 

ggplot2 (R package) https://cran.r-
project.org/web/packages/ggplot2/ind
ex.html 

https://cran.r-
project.org/web/packages/gg
plot2/index.html 

ggpubr (R package) https://cran.r-
project.org/web/packages/ggpubr/inde
x.html 

https://cran.r-
project.org/web/packages/gg
pubr/index.html 

Analyses scripts (per 
Figure) 

This paper https://bitbucket.org/MAVE
RICLab/GOV2 

 
Contact for Reagent and Resource Sharing 
Further information and requests for resources and reagents should be directed to and will be 
fulfilled by the corresponding contact, Matthew Sullivan (mbsulli@gmail.com). 
 790 
Experimental Model and Subject Details 
Not applicable. 
 
Methods Details 
Tara Oceans Polar Circle (TOPC) expedition sample collection, processing, and sequencing 795 

Between June 2013 and December 2013, 41 samples were collected at different depths 
from 20 different sites near or within the Arctic Ocean (see full list of samples in Table S3). 
Physicochemical measurements, sample collection, and DNA extractions were performed using 
the methods described in (Roux et al., 2016). Extracted DNA was prepared for sequencing using 
library preparation method described in (Alberti et al., 2017) for viral samples collected during 800 
the TOPC campaign (section 4.2) and sequenced using the HiSeq 2000 system (101 bp, paired 
end reads). Importantly, our sample collection and library preparation methods have known bias 
towards <0.2um dsDNA viruses (Roux et al., 2017). The TOPC samples were combined with the 
previously published viromes in (Brum et al., 2015; Roux et al., 2016). Of the previously 
published dataset, the mesopelagic samples at (Tara stations 37, 39, 56, 68, 70, 76, 78, 111, 122, 805 
137, 138) and the Southern Ocean samples (Tara stations 82_DCM, 84, 85) were sequenced 
deeper. These combined samples comprise the GOV 2.0 dataset. The number of reads found in 
each sample can be found in Table S3.  

Due to different library preparation for the TOPC samples than the original Tara Oceans 
samples, the previously sequenced mesopelagic samples (Tara stations 68, 78, 111, 137) were 810 
prepped using the TOPC library preparation to determine if it impacted our ability to assemble 
viral populations. We found no significant difference between library preparations in terms of the 
number of viral genomes assembled and the average genome length (Fig. S9A & B). 
Additionally, to directly assess the impact of experimental variation between Tara Oceans and 
TOPC on our ecological interpretations, we applied hierarchical clustering on a Bray-Curtis 815 
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dissimilarity matrix of our viromes and we found that all of the mesopelagic samples prepared 
using the TOPC protocols clustered with their respective samples prepared using the original 
Tara Ocean protocols, and the variation between them was far less than the ecological variation 
across our viromes (see distances in hierarchical clustering in Fig. S9D). For two surface 
samples (Tara Stations 100 and 102), we also re-prepped the DNA using the DNA SMART 820 
ChIP-Seq kit which allows us to catch ssDNA in the library preparation (Takara) and further 
sequenced these two samples using the HiSeq 2000 system.  

While the Tara Oceans and Malaspina expeditions used the same sampling and storage 
approaches (described in Roux et al., 2016), the sequencing reads were longer for the latter (101 
bp for Tara and 151 bp for Malaspina). Given this, we have performed further analyses to 825 
evaluate whether the contribution of this experimental method variation surpasses the ecological 
variation presented in this study or not. These analyses, which are further described below, 
showed that ecological variation much better explained the data than experimental methods. To 
evaluate this, we compared the deep ocean samples collected from the Tara Oceans and 
Malaspina expeditions to assess their power to predict the correct ecological zone (mesopelagic 830 
or bathypelagic) based on the depth of collection (ecological variation) and the sequencing read 
length (experimental variation). Using three different metrics, namely the r2 value in a univariate 
regression analysis, the bayesian information criterion (BIC) of such constructed univariate 
model, and the p-value associated with different components in a multivariate regression 
analysis, we found that the depth of collection, rather than the experimental variation, best 835 
predicts the ecological zone (higher r2), with a better model fit (lower BIC), and lower p-value 
(Fig. S9C). Additionally, we have one Malaspina sample from the mesopelagic ecological zone 
(the rest are Tara samples), and there is no significant difference between the Malaspina sample 
and Tara samples in the mesopelagic (Fig. S3C and D). Together these findings demonstrate that 
the differences between the samples collected during the different expeditions are predominantly 840 
the result of ecology and community structure rather than experimental artifact. 
 
All the remaining STAR Methods we used are quantifications and statistical analyses. All the 
details related to these STAR Methods are therefore provided in the following section, 
Quantification and Statistical Analyses 845 
 
Quantification and Statistical Analyses 
Viral contig assembly, identification, and dereplication 

All samples in the GOV 2.0 dataset (Roux et al., 2016) as well as the previously 
sequenced TOPC library-prepped mesopelagic samples and the DNA SMART ChIP-Seq kit 850 
surface samples were individually assembled using metaSPAdes 3.11.1 (Nurk et al., 2017). Prior 
to assembly, Malaspina samples from GOV 2.0 were further quality controlled. Briefly, adaptors 
and Phix174 reads were removed and reads were trimmed using bbduk.sh 
(https://jgi.doe.gov/data-and-tools/bbtools/; minlength=30 qtrim=rl maq=20 maxns=0 trimq=14 
qtrim=rl). Following assembly, contigs ≥1.5kb were piped through VirSorter (Roux et al., 2015) 855 
and VirFinder (Ren et al., 2017) and those that mapped to the human, cat or dog genomes were 
removed. Contigs ≥5kb or ≥1.5kb and circular that were sorted as VirSorter categories 1-6 and/or 
VirFinder score ≥0.7 and p <0.05 were pulled for further investigation. Of these contigs, those 
sorted as VirSorter categories 1 and 2, VirFinder score ≥0.9 and p <0.05 or were identified as 
viral by both VirSorter (categories 1-6) and VirFinder (score ≥0.7 and p <0.05) were classified as 860 
viral. The remaining contigs were run through CAT (Cambuy et al., 2016) and those with <40% 
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(based on an average gene size of 1000) of the genome classified as bacterial, archaeal, or 
eukaryotic were considered viral. In total, 848,507 viral contigs were identified. Viral contigs 
were grouped into populations if they shared ≥95% nucleotide identity across ≥80% of the 
genome (sensu Brum et al., 2015) using nucmer (Kurtz et al., 2004). This resulted in 488,130 865 
total viral populations found in GOV 2.0 (see Table S5 for VirSorter, VirFinder, and CAT 
results), of which 195,728 were ≥10kb.  
 
Viral taxonomy 

For each viral population, ORFs were called using Prodigal (Hyatt et al., 2010) and the 870 
resulting protein sequences were used as input for vConTACT2 (Jang et al., in press 2018) and 
for blastp. Viral populations represented by contigs >10kb were clustered with Viral RefSeq 
release 85 viral genomes using vConTACT2. Those that clustered with a virus from RefSeq 
based on amino acid homology based on diamond (Buchfink et al., 2015) alignments were able 
to be assigned to a known viral taxonomic genus and family. For GOV 2.0 viral populations that 875 
could not be assigned taxonomy or were <10kb, family level taxonomy was assigned using a 
majority-rules approach, where if >50% of a genome’s proteins were assigned to the same viral 
family using a blastp bitscore ≥50 with a Viral RefSeq virus, it was considered part of that viral 
family.  
 880 
Viral population boundaries 
 To determine if our viral populations had discrete sequence boundaries, all reads across 
the GOV 2.0 dataset (excluding the Tara stations 68, 78, 111, 137 prepped using the TOPC 
library preparation methods and the DNA SMART ChIP-Seq kit prepped libraries) were pooled 
and mapped non-deterministically to our viral populations using the ‘very-sensitive-local’ setting 885 
in bowtie2 (Langmead & Salzberg, 2012). The percent nucleotide identity (% ID) of each 
mapped read and the positions in the genome where the read mapped were determined. The 
frequency of reads mapping at a specific % IDs were weighted based on the length of each read 
mapped across the genomes. Frequencies of reads mapping at specific % IDs were smoothed 
using Loess smooth functions (span = 1 to be more permissive of lower % ID reads) to create 890 
read frequency histograms (% ID vs. frequency). To determine break in the distribution of read 
frequencies between the different % IDs, Euclidean distances calculated were calculated between 
% ID frequencies and then hierarchically clustered in R.  
 
Calculating viral population relative abundances, average read depths, and population ranks 895 

To calculate the relative abundances of the different viral populations in each sample, 
reads from each GOV 2.0 virome were first non-deterministically mapped to the GOV 2.0 viral 
population genomes using bowtie2. BamM (https://github.com/ecogenomics/BamM) was used to 
remove reads that mapped at <95% nucleotide identity to the contigs, bedtools genomecov 
(Quinlan & Hall, 2010) was used to determine how many positions across each genome were 900 
covered by reads, and custom Perl scripts were used to further filter out contigs without enough 
coverage across the length of the contig. For downstream macrodiversity calculations, contigs 
≥5kb in length that had <5kb coverage or less than the total length of the contig covered for 
contigs <5kb were removed. For downstream microdiversity calculations, all contigs with <70% 
of the contig covered were removed. BamM was used to calculate the average read depth 905 
(‘tpmean’ -minus the top and bottom 10% depths) across each contig. For the macrodiversity 
calculations, the average read depth was used as a proxy for abundance and normalized by total 
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read number per metagenome to allow for sample-to-sample comparison. The rank abundance of 
all the viral populations was calculated using the normalized abundances and the 
‘rankabundance’ in the BiodiversityR R package. 910 

 
Subsampling reads  

Unequal sequencing depth can have large impacts on diversity measurements, 
specifically α-diversity measurements (Lemos et al., 2011). Due to 5x more sequencing depth in 
TOPC samples and the deeply sequenced mesopelagic and Southern Ocean samples (Table S3), 915 
all viromes in the GOV 2.0 dataset were randomly subsampled without replacement to 20M 
reads for Tara or 10M reads for Malaspina (as many Malaspina samples were <20M reads and 
there was no significant difference between the 10M and 20M reads assemblies; p = 1) using 
reformat.sh from bbtools suite (https://sourceforge.net/projects/bbmap/). The subsampled read 
libraries were assembled using metaSPAdes 3.11.1. Contigs ≥1.5kb that shared ≥95% nucleotide 920 
identity across ≥80% of the genome with the 488,130 viral populations in GOV 2.0 were pulled 
out and grouped into populations to be used as the subsampled GOV 2.0 viral populations. In 
total, there were 46,699 viral populations. Relative abundances were calculated per sample as 
aforementioned for macrodiversity calculations, but using the subsampled GOV 2.0 viral 
populations and the subsampled reads. 925 

 
Macrodiversity calculations 
The macrodiversity α- (Shannon’s H) and β- (Bray-Curtis dissimilarity) diversity statistics were 
performed using vegan in R (Dixon, 2003). The α-diversity calculations were based on the 
relative abundances produced from the subsampled reads. Loess smooth plots with 95% 930 
confidence windows in ggplot2 in R were used to look at changes in Shannon’s H across latitude 
(Fig. 7A) and depth (Fig. 7F). For the β-diversity, both the subsampled and the total reads 
abundances were used to look at community structure (Fig. S3). Principal Coordinate analysis 
(function capscale of vegan package with no constraints applied) and NMDS analysis (function 
metaMDS; K=2 and trymax=100) were used as the ordination methods on the Bray-Curtis 935 
dissimilarity matrices from both the subsampled and total reads calculated from GOV 2.0 
(function vegdist; method “bray”) after a cube root transformation (function nthroot; n=3). The 
ecological zones that emerged were verified using a permanova test (function “adonis”) and the 
confidence intervals were plotted using function “ordiellipse” at the specified confidence limits 
(95% and 97.5%) using the standard deviation method. There were no significant differences in 940 
clustering between the subsampled and all reads Bray-Curtis dissimilarity PCoA plots (Fig. S3). 
Hierarchical clustering (function pvclust; method.dist="cor" and method.hclust="average") was 
conducted on the same Bray-Curtis dissimilarity matrices using 1000 bootstrap iterations and 
only the approximately unbiased (AU) bootstrap values were reported. The heatmaps were 
generated using the heatmap3 package with appropriate rotations of the branches in the 945 
dendrograms. Samples that did not cluster with their ecological zone (Tara mesopelagic stations 
72, 85, and 102 and Tara surface station 155) were considered outliers and removed from further 
analyses (Fig. S3A & C). 
 
Microdiversity calculations 950 
 Viral populations with an average read depth of ≥10x across 70% of their representative 
contig in at least one sample in the GOV 2.0 dataset were flagged for microdiversity analyses. 
We used 10x as the minimum coverage because population genetic statistics were found to be 
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relatively consistent down to 10x based on previous downsampling coverage analyses 
(Schloissnig et al., 2013). BAM files containing reads mapping at ≥95% nucleotide identity were 955 
filtered for just the flagged viral populations. Samtools mpileup and bcftools were used to call 
single nucleotide variants (SNVs) across these populations. SNV calls with a quality call > 30 
threshold were kept. Coverage for each allele for each SNV locus was summed across all the 
metagenomes. For each SNV locus, the consensus allele was re-verified and those with 
alternative alleles that had a frequency >1% (1000 Genomes Project Consortium, 2012), the 960 
classical definition of a polymorphism, and supported by at least 4 reads were considered SNP 
loci (Schloissnig et al., 2013). Nucleotide diversity (π) per genome were calculated using 
equation from (Schloissnig et al., 2013). Due to the variable coverage across the genome, 
coverage was randomly downsampled to 10x coverage per locus in the genome. For the 
downsampling, if there was not the target 10x coverage for the locus, all of the alleles were 965 
sampled. Nucleotide diversity (π) was calculated for each genome with an average read depth 
≥10x across 70% of their contig in each sample. For each sample, π values of 100 viral 
populations were randomly selected and averaged. This was repeated 1000x and the average of 
the all 1000 subsamplings was used as the final microdiversity value for each sample. Loess 
smooth plots with 95% confidence windows in ggplot2 in R were used to look at changes in 970 
average π across latitude (Fig. 7A) and depth (Fig. 7F). 
 
Annotating Genes & Making Protein Clusters 
         Genes were annotated by translating the sequences into proteins and running a 
combination of reciprocal best blast hit analyses against the KEGG database (Kanehisa et al., 975 
2002), and blast against the UniProt Reference Clusters database (Suzek et al., 2007), searching 
for matches against the InterPro protein signature database using InterProScan (Zdobnov et al., 
2001), and running HMM searches against Pfams (Bateman et al., 2004). A diamond ‘blastall’ 
alignment search (Buchfink et al., 2015) of all the protein sequences was performed against all 
the protein sequence was performed and the protocol “Clustering similarity graphs encoded in 980 
BLAST results” with a granularity of I=2 from the MCL website (https://micans.org/mcl/; 
Enright et al., 2002) was used to create protein clusters. 
 
Selection Analyses 

Natural selection (pN/pS) was calculated using the method from (Schloissnig et al., 985 
2013). The pN/pS method compares the expected ratio of non-synonymous and synonymous 
substitutions based on a uniform model of occurrence of mutations across the genome with the 
observed ratio of non-synonymous and synonymous substitutions. The original method treats 
each SNP locus as independent from each other. Thus, if two SNPs occur in the same codon, the 
alternate codon produced from each SNP would be considered in the pN/pS calculation. Thus, if 990 
two SNPs occur in one codon, the effect of the SNPs could potentially cancel each other out or 
amplify a non-synonymous signal leading to false positive selection calls. In order to minimize 
this bias, SNPs found within the same codon in the same gene were tested for linkage in each 
metagenome. If SNP alleles from loci within the same codon had depth coverage within 15% of 
each other within each metagenome, they were considered linked in that sample. 995 

For each codon with SNP loci in a gene, the minimum coverage was identified based on 
the lowest read depth coverage among the three base pair position. The initial number of the 
consensus codon was determined based on the lowest coverage of the consensus alleles at the 
SNP locus or loci if linked. The initial numbers of potential alternate codons was based on the 
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coverage of the alternate allele at that position or the lowest coverage between two linked SNPs. 1000 
The final coverage of the each codon per SNP locus was calculated by taking the rounded down 
number of the product of the initial number x (initial number/ minimum coverage for the codon). 
These codons then subsampled down to 10x. The number of observed non-synonymous and 
synonymous substitutions were counted and pN/pS was calculated. Genes were considered under 
positive selection if pN/pS was >1. 1005 
 
Drivers of Macro- and Micro-diversity 
 Regression analysis between the first coordinate of the PCoA (Fig. 5A) and available 
temperature measurements was conducted using the lm function in R. The environmental 
variables were fitted to the first two dimensions of the PCoA using a generalized additive model 1010 
(function envfit; permutations=9999 and na.rm = TRUE). Then, they were correlated with all the 
PCoA dimensions using a mantel test (function mantel; permutations=9999 and method="spear") 
after scaling (function scale) and calculating their distance matrices (function vegdist; method 
"euclid" and na.rm = TRUE). Finally, they were correlated with Shannon’s H and π using 
Pearson’s correlation (function cor; use="pairwise.complete.obs") after removing Shannon’s H 1015 
outliers based on a boxplot analysis (Fig. S4). 
 
Subsampling macro- and micro- diversity  

Due to unequal sampling across each ecological zone, we chose to normalize the number 
of samples between each ecological zone by subsampling the down to lowest zone sample size 1020 
(ANT; n = 5). Shannon’s H outliers were not included in the subsampling. Five samples within 
each zone were randomly subsampled without replacement and their macro- and micro- diversity 
values averaged, respectively. We subsampled 1000x and plotted the averages and assessed for 
significant differences using Mann-Whitney U-tests in ggboxplot from the R package ggpubr 
(Fig. 4B).  1025 

 
Classifying multi-zonal, regional, and local viral populations 
 To determine geographic range, viral populations were evaluated for their distributions 
across the five ecological zones and plotted using the VennDiagram package in R (Fig. 6A). If 
present in ≥1 sample in more than one ecological zone, it was considered multi-zonal (58% GOV 1030 
2.0 viral populations). If present only in samples found within a single zone, it was considered 
zone-specific (48% GOV 2.0 viral populations). Zone-specific viral populations were further 
divided into regional (≥2 samples within a zone) and local (only 1 sample within a zone). The 
proportion of multi-zonal, regional, and local viral populations found across each zone (Fig. 6B) 
and across each station (Fig. S6) were calculated by dividing the number of each type by the 1035 
total number of viral populations found across a zone or station, respectively. To assess the 
impact of geographic range on microdiversity per zone, stations were randomly subsampled 
without replacement as described above. Within each sample, π values of 50, 100, and 20 viral 
populations of each geographic distribution (multi-zonal, regional, and local, respectively) were 
randomly selected and averaged. All the viral populations with a geographic range were sampled 1040 
and averaged in samples that lacked enough deeply-sequenced viral populations with particular 
geographic range. This was repeated 1000x and the averages plotted and assessed for significant 
differences using Mann-Whitney U-tests in ggboxplot from the R package ggpubr (Fig. 6C). 
 
Comparing ARC-H and ARC-L 1045 
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 The ARC-H and ARC-L regions were defined based on their biogeography; the ARC-H 
stations were located in the Pacific Arctic region, the Arctic Archipelago, and the Davis-Baffin 
Bay, in addition to one station (Station 189) in the Kara-Laptev sea, which was separated by a 
land mass from the rest of the stations in the same area (Fig. 7D). The ARC-L stations were 
located in the Kara-Laptev Sea (except Station 189), the Barents Sea, and subpolar areas 1050 
(stations 155 and 210). The departure from the dissolved N:P stoichiometry in the Redfield ratio 
(N*) was calculated as in (Tremblay et al., 2015) to represent the deficit in dissolved inorganic 
nitrogen (DIN) in the ratio and as a geochemical tracer of pacific and atlantic water masses. 
Macro- and micro- diversity values for each station in ARC-H and ARC-L were plotted and 
assessed for significant differences using Mann-Whitney U-tests in ggboxplot from the R 1055 
package ggpubr (Fig. 7E). 

Comparing GOV to GOV 2.0 
 Viral populations assembled in the GOV (Roux et al., 2016) were compared to the GOV 
2.0 viral populations (Fig. 1B) using blastn. Unbinned GOV viral populations with a nucleotide 
alignment to a GOV 2.0 viral populations with ≥95% nucleotide identity and an alignment length 1060 
≥50% the length were considered present in the GOV 2.0. These results were plotted in a venn 
diagram using the VennDiagram package in R. The frequency of contig lengths of viral 
populations that were shared across both samples were plotted using ggplot2 (function 
“geom_histogram”; binwidth =5000). 
 1065 
Calculating 16S OTU Macrodiversity 
Previously published 16S OTU data were taken from (Logares et al., 2014). The macrodiversity 
α- (Shannon’s H) statistics were performed using vegan in R (Dixon, 2003). Loess smooth plots 
with 95% confidence windows in ggplot2 in R were used to look at changes in bacterial 
Shannon’s H down the depth gradient. Differences between surface, deep chlorophyll maximum, 1070 
and mesopelagic bacterial samples were compared using Mann-Whitney U-tests and plotted in 
ggboxplot from the R package ggpubr. Finally, viral microdiversity was correlated with bacterial 
Shannon’s H using Pearson’s correlation (function cor; use="pairwise.complete.obs") and a 
linear regression (Fig. S8C). 
 1075 
Impact of the coast, depth, and seasons 
 GOV 2.0 samples are largely open ocean samples. Even though the arctic samples were 
more coastal, we didn’t observe any significant coastal impact on the global macrodiversity 
(Pearson’s r = -0.25; Bonferroni-corrected p-value = 0.18) and microdiversity (Pearson’s r = 0.1; 
p-value = 0.16) levels (Fig. 4C). Although nitrate and phosphate levels generally increase with 1080 
depth, we observed higher negative correlations and significantly lower p-values for these 
nutrients with macrodiversity levels than between depth and macrodiversity (Fig. 4C) which 
suggests an impact of nutrients on viral diversity via primary production (Fig. 5C). Additionally, 
since the sampling was largely at discrete depth layers with different densities in the TT region 
(epipelagic, mesopelagic, and bathypelagic), rather than sampling gradients, we discerned a 1085 
clearer signal for the separation between these ecological zones (Fig. 4A). On the other hand, all 
the arctic epipelagic and mesopelagic samples fell within the same ecological zone due to the 
absence of a pycnocline in this area (Fig. 4A). Finally, the circumnavigation of the Arctic Ocean 
spanned multiple seasons (spring, summer, and fall). Based on our previous observation from a 
time-series data in a sub-arctic system (Hurwitz & Sullivan, 2013), our viral macrodiversity is 1090 
expected to be lowest during the spring and summer and increase towards the winter season. 
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However, our calculated N* values are not dependant on the season and represent the largest 
magnitude of change among all of the environmental variables that correlated with 
macrodiversity between the ARC-H and ARC-L regions. 
 1095 
Assessment of microbial contamination 
 To quantifying microbial contamination across our samples, we screened our 
metagenomic reads using singleM (github.com/wwood/singlem) for 16S sequences using the 
dedicated 16S SingleM package. We found that our viromes are exceptionally clean. 
Specifically, the number of 16S sequences in our samples ranged from 0-40 per million reads 1100 
(Table S3), and hence the samples are considered to have “likely negligible bacterial 
contamination” according to the metric proposed by authors evaluating such signals in published 
viromes (threshold was 200 16S sequences per million; Roux et al., 2013). In spite of our 
viromes being exceptionally clean, we sought to evaluate the impact of any variation in 16S, and 
hence bacterial contamination, however small, on our findings. We found that even though 1105 
microbial contamination increases with depth (most probably due to the decrease in cell size; 
linear regression r2 = 0.89), this increase was driven mainly by the bathypelagic samples. Briefly, 
the average contamination in BATHY was 28.7 per million reads (standard deviation = 6.8) as 
compared to the rest of the samples (average contamination = 1.7 per million reads and standard 
deviation = 2). These bathypelagic samples were not included in any of the ecological driver 1110 
analyses due to the unavailability of the environmental data to us. Further, it is clear that our 
estimates of diversity were not influenced by the minor variations in the negligible 
contamination in our viroomes as a linear regression between Shannon’s H and the number of 
16S reads from deep ocean samples resulted in a negligible r2 value (0.06). These data (used for 
conducting the regression analysis) represent a large range of diversity (3.3-7.8) and the full 1115 
range of contamination (0-40), but avoid the convolution from the ecological difference between 
the surface and deep ocean layers. Thus, we conclude that the diversity observations we make in 
this study are driven by ecological variation far greater than microbial contamination. 
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Supplementary Figures 

s 1300 
Fig. S1. Bioinformatic workflow. Flow diagrams showing the bioinformatic workflow for (A) 
the assembly and identification of viral populations, (B) the population coverages and 
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abundances and how they were used to calculate macro- and micro-diversity calculations, (C) 
prediction of population boundaries, and (D) how average macro- and micro-diversity 
calculations per ecological zone were calculated. 1305 

Fig. S2. Non-metric multidimensional scaling (NMDS) and hierarchical clustering of GOV 
2.0. As observed with the Principal Coordinate analysis (Fig. 4A), NMDS analysis (A) and 
correlation-based hierarchical clustering (B) of a Bray-Curtis dissimilarity matrix calculated 
from GOV 2.0 structured the viromes into five distinct global ecological zones with an 1310 
approximately unbiased (AU) bootstrap value > 77 in the hierarchical clustering. Four outlier 
viromes were removed and all the sequencing reads were used, with justification provided in 
(Fig. S3, C and D), respectively. Abbreviations: ARC, Arctic; ANT, Antarctic; BATHY, 
bathypelagic; TT-EPI, temperate and tropical epipelagic; TT-MES, temperate and tropical 
mesopelagic. 1315 
  

AU:
100
≥94
≥75

1.00.990.980.970.960.95<0.95

A BARCANTBATHYTT-MESTT-EPI
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Fig. S3. Beta-diversity of the total reads and subsampled reads GOV 2.0 dataset.  PCoA of a 
Bray-Curtis dissimilarity matrix calculated from GOV 2.0 using all the sequencing reads (A) and 1320 
after randomly subsampling the reads to the same sequencing depth (B). The 
dissimilarity matrices from (A) and (B) were used to conduct hierarchical clustering on the 
samples as shown in (C) and (D), respectively. The four viromes which were removed from (Fig. 
4) and (Fig. S2) are highlighted with asterisks; sample 1 (station 155_SUR) is the only surface 
sample in the North Atlantic Drift Province and could have been influenced by the warm surface 1325 
currents going northward due to the Atlantic Meridional Overturning Circulation; sample 2 
(station 85_MES) is the only mesopelagic sample from the Southern Ocean and could have 
been influenced by the upwelling of ancient deep ocean water (which is also congruent with the 
similarity observed between deep water bacterial communities of polar and lower latitude 
(Ghiglione et al., 2012)); sample 3 (station72_MES) fell outside the 97.5% confidence intervals 1330 
of all the ecological zones; sample 4 (station102_MES) was located in El Niño-Southern 
Oscillation region and could have been influenced by the upwellings and downwellings in this 
area. Additionally, samples 1, 3, and 4 were among the Shannon’s H outliers (Fig. S4). Viral 
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communities still partitioned into five ecological zones after subsampling the reads as shown by 
the PCoA (B) and hierarchical clustering (D) plots.  1335 
 

  
Fig. S4. Boxplot analysis of viral macrodiversity across GOV 2.0 ecological zones. Outliers 
that fell below the first quantile or above the fourth quantile (function geom_boxplot of ggplot) 
of each ecological zone were removed before examining the predictors of viral macrodiversity 1340 
(Fig. 4C). Outliers: 32_SUR, 155_SUR, 56_MES, 70_MES, 72_MES, 102_MES, MSP131, and 
MSP144. 
 
 
  1345 
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Fig. S5.  Schematic showing the interplay of increased microdiversity and competitive 
exclusion. Viral populations with more microdiversity usually have larger niche sizes and 
therefore can outcompete viral populations with smaller overlapping niche sizes. This process of 
competitive exclusion may not be visible in each community as seen across the three 1350 
communities. Thus, the average of communities such as across ecological zones can better show 
this relationship. 
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Fig. S6. Stacked barplots showing the number of multi-zonal, regional, and local viral 1355 
populations found within the species pool of each station. Ecological zone outliers (see Fig. S3) 
are excluded.  
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 1360 

Fig. S7. ARC-H drives the divergence from the latitude diversity gradient. Loess smooth 
plots showing the latitudinal distributions of macro- and micro- population diversity with ARC-
H and ARC-L regions. The line represents the loess best fit, while the lighter band corresponds 
to the 95% confidence window of the fit.  
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Fig. S8. Microbial 16S OTUs biodiversity deviate from the depth diversity gradient and 
positively correlates with viral microdiversity in the mesopelagic. (A) Loess smooth plots 
showing 16S OTUs (Logares et al., 2014) macrodiversity distributions down the depth gradient. 1370 
The line represents the loess best fit, while the lighter band corresponds to the 95% confidence 
window of the fit. (B) Boxplots showing median and quartiles of surface, deep chlorophyll 
maximum (DCM), and mesopelagic 16S OTU data taken from (Logares et al., 2014). All 
pairwise comparisons shown were statistically significant (p<0.05) using two-tailed Mann-
Whitney U-tests. (C) Scatterplot showing the positive correlation (Pearson’s correlation r = 0.51; 1375 
p-value = 0.036) and linear regression (r2 = 0.26) between Tara Oceans mesopelagic samples 
shared between the 16S OTU samples in (Logares et al., 2014) and our viral samples in GOV 
2.0. 
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Fig. S9. Library preparation and experimental conditions comparisons. (A & B) Boxplots 
showing median and quartiles of the number of assembled viral genomes per total reads 
sequenced and the average genome lengths in TO and TOPC preparations of Tara mesopelagic 1385 
stations 68, 78, 111, and 137, respectively. All pairwise comparisons shown were not statistically 
significant using two-tailed Mann-Whitney U-tests. (C) Depth (as an ecological variable) 
predicts the ecological zone of the deep ocean (mesopelagic or bathypelagic) better than 
experimental variation between Tara and Malaspina expeditions, with a higher r2 (left), lower 
BIC (middle), and lower p-value (right). The first two metrics were calculated from a univariate 1390 
regression analysis (using depth alone or experimental variation alone as a predictor of the 
ecological zone), while the third metric was calculated from a multivariate multiple regression 
analysis that uses both depth and experimental variation as predictors. (D) Hierarchical 
clustering of a Bray-Curtis dissimilarity matrix calculated from GOV 2.0 viromes to which four 
additional viromes (black bars) have been added to control for the impact of experimental 1395 
variation between the Tara Oceans and Tara Oceans Polar Circle expeditions. The four viromes 
prepared using the Tara Oceans Polar Circle protocols clustered with their respective original 
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samples, which were prepared using the Tara Oceans protocols indicating that experimental 
variation was far less than ecological variation. 
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