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Summary: Microbes drive most ecosystems and are modulated by viruses that impact their
lifespan, gene flow and metabolic outputs. However, ecosystem-level impacts of viral
community diversity remains difficult to assess due to classification issues and few reference
genomes. Here we establish a ~12-fold expanded global ocean DNA virome dataset of 195,728
viral populations, now including the Arctic Ocean, and validate that these populations form
discrete genotypic clusters. Meta-community analyses revealed five ecological zones throughout
the global ocean, including two distinct Arctic regions. Across the zones, local and global
patterns and drivers in viral community diversity were established for both macrodiversity (inter-
population diversity) and microdiversity (intra-population genetic variation). These patterns
sometimes, but not always, paralleled those from macro-organisms and revealed temperate and
tropical surface waters and the Arctic as biodiversity hotspots and mechanistic hypotheses to
explain them. Such further understanding of ocean viruses is critical for broader inclusion in
ecosystem models.

Introduction:

Biodiversity is essential for maintaining ecosystem functions and services (reviewed by
Tilman et al., 2014). In the oceans, the vast majority of biodiversity is contained within the
microbial fraction containing prokaryotes and eukaryotic microbes, which represents ~60% of its
biomass (Bar-On et al., 2018). Meta-analyses looking at changes in marine biodiversity show
that biodiversity loss increasingly impairs the ocean’s capacity to produce food, maintain water
quality, and recover from perturbations (Worm et al., 2006). To date, marine conservation efforts
have focused on specific organismal communities, such as fisheries or coral reefs, rather than
conserving whole ecosystem biodiversity. However, emerging studies across diverse
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environments show that the stability and diversity of higher trophic level organisms rely upon
diversity throughout the food web (e.g. Soliveres et al., 2016). Despite being the foundation of
the food web, most marine microbial biodiversity numbers are based on a few well-studied
locations (e.g., Hawaii Ocean Time Series, Bermuda Atlantic Time Series, and San Pedro Ocean
Time Series). For ocean microbes and their viruses, global surveys that parallel century-old
global terrestrial and decades-old marine macro-organismal global biodiversity surveys (Reiners
et al., 2017) are only now emerging (e.g. de Vargas ef al., 2015; Sunagawa et al., 2015; Brum et
al.,2015; Roux et al., 2016; Ser-Giacomi et al., 2018;Table S1). Key to assessing biodiversity
changes across marine ecosystems is improving our understanding of current microbial
biodiversity levels, distribution patterns, and their ecological drivers.

Despite their tiny size, viruses play a large role in marine ecosystems and food webs. For
example, mortality due to viruses is credited with lysing approximately 20-40% of bacteria per
day and releasing carbon and other nutrients that impact the food web (reviewed by Suttle,
2007). Beyond mortality, viruses can alter evolutionary trajectories of microbial communities by
transferring ~10%° genes per day globally (Paul, 1999) and biogeochemical cycling by
metabolically reprogramming host photosynthesis, as well as central carbon metabolism and
nitrogen and sulfur cycling (reviewed in Hurwitz & U'Ren, 2016). Finally, as the oceans are
estimated to capture half of human-caused carbon emissions (Le Quéré et al., 2018), it is notable
that genes-to-ecosystems modeling has placed viruses as central players of the ocean ‘biological
pump’ (Guidi et al., 2016). Many of these discoveries are very recent as ocean viral genome
sequence space is just now being explored at the level of viral macrodiversity, i.e., inter-
population diversity, throughout the global oceans -- at least for the most abundant double-
stranded DNA viruses sampled (Table S2).

In spite of this progress in studying marine viral macrodiversity, virtually nothing is
known about microdiversity, i.e., intra-population genetic variation. This is due to the
controversy surrounding the existence of viral species (Gregory et al., 2016; Bobay et al., 2018).
In eukaryotic organisms, where species boundaries are more widely accepted, such
microdiversity has been studied and is thought to drive adaptation and speciation to promote and
maintain stability in ecosystems (Hughes et al., 2008; Larkin & Martiny, 2017). This is likely
also true in viruses since even a few mutations can alter host interactions and ecological and
evolutionary dynamics for the genotype (e.g. Marston et al., 2012; Petrie et al., 2018). In nature,
viral microdiversity measurements have been limited to marker genes (e.g. genes encoding major
capsid proteins), which capture neither community-wide variability (Sullivan 2015) nor genome-
wide evidence of selection (e.g. Achtman & Wagner 2008). Recently, deeper metagenomic
sequencing and population genetic theory-grounded species delimitations (Shapiro et al., 2012;
Cadillo-Quiroz et al., 2012) have begun to reveal such microdiversity in microbes, and this has
elucidated unknown features of speciation, adaptation, pathogenicity and transmission (e.g.
Snitkin et al., 2011; Schloissnig et al., 2013; Rosen et al., 2015; Lee et al., 2017; Smillie et al.,
2018). Although parallel species delimitations are now available for viruses (Gregory et al.,
2016; Bobay et al., 2018), no datasets are yet available to explore genome-wide microdiversity
in viruses, particularly at the global scale.

Here we leverage the Tara Oceans global oceanographic research expedition sampling to
establish a deeply-sequenced, global-scale ocean virome dataset and use it to assess the validity
of the current viral population definition and to establish and explore baseline macro- and micro-
diversity patterns with their associated drivers across local to global scales. These data have been
collected and analyzed in the context of the larger 7ara Oceans Consortium systematically-
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sampled, global-scale, viruses-to-fish-larvae datasets (de Vargas et al., 2015; Sunagawa et al.,
2015; Brum et al., 2015; Lima-Mendez et al., 2015; Pesant et al. 2015; Roux et al., 2016), and
help establish foundational ecological hypotheses for the field and a roadmap for the broader life
sciences community to better study viruses in complex communities.

Results & Discussion:

The dataset. The Global Ocean Viromes 2.0 (GOV 2.0) dataset is derived from 3.95 Tb
of sequencing across 145 samples distributed throughout the world’s oceans (Fig. 1A and Table
S3; see Methods). These data build on the prior GOV dataset (Roux et al., 2016) by increased
sequencing for mesopelagic samples (defined in our dataset as waters between 150m to 1,000m)
and upgrading assemblies, both of which drastically improved sampling of the ocean viruses in
these samples (results below). Additionally, we added 41 new samples derived from the Tara
Oceans Polar Circle (TOPC) expedition, which traveled 25,000 km around the Arctic Ocean in
2013. These 41 Arctic Ocean viromes were generated to represent the most significantly climate-
impacted region of the ocean, and an extreme environment. No such metagenome-based viral
data exist for the Arctic region (Deming & Collins 2017), and more generally, for many
planktonic organisms, systematic sampling is uneven throughout the Arctic Ocean (CAFF State
of the Arctic Marine Biodiversity Report) due to geopolitical and physical challenges of
sampling these regions.

The first step to studying viral biodiversity from the assembled GOV 2.0 dataset (see
Methods and Fig. S1A) was to identify contigs that likely derive from viruses using tools that
collectively utilize homology to viral reference databases, probabilistic models on viral genomic
features, and viral k-mer signatures (see Methods). These putative viral contigs were then
assigned to ‘populations’, which are currently defined as viral contigs >10 kb where >70% of the
shared genes have >95% average nucleotide identity (ANI) across its members (Brum et al.,
2015; Roux et al., 2016; Roux et al., 2018; population definition also discussed below). This
process identified 195,728 viral populations in the GOV 2.0 dataset, which is a ~12-fold increase
over the 15,280 identified in the original GOV dataset and assemblies (Roux et al., 2016) and
augments prior marine viromic work (Tables S2). Of these original GOV viral populations,
12,708 were represented by single contigs and, of these, most (92%) were recovered in GOV 2.0
(Fig. 1B-inset), with average lengths increased 2.4-fold from 18 kbp to 44 kbp (Fig. 1B).
Outside these GOV-known and now improved viral populations, an additional 180,448 new
GOV 2.0 viral populations were identified -- derived mostly (58%) from improved assemblies
and deeper sequencing of the original GOV samples, and the rest (42%) from the 41 new Arctic
Ocean viromes. Finally, new methods to identify shorter viral contigs (see Methods) were
applied and these identified another 292,402 contigs as viral (5-10 kb length and/or circular),
which, when added to the earlier data and clustered at >95% ANI, resulted in a total of 488,130
viral populations (N50=15,395; L50=105,286; mean read depth per population = 17x). Ninety
percent of the populations could not be taxonomically classified to a known viral family, but the
10% that could were predominantly dsDNA viral families and bacteriophages (Fig. 1C, D).

Although the focus of this study is DNA viruses, a remarkable diversity of RNA viruses
has been described in nature, though largely outside of marine systems. For example,
transcriptome sequencing from plants (Roossinck ef al., 2010), arthropods (Shi et al., 2016), and
birds and bats (reviewed in Greninger, 2018) have shown a genomic and phylogenetic diversity
of RNA viruses far beyond those in culture (Shi ef al., 2018). In the oceans, however, RNA viral
diversity and abundance remains largely unknown. The few estimates of marine RNA virus
abundance are based on the relative quantification of RNA and DNA from purified viral particles
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and genome size extrapolations and suggest that up to half of the viral particles in seawater are
RNA viruses (Steward et al., 2013, Miranda et al., 2016). Direct RNA virus counts are not yet
available for any environment due to the lack of RNA-specific stains. To date, our understanding
of marine RNA viral diversity is based on single-gene surveys that target subgroups of viruses
(reviewed in Culley, 2018) and a few viromes generated from extracellular viral particles (Culley
and Steward, 2007; Culley et al., 2006; Miranda et al., 2016; Steward et al., 2013; Urayama et
al., 2018, Zeigler-Allen et al., 2017) or from RNA viral sequences identified in
metatranscriptomes (Carradec et al., 2018; Moniruzzaman et al., 2017; Urayama et al., 2018;
Zeigler-Allen et al., 2017). Together, these studies suggest that the marine RNA virosphere is
composed of a large diversity of positive-polarity ssRNA and dsRNA viruses diverge from
established taxa, with an apparent predominance of viruses that infect eukaryotes (Culley, 2018).
Due to current methodological limitations, comprehensive, systematic assessments of marine
RNA viral diversity on the global scale are not yet available, and are excluded from our analysis.

Validating viral ‘population’ boundaries. Defining species is controversial for
eukaryotes and prokaryotes (Kunz, 2013; Cohan, 2002; Fraser et al., 2009) and even more so for
viruses (Bobay et al., 2018), largely because of the paradigm of rampant mosaicism stemming
from rapidly evolving ssDNA and RNA viruses, whose evolutionary rates are much higher than
dsDNA viruses [reviewed by (Dufty et al., 2008)]. The biological species concept, often referred
to as the gold standard for defining species, defines species as interbreeding individuals that
remain reproductively isolated from other such groups. To adapt this to prokaryotes and viruses,
studies have explored patterns of gene flow to determine whether they might maintain discrete
lineages as reproductive isolation does in eukaryotes. Indeed, gene flow and selection define
clear boundaries between groups of bacteria, archaea and viruses, though the required scale of
data are only available for cyanophages and mycophages among viruses (Shapiro et al., 2012;
Cadillo-Quiroz et al., 2012; Gregory et al., 2016; Bobay et al., 2018).

Because measuring gene flow requires extensive datasets not yet available for many
groups, the term ‘species’ is rarely used for prokaryotes or viruses, and instead discrete lineages
are described as ‘populations’. Separate from these population genetic theory grounded
observations, evidence of discrete lineages, or sequence-discrete populations, is to use
metagenomic read-mapping to evaluate naturally occurring sequence variation across organisms.
Sequence-discrete populations have now been observed for prokaryotes (Konstantinidis & Tiedje
2005) and more recently for some dsDNA viruses (viral-tagged metagenomes and 142 isolate
genomes for marine cyanophages; Deng et al. 2014, Gregory et al. 2016; Table S4). Buoyed by
this and signatures of at least some dsDNA viruses obeying the biological species concept
(Bobay et al., 2018), viral ecologists have established the definition of viral populations
described above (Brum et al., 2015; Roux et al., 2016; Roux et al., 2018). Notably, however,
only deeply sequenced groups, cyano- and myco-phages, have been evaluated to date (Gregory
et al., 2016; Bobay ef al., 2018), and an emergent hypothesis suggests that phages evolve with
different modes and tempos driven by differing temperate or obligately lytic lifestyles (Mavrich
& Hatfull, 2017). Thus, there is a need to evaluate how generalizable this empirically-derived
>05% ANI cut-off viral population definition is in nature.

To test this, we permissively mapped metagenomic reads against our 488,130 GOV 2.0
viral populations by allowing ‘local’ matching as low as 18% nucleotide identity, and
statistically identifying ‘breaks’ in the resulting read frequency histograms (see Methods). This
revealed that, on average, the break occurred such that reads <92% nucleotide identity failed to
map (Fig. 2C; full results Table S5), which resulted in a genome-wide signature of >95% ANI
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for nearly all (99.9% or 487,875) of the GOV 2.0 viral populations, including the smaller <10 kb
viral populations (Fig. 2D). This implies that the observed viral populations in the dataset are
predominantly and detectably sequence-discrete. This result is consistent with data from viral-
tagged metagenomes (Deng et al., 2014) and gene-sharing networks of prokaryotic virus
genomes (Iranzo et al., 2016, Bolduc et al., 2017), which also showed that sampled viral genome
sequence space is clustered at each ‘species’ and ‘genus’ levels, respectively. Thus, while
ssDNA and RNA viruses have variable and elevated genome evolutionary rates that can erode
species boundaries [reviewed by (Duffy et al., 2008)], it appears that virtually all metagenome-
assembled dsDNA viral populations form discrete genotypic clusters and can be appropriately
delineated via a >95% genome-wide ANI cut-off.

Meta-community analysis reveals 5 ecological zones. Having organized this global
sequence space into discrete and biologically meaningful populations, we next sought to use
metagenome-derived abundance estimates to establish patterns and drivers of viral population
diversity across the global ocean across multiple levels of ecological organization (Fig. 3). This
revealed that the 145 GOV 2.0 viral communities robustly assorted into just five meta-
communities, denoted ecological zones, whether assessed using Bray-Curtis dissimilarity
distances in principal coordinate analysis (Fig. 4A), non-metric multidimensional scaling (Fig.
S2A), or hierarchical clustering (Fig. S2B) and after accounting for variable sample sizes (see
Methods). We designated these 5 emergent ecological zones as the Arctic (ARC), Antarctic
(ANT), bathypelagic (BATHY), temperate and tropical epipelagic (TT-EPI) and mesopelagic
(TT-MES), and used these for further study. Depth ranges overlapped with those previously
defined (Reygondeau, ef al. 2018), with epipelagic, mesopelagic, and bathypelagic being waters
of depths 0 to 150 meters, 150 to 1,000 meters, and deeper than 2,000 meters, respectively.

Comparison of our virome-inferred ecological zones to those inferred for the oceans in
other ways was telling. Our zones differed from traditional oceanographic biogeographical
biomes (e.g. Longhurst), where four biomes and ~50 provinces have been designated across
surface ocean waters based on annual cycles of nutrient chlorophyll a (Longhurst et al. 1995,
Longhurst 2007), and from mesopelagic ecoregions and biogeochemical provinces based on
biogeography and environmental climatology, respectively (Sutton, ef al. 2017; Reygondeau, et
al. 2018). However, they were similar to those observed for marine bacterial communities, which
clustered by mid-latitude surface, high-latitude, and deep waters (Ghiglione et al., 2012). This
implies that the physicochemical structuring of marine microbial communities is likely the most
important factor in structuring marine viral communities, perhaps reflecting a relative stability in
host range of viruses in the oceans (de Jonge et al. 2018). To evaluate this physicochemical
structuring, we examined the universal predictors and drivers of viral ecological zones, across
one (Fig. SA) and multiple ordination dimensions (Fig. 5B; see Methods). This suggested that
temperature was the major driver structuring these ecological zones, as previously shown from
global microbial surveys (Sunagawa et al., 2015) and our own smaller ocean virome surveys,
where we posited previously that temperature likely directly impacts microbial community
structure, and indirectly viral community structure (Brum et al., 2015). Moreover, temperature
has been shown to play an important role in virus-host interactions, especially in the Arctic
(Maat et al., 2017).

To look for specific viral adaptations in each ecological zone, we identified genes under
positive selection by evaluating the ratio of non-synonymous to synonymous mutations observed
in gene sequences using the pN/pS equation (Schloissnig ef al., 2013). Of 1,139,501 genes tested
from populations with enough coverage (>10x mean read depth; mean number of populations
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assessed per sample: 14,852 viral populations), 124,882 genes were identified as being under
positive selection in at least one sample. Most (82%) of the positively selected genes were
functionally unannotatable, with the remaining 18% annotatable as predominantly genes related
to structure or DNA metabolism (Tables S6-S10). In model systems, such genes are often under
strong selective pressures during adaptations to new hosts (Marston et al., 2012; Jian et al., 2012;
Enav et al., 2018). Thus, we hypothesize that host availability in each ecological zone is a strong
selective pressure on our marine viral populations. Given the lack of functional annotations for
most of the genes, we clustered all translated GOV 2.0 viral genes into protein clusters (PCs)
based on sequence homology (sensu Holm & Sander, 1998) to identify positively selected zone-
specific PCs. This resulted in 823,193 PCs, of which ~10% (79,588 PCs) appeared under
positive selection, with a subset of these specific to a single zone (ARC = 80%; ANT = 33%;
BATHY = 37%; TT-EPI = 75%; TT-MES = 69% of positively selected PCs per zone; see
Tables S6-10). These findings of many zone-specific positively-selected PCs is indicative of
niche-differentiation. However, functional stories from these data are challenging as 85% of
these zone-specific PCs were of unknown function, with the remaining mostly being the
structural and DNA metabolism genes described above. This suggests that we have a lot to learn
about the function of genes that most likely drive niche-differentiation across the ecological
zones.

Viral macro- and micro- diversity, and potential drivers, within and between
ecological zones. To explore diversity patterns across ecological zones, we calculated per sample
diversity using Shannon’s A’ for macrodiversity and a newly established method for community-
wide microdiversity. This new method for community-wide microdiversity is limited in that it
can only assess well-sampled, abundant populations because it estimates the average nucleotide
diversity (or m) from the mean of © from 100 randomly subsampled well-sequenced populations
sampled 1,000 times (see Methods). These zone-normalized (see Methods) comparisons
revealed that macrodiversity was highest in TT-EPI (p < 0.05), closely followed by the ARC,
and lowest in TT-MES and ANT (Fig 4B —bottom), whereas microdiversity was highest in TT-
MES (p < 0.05) and lowest in ARC (Fig. 4B —left). At the zonal level, a negative trend between
macro- and micro- diversity emerges (Fig. 4B-right), although we note that the small number of
zonal points limits our statistical inferences, even in this global dataset.

Recent work suggests that higher micro-diversity can impede the maintenance of macro-
diversity by promoting competitive exclusion (Hart et al., 2016). Thus we posit that, if the zonal
level negative macro/micro diversity trends are real, this may result from increased
intrapopulation niche variation that reduces interpopulation niche variation resulting in
competitive exclusion by the superior competitors, which may occur slowly and may be why it
only appears at this regional scale (Fig. S5). Because estimates of microdiversity in our dataset
and even currently available single virus genomics approaches (Martinez-Hernandez et al., 2017)
remain limited to only the most abundant populations, testing such a hypothesis awaits critically-
needed advances and scalability in single-virus genomics technologies.

At the per-sample level, however, macro- and micro- diversity were not correlated, even
within each zone (Fig. 4B — right). Although these are the first data available for viruses, for
larger organisms, macro- and micro-diversity are often correlated across habitats sharing similar
species pools, presumably due to habitat characteristics altering immigration, drift, and selection
(Vellend & Gerber, 2005). These ecological correlations are generally positive and significantly
stronger in discrete habitats (e.g. islands) in contrast to more connected communities like the
ocean [reviewed in (Vellend ef al., 2014)]. Thus we posit that the lack of correlation between
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marine viral macro- and micro- diversity at this per-sample level is driven by differences in local
drivers (Fig. 4C). Consistent with this, local potential drivers differed as nutrients strongly (and
negatively) correlated with viral macrodiversity, whereas photosynthetically active radiation
(PAR; an indicator of productivity) best (and positively) correlated with viral microdiversity in
the epipelagic waters (Fig. 4C).

Mechanistically, these results suggest several possible hypotheses. We interpret that, at
the viral macrodiversity level, decreased host diversity in algal blooms, which themselves rely
on nutrient pulses (Farooq & Malfatti, 2007), could skew viral rank abundance curves towards
dominance by increasing abundance of bloom-associated viral populations. Even though algal
blooms were not targeted in the 7ara Oceans expedition, we did find that viral macrodiversity
negatively correlated with chlorophyll a (Fig. SC), and particulate inorganic carbon
concentration (PIC; Fig. 4C), which is commonly used as a proxy for coccolithophore
abundance (Groom & Holligan, 1987). Additionally, viral macrodiversity negatively correlated
with the relative abundance of coccolithophores based on the V9 region of the 18S rRNA genes
in the sequencing reads (Fig. 4C). For viral microdiversity in epipelagic waters, we interpret that
PAR is potentially the main driver (Fig. 4C). PAR is known to impact host diversity, particularly
in nutrient-poor surface waters, by inhibiting photoautotrophs through overwhelming their
photosystems with too many electrons that can back up and even damage the photosystems
(Feng et al., 2015). Further PAR can inhibit the growth of the dominant heterotroph, SAR11
(Ruiz-Gonzalez et al., 2013), and can stimulate other key microbes such as Roseobacter,
Gammaproteobacteria and NORS (Ruiz-Gonzalez ef al., 2013). We hypothesize that the shorter-
term impacts of high PAR in the surface waters on host communities may create new niches for
viruses, whereby microdiversity increases to enable differentiation of existing viral populations.
As above, advances in single-virus genomics would be invaluable for testing this hypothesis.

Viral macro- and micro- diversity, and potential drivers, against classical ecological
gradients. Ecologists have long explored the relationship between diversity and geographic
range, which in eukaryotes and bacteria are highly (and positively) correlated and thought to be
due to the accumulation of niche-specific selective mutations across populations with large
heterogeneous geographic ranges (i.e. the niche variation hypothesis; Van Valen, 1965, Hedrick,
2006, Rosen et al., 2015). No parallel studies have looked at viruses. To explore this for viruses,
we determined the geographic range of viral populations based on their distribution within and
between ecological zones (Fig. 6A) and then calculated their average m (see Methods) to assess
patterns in macro- and micro- diversity, respectively. Viral populations were designated as
‘multi-zonal’ if they were observed in >1 ecological zone, ‘zone-specific regional’ if they were
observed in only one zone, but >2 viral communities, or ‘zone-specific local’ if they were
observed in only 1 viral community within a single zone.

These analyses first revealed differences in the dominant viral geographic ranges across
the different ecological zones. For example, multi-zonal viral populations dominated ANT and
BATHY (>60% of viral populations found within zone), both across the zone (Fig. 6B) and
within each station (Fig. S6), whereas zone-specific regional viral populations dominated TT-
EPI and ARC and the multi-zonal and zone specific viral populations were approximately
equally represented in TT-MES (Fig. 6B). The high levels of zone-specific viral populations in
TT-EPI and ARC, as well as the high levels of viral macrodiversity (Fig. 4B-bottom), are
indicative of high endemism and suggest these regions may be biodiversity hotspots for marine
viruses. In contrast, the ANT and BATHY are composed mostly of multi-zonal viral populations
suggesting that they may be sink habitats that are more dependent on migration (sensu
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Watkinson & Sutherland, 1995). However, across all ecological zones, viral population
microdiversity decreased with virus geographic range (Fig. 6C; p < 0.05), presumably from
varied ecologies providing differing selective niches for the single, widely-distributed population
that then drive differentiation through isolation-by-environment processes (sensu Shapiro et al.,
2012). Such findings are new for viruses, but parallel the results for eukaryotes (Hedrick, 2006)
and bacteria (Rosen ef al., 2015) and suggest a universality to isolation-by-environment
processes across organismal kingdoms and viruses.

Ecologists have also long observed, across most flora and fauna, that there are latitudinal
patterns in diversity across both terrestrial and marine environments. Briefly, the latitude
diversity gradient suggests that both macro- and micro-diversity are highest at mid-latitudes and
decrease poleward (Pianka 1966, Hillebrand 2004, Mannion et al., 2013, Miraldo et al., 2016).
We found that both viral macro- and micro-diversity followed the latitude diversity gradient
except in ARC, where both increased (Fig. 7A). This high equatorial macro- and micro-diversity
was consistent across the Indian, Atlantic, and Pacific Oceans as expected (Fig. 7B & C). The
Arctic Ocean, however, was not only unexpectedly elevated in diversity, but it also displayed a
unique pattern. Specifically, two distinct zones — definable by climatology-derived water mass
nutrient stoichiometry (N*; Fig. 7D; see Comparing ARC-H and ARC-L in Methods) — emerged
as high (ARC-H) and low (ARC-L) diversity regions that were significantly differentiable at
both macro- and micro-diversity levels (Fig. 7E). Further, ARC-H was characterized by low
nutrient ratios (N*; >9X lower in ARC-H than ARC-L on average; p < 5E-04) and drove the
divergence from the latitude diversity gradient (Fig. S7).

Mechanistically, we interpret these observations as follows. Prior work in this region has
shown (i) strong denitrification in the Bering Strait (Devol et al., 1997), which explains the low
N* in the west, and (ii) increasing oligotrophy in the Beaufort Gyre due to increasing vertical
stratification, which selects against larger algae and for smaller algae and bacteria in the ARC-H
(Li et al., 2009). As above, we hypothesize that shorter-term increased host diversity results in
increased viral macro- and micro-diversity in ARC-H. Though our GOV 2.0 dataset is
confounded by seasonality of sampling, we posit that this elevated summer-time macro- and
micro-diversity in ARC may fuel viral ecological differentiation and represent an unrecognized
‘cradle’ of viral biodiversity beyond the tropics. Though this elevated diversity in the Arctic was
surprising, together with a similar deviation seen in mollusks (Valdovinos et al., 2003) and
recently reported in ray-finned fish (Rabosky ef al., 2018), these results call into question
whether this decades-old paradigm needs revisiting and suggests that polar regions may be
important biodiversity hotspots for viruses, as well as larger organisms.

Finally, as ocean exploration accelerates, patterns in diversity through the vertical layers
of the ocean have become a focus. An emergent depth diversity gradient hypothesis suggests that
macrodiversity decreases with depth (Costello & Chaudhary, 2017), which has been explored
across the World Register of Marine Species that includes some microbes and viruses
(http://www.marinespecies.org/), but microdiversity has not yet been explored for any organism.
Overall, our virome-inferred diversity patterns were less obviously consistent with the depth
diversity gradient, although deep water ocean data were limited (Fig. 7F). Briefly, viral
macrodiversity largely followed the depth diversity gradient with high diversity in the surface
waters and decreased diversity with depth, whereas viral microdiversity did not as it decreased
until 200 m depth, but then sharply increased (Fig. 7F). This deep water increase coincided with
an increase in bacterial macrodiversity in the mesopelagic region (Fig. S8A & B), and in TT-
MES, this bacterial macrodiversity correlated with viral microdiversity (Fig. S8C).
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If more extensive deep water sampling confirms these patterns, we see several scenarios
that could explain these data. First, we hypothesize that viral microdiversity may, in part, be
driven by an increase in macrodiversity of zone-specific bacterial populations in TT-MES, which
we interpret as an expansion of host ‘niches’ available for infection that could drive
diversification in viruses (Elena et al., 2009). Second, we hypothesize that the decrease in viral
macrodiversity may be driven by increased viral microdiversity of some viral populations in the
mesopelagic region that can promote competitive exclusion (sensu Hart et al., 2016) as discussed
above. Alternatively, lower cell density in the mesopelagic layer (Sunagawa ef al. 2015) may
result in less encounters between “predator” and “prey”, reducing viral speciation (as a function
of reduced number of viral generations), but selecting for viruses with broader host range. Again,
testing these hypotheses will require technological advances to measure in situ host ranges and
sensitivities of viruses and cells, respectively, at scales relevant to the diversity in nature.

Conclusions:

This study provides a systematic and global-scale view of patterns and drivers of marine
viral macro- and micro- diversity that reveals three overarching advances. First, five ecological
zones emerge for the global ocean, which contrasts known Longhurst biogeographic patterning
in other organisms, but is consistent with observations from the largely co-sampled ocean
microbiome (Sunagawa et al. 2015). Second, patterns and drivers of viral macro- and micro-
diversity differ per-sample and positively correlate to geographic range. These findings offer
hints at underlying mechanisms that impact these two levels of diversity that will guide
researchers from discovery to hypothesis-testing as technologies, such as scalable single virus
genomics and in situ host range assays, advance towards sampling scales relevant to those in
nature. Third, epipelagic waters and the Arctic Ocean emerge from our work as biodiversity
hotspots for viruses. While this is surprising given the latitude diversity gradient paradigm that
the tropics rather than the poles are the cradles of diversity, it is in line with other observations in
larger organisms (Valdovinos ef al., 2003, Rabosky et al., 2018) and emphasizes the importance
of these drastically climate-impacted Arctic regions for global biodiversity. Together, these
advances, along with the parallel global-scale ecosystem-wide measurements of 7ara Oceans
(e.g. de Vargas et al., 2015; Sunagawa et al., 2015; Brum et al., 2015; Lima-Mendez et al., 2015;
Roux et al., 2016) provide the foundation for incorporating viruses into emerging genes-to-
ecosystems models (e.g. Guidi et al. 2016, Garza et al., 2018) that guide ocean ecosystem
management decisions that are likely needed if humans and the Earth System are to survive the
current epoch of the planet-altering Anthropocene.
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Main Text Figure Legends:

Fig. 1. The Global Ocean Viromes 2.0. (A) Arctic projection of the global ocean highlighting
the new sampling stations of viromes in the GOV 2.0 dataset. Datasets from non-arctic samples
were previously published in (Brum et al., 2015; Roux et al., 2016). (B) Histograms of the
average assembled contig lengths for viral populations >10 kb shared between GOV and GOV
2.0. B-inset. More than 92% of the unbinned GOV viral populations were reassembled and
identified in GOV 2.0 >10 kb populations. (C) Pie charts showing how many of the 488,130 total
viral populations comprising GOV 2.0 can be annotated and, of those, their viral family level
taxonomy. (D) Barplot showing the host affiliations for each viral population at the domain level.

Fig. 2. GOV 2.0 viral population have discrete population boundaries. (A) Barplots showing
the read mapping results for the most abundant viral population >10kb in length for each of the
top four viral families. Despite differences in read boundaries across the representative viral
populations, there is no difference in the average read boundaries across the different viral
families. (B) Histogram showing the read distribution frequency break (i.e. read boundary)
between spuriously mapped reads and legitimate reads mapping to the genome. (C) Histograms
showing the average percent identity of reads mapped to each genome after removing spuriously
mapped reads.

Fig. 3. Ecological levels of organization. Schematic showing the different ecological levels of
organization studied in this paper.

Fig. 4. Viral communities partition into five ecological zones with different macro- and
micro- diversity levels. (A) Principal coordinate analysis (PCoA) of a Bray-Curtis dissimilarity
matrix calculated from GOV 2.0. Analyses show that viromes significantly (Permanova p =
0.001) structure into five distinct global ecological zones: ARC, ANT, BATHY, TT-EPI, and
TT-MES zones. Ellipses in the PCoA plot are drawn around the centroids of each group at 95%
(inner) and 97.5% (outer) confidence intervals. Four outlier viromes that did not cluster with
their ecological zones were removed (Fig. S3A) and all the sequencing reads were used (see Fig.
S3B and Methods). (B — right) Scatterplots showing correlations between macro- (Shannon’s
H’) and micro- (average = for viral populations with > 10x median read depth coverage; see
Methods) diversity values for each sample across GOV 2.0. The larger circles represent the
average per zone. (B — left) Boxplots showing median and quartiles of average microdiversity
per ecological zone. (B — bottom) Boxplots showing median and quartiles of macrodiversity for
each ecological zone. Zonal samples were randomly downsampled to n =5 to account for zone
sampling difference. All pairwise comparisons shown were statistically significant (p<0.01)
using two-tailed Mann-Whitney U-tests. (C) Positive (blue) and negative (red) Pearson’s
correlation results comparing macro- (upper) and micro- (lower) diversity with different
biogeographical and biogeochemical parameters at the global scale (see Fig. S4, Table S3 for all
abbreviations, and Methods). The significance of the correlations is indicated by the size of the
black circles on top of the bars, and the variables on the x-axis are ordered from the strongest to
the weakest correlation with macrodiversity (except for the top four variables correlating with
microdiversity for readability).

Fig. 5. Ecological drivers of global viral macrodiversity. (A) Regression analysis between the
first coordinate of a PCoA (Fig. 4A) and temperature showed that samples were separated by
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their local temperatures with an 7> of 0.82. (B) Potential ecological drivers & predictors of beta-
diversity across GOV 2.0 for the first two dimensions (Goodness of fit 72 using a generalized
additive model) and across all dimensions (Mantel test based on Spearman’s correlation).
Temperature was uniformly reported as the best predictor of viral beta-diversity globally. (C)
Regression analysis between viral macrodiversity at the deep chlorophyll maximum (DCM)
layer and areal chlorophyll a concentration (after cube transformation) showed that the negative
correlation between viral macrodiversity and nutrients (Fig. 4C) is mediated (at least partially)
by primary productivity. The untransformed values are provided on the lower axis for reference.
The Shannon’s A outlier 32 DCM (Fig. S3) and a chlorophyll a concentration outlier
(173_DCM; Fig. SD) have been excluded from the regression analysis. (D) Boxplot analysis of
areal chlorophyll a concentrations showing a single outlier concentration that fell above the
fourth quantile of the data points (function geom_boxplot of ggplot).

Fig. 6. Size of geographic range positively correlates with microdiversity. (A) Venn diagram
showing the number of viral populations found only in one zone (zone-specific) and those that
are shared between and among the five ecological zones (multi-zonal). (B) Stacked barplots
showing the number of multi-zonal, regional, and local viral populations found within the
species pool of each ecological zone. (C) Boxplots showing median and quartiles of
microdiversity (average m for viral populations with > 10x median read depth coverage) per
populations found within each zone defined as multi-zonal, regional, or local. Statistics were the
same as in Fig. 2.

Fig. 7. Viral macro- and micro- diversity global biodiversity trends. (A) Loess smooth plots
showing the latitudinal distributions of macro- and micro-diversity. (B & C) Equirectangular
projections of the globe showing macro- and micro-diversity levels within each sample,
respectively, across the global ocean. Samples collected at different depths from the same
latitude and longitude are overlaid and the colors representing their macro- and micro- diversity
values are merged. (D) Arctic projection of the global ocean showing the geographical division
between ARC-H and ARC-L stations. The patterns are largely concordant with the Arctic
division by climatology-derived N*. While we did sample across different seasons, the
calculated N* values are not dependent on the season (see impact of the coast, depth, and
seasons in Methods). (E) Boxplots showing median and quartiles of macro- (left) and micro-
(right) diversity of the ARC-H and ARC-L regions. Statistics were the same as in Fig. 2. (F)
Loess smooth plots showing the depth distributions of macro- and micro- population diversity.
On all the smooth plots, the line represents the Loess best fit, while the lighter band corresponds
to the 95% confidence window of the fit. Abbreviations: N*, the departure from dissolved N:P
stoichiometry in the Redfield ratio and a geochemical tracer of Pacific and Atlantic water mass
(see Methods).
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STAR Methods Text

Key Resources Table

Reagent or Resource | Source Identifier(s)
Sequencing Reagents and Kits

NEBNext DNA New England Biolabs, Ipswich, MA Cat n° E6040S
Sample Prep Master

Mix

NEXTflex PCR free Bioo Scientific, Austin, TX Catn®° NOVA-514110
barcodes

Kapa Hifi Hot Start KAPA Biosystems, Wilmington, MA | Cat n® KK2611
Library Amplification

kit

DNA SMART Takara Bio USA, Mountain View, CA | Cat N° 634865
ChIPSeq Kit

Deposited Data

Tara Oceans Viromes
Raw Reads

Brum et al., 2015; Roux et al.,
2016

European Nucleotide
Archive (ENA) - see Table
S3 for details

Tara Oceans Polar
Circle Raw Reads

This paper

European Nucleotide
Archive (ENA) - see Table
S3 for details

Malaspania Viromes
Raw Reads

Roux et al., 2016

Integrated Microbial
Genomes (IMG) with Joint
Genome Institute - see Table
S3 for details

16S rRNA gene Tara
Oceans data

Logares et al., 2014

Supplementary materials in
Logares et al., 2014

Biogeographical and
Physicochemical data

Pesant et al., 2015

PANGAEA (Data Publisher
for Earth & Environmental
Science) - see Table S3 for
details

N* Arctic Data

This paper

Table S3
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Software and Algorithms

nucmer
(MUMmer3.23)

Kurtz et al., 2004

https://sourceforge.net/projec
ts/mummer/

bbmap 37.57

https://jgi.doe.gov/data-and-
tools/bbtools/

https://jgi.doe.gov/data-and-
tools/bbtools/

metaSPAdes 3.11

Nurk et al., 2017

https://github.com/ablab/spa
des/releases

prodigal 2.6.1

Hyatt et al., 2010

https://github.com/hyattpd/Pr
odigal

diamond Buchfink et al., 2014 https://github.com/bbuchfink
/diamond

VirSorter v2 Roux et al., 2015 https://github.com/simroux/
VirSorter

VirFinder Ren et al., 2017 https://github.com/jessieren/
VirFinder

CAT Cambuy et al., 2016 https://github.com/dutilh/CA
T

blast 2.4.0+ ftp://ftp.ncbi.nlm.nih.gov/blast/execut | ftp://ftp.ncbi.nlm.nih.gov/bla

ables/blast+/ st/executables/blast+/

vConTACT?2 Jang et al., in press 2018 https://bitbucket.org/MAVE
RICLab/vcontact2

bowtie2 Langmead & Salzberg, 2012 https://github.com/BenLang
mead/bowtie2

BamM https://github.com/Ecogenomics/Bam | https://github.com/Ecogeno

M mics/BamM

Bedtools Quinlan & Hall, 2010 https://github.com/arq5x/bed
tools2/blob/master/docs/cont
ent/overview.rst

Vegan (R package) Dixon, 2003 https://cran.r-
project.org/web/packages/ve
gan/index.html

BiodiversityR (R https://cran.r- https://cran.r-

package) project.org/web/packages/Biodiversity | project.org/web/packages/Bi
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R/index.html odiversityR/index.html

heatmap3 (R package) | https://cran.r- https://cran.r-
project.org/web/packages/heatmap3/in | project.org/web/packages/he
dex.html atmap3/index.html

ggplot2 (R package) https://cran.r- https://cran.r-
project.org/web/packages/ggplot2/ind | project.org/web/packages/gg
ex.html plot2/index.html

ggpubr (R package) https://cran.r- https://cran.r-
project.org/web/packages/ggpubr/inde | project.org/web/packages/gg
x.html pubr/index.html

Analyses scripts (per This paper https://bitbucket.org/MAVE

Figure) RICLab/GOV2

Contact for Reagent and Resource Sharing
Further information and requests for resources and reagents should be directed to and will be
fulfilled by the corresponding contact, Matthew Sullivan (mbsulli@gmail.com).

Experimental Model and Subject Details
Not applicable.

Methods Details
Tara Oceans Polar Circle (TOPC) expedition sample collection, processing, and sequencing

Between June 2013 and December 2013, 41 samples were collected at different depths
from 20 different sites near or within the Arctic Ocean (see full list of samples in Table S3).
Physicochemical measurements, sample collection, and DNA extractions were performed using
the methods described in (Roux et al., 2016). Extracted DNA was prepared for sequencing using
library preparation method described in (Alberti et al., 2017) for viral samples collected during
the TOPC campaign (section 4.2) and sequenced using the HiSeq 2000 system (101 bp, paired
end reads). Importantly, our sample collection and library preparation methods have known bias
towards <0.2um dsDNA viruses (Roux et al., 2017). The TOPC samples were combined with the
previously published viromes in (Brum et al., 2015; Roux et al., 2016). Of the previously
published dataset, the mesopelagic samples at (7ara stations 37, 39, 56, 68, 70, 76, 78, 111, 122,
137, 138) and the Southern Ocean samples (7ara stations 82 DCM, 84, 85) were sequenced
deeper. These combined samples comprise the GOV 2.0 dataset. The number of reads found in
each sample can be found in Table S3.

Due to different library preparation for the TOPC samples than the original 7ara Oceans
samples, the previously sequenced mesopelagic samples (7ara stations 68, 78, 111, 137) were
prepped using the TOPC library preparation to determine if it impacted our ability to assemble
viral populations. We found no significant difference between library preparations in terms of the
number of viral genomes assembled and the average genome length (Fig. S9A & B).
Additionally, to directly assess the impact of experimental variation between 7ara Oceans and
TOPC on our ecological interpretations, we applied hierarchical clustering on a Bray-Curtis
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dissimilarity matrix of our viromes and we found that all of the mesopelagic samples prepared
using the TOPC protocols clustered with their respective samples prepared using the original
Tara Ocean protocols, and the variation between them was far less than the ecological variation
across our viromes (see distances in hierarchical clustering in Fig. S9D). For two surface
samples (7ara Stations 100 and 102), we also re-prepped the DNA using the DNA SMART
ChIP-Seq kit which allows us to catch ssDNA in the library preparation (Takara) and further
sequenced these two samples using the HiSeq 2000 system.

While the Tara Oceans and Malaspina expeditions used the same sampling and storage
approaches (described in Roux ef al., 2016), the sequencing reads were longer for the latter (101
bp for Tara and 151 bp for Malaspina). Given this, we have performed further analyses to
evaluate whether the contribution of this experimental method variation surpasses the ecological
variation presented in this study or not. These analyses, which are further described below,
showed that ecological variation much better explained the data than experimental methods. To
evaluate this, we compared the deep ocean samples collected from the Tara Oceans and
Malaspina expeditions to assess their power to predict the correct ecological zone (mesopelagic
or bathypelagic) based on the depth of collection (ecological variation) and the sequencing read
length (experimental variation). Using three different metrics, namely the 72 value in a univariate
regression analysis, the bayesian information criterion (BIC) of such constructed univariate
model, and the p-value associated with different components in a multivariate regression
analysis, we found that the depth of collection, rather than the experimental variation, best
predicts the ecological zone (higher ), with a better model fit (lower BIC), and lower p-value
(Fig. S9C). Additionally, we have one Malaspina sample from the mesopelagic ecological zone
(the rest are Tara samples), and there is no significant difference between the Malaspina sample
and Tara samples in the mesopelagic (Fig. S3C and D). Together these findings demonstrate that
the differences between the samples collected during the different expeditions are predominantly
the result of ecology and community structure rather than experimental artifact.

All the remaining STAR Methods we used are quantifications and statistical analyses. All the
details related to these STAR Methods are therefore provided in the following section,
Quantification and Statistical Analyses

Quantification and Statistical Analyses
Viral contig assembly, identification, and dereplication

All samples in the GOV 2.0 dataset (Roux et al., 2016) as well as the previously
sequenced TOPC library-prepped mesopelagic samples and the DNA SMART ChIP-Seq kit
surface samples were individually assembled using metaSPAdes 3.11.1 (Nurk et al., 2017). Prior
to assembly, Malaspina samples from GOV 2.0 were further quality controlled. Briefly, adaptors
and Phix174 reads were removed and reads were trimmed using bbduk.sh
(https://jgi.doe.gov/data-and-tools/bbtools/; minlength=30 qtrim=rl maq=20 maxns=0 trimq=14
qtrim=rl). Following assembly, contigs >1.5kb were piped through VirSorter (Roux et al., 2015)
and VirFinder (Ren ef al., 2017) and those that mapped to the human, cat or dog genomes were
removed. Contigs >5kb or >1.5kb and circular that were sorted as VirSorter categories 1-6 and/or
VirFinder score >0.7 and p <0.05 were pulled for further investigation. Of these contigs, those
sorted as VirSorter categories 1 and 2, VirFinder score >0.9 and p <0.05 or were identified as
viral by both VirSorter (categories 1-6) and VirFinder (score >0.7 and p <0.05) were classified as
viral. The remaining contigs were run through CAT (Cambuy et al., 2016) and those with <40%
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(based on an average gene size of 1000) of the genome classified as bacterial, archaeal, or
eukaryotic were considered viral. In total, 848,507 viral contigs were identified. Viral contigs
were grouped into populations if they shared >95% nucleotide identity across >80% of the
genome (sensu Brum et al., 2015) using nucmer (Kurtz et al., 2004). This resulted in 488,130
total viral populations found in GOV 2.0 (see Table S5 for VirSorter, VirFinder, and CAT
results), of which 195,728 were >10kb.

Viral taxonomy

For each viral population, ORFs were called using Prodigal (Hyatt ef al., 2010) and the
resulting protein sequences were used as input for vConTACT2 (Jang et al., in press 2018) and
for blastp. Viral populations represented by contigs >10kb were clustered with Viral RefSeq
release 85 viral genomes using vConTACT?2. Those that clustered with a virus from RefSeq
based on amino acid homology based on diamond (Buchfink ez al., 2015) alignments were able
to be assigned to a known viral taxonomic genus and family. For GOV 2.0 viral populations that
could not be assigned taxonomy or were <10kb, family level taxonomy was assigned using a
majority-rules approach, where if >50% of a genome’s proteins were assigned to the same viral
family using a blastp bitscore >50 with a Viral RefSeq virus, it was considered part of that viral
family.

Viral population boundaries

To determine if our viral populations had discrete sequence boundaries, all reads across
the GOV 2.0 dataset (excluding the Tara stations 68, 78, 111, 137 prepped using the TOPC
library preparation methods and the DNA SMART ChIP-Seq kit prepped libraries) were pooled
and mapped non-deterministically to our viral populations using the ‘very-sensitive-local’ setting
in bowtie2 (Langmead & Salzberg, 2012). The percent nucleotide identity (% ID) of each
mapped read and the positions in the genome where the read mapped were determined. The
frequency of reads mapping at a specific % IDs were weighted based on the length of each read
mapped across the genomes. Frequencies of reads mapping at specific % IDs were smoothed
using Loess smooth functions (span = 1 to be more permissive of lower % ID reads) to create
read frequency histograms (% ID vs. frequency). To determine break in the distribution of read
frequencies between the different % IDs, Euclidean distances calculated were calculated between
% ID frequencies and then hierarchically clustered in R.

Calculating viral population relative abundances, average read depths, and population ranks
To calculate the relative abundances of the different viral populations in each sample,
reads from each GOV 2.0 virome were first non-deterministically mapped to the GOV 2.0 viral
population genomes using bowtie2. BamM (https://github.com/ecogenomics/BamM) was used to
remove reads that mapped at <95% nucleotide identity to the contigs, bedtools genomecov
(Quinlan & Hall, 2010) was used to determine how many positions across each genome were
covered by reads, and custom Perl scripts were used to further filter out contigs without enough
coverage across the length of the contig. For downstream macrodiversity calculations, contigs
>5kb in length that had <5kb coverage or less than the total length of the contig covered for
contigs <5kb were removed. For downstream microdiversity calculations, all contigs with <70%
of the contig covered were removed. BamM was used to calculate the average read depth
(‘tpmean’ -minus the top and bottom 10% depths) across each contig. For the macrodiversity
calculations, the average read depth was used as a proxy for abundance and normalized by total
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read number per metagenome to allow for sample-to-sample comparison. The rank abundance of
all the viral populations was calculated using the normalized abundances and the
‘rankabundance’ in the BiodiversityR R package.

Subsampling reads

Unequal sequencing depth can have large impacts on diversity measurements,
specifically a-diversity measurements (Lemos ef al., 2011). Due to 5x more sequencing depth in
TOPC samples and the deeply sequenced mesopelagic and Southern Ocean samples (Table S3),
all viromes in the GOV 2.0 dataset were randomly subsampled without replacement to 20M
reads for Tara or 10M reads for Malaspina (as many Malaspina samples were <20M reads and
there was no significant difference between the 10M and 20M reads assemblies; p = 1) using
reformat.sh from bbtools suite (https://sourceforge.net/projects/bbmap/). The subsampled read
libraries were assembled using metaSPAdes 3.11.1. Contigs >1.5kb that shared >95% nucleotide
identity across >80% of the genome with the 488,130 viral populations in GOV 2.0 were pulled
out and grouped into populations to be used as the subsampled GOV 2.0 viral populations. In
total, there were 46,699 viral populations. Relative abundances were calculated per sample as
aforementioned for macrodiversity calculations, but using the subsampled GOV 2.0 viral
populations and the subsampled reads.

Macrodiversity calculations

The macrodiversity a- (Shannon’s H) and - (Bray-Curtis dissimilarity) diversity statistics were
performed using vegan in R (Dixon, 2003). The a-diversity calculations were based on the
relative abundances produced from the subsampled reads. Loess smooth plots with 95%
confidence windows in ggplot2 in R were used to look at changes in Shannon’s H across latitude
(Fig. 7A) and depth (Fig. 7F). For the B-diversity, both the subsampled and the total reads
abundances were used to look at community structure (Fig. S3). Principal Coordinate analysis
(function capscale of vegan package with no constraints applied) and NMDS analysis (function
metaMDS; K=2 and trymax=100) were used as the ordination methods on the Bray-Curtis
dissimilarity matrices from both the subsampled and total reads calculated from GOV 2.0
(function vegdist; method “bray”) after a cube root transformation (function nthroot; n=3). The
ecological zones that emerged were verified using a permanova test (function “adonis”) and the
confidence intervals were plotted using function “ordiellipse” at the specified confidence limits
(95% and 97.5%) using the standard deviation method. There were no significant differences in
clustering between the subsampled and all reads Bray-Curtis dissimilarity PCoA plots (Fig. S3).
Hierarchical clustering (function pvclust; method.dist="cor" and method.hclust="average") was
conducted on the same Bray-Curtis dissimilarity matrices using 1000 bootstrap iterations and
only the approximately unbiased (AU) bootstrap values were reported. The heatmaps were
generated using the heatmap3 package with appropriate rotations of the branches in the
dendrograms. Samples that did not cluster with their ecological zone (7ara mesopelagic stations
72, 85, and 102 and Tara surface station 155) were considered outliers and removed from further
analyses (Fig. S3A & C).

Microdiversity calculations

Viral populations with an average read depth of >10x across 70% of their representative
contig in at least one sample in the GOV 2.0 dataset were flagged for microdiversity analyses.
We used 10x as the minimum coverage because population genetic statistics were found to be
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relatively consistent down to 10x based on previous downsampling coverage analyses
(Schloissnig et al., 2013). BAM files containing reads mapping at >95% nucleotide identity were
filtered for just the flagged viral populations. Samtools mpileup and beftools were used to call
single nucleotide variants (SN'Vs) across these populations. SNV calls with a quality call > 30
threshold were kept. Coverage for each allele for each SNV locus was summed across all the
metagenomes. For each SNV locus, the consensus allele was re-verified and those with
alternative alleles that had a frequency >1% (1000 Genomes Project Consortium, 2012), the
classical definition of a polymorphism, and supported by at least 4 reads were considered SNP
loci (Schloissnig et al., 2013). Nucleotide diversity (w) per genome were calculated using
equation from (Schloissnig et al., 2013). Due to the variable coverage across the genome,
coverage was randomly downsampled to 10x coverage per locus in the genome. For the
downsampling, if there was not the target 10x coverage for the locus, all of the alleles were
sampled. Nucleotide diversity (m) was calculated for each genome with an average read depth
>10x across 70% of their contig in each sample. For each sample, © values of 100 viral
populations were randomly selected and averaged. This was repeated 1000x and the average of
the all 1000 subsamplings was used as the final microdiversity value for each sample. Loess
smooth plots with 95% confidence windows in ggplot2 in R were used to look at changes in
average m across latitude (Fig. 7A) and depth (Fig. 7F).

Annotating Genes & Making Protein Clusters

Genes were annotated by translating the sequences into proteins and running a
combination of reciprocal best blast hit analyses against the KEGG database (Kanehisa et al.,
2002), and blast against the UniProt Reference Clusters database (Suzek et al., 2007), searching
for matches against the InterPro protein signature database using InterProScan (Zdobnov et al.,
2001), and running HMM searches against Pfams (Bateman et al., 2004). A diamond ‘blastall’
alignment search (Buchfink et al., 2015) of all the protein sequences was performed against all
the protein sequence was performed and the protocol “Clustering similarity graphs encoded in
BLAST results” with a granularity of I=2 from the MCL website (https://micans.org/mcl/;
Enright et al., 2002) was used to create protein clusters.

Selection Analyses

Natural selection (pN/pS) was calculated using the method from (Schloissnig et al.,
2013). The pN/pS method compares the expected ratio of non-synonymous and synonymous
substitutions based on a uniform model of occurrence of mutations across the genome with the
observed ratio of non-synonymous and synonymous substitutions. The original method treats
each SNP locus as independent from each other. Thus, if two SNPs occur in the same codon, the
alternate codon produced from each SNP would be considered in the pN/pS calculation. Thus, if
two SNPs occur in one codon, the effect of the SNPs could potentially cancel each other out or
amplify a non-synonymous signal leading to false positive selection calls. In order to minimize
this bias, SNPs found within the same codon in the same gene were tested for linkage in each
metagenome. If SNP alleles from loci within the same codon had depth coverage within 15% of
each other within each metagenome, they were considered linked in that sample.

For each codon with SNP loci in a gene, the minimum coverage was identified based on
the lowest read depth coverage among the three base pair position. The initial number of the
consensus codon was determined based on the lowest coverage of the consensus alleles at the
SNP locus or loci if linked. The initial numbers of potential alternate codons was based on the
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coverage of the alternate allele at that position or the lowest coverage between two linked SNPs.
The final coverage of the each codon per SNP locus was calculated by taking the rounded down
number of the product of the initial number x (initial number/ minimum coverage for the codon).
These codons then subsampled down to 10x. The number of observed non-synonymous and
synonymous substitutions were counted and pN/pS was calculated. Genes were considered under
positive selection if pN/pS was >1.

Drivers of Macro- and Micro-diversity

Regression analysis between the first coordinate of the PCoA (Fig. SA) and available
temperature measurements was conducted using the Im function in R. The environmental
variables were fitted to the first two dimensions of the PCoA using a generalized additive model
(function envfit; permutations=9999 and na.rm = TRUE). Then, they were correlated with all the
PCoA dimensions using a mantel test (function mantel; permutations=9999 and method="spear")
after scaling (function scale) and calculating their distance matrices (function vegdist; method
"euclid" and na.rm = TRUE). Finally, they were correlated with Shannon’s H and & using
Pearson’s correlation (function cor; use="pairwise.complete.obs") after removing Shannon’s H
outliers based on a boxplot analysis (Fig. S4).

Subsampling macro- and micro- diversity

Due to unequal sampling across each ecological zone, we chose to normalize the number
of samples between each ecological zone by subsampling the down to lowest zone sample size
(ANT; n=5). Shannon’s H outliers were not included in the subsampling. Five samples within
each zone were randomly subsampled without replacement and their macro- and micro- diversity
values averaged, respectively. We subsampled 1000x and plotted the averages and assessed for
significant differences using Mann-Whitney U-tests in ggboxplot from the R package ggpubr
(Fig. 4B).

Classifying multi-zonal, regional, and local viral populations

To determine geographic range, viral populations were evaluated for their distributions
across the five ecological zones and plotted using the VennDiagram package in R (Fig. 6A). If
present in >1 sample in more than one ecological zone, it was considered multi-zonal (58% GOV
2.0 viral populations). If present only in samples found within a single zone, it was considered
zone-specific (48% GOV 2.0 viral populations). Zone-specific viral populations were further
divided into regional (>2 samples within a zone) and local (only 1 sample within a zone). The
proportion of multi-zonal, regional, and local viral populations found across each zone (Fig. 6B)
and across each station (Fig. S6) were calculated by dividing the number of each type by the
total number of viral populations found across a zone or station, respectively. To assess the
impact of geographic range on microdiversity per zone, stations were randomly subsampled
without replacement as described above. Within each sample,  values of 50, 100, and 20 viral
populations of each geographic distribution (multi-zonal, regional, and local, respectively) were
randomly selected and averaged. All the viral populations with a geographic range were sampled
and averaged in samples that lacked enough deeply-sequenced viral populations with particular
geographic range. This was repeated 1000x and the averages plotted and assessed for significant
differences using Mann-Whitney U-tests in ggboxplot from the R package ggpubr (Fig. 6C).

Comparing ARC-H and ARC-L
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The ARC-H and ARC-L regions were defined based on their biogeography; the ARC-H
stations were located in the Pacific Arctic region, the Arctic Archipelago, and the Davis-Baffin
Bay, in addition to one station (Station 189) in the Kara-Laptev sea, which was separated by a
land mass from the rest of the stations in the same area (Fig. 7D). The ARC-L stations were
located in the Kara-Laptev Sea (except Station 189), the Barents Sea, and subpolar areas
(stations 155 and 210). The departure from the dissolved N:P stoichiometry in the Redfield ratio
(N*) was calculated as in (Tremblay et al., 2015) to represent the deficit in dissolved inorganic
nitrogen (DIN) in the ratio and as a geochemical tracer of pacific and atlantic water masses.
Macro- and micro- diversity values for each station in ARC-H and ARC-L were plotted and
assessed for significant differences using Mann-Whitney U-tests in ggboxplot from the R
package ggpubr (Fig. 7E).

Comparing GOV to GOV 2.0

Viral populations assembled in the GOV (Roux et al., 2016) were compared to the GOV
2.0 viral populations (Fig. 1B) using blastn. Unbinned GOV viral populations with a nucleotide
alignment to a GOV 2.0 viral populations with >95% nucleotide identity and an alignment length
>50% the length were considered present in the GOV 2.0. These results were plotted in a venn
diagram using the VennDiagram package in R. The frequency of contig lengths of viral
populations that were shared across both samples were plotted using ggplot2 (function
“geom_histogram”; binwidth =5000).

Calculating 16S OTU Macrodiversity

Previously published 16S OTU data were taken from (Logares et al., 2014). The macrodiversity
a- (Shannon’s H) statistics were performed using vegan in R (Dixon, 2003). Loess smooth plots
with 95% confidence windows in ggplot2 in R were used to look at changes in bacterial
Shannon’s H down the depth gradient. Differences between surface, deep chlorophyll maximum,
and mesopelagic bacterial samples were compared using Mann-Whitney U-tests and plotted in
ggboxplot from the R package ggpubr. Finally, viral microdiversity was correlated with bacterial
Shannon’s H using Pearson’s correlation (function cor; use="pairwise.complete.obs") and a
linear regression (Fig. S8C).

Impact of the coast, depth, and seasons

GOV 2.0 samples are largely open ocean samples. Even though the arctic samples were
more coastal, we didn’t observe any significant coastal impact on the global macrodiversity
(Pearson’s = -0.25; Bonferroni-corrected p-value = 0.18) and microdiversity (Pearson’s » = 0.1;
p-value = 0.16) levels (Fig. 4C). Although nitrate and phosphate levels generally increase with
depth, we observed higher negative correlations and significantly lower p-values for these
nutrients with macrodiversity levels than between depth and macrodiversity (Fig. 4C) which
suggests an impact of nutrients on viral diversity via primary production (Fig. 5C). Additionally,
since the sampling was largely at discrete depth layers with different densities in the TT region
(epipelagic, mesopelagic, and bathypelagic), rather than sampling gradients, we discerned a
clearer signal for the separation between these ecological zones (Fig. 4A). On the other hand, all
the arctic epipelagic and mesopelagic samples fell within the same ecological zone due to the
absence of a pycnocline in this area (Fig. 4A). Finally, the circumnavigation of the Arctic Ocean
spanned multiple seasons (spring, summer, and fall). Based on our previous observation from a
time-series data in a sub-arctic system (Hurwitz & Sullivan, 2013), our viral macrodiversity is
expected to be lowest during the spring and summer and increase towards the winter season.
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However, our calculated N* values are not dependant on the season and represent the largest
magnitude of change among all of the environmental variables that correlated with
macrodiversity between the ARC-H and ARC-L regions.

Assessment of microbial contamination

To quantifying microbial contamination across our samples, we screened our
metagenomic reads using singleM (github.com/wwood/singlem) for 16S sequences using the
dedicated 16S SingleM package. We found that our viromes are exceptionally clean.
Specifically, the number of 16S sequences in our samples ranged from 0-40 per million reads
(Table S3), and hence the samples are considered to have “likely negligible bacterial
contamination” according to the metric proposed by authors evaluating such signals in published
viromes (threshold was 200 16S sequences per million; Roux et al., 2013). In spite of our
viromes being exceptionally clean, we sought to evaluate the impact of any variation in 16S, and
hence bacterial contamination, however small, on our findings. We found that even though
microbial contamination increases with depth (most probably due to the decrease in cell size;
linear regression 72 = 0.89), this increase was driven mainly by the bathypelagic samples. Briefly,
the average contamination in BATHY was 28.7 per million reads (standard deviation = 6.8) as
compared to the rest of the samples (average contamination = 1.7 per million reads and standard
deviation = 2). These bathypelagic samples were not included in any of the ecological driver
analyses due to the unavailability of the environmental data to us. Further, it is clear that our
estimates of diversity were not influenced by the minor variations in the negligible
contamination in our viroomes as a linear regression between Shannon’s A and the number of
16S reads from deep ocean samples resulted in a negligible 7 value (0.06). These data (used for
conducting the regression analysis) represent a large range of diversity (3.3-7.8) and the full
range of contamination (0-40), but avoid the convolution from the ecological difference between
the surface and deep ocean layers. Thus, we conclude that the diversity observations we make in
this study are driven by ecological variation far greater than microbial contamination.

Data and Software Availability
Code availability
Scripts used in this manuscript are available on the Sullivan laboratory bitbucket under GOV 2.0.

Data availability

All raw reads are available through ENA (7ara Oceans and TOPC) or IMG (Malapsina) using
the identifiers listed in Table S3. Processed data are available through 1Virus, including all
assembled contigs, viral populations and genes.

Author contributions:

MC, CD, JF, SK-L, CM, SPe, MP, SPi, JP, and Tara Oceans coordinators conceptualized and
organized sampling efforts for the 7ara Oceans Polar Circle expedition. SPe annotated, curated,
and managed all biogeochemical data. AA, CC, and PW coordinated all sequencing efforts.
ACG, AAZ, NC-N, BT, BB, KA, GD-H,YL, DV, J-ET, MB, CB, CdV, AC, BED, DI, LK-B,
SR, SS, PW, and MBS created the study design, analyzed the data, and wrote the manuscript. All
authors approved the final manuscript. Competing interests: The authors declare no competing
interests.

35



1140

1145

1150

1155

1160

1165

1170

1175

1180

Acknowledgments:

This global sampling effort was enabled by countless scientists and crew who sampled aboard
the Tara, as well as the leadership of the Tara Expeditions Foundation. Computational support
was provided by an award from the Ohio Supercomputer Center (OSC) to MBS. Study design
and manuscript comments from Bonnie T. Poulos, Ho Bin Jang, M. Consuelo Gazitua, Olivier
Zablocki, Janaina Rigonato, Damien Eveillard, Frédéric Mah¢, Federico Ibarbalz, and Hisashi
Endo are gratefully acknowledged. Funding was provided by the Gordon and Betty Moore
Foundation (#3790) and NSF (OCE#1536989 and OCE#1829831) to MBS, Oceanomics (ANR-
11-BTBR-0008) and France Genomique (ANR-10-INBS-09) to Genoscope, ETH and Helmut
Horten Foundation to SS, a Netherlands Organization for Scientific Research (NOWO) Vidi
grant 864.14.004 to BED, and an NIH T32 training grant fellowship (AI112542) to ACG.

Materials & Methods References:

e 1000 Genomes Project Consortium (2012). An integrated map of genetic variation from
1,092 human genomes. Nature. 491, 56-65.

e Alberti, A., Poulain, J., Engelen, S., Labadie, K., Romac, S., Ferrera, 1., Albini, G., Aury,
J.M., Belser, C., Bertrand, A., et al. (2017). Viral to metazoan marine plankton nucleotide
sequences from the Tara Oceans expedition. Sci. Data. 4, 170093.

e Angly, F.E., Felts, B., Breitbart, M., Salamon, P., Edwards, R.A., Carlson, C., Chan,
A.M., Haynes, M., Kelley, S., Liu, H., et al. (2006). The marine viromes of four oceanic
regions. PLOS Biol. 4.11, e368.

e Bateman, A., Coin, L., Durbin, R., Finn, R.D., Hollich, V., Griffiths-Jones, S., Khanna,
A., Marshall, M., Moxon, S., Sonnhammer, E.L., et al. (2004). The Pfam protein families
database. Nucleic Acids Res. 32, D138-141.

e Buchfink, B., Chao, X., Huson, D.H. (2015) Fast and sensitive protein alignment using
DIAMOND. Nat. Methods 12.1, 59-60.

e Cambuy, D.D., Coutinho, F.H., and Dutilh, B.E. (2016). Contig annotation tool CAT
robustly classifies assembled metagenomic contigs and long sequences. BioRxiv, 072868.

e Dixon, P. (2003). VEGAN, a package of R functions for community ecology. J. Veg. Sci.
14.6, 927-930.

e Enright, A.J., Van Dongen S., and Ouzounis C.A. (2002). An efficient algorithm for
large-scale detection of protein families. Nucleic Acids Res. 30(7), 1575-1584.

e Hurwitz, B.L., and Sullivan, M.B. (2013). The Pacific Ocean virome (POV): a marine
viral metagenomic dataset and associated protein clusters for quantitative viral ecology.
PLOS One. 8.2, ¢57355.

e Hyatt, D., Chen, G.L., Locascio, P.F., Land, M.L., Larimer, F.W., and Hauser, L.J.
(2010). Prodigal: prokaryotic gene recognition and translation initiation site
identification. BMC Bioinform.11, 119.

e Jang, H-B., Bolduc, B., Zablocki, O., Kuhn, J.H., Adriaenssens, E.M., Krupovic, M.,
Brister, R., Kropinski, A.M., Koonin, E.V., Turner, D., ef al. (2018). Gene sharing
networks to automate genome-based prokaryotic viral taxonomy, Nature Biotechnol. (in
press).

e Kanehisa, M., Goto, S., Kiwashima, S., and Nakaya, A. (2002). The KEGG databases at
GenomeNet. Nucleic Acids Res. 30, 42-46.

36



1185

1190

1195

1200

1205

1210

1215

1220

1225

Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C., and
Salzberg, S.L. (2004). Versatile and open software for comparing large genomes.
Genome Biol. 5.2, R12.

Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2.
Nat. Methods. 9.4, 357-359.

Lemos, L.N., Fulthorpe, R.R., Triplett, E.-W., and Roesch, L.F. (2011). Rethinking
microbial diversity analysis in the high throughput sequencing era. J. Microbial.
Methods. 86.1, 42-51.

Logares, R., Sunagawa, S., Salazar, G., Cornejo-Castillo, F.M., Ferrera, 1., Sarmento, H.,
Hingamp, P., Ogata, H., de Vargas, C., Lima-Mendez, G., ef al. (2014). Metagenomic
16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore
diversity and structure of microbial communities. Environ. Microbiol. 16.9, 2659-2671.
Marston, M.F., and Amrich, C.G. (2009). Recombination and microdiversity in coastal
marine cyanophages. Environ. Microbiol. 11.11, 2893-2903 (2009).

Marston, M.F., and Martiny, J.B. (2016). Genomic diversification of marine cyanophages
in stable ecotypes. Environ. Microbiol. 18.11, 4240-4253.

Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P.A. (2017). metaSPAdes: a
new versatile metagenomic assembler. Genome Res., gr-213958.

Quinlan, A.R., and Hall, .M. (2010). BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics. 26.6, 841-842.

Ren, J., Ahlgren, N.A., Lu, Y.Y., Fuhrman, J.A., and Sun, F. (2017). VirFinder: a novel
k-mer based tool for identifying viral sequences from assembled metagenomic data.
Microbiome. 5, 69.

Roux, S., Emerson, J.B., Eloe-Fadrosh, E.A., and Sullivan, M.B. (2017). Benchmarking
viromics: an in silico evaluation of metagenome-enabled estimates of viral community
composition and diversity. PeerJ. 5, e3817.

Roux, S., Krupovic, M., Debroas, D., Forterre, P., and Enault, F. (2013). Assessment of
viral community functional potential from viral metagenomes may be hampered by
contamination with cellular sequences. Open Biol. 3:130160.

Sul, W.J., Oliver, T.A., Ducklow, H.W., Amaral-Zettler, L.A., and Sogin, M.L. (2013).
Marine bacteria exhibit a bipolar distribution. Proc. Natl. Acad. Sci. USA. 110, 2342-
2347.

Suzek, B.E., Wang, Y., Huang, H., McGarvey, P.B., Wu, C.H., and UniProt Consortium.
(2015). UniRef clusters: a comprehensive and scalable alternative for improving
sequence similarity searches. Bioinformatics. 31, 926-932.

Tremblay, J-E., Anderson, L.G., Matrai, P., Coupel, P., Bélanger, S., Michel, C., and
Reigstad, M. (2015). Global and regional drivers of nutrient supply, primary production
and CO; drawdown in the changing Arctic Ocean. Prog. Oceanogr. 193, 171-196.
Zdobnov, E.M., and Apweiler, R. (2001). InterProScan--an integration platform for the
signature-recognition methods in InterPro. Bioinformatics. 17, 847-849.

Zeigler-Allen, L., McCrow, J.P., Ininbergs, K., Dupont, C.L., Badger, J.H., Hoffman,
J.M., Ekman, M., Allen, A.E., Bergman, B., and Venter, J.C. (2017). The Baltic Sea
virome: diversity and transcriptional activity of DNA and RNA viruses. mSystems. 2.1,
e00125-16.

Zinger, L., Amaral-Zettler, L.A., Fuhrman, J.A., Horner-Devine, M.C., Huse, S.M.,
Welch, D.B., Martiny, J.B., Sogin, M., Boetius, A., and Ramette, A. (2011). Global

37



patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLOS One. 6.9,

€24570.
1230
List of Supplementary Materials:
Tara Oceans Coordinators and Affiliations
Figures S1-S9
Tables S1-S10
1235

38



1240

1245

1250

1255

1260

1265

1270

Supplementary Materials:

Tara Oceans Coordinators and Affiliations

Silvia G. Acinas!, Marcel Babin?, Peer Bork®*, Emmanuel Boss®, Chris Bowler®?°, Guy
Cochrane’, Colomban de Vargas®2°, Michael Follows’, Gabriel Gorsky!%?°, Nigel
Grimsley!'!'22° Lionel Guidi'*?°, Pascal Hingamp!'3-?°, Daniele Tudicone!4, Olivier Jaillon'>%°,
Stefanie Kandels-Lewis*!®, Lee Karp-Boss®, Eric Karsenti®!'®?°, Fabrice Not!'7-*°, Hiroyuki
Ogata'®, Stéphane Pesant!®2%, Nicole Poulton?!, Jeroen Raes?>?*->4, Christian Sardet!'*?°, Sabrina
Speich?>2¢2 | Lars Stemmann'%?°, Matthew B. Sullivan®’, Shinichi Sunagawa?®, Patrick
Wincker!3%°

"Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-CSIC,
Pg. Maritim de la Barceloneta 37-49, E08003 Barcelona, Spain.

2Département de biologie, Québec Océan and Takuvik Joint International Laboratory (UMI
3376), Université Laval (Canada) - CNRS (France), Université Laval, Québec, QC, G1V 0A6,
Canada.

3Structural and Computational Biology, European Molecular Biology Laboratory,
Meyerhofstrasse 1, 69117 Heidelberg, Germany.

“Max-Delbriick-Centre for Molecular Medicine, 13092 Berlin, Germany.
>School of Marine Sciences, University of Maine, Orono, ME 04469, USA.

®Institut de Biologie de I'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS,
INSERM, Université PSL, 75005 Paris, France.

"European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI),
Welcome Trust Genome Campus, Hinxton, Cambridge, UK.

8Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M ECOMAP, 29680 RoscofT,
France.

“Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of
Technology, Cambridge, MA 02139, USA.

19Sorbonne Université, CNRS, Laboratoire d’Océanographie de Villefanche, LOV, F-06230
Villefranche-sur-mer, France.

"ICNRS UMR 7232, Biologie Intégrative des Organismes Marins, Avenue du Fontaulé, 66650
Banyuls-sur-Mer, France.

12Sorbonne Universités Paris 06, OOB UPMC, Avenue du Fontaulé, 66650 Banyuls-sur-Mer,
France.

3Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille,
France.

4Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.

15 Génomique Métabolique, Genoscope, Institut Frangois Jacob, CEA, CNRS, Univ Evry,
Université Paris-Saclay, 91057 Evry, France.

39



1275

1280

1285

1290

1295

Directors’ Research European Molecular Biology Laboratory Meyerhofstr. 1 69117
Heidelberg, Germany.

7Sorbonne Université, CNRS - UMR7144 - Ecology of Marine Plankton Group, Station
Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France.

"¥Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.

YPANGAEA, Data Publisher for Earth and Environmental Science, University of Bremen,
28359 Bremen, Germany.

2MARUM, Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen,
Germany.

21Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA.

22Department of Microbiology and Immunology, Rega Institute, KU Leuven, Herestraat 49, 3000
Leuven, Belgium.

2Center for the Biology of Disease, VIB KU Leuven, Herestraat 49, 3000 Leuven, Belgium.

24Department of Applied Biological Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050
Brussels, Belgium.

ZDepartment of Geosciences, Laboratoire de Météorologie Dynamique (LMD), Ecole Normale
Supérieure, 24 rue Lhomond 75231 Paris, Cedex 05, France.

260cean Physics Laboratory, University of Western Brittany, 6 avenue Victor-Le-Gorgeu, BP
809, Brest 29285, France.

2"Departments of Microbiology and Civil, Environmental and Geodetic Engineering, The Ohio
State University, Columbus, OH, 43210, USA.

Bnstitute of Microbiology, ETH Zurich, Zurich, Switzerland.

2Research Federation for the study of Global Ocean Systems Ecology and Evolution,
FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France.

40



1300

Supplementary Figures

A

1) Remove adapters & low qualty (<20) bases.
3) Remove reads <30
4)Remove ®x174 DN A

Assemble Reads per Read Library
—ireacs Jlet=m —
Remove Scaffolds

<15kb
v

VirSorter Categories 1-6

VirFinder score > 0.7 & p-value < 0.05

CAT LCA Virus classification

m—All Reads
s Subsampled Reads

4 0
from all reads

9
m subsampled rea

Remove contigs

Bedtools

Raw Population
Coverges
)

Population
with downsampled
read depth

(tor 1y

)

;

v v

Remove reads mapping <95% ID

v

—>

‘_
4_

Remove contigs <5kb coverage

—> Normalized
Pop.
(tor

I
v [

Normalized
_> Pop. Abundances
(o sit)

q

~

Alpha
Diversity
Calculations

(for macrodversity)

Beta
Diversity
Calculations
(for macrodersity)

1 for each genome
with 210x read depth
per sample

Calculate
Nuceotide Diversity (1r)
per bp per Genome

1

for microdiversty)

Randomly
select 100 T

Repeat the random
selection 1000x

Average the 1000
average  values

Al GOV2.0
Read Libraries

_ - D
488,130

lpe,sm

v
v

Readmapping
counts per %ID

+

%D Count
100% 568285
17974
98% 18582
97% 19383
9% 12000
9% 10202
9% 10097
93% 9949
9% 9989
91% o788
90% 4555
89% 4231
88% 5430
87% 3320
%
85% 3396
84% 439
83% 2
82% 3333
81% 3011
80% 2108
8% 89

‘Smosted Reacs Cours
0 2000 6000 10000

W o 0 4w 2
1D o R Migged

Randomly
Repeat select 5
the random
selection
1000x

Average
™

—

Plot the 1000
average H values

Average the 1000
average T values

Shannon’s H
per Sample
in each
Ecological Zone
(for macrodersiy)

Randormly
select 5 H
Repeat
the random
selection
1000x

Plot the 1000
average H values

Average the 1000
average H values

Shannon’s H
in each

Ecological Zone
(for macrodersiy)

S

Fig. S1. Bioinformatic workflow. Flow diagrams showing the bioinformatic workflow for (A)

the assembly and identification of viral populations, (B) the population coverages and

41



1305

1310

1315

abundances and how they were used to calculate macro- and micro-diversity calculations, (C)
prediction of population boundaries, and (D) how average macro- and micro-diversity
calculations per ecological zone were calculated.
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Fig. S2. Non-metric multidimensional scaling (NMDS) and hierarchical clustering of GOV
2.0. As observed with the Principal Coordinate analysis (Fig. 4A), NMDS analysis (A) and
correlation-based hierarchical clustering (B) of a Bray-Curtis dissimilarity matrix calculated
from GOV 2.0 structured the viromes into five distinct global ecological zones with an
approximately unbiased (AU) bootstrap value > 77 in the hierarchical clustering. Four outlier
viromes were removed and all the sequencing reads were used, with justification provided in
(Fig. S3, C and D), respectively. Abbreviations: ARC, Arctic; ANT, Antarctic; BATHY,
bathypelagic; TT-EPI, temperate and tropical epipelagic; TT-MES, temperate and tropical
mesopelagic.
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Fig. S3. Beta-diversity of the total reads and subsampled reads GOV 2.0 dataset. PCoA of a
Bray-Curtis dissimilarity matrix calculated from GOV 2.0 using all the sequencing reads (A) and
after randomly subsampling the reads to the same sequencing depth (B). The

dissimilarity matrices from (A) and (B) were used to conduct hierarchical clustering on the
samples as shown in (C) and (D), respectively. The four viromes which were removed from (Fig.
4) and (Fig. S2) are highlighted with asterisks; sample 1 (station 155 SUR) is the only surface
sample in the North Atlantic Drift Province and could have been influenced by the warm surface
currents going northward due to the Atlantic Meridional Overturning Circulation; sample 2
(station 85 MES) is the only mesopelagic sample from the Southern Ocean and could have

been influenced by the upwelling of ancient deep ocean water (which is also congruent with the
similarity observed between deep water bacterial communities of polar and lower latitude
(Ghiglione ef al., 2012)); sample 3 (station72_MES) fell outside the 97.5% confidence intervals
of all the ecological zones; sample 4 (station102_MES) was located in El Nifio-Southern
Oscillation region and could have been influenced by the upwellings and downwellings in this
area. Additionally, samples 1, 3, and 4 were among the Shannon’s H outliers (Fig. S4). Viral
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communities still partitioned into five ecological zones after subsampling the reads as shown by
1335  the PCoA (B) and hierarchical clustering (D) plots.
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Fig. S4. Boxplot analysis of viral macrodiversity across GOV 2.0 ecological zones. Outliers
that fell below the first quantile or above the fourth quantile (function geom boxplot of ggplot)

1340  of each ecological zone were removed before examining the predictors of viral macrodiversity
(Fig. 4C). Outliers: 32_SUR, 155 SUR, 56 MES, 70 MES, 72 MES, 102_MES, MSP131, and
MSP144.
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Fig. S5. Schematic showing the interplay of increased microdiversity and competitive
exclusion. Viral populations with more microdiversity usually have larger niche sizes and
therefore can outcompete viral populations with smaller overlapping niche sizes. This process of
competitive exclusion may not be visible in each community as seen across the three

communities. Thus, the average of communities such as across ecological zones can better show
this relationship.
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are excluded.
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Fig. S7. ARC-H drives the divergence from the latitude diversity gradient. Loess smooth
plots showing the latitudinal distributions of macro- and micro- population diversity with ARC-

H and ARC-L regions. The line represents the loess best fit, while the lighter band corresponds
to the 95% confidence window of the fit.
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Fig. S8. Microbial 16S OTUs biodiversity deviate from the depth diversity gradient and
positively correlates with viral microdiversity in the mesopelagic. (A) Loess smooth plots

1370  showing 16S OTUs (Logares et al., 2014) macrodiversity distributions down the depth gradient.
The line represents the loess best fit, while the lighter band corresponds to the 95% confidence
window of the fit. (B) Boxplots showing median and quartiles of surface, deep chlorophyll
maximum (DCM), and mesopelagic 16S OTU data taken from (Logares et al., 2014). All
pairwise comparisons shown were statistically significant (p<0.05) using two-tailed Mann-

1375  Whitney U-tests. (C) Scatterplot showing the positive correlation (Pearson’s correlation » = 0.51;
p-value = 0.036) and linear regression (72 = 0.26) between Tara Oceans mesopelagic samples
shared between the 16S OTU samples in (Logares et al., 2014) and our viral samples in GOV
2.0.
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Fig. S9. Library preparation and experimental conditions comparisons. (A & B) Boxplots
showing median and quartiles of the number of assembled viral genomes per total reads
sequenced and the average genome lengths in 70 and TOPC preparations of Tara mesopelagic
stations 68, 78, 111, and 137, respectively. All pairwise comparisons shown were not statistically
significant using two-tailed Mann-Whitney U-tests. (C) Depth (as an ecological variable)
predicts the ecological zone of the deep ocean (mesopelagic or bathypelagic) better than
experimental variation between Tara and Malaspina expeditions, with a higher * (left), lower
BIC (middle), and lower p-value (right). The first two metrics were calculated from a univariate
regression analysis (using depth alone or experimental variation alone as a predictor of the
ecological zone), while the third metric was calculated from a multivariate multiple regression
analysis that uses both depth and experimental variation as predictors. (D) Hierarchical
clustering of a Bray-Curtis dissimilarity matrix calculated from GOV 2.0 viromes to which four
additional viromes (black bars) have been added to control for the impact of experimental
variation between the Tara Oceans and Tara Oceans Polar Circle expeditions. The four viromes
prepared using the Tara Oceans Polar Circle protocols clustered with their respective original
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samples, which were prepared using the Tara Oceans protocols indicating that experimental
variation was far less than ecological variation.
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