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Abstract
The complexity and size of state-of-the-art cell models have significantly increased
in part due to the requirement that these models possess complex cellular functions
which are thought—but not necessarily proven—to be important. Modern cell mod-
els often involve hundreds of parameters; the values of these parameters come, more
often than not, from animal experiments whose relationship to the human physiology
is weakwith very little information on the errors in thesemeasurements. The concomi-
tant uncertainties in parameter values result in uncertainties in the model outputs or
quantities of interest (QoIs). Global sensitivity analysis (GSA) aims at apportioning to
individual parameters (or sets of parameters) their relative contribution to output uncer-
tainty thereby introducing a measure of influence or importance of said parameters.
New GSA approaches are required to deal with increased model size and complexity;
a three-stage methodology consisting of screening (dimension reduction), surrogate
modeling, and computing Sobol’ indices, is presented. The methodology is used to
analyze a physiologically validated numerical model of neurovascular coupling which
possess 160 uncertain parameters. The sensitivity analysis investigates three quantities
of interest, the average value of K+ in the extracellular space, the average volumetric
flow rate through the perfusing vessel, and the minimum value of the actin/myosin
complex in the smooth muscle cell. GSA provides a measure of the influence of each
parameter, for each of the threeQoIs, giving insight into areas of possible physiological
dysfunction and areas of further investigation.
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1 Introduction

Over the past 20years, the use of computational models to describe physiological
phenomena has grown spectacularly. This growth has provided significant advantages
to the experimental community in that it can furnish results of in silico experiments
which are either ethically or physically impossible in the laboratory. However, these
models have also increased in complexity with a concomitant increase in the asso-
ciated number of parameters (for a variety of reasons, most notably the requirement
that the models should possess complex cellular functions which are thought but not
necessarily proven to be important). These parameters, in defining the relevant phe-
nomenon, more often than not come from a plethora of animal experiments whose
relationship to the human physiology is weak. In addition, experimental results in the
public domain provide very little information on the errors in these measurements.

Even simple physiological models tend to be highly nonlinear; their range of appli-
cability and reliability can only be assessed through careful analysis. For large complex
systems, the sensitivity of quantities of interest to model parameters is a priori unclear.
Herein lies one of the difficulties of modeling: what effect do uncertainties in parame-
ters determined from experiment have on the output of a nonlinear numerical model?
Because of bothmodel complexity andhighdimensionality, sensitivity analysis is com-
putationally demanding andmay require several ad hoc steps–such as screening (reduc-
ing the parameter dimension). Importantly, in analyzing sensitivities, we can learn
significant facts about the physiology of the system which would have stayed hidden
under the premise of simply producing results. From a purely physiological perspec-
tive, an understanding of the dominant cellular mechanisms resulting in cerebral tissue
perfusion after neuronal stimulation would be of particular and important interest.

In the above context,we investigate the sensitivity of theNVCresponse (seeSect. 2),
which has a large parameter dimension where most (if not all) of the parameter values
come from non-human experiment with an inherent (unknown) error. We denote by
y = (y1, . . . , yN ) the state variables of the model and by θ = (θ1, . . . , θP ) the
uncertain parameters of the model. The evolution of the state variables is governed by
a system of ordinary differential equations (ODEs)

d y
dt

= f(y, θ), (1)

where f is a known function of its arguments. Equation (1) is completed with a set of
initial conditions y(0) = y0; here, we simply take y0 as the equilibrium solution at
the parameters’ nominal values, i.e., f(y0, θ̄) = 0, where θ̄ = (θ̄1, . . . , θ̄P ) denotes
the nominal values of the parameters. The Supplementary Material contains code and
the nominal values of parameters, and further information can be found in Dormanns
et al. (2015).

Based on physiological considerations, we examine three quantities of interest
(QoI), see Sect. 2. Let q be one of our three QoIs; while determined from the state
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variables, i.e., from y,qis ultimately a function of the parameters alone (and possibly
time), i.e.,

q = g (θ). (2)

The overall goal of our numerical study is to determine which of the uncertain parame-
ters θ1, . . . , θP are themost/least influential for eachQoI. There is a substantial amount
of research currently being done in applied mathematics and statistics in the corre-
sponding field of Global Sensitivity Analysis (GSA). How to meaningfully define
“influential” or “non-influential” and how to develop methods applicable to high-
dimensional problems are two significant challenges of the field (Hart and Gremaud
2018; Alexanderian et al. 2018; Hart et al. 2017; Iooss and Saltelli 2017; Owen 2014;
Saltelli et al. 2008).

The present NVC model contains N = 67 state variables and P = 160 uncertain
parameters. The complexity of the model and large parameter space dimension pre-
clude a direct application of GSA tools. Part of our contribution in this paper is to
show how multiple GSA tools may be combined to analyze such problems.

2 Physiological Model: Neurovascular Coupling

The NVC response, i.e., the ability to locally adjust vascular resistance as a function
of neuronal activity, is believed to be mediated by a number of different signaling
mechanisms. A mechanism based on a metabolic negative feedback theory was first
proposed in Roy and Sherrington (1890). According to this theory, neural activity
leads to a drop in oxygen or glucose levels and increases in CO2, adenosine, and
lactate levels. All of these signals could dilate arterioles and hence were believed to
be part of the neurovascular response. However, recent experiments illustrated that
the NVC response is partially independent of these metabolic signals (Leithner et al.
2010; Lindauer et al. 2010;Mintun et al. 2001; Powers et al. 1996;Makani and Chesler
2010). An alternative to this theory was proposed where the neuron releases signaling
molecules to directly or indirectly affect the blood flow. Many mechanisms such as
the potassium (K+) signaling mechanism (Filosa et al. 2006), the nitric oxide (NO)
signaling mechanism, or the astrocytic arachidonic acid to epoxyeicosatrienoic acid
(EET)pathway (via theP450 epoxygenase) are found to contribute to the neurovascular
response (Attwell et al. 2010) which includes the production of prostaglandins by at
least COX1 and 3 which through diffusion to the SMC dilate vessels and similarly
20-HETE (via the -hydroxylase) in smooth muscle, which constricts vessels.

The potassium (K+) signaling mechanism of NVC seems to be supported by sig-
nificant evidence, although new evidence shows that the endfoot astrocytic calcium
(Ca2+) could play a significant role. The potassium (K+) signaling hypothesis mainly
utilizes the astrocyte, positioned to enable the communication between the neurons
and the local perfusing blood vessels. The astrocyte and the endothelial cells (ECs)
surrounding the perfusing vessel lumen exhibit a striking similarity in ion channel
expression and thus can enable control of the smooth muscle cell (SMC) from both the
neuronal and blood vessel components (Longden et al. 2015). Whenever there is neu-
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ronal activation, potassium (K+) ions are released into the extracellular space (ECS)
and synaptic cleft (SC). The astrocyte is depolarized by taking up potassium (K+)
released by the neuron and releases it into the perivascular space (PVS) via the end-
feet through the BK channels (Filosa and Blanco 2007). This increase in extracellular
space (ECS) potassium (K+) concentration (3–10mM) near the arteriole hyperpolar-
izes the smooth muscle cell (SMC) through the inward rectifying K+ (KIR) channel,
effectively closing the voltage-gated calcium (Ca2+) channel, reducing smooth mus-
cle cytosolic calcium (Ca2+) and thereby causing dilation. Higher potassium (K+)
concentrations in the perivascular space (PVS) cause contraction due to the reverse
flux of the inward rectifying K+ (KIR) channel (Farr and David 2011). It is noted here
that in addition to potassium (K+) Glutamate has an important part to play in signaling
between neuron and astrocyte. Later versions of the model have the Glutamate path-
way included utilizing the mGluR signal (Mathias et al. 2017a; Kenny et al. 2018),
and this affects the astrocytic calcium (Ca2+) which in turn enables EET to mediate
the BK channel at the endfoot of the astrocyte. Our main focus in this present work
is to provide viable global sensitivity analysis algorithms requiring high-dimensional
domains; hence for the results presented here, we ignore theGlutamate pathway purely
for simplicity.

An existing neuron model (Mathias et al. 2017a, b) has been extended to include
an additional transient sodium (Na+) ion channel (NaT) expressed in the neuron
and integrated into a complex NVC model (Dormanns et al. 2015, 2016; Kenny
et al. 2017a). This present model is based on the hypothesis that the potassium (K+)
signaling mechanism of NVC is the primary contributor to the vascular response
and the sodium potassium (Na+/K+) exchange pump in the neuron is the primary
consumer of oxygen during neural activation. The model contains 317 parameters,
most of which come from non-human experiments. Based on the work by Dormanns
et al. (2016) and Kenny et al. (2017b), we have chosen a subset of parameters defining
basic pathways, such as the nitric oxide and potassium pathways, that are considered
important for the normal function of neurovascular coupling.Wemodel the uncertainty
of the chosen parameters by representing them as random variables. The remaining
parameters are fixed to nominal values; they include leak terms, characteristic oxygen
and other species concentrations, buffer concentrations, volume surface ratios, etc.
By permitting variability in only the parameters that support these pathways, the
dimension of the parameter space is reduced from 317 to 160, which greatly facilitates
our analysis. The algorithms defined below can be used to investigate other complex
models including that of neurovascular coupling. However, for this initial work, we
constrain ourselves to the above subset. Figure 1 shows the components and main
pathways of the neurovascular coupling model (version 2.0). The numerical model
outlined in sketch form in Fig. 1 is fully defined in the Supplementary Material and
has been developed over a number of years (Farr and David 2011; Dormanns et al.
2015, 2016).

In order to induce a variation in radius of a vessel which perfuses the associated
cerebral tissue following a neuronal stimulation, an input current is used. The numeri-
cal experiments solve equation (1) in the presence of short duration electrical (current)
stimuli as displayed in Fig. 2. For the presented cases, two input profiles are utilized.
A rectangular pulse of width 10s and a experimental pulse sequence (stimulating the
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Fig. 1 Graphic Sketch of NVU version 2.0, showing the basic components of neuron, astrocyte, smooth
muscle cell, endothelial cell, lumen and extracellular space. Ion channels, pumps and pathways from neuron
to endothelial cell are also shown in addition to the basis for evaluation of the fMRI blood oxygenation
level signal (BOLD) protocol (Color figure online)

whisker pad of a rat) used in the work of Zheng et al. (2010) which has the same
magnitude as the rectangular pulse but a duration of 16 s followed by second pulse
(which is not used in this analysis). Further information about the experiment and the
results can be found in Zheng et al. (2010). For this second case, the stimulus was a
current injection at the rat whisker pad. This induced an increase in neuronal activity
in the somatosensory cortex which subsequently, through the neurovascular pathway,
produced a change in the radius R(t) allowing increased nutrients to perfuse into the
cerebral tissue; this is the essence of neurovascular coupling.
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Fig. 2 Left: rectangular pulse input stimulus; right: stimulus used in laboratory experiments (Color figure
online)

We wish to analyze parameter sensitivity of quantities of interest (QoIs) that are
key to our understanding and quantification of neurovascular coupling. From previous
work, it is known that theK+ concentration in the extracellular space (ECS) is crucial to
maintaining a homeostatic state (large concentrations of K+ support the propagation
of spreading depression waves); hence, we choose to look at the average value of
K+ in the ECS as our first QoI q1. Secondly, neurovascular coupling is the main
phenomenonproviding oxygen and nutrients to the neuronal tissue. This ismediated by
the local arteriole dilating and (under the assumption of constant pressure) increasing
the flow of blood into the tissue. We therefore define the time-averaged cerebral blood
flow determined over the course of neuronal stimulation as our second QoI, q2. The
contraction/dilation of the arteriolar vessel depends on the smooth muscle cell (SMC)
concentration of Ca2+ and the phosphorylation of the actin/myosin complex. Our third
QoI q3 is the minimum combined concentration of the actin/myosin complex, both
phosphorylated and unphosphorylated. This allows us to analyze the functioning of the
main components of the neurovascular unit (NVU) defined as the linked components
of neuron, synaptic cleft, astrocyte, perivascular space (PVS), SMC, endothelial cell
(EC), lumen (LU, the domain in which blood flows) and the ECS. Assuming the
stimulation occurs for time t between t1 and t2, t2 > t1, the QoIs are thus

– Average ECS potassium

q1 =
1

t2 − t1

∫ t2

t1
[K+]ECS(s) ds, (3)

– Average volumetric flow rate in the cerebral tissue

q2 =
1

t2 − t1

∫ t2

t1

(
R(s)
R0

)4

ds, (4)

– Minimum combined concentration of the actin/myosin complex, both phosphory-
lated and unphosphorylated
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q3 = min
t,t1≤t≤t2

[AM(t)+ AMp(t)], (5)

which we will refer to as [AM + AMp]min throughout the article.

Other examples of sensitivity analysis studies relevant to the general field of
biomedicine include (Hsieh et al. 2018; Sobie 2009; Tennøe et al. 2018; Witthoft
et al. 2013).

3 Methodology

Our analysis may be described in a four-step process:

(i) Define a probability distribution for θ which models its uncertainty,
(ii) Draw samples from this distribution,
(iii) Evaluate the QoI for each of these parameter samples,
(iv) Use these QoI evaluations to infer its sensitivity to each parameter.

Sect. 3.1 describes our approach for step (i). Step (ii) is easily executed using standard
methods. The computational bottleneck for our analysis is the QoI evaluations (which
require ODE solves) in step (iii). While relatively large and stiff, the ODE system (1)
can be solved with standard tools and methods, here through the MATLAB routine
ode15s with relative and absolute tolerances of 10−4. The evaluation of the above
QoIs themselves from the ODE solutions is straightforward and can be done at low
cost. Step (iv), inferring the sensitivities, may be done in a plurality of ways. Because
of the parameter dimension and computational cost of model evaluations, we perform
step (iv) with a multi-phased procedure,

(I) Screening,
(II) Surrogate modeling,
(III) and computing Sobol’ indices,

described in Sects. 3.2–3.4, respectively. We summarize our method in Sect. 3.5.

3.1 Parameter Distribution Fitting

Describing the uncertainty attached to the parameter vector θ is an important and
delicate modeling assumption. Here, we give each θi , i = 1, . . . , 160, a nominal value
θ̄i and assume each parameter to be independent and uniformly distributed over the
interval [0.9 θ̄i , 1.1 θ̄i ], i.e., within ± 10% of the nominal value. Larger intervals were
considered for the parameters. For the NVUmodel under consideration, increasing the
width of the interval resulted inmany samples for which the solution exhibited atypical
or non-physical behavior, or in some cases ode15s was unable to solve the system.
Our choice of ± 10% uncertainty is considered a reasonable compromise between
accounting for uncertainty and ensuring computational feasibility.

Our initial assumption of parameter independence is incorrect. In fact, ode15s
is unable to solve the system for most samples drawn under this assumption. The
parameter dependencies, which are unknown a priori, are discovered through a com-
putational procedure akin to Approximate Bayesian Computation (Marin et al. 2012).
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Our approach, described below, is computationally intractable when applied to the
NVU model under consideration. We simplify the model by removing the stimulus,
i.e., modeling the steady state behavior of the system. A collection of S samples, θk ,
k = 1, 2, . . . , S, are drawn from our initial distribution (assuming independence) and
the ODE system is solved for each parameter sample. A collection of solutions are
post-processed to partition the samples {θk}Sk= 1 into two subsets {θak }

Sa
k= 1 and {θrk }

Sr
k= 1,

where ak , k = 1, 2, . . . , Sa denotes the samples where the steady state solution exhib-
ited physiologically normal behavior and rk , k = 1, 2, . . . , Sr denotes the samples
where it does not. We reject the samples {θrk }Srk= 1 and fit a distribution to the accepted
samples {θak }Sak= 1 using standard statistical methods. This new distribution is sampled
S times, the ODE system is solved for each sample, and the results are post-processed
into accepted and rejected samples again. We continue this process iteratively until
satisfactory convergence of the fitted distribution.

3.2 Screening

Having determined a parameter distribution, we evaluate the QoI q = g (θ) at M
different samples and denote them θk , k = 1, 2, . . . ,M . We fit a linear model to the
QoI under study

g (θk) = g (θ k1 , . . . , θ
k
P ) ≈ β0 +

160∑

j = 1

β jθ
k
j , k = 1, . . . ,M . (6)

This approach yields a crude (but highly efficient here) sensitivity analysis of the
model with respect to the θ j ’s, j = 1, . . . , 160. We assign a preliminary importance
measure to each θ j by computing for each of them the relative size of their coefficient
in the above linear approximation, i.e.,

L j =
|β j |

∑160
ℓ= 1 |βℓ|

, j = 1, . . . , 160.

To obtain amodel with amoremanageable size, we reduce the parameter space to only
the θ j ’s for which L j > 0.01. We denote these r parameters {θ ji }ri = 1. The rest of the
parameters are regarded as non-influential and treated as latent variables; even though
they are uncertain, their specific values (within the given range) have little bearing of
the considered QoI. In other words, we consider the approximation

g (θ1, . . . , θ160) ≈ h
(
θ j1 , . . . , θ jr

)
, (7)

where h is obtained from g by treating the non-influential parameters as latent. In
Sect. 4, this reduction yields around 15–20 parameters instead of the original 160. We
use θ̂ to denote the reduced parameter vector.
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3.3 Surrogate Model

For any of the three considered QoIs, our information on the function h defined (7)
consists of the set of sampled values {h (θkj1, . . . , θ

k
jr )}, k = 1, . . . ,M . To facilitate the

use of standard GSA tools, which may require derivatives or variance estimations, it
is both convenient and computationally advantageous to construct an approximating
function, i.e., a surrogate model. We use a sparse Polynomial Chaos (PC) surrogate.
This amounts to introducing a polynomial approximation of h of the type

h (θ̂) ≈ H(θ̂) ≡
∑

α

cαψα(θ̂) (8)

where the ψα’s are multivariate polynomials which are orthogonal with respect to the
probability distribution function (PDF) p

θ̂
of θ̂ , i.e.,

∫
ψα(x)ψβ(x) pθ̂

(x) dx = δα,β (9)

where α and β are multi-indices and δα,β is the generalized Kronecker symbol. The
coefficients are computed through least-squares minimization, see the “Appendix”
for additional discussion. All surrogate models are validated using 10-fold cross-
validation.

Polynomial Chaos is by now awell-documentedmethod.We use theUQLab imple-
mentation for the results below and refer the reader to its manual (Marelli and Sudret
2014) for more details.

3.4 Sobol’ Indices

Weuse variance basedGSA to assess the relative importance of the input parameters of
H in (8). In their simplest form, the total Sobol’ indices (Saltelli et al. 2010) apportion
to uncertain parameters, or sets thereof, their relative contribution to the variance of
the output. Indeed, thanks to the law of total variance, we can decompose the variance
of H(θ̂) as

var(H(θ̂)) = var(E[H(θ̂)|θ̂∼i ])+ E[var(H(θ̂)|θ̂∼i )], (10)

where θ̂∼i denotes all the parameters in θ̂ except θ̂ i . If we assume now that all the input
parameters of H are known with certainty, i.e., if θ̂∼i is known, then the remaining
variance of H(θ̂) is simply given by

var(H(θ̂)) − var(E[H(θ̂)|θ̂∼i ]) = E[var(H(θ̂)|θ̂∼i )].

This latter expression is thus a natural way of measuring how influential θ̂ i is; the
corresponding total Sobol’ index STi is but a normalized version of this
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STi =
E[var(H(θ̂)|θ̂∼i )]

var(H(θ̂))
. (11)

From this definition, one easily observes that STi ∈ [0, 1]; large values indicate that θ̂ i
is important, STi ≈ 0 implies that θ̂ i is not important. The relevance of this basic def-
inition can be extended to time-dependent QoIs (Alexanderian et al. 2018), stochastic
QoIs (Hart et al. 2017) or correlated parameters (Hart and Gremaud 2018).

3.5 Summary of theMethod

Algorithm 1 provides a summary of the method.

Algorithm 1 overall numerical approach
1: while parameter distribution has not converged do
2: for k = 1 : S do ◃ sampling
3: sample parameter distribution −→ θk ; solve (1) (without stimulus) −→ yk

4: end for
5: partition the parameter samples into accepted and rejected samples
6: fit a new distribution to the accepted samples ◃ see § 3.1
7: end while
8: for k = 1 : M do ◃ sampling (final distribution)
9: sample parameter distribution −→ θk ; solve (1) (with stimulus) −→ yk

10: end for
11: for each QoI qdo
12: solve the least-squares problem (6) ◃ linear model
13: identify the influential parameter vector θ̂ = (θ j1 , . . . , θ jr ) ◃ screening
14: fit the Polynomial Chaos surrogate H (8) ◃ surrogate model
15: compute total Sobol’ indices (11) of the surrogate model H ◃ Sobol’ indices
16: end for

4 Numerical Results

4.1 Parameter Distribution

Applying the methodology described in Sect. 3.1, S = 919 parameter samples are
drawn and (1) is solved for each sample with no stimulus applied. Of these 919 runs,
670 of them fail due to ode15s terminating prematurely because its time steps became
too small. These solves fail because we are ignoring correlations between parameters.
The remaining 249 yields 139 solutions for which the radius reaches a stable steady
state (at least for the duration of the time integration) and 110 solutions for which the
radius reaches a steady state but subsequently becomes transient. The left panel of
Fig. 3 displays four representative solutions for the radius; the red curves remain in
steady state for the duration of our time integration whereas the black curves revert
into a transit regime after some time in or near steady state. The right panel of Fig. 3
displays the samples for two parameters (defined in the buffer equation (12), see
the Supplementary Material for details) which are found to be highly influential in
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Fig. 3 Left: examples of stable (red) and unstable (black) steady state solutions. Right: samples of the
buffer parameters (θ120, θ121) using uniform independent sampling. A blue * indicates the sample yielded
a premature termination of the solver, a yellow ♦ indicates the sample yielded an unstable steady state, and
a red ◦ indicates the sample yielded a stable steady state (Color figure online)

determining the behavior of the solution. A blue * indicates a sample where the solver
terminated prematurely, a yellow ♦ indicates a sample where an unstable steady state
was observed, and a red ◦ indicates a sample where the solution remained in steady
state.A strong correlation determining the behavior of the solution is observed.The two
parameters in question, denoted by (θ120, θ121), occur in the buffer equation defined by

[K+]e + B

f f =
θ118

1+ [exp
(−[K+]e + θ120

θ121

)

"
fr = θ118

[K+]b

d[K+]b
dt

= f f [K+]e(θ119 − [K+]b) − fr [K+]b (12)

The parameters θ120 and θ121 have values 5.5 and 1.09, representing a shift and scaling
in the forward rate constant, respectively.

Observing this correlation, we use the accepted samples to fit (θ120, θ121) with a
bivariate Frank copulawith betamarginals. The experiment is repeated by sampling the
two correlated parameters from this bivariate distribution and all other parameter from
their original uniform distributions. After four iterations refining the joint distribution
of (θ120, θ121),wewere able to generate 902out of 960 sampleswhichyielded solutions
with stable steady states. (51 solutions had unstable steady states and 7 had premature
solver terminations.) This fitted distribution is used for all subsequent analysis.

Samples are drawn and the model, with a stimulus applied (in two separate cases,
the 10s rectangular pulse and the 16s experimental pulse), is run for each sample.
This results in solutions exhibiting three different physiological regimes; they are
displayed in Fig. 4 where the radius is plotted as a function of time. The leftmost panel
corresponds to the typical case when the radius increases in response to the stimulus
and then decreases when it is removed; the center panel corresponds to an atypical
case where the radius has an initial decrease in response to the stimulus; the right panel

123



1816 J. L. Hart et al.

Fig. 4 Radii corresponding to samples (using the rectangular pulse stimulus). Left: curves an increase in
response to the stimulus; center: curves with a decrease in response to the stimulus; right: curves which
settle in a different steady state (Color figure online)

corresponds to another atypical case where the radius reaches another steady state and
does not decrease after the stimulus is removed.

This article focuses on the non-pathological case, corresponding to the left panel
of Fig. 4, so we remove samples where the radius does not increase in response to the
stimulus and decrease when it is removed. However, we recognize that a decrease in
radius upon stimulation does not necessarily mean an incorrect result. Indeed, these
cases are of particular importance (due to the possibility of the existence of cortical
spreading depression Kenny et al. 2018) and a topic of future research. This processing
yields 660 samples for analysis when the rectangular pulse stimulus is applied and
438 samples when the experimental pulse stimulus is applied. The results presented
below use these samples.

Exploration of the 660 retained samples indicate that “pathological” cases have
higher probability when the parameter which shifts the activation variable for the K+

flux through the soma KDR channel is reduced; however, this parameter does not
characterize the solution regime by itself; it is likely that the solution regime is char-
acterized by a combination of several parameters. Further sampling and exploration
is required to better understand the structure in parameter space which determines the
solution regime.

The 160 parameters are indexed (purely for coding reasons) and are not to be
taken as a ranked order. The tables of ranked parameters, given in the subsections
below to summarize the most influential parameters, provide the parameters in the
first column, their location in the Supplementary Material in the second column, and
their total Sobol’ indices for the experimental and rectangular pulses in the third and
fourth columns, respectively. Each table contains the five most influential parameters
for a given QoI, as measured by the total Sobol’ indices for the experimental pulse.
There are slight differences in the ordering of the less important parameters for the
rectangular pulse and experimental pulse cases; the tables below report the ranking
from the experimental pulse case. Both rectangular and experimental pulse cases agree
on the ranking of the most influential parameters.

4.2 Average ECS Potassium

Figures 5 and 6 display results for the average of the ECS potassium, defined in
equation (3), for the rectangular pulse stimulus and experimental pulse stimulus,
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Fig. 5 Average ECS potassium QoI with a rectangular pulse stimulus. From left to right and top to bottom:
linear surrogate predictions, linear surrogate importance measure, PC surrogate predictions, total Sobol’
indices for PC surrogate (Color figure online)

respectively. In the top left panels, predictions of the linear surrogate are plotted
against the QoI values. The sensitivities L j , j = 1, 2, . . . , 160, are displayed in the
top right panels. Predictions of the PC surrogate are plotted against the QoI values
in the bottom left panels. The total Sobol’ indices of the PC surrogate are given in
the bottom right panels. Table 1 reports the five most important parameters and their
respective total Sobol’ indices.

The first and third parameters in Table 1 are scaling and shift parameters (θ62 and
θ63) for the activation gating variable, m4 in the dendrite NaP channel respectively,
whose ODE is defined as

dm4

dt
= m4α(1 − m4) − m4βm4,

m4α = 1
6(1+ exp(−(θ62vd + θ63)))

,

m4β = exp(−(θ62vd + θ63))

6(1+ exp(−(θ62vd + θ63)))
. (13)

where vd is the dendrite membrane potential.
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Fig. 6 Average ECS potassium QoI with experimental pulse stimulus. From left to right and top to bottom:
linear surrogate predictions, linear surrogate importance measure, PC surrogate predictions, total Sobol’
indices for PC surrogate

Table 1 Five most influential parameters for the average ECS potassium QoI when the experimental pulse
stimulus is applied

Parameter Identification in Supplementary Material Total Sobol’
index (exp.)

Total Sobol’
index (rect.)

θ62 Nominal value 0.143 in equation (61) 0.3732 0.3738

θ61 g K ,leakd in equation (30) 0.2409 0.2074

θ63 Nominal value 5.67 in equation (61) 0.2297 0.2449

θ75 Nominal value 34.9 in equation (54) 0.1112 0.1124

θ76 Nominal value 0.2 in equation (54) 0.0247 0.0198

The leftmost column is the parameter, the left-center column identifies the parameter in the Supplementary
Material, the right-center column is the total Sobol’ index computed for the parameter using the experi-
mental pulse stimulus, and the right column is the total Sobol’ index computed for the parameter using the
rectangular pulse stimulus

The nominal values of θ62 and θ63 are 0.143 and 5.67, respectively. These effectively
define the characteristic timescale and forcing function in the rate equation for the open
probability of the persistent sodium channel. The second most important parameter
determines the strength of the conductance in the K+ leak ion channel. The fourth and
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Table 2 Five most influential parameters for the average volumetric flow rate QoI when the experimental
pulse stimulus is applied

Parameter Identification in Supplementary Material Total Sobol’
index (exp.)

Total Sobol’
index (rect.)

θ141 z4 in equation (149) 0.4420 0.4561

θ158 ncross in equation (214) 0.3544 0.3311

θ139 z2 in equation (148) 0.0436 0.0529

θ136 GKi in equation (149) 0.0362 0.0305

θ142 z5 in equation (149) 0.0305 0.0351

The leftmost column is the parameter, the left-center column identifies the parameter in the Supplementary
Material, the right-center column is the total Sobol’ index computed for the parameter using the experi-
mental pulse stimulus, and the right column is the total Sobol’ index computed for the parameter using the
rectangular pulse stimulus

fifth parameters, θ75 and θ76, are the shift and scale of the neuron membrane potential
in the ODE for the activation variable for the K flux through dendritic KDR channel,
defined as

m6α = θ74

(
vd + θ75

1 − exp(−(θ76vd + θ76θ75))

)
, (14)

where the nominal values for θ74, θ75, and θ76 are 0.016, 34.9, and 0.2, respectively.
The results for this specific QoI are similar for both the rectangular pulse and

experimental pulse stimulus. In both cases, the QoI is approximated with reasonable
accuracy by a linear surrogate and with higher accuracy by the PC surrogate. The most
important parameters are shared in both cases. Notice that parameter θ120, defined
in (12), appears to be important in the linear surrogate but unimportant in the PC
surrogate. This is because it is strongly correlated with parameter θ121 [also defined in
defined in (12)], see Fig. 3, and as a result the coefficient in the linear surrogate may
be very large because its effect is offset by the effect of θ121. To decorrelate inputs,
the PC surrogate is build with only θ120 instead of both θ120 and θ121. It subsequently
has minimal importance.

We also analyzed another QoI for the ECS potassium, namely its maximum over
the interval of stimulation. The results are not reported because of their similarity to
the average ECS potassium QoI results given above.

The remaining two QoIs also present very similar results for both the rectangular
pulse and experimental pulse stimulus. In the interest of conciseness, we only present
figures corresponding to the experimental pulse stimulus for these two QoIs; Tables 2
and 3 give results for both stimuli.

4.3 AverageVolumetric Flow Rate

Figure 7 displays results for the average volumetric flow rate in the cerebral tissue
defined by (4) in the same manner as Figs. 5 and 6. Table 2 reports the five most
important parameters and their total Sobol’ indices. Unsurprisingly, the parameter list
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Table 3 Fivemost influential parameters for the [AM+AMp]min QoIwhen the experimental pulse stimulus
is applied

Parameter Identification in Supplementary Material Total Sobol’
index (exp.)

Total Sobol’
index (rect.)

θ141 z4 in equation (149) 0.6242 0.6203

θ158 ncross in equation (214) 0.1239 0.1488

θ139 z2 in equation (148) 0.0918 0.0954

θ142 z5 in equation (149) 0.0644 0.0629

θ120 Nominal value 5.5 in equation (10) 0.0571 0.0240

The leftmost column is the parameter, the left-center column identifies the parameter in the Supplementary
Material, the right-center column is the total Sobol’ index computed for the parameter using the experi-
mental pulse stimulus, and the right column is the total Sobol’ index computed for the parameter using the
rectangular pulse stimulus
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Fig. 7 Average volumetric flow rate QoI with experimental pulse stimulus. From left to right and top to
bottom: linear surrogate predictions, linear surrogate importance measure, PC surrogate predictions, total
Sobol’ indices for PC surrogate (Color figure online)

contains values found in the SMC/EC compartment of the full model. However, the
topmost parameter, θ141, is associated with the conductance of the inwardly rectifying
SMC KIR channel, g KIR, defined as a function of both membrane potential vSMC and
the K+ concentration in the perivascular space [K+]PVS, given by
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g KIR = exp
(
θ142vSMC + θ140[K+]PVS − θ141

)
(15)

as shown in Dormanns et al. (2015) fitting to the data of Filosa et al. (2006). θ141 shifts
the conductance to the right for constant [K+]PV S concentration in the perivascular
space. The second parameter in Table 2, θ158 (found in the wallmechanics section of
the model) determines the strength of influence of cytosolic [Ca2+] in determining
the reaction rate of phosphorylation of myosin (Hai and Murphy 1988). Although not
especially important, the third listed parameter θ139 shifts the Nernst potential for the
KIR channel to the right in the equation

vKIR = θ138[K+]PVS − θ139. (16)

We again observe reasonably accurate fits by a linear surrogate and improved accu-
racy by a PC surrogate. The surrogate predictions and important parameters for the
rectangular pulse and experimental pulse closely agree. As in Sect. 4.2, parameter θ120
appears important in the linear surrogate but unimportant in the PC surrogate.

4.4 [AM+ AMp]min

Figure 8 displays results for the minimum of the combined concentration of the
actin/myosin complex with the experimental pulse stimulus. Table 3 reports the five
most important parameters and their total Sobol’ indices. By comparing Tables 3 and
2, we see that the [AM + AMp]min and average volumetric flow rate QoIs share four
of their five most important parameters. Although at first analysis this should not be
surprising, it does suggest that the reaction rates of the actin/ myosin model for vessel
contraction/dilation are relatively insensitive to finding theminimumof the contraction
force and that the KIR ion channel is a vital component of the model.

The linear surrogate does not performaswell for thisQoI; however, the PC surrogate
is far more accurate; this highlights the nonlinearity of this particular QoI.

As in the previous results, parameter θ120 appears important in the linear surrogate
and less important in the PC surrogate, albeit it is more important for this QoI than
the previous ones.

5 Discussion

We note at the outset that the sensitivity analysis investigates the numerical model
rather than the physiological one. However, since the numerical model has been vali-
dated with experimental data (Dormanns et al. 2015; Mathias et al. 2018), the results
indicate parameters (and therefore areas) of importance for physiologists and model-
ers.

It is acknowledged that different underlying mechanisms have been proposed for
NVC and that several mechanisms still remain controversial. As a result, despite any
previous agreement with experimental data, NVCmodels including the one presented
here should be considered as works in progress. In this case, physiological insights
garnered from the analysis should be viewed with caution. In particular, the results
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Fig. 8 [AM + AMp]min QoI with experimental pulse stimulus. From left to right and top to bottom: linear
surrogate predictions, linear surrogate importance measure, PC surrogate predictions, total Sobol’ indices
for PC surrogate (Color figure online)

depend upon modeling assumptions and parametric forms chosen by the modeler.
Even when physiological inferences cannot be made, the analysis may still assist in
model development by identifying the most influential parts of the model.

We discuss below results for each QoI individually. QoIs involving averages were
computed through integration between times t1 and t2 corresponding, respectively to
the start and end of neuronal stimulation. Decreasing or increasing these times does
not significantly alter the ranking of the parameters.

5.1 Average ECS Potassium

It is interesting to note for this particular quantity of interest that the first and third
most important parameters are associated not with aK+ channel but the persistent Na+

channel, NaP. The neuron model used in this analysis was developed from the work of
Kager et al. (2000) and Chang et al. (2013). The differential equation governing m4,
the activation variable for the NaP channel, is given by Eq. (13).

The inactivation of the NaP channel is very small compared to activation and there-
fore these parameters make little impact on the extracellular K+. Scatter plots for the
average of K+ in the ECS against the parameters θ61 and θ62 are shown in Fig. 9. For

123



Global Sensitivity Analysis of High-Dimensional… 1823

0.13 0.14 0.15 0.16

62

5

5.5

6

6.5

7

7.5

8

A
ve

ra
ge

 E
C

S
 K

+

5.1 5.5 5.9 6.3

63

5

5.5

6

6.5

7

7.5

8

A
ve

ra
ge

 E
C

S
 K

+

Fig. 9 Left: scatter plot of θ62 and the average ECS potassium (3); right: scatter plot of θ63 and the average
ECS potassium (3) (Color figure online)

each parameter, there is a linear trend where increasing the parameter yields either an
increase or decrease in the K+ ECS. The characteristic time for the activation variable
for the NaP channel is defined as τ = 1

m4α+m4β
which, by using equation (13), is

constant (6 ms). The scatter plots also indicate this definition. These results show that
a variation of ± 10% in either θ62 or θ63 can either reduce or increase the extracellular
K+ by approximately 15%. We should note that these results do not take into account
the spatial buffering carried out by the astrocytic syncytium which may have a sig-
nificantly greater effect on the extracellular K+ (Bellot-Saez et al. 2017; Kenny et al.
2018).

The main driver for K+ in the extracellular space is the K+ Na+ ATP-ase pump
which has the general form given by (in the dendrite)

(Na+d )
3

(
Na+d + Na+d,baseline

)3
(K+

e )
2

(
K+
e + K+

e,baseline

)2 . (17)

The ATP-ase pumps out Na+ and in K+ in the ratio of 3 to 2, and hence the Na+ in the
dendrite has a large effect on the extracellular K+ as seen in Eq. (17) and strengthens
the result that the NaP channel has the most effect on the K+. One could have expected
the NaT (transient Na+) channel to be prominent; however, it has a fast inactivation
variable and, although it produces a larger flux, does so over a shorter time.

5.2 AverageVolumetric Flow Rate

In the presented model, the main pathway for neurovascular coupling is that of the
K+ pathway. Here, the astrocyte takes up K+ from the synaptic cleft and provides an
efflux into the perivascular space (PVS) via the BK channel. The smooth muscle cell
detects this increase in PVS K+ and through the inwardly rectifying channel, KIR,
hypopolarizes the SMC, shutting off the voltagemediatedCa2+ channel. Ca2+ is there-
fore reduced and the SMC dilates. As stated in Sect. 4, the most important parameter
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is the shift parameter θ141 in the KIR conductance (15) determining the magnitude
of ion flux per unit change in the membrane potential away from the equilibrium
(Nernst potential). Compared to the other parameters defining the KI R conductance,
θ141 is large with a nominal value of 12.6 whereas θ140 = 4.2 × 10−4µM−1 and
θ142 = −7.4 × 10−2mV−1. Hence, for constant membrane potential and K+, varia-
tions in θ141 produce exponentially large variations in the KI R channel conductance
allowing substantial effluxofCa2+ from theSMCandadilation of the vessel

(dR
dt > 0

)
.

The second most important parameter is the power index for the cytosolic SMC
Ca2+ which mediates the four-state latch model of Hai andMurphy (1988) that is used
in this model, in particular the rate of phosphorylation of myosin and the actin/myosin
complex. Variations in Ca2+ as predominantly dictated by the KI R channel will there-
fore have a direct effect on the dilation/contraction properties of the SMC and hence
the perfusing vessel radius. The remaining three parameters have significantly lower
total Sobol’ indices and therefore only make small contributions to the QoI.

5.3 [AM+ AMp]min

We see similar parameters appearing as most important for this QoI and the average
volumetric flow rateQoI, which is to be expected given the strong relationship between
the radius dilation/contraction phenomenon and the total quantity of actin/myosin
complex and its phosphorylated compliment. In fact, this QoI serves as a test of the
statistical mechanism in that the only two non-repeating parameters (in the list of five
most important) between the volumetric flow rate QoI and the actin/myosin complex
QoI are θ120 and θ136, which, as noted above, are significantly less import than the
leading parameters.

6 Conclusion

A three-stage methodology is presented for global sensitivity analysis of numerical
cell models with a large number of parameters. To the authors’ knowledge, this is
the first type of analysis which investigates neuroscience models of such size. The
analysis investigated three quantities of interest pertaining to a numerical model of
neurovascular coupling. The results indicated several prevalent features of the model:
a significant influence of the persistent Na+ channel activation variable on the average
extracellular space K+, a two-parameter set (the inwardly rectifying K+ channel shift
parameter and the index for the cytosolic Ca2+) which characterizes most of the
variability in the average volumetric flow rate, and strong similarities between the
most influential parameters for the average volumetric flow rate and minimum value
of the combined actin/myosin complex.

In defining the model, we have used common nomenclature and formulae (found
in a large number of publications), especially for ion channels. In some cases, these
formulae could be simplified and a possible reduction of parameters made. However,
given the commonplace use of these formulae we have not made any algebraic simpli-
fications. We leave the investigation of restructuring the model into a simpler form for
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a future work. The results of our global sensitivity analysis may be used to direct future
model development by identifying which parameters (and corresponding components
of the model) are most influential.

In addition to the results reported in this article, four other QoIs were considered.
Two of them, the maximum and average potassium concentration in the Astrocyte,
were omitted because the parameter toQoImapping is nearly constant andhenceglobal
sensitivity analysis is not necessary. Specifically, the mean of the QoI is approximately
37 times larger than its standard deviation for both cases. The other two unreported
QoIs correspond to lag times. The first being the duration of time between the appli-
cation of the stimulus and the minimum of the phosphorylated actin/myosin complex,
and the second being the duration of time between the application of the stimulus and
the maximum of the radius. In both cases, the QoI exhibited highly nonlinear behavior
which we were unable to approximate with linear or PC surrogates trained on the
existing data. In fact, fitting such nonlinearities would likely require more samples
than is computationally feasible for this model. The linear surrogate had 59% and
47% relative L2 errors for these two QoIs, respectively. Our global sensitivity analysis
methodology was unsuccessful because the linear surrogate was an unreliable tool for
screening. Defining the QoI as the maximum/minimum value instead of the time lag
makes the analysis more tractable. These maximum/minimum value QoIs were also
considered and yielded similar results to the QoIs reported in the article.

For a given model and collection of samples, the methodology presented in this
article may be applicable for some QoIs and intractable for others. The success of
our method depends upon the surrogate models being sufficiently accurate. A gen-
eral principle is that QoIs defined as averages will be more amenable for analysis
than, for instance, minimum values or lag times. A practical benefit of our method is
that any QoI may be considered without requiring additional model evaluations. The
sampling andODE solves are executed once, followed by computing the QoIs and per-
forming global sensitivity analysis, which may be easily repeated for many different
QoIs.

Appendix

Determining the coefficients cα in the Polynomial Chaos surrogate (8) is challenging.
Ideally, one would solve the least-squares problem

min
M∑

k= 1

(

g (θk) −
∑

α

cαψα(θ̂)

)2

(18)

to determine the coefficients. This approach is not currently feasible for the problems
considered in this article. If there are, for instance, 18 input variables (θ ji ’s), then a
3rd-degree polynomial has 1330 unknown coefficients and a 4th-degree polynomial
has 7315 unknown coefficients. With less than 1000 sample points, as in our case,
(18) will admit infinitely many solutions which interpolate the data but will yield poor
approximations of the QoI. Rather, we seek an approximate solution of (18) for which
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most of the coefficients are exactly 0. This may be achieved by introducing a penalty
term and solving

min
M∑

k= 1

(

g (θk) −
∑

α

cαψα(θ̂)

)2

+ λ
∑

α

|cα| (19)

instead of (18). Adding the sum of absolute values of the coefficients encourages
a sparse solution, i.e., one with many 0 coefficients. However, it comes at the cost
of making the objective function non-differentiable and hence (19) requires a more
sophisticated optimization approach in comparison with (18). A plurality of well-
documented methods exist for solving (19). In this article, we use Least Angle
Regression (LAR) (Efron et al. 2004) with its implementation in Marelli and Sudret
(2014), and a maximum polynomial degree of 5.

Because the basis function of the Polynomial Chaos surrogate is orthogonal with
respect to the PDF p

θ̂
, the variance and conditional expectation in (11) may be com-

puted analytically as a function of the coefficients.Hence, the total Sobol’ indices of the
Polynomial Chaos surrogate are given in closed form as a function of the coefficients.
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