7/17/2019

Sensitivity-Driven Adaptive Construction of Reduced-space Surrogates - Vohra2019_Article_Sensitivity-DrivenAdaptiveCons.pdf

Journal of Scientific Computing (2019) 79:1335-1359
https://doi.org/10.1007/510915-018-0894-4

@ CrossMark

Sensitivity-Driven Adaptive Construction of Reduced-space
Surrogates

Manav Vohra' . Alen Alexanderian? - Cosmin Safta3 - Sankaran Mahadevan'

Received: 31 July 2018 / Revised: 3 November 2018 / Accepted: 11 December 2018/
Published online: 18 December 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

Surrogate modeling has become a critical component of scientific computing in situations
involving expensive model evaluations. However, training a surrogate model can be remark-
ably challenging and even computationally prohibitive in the case of intensive simulations
and large-dimensional systems. We develop a systematic approach for surrogate model con-
struction in reduced input parameter spaces. A sparse set of model evaluations in the original
input space is used to approximate derivative based global sensitivity measures (DGSMs)
for individual uncertain inputs of the model. An iterative screening procedure is developed
that exploits DGSM estimates in order to identify the unimportant inputs. The screening
procedure forms an integral part of an overall framework for adaptive construction of a sur-
rogate in the reduced space. The framework is tested for computational efficiency through
an initial implementation in simple test cases such as the classic Borehole function, and a
semilinear elliptic PDE with a random source function. The framework is then deployed for
arealistic application from chemical kinetics, where we study the ignition delay in an H; /O,
reaction mechanism with 19 and 33 uncertain rate-controlling parameters. It is observed that
significant computational gains can be attained by constructing accurate low-dimensional
surrogates using the proposed framework.

Keywords Global sensitivity analysis - Polynomial chaos - Parameter screening - Surrogate
modeling

1 Introduction

Computing statistical properties of complex systems containing uncertain parameters is chal-
lenging due to the need for a large number of expensive model evaluations. Surrogate models
make such computations possible by replacing expensive model runs with cheap evaluations
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of an approximate model. Commonly used approaches for surrogate modeling include poly-
nomial chaos expansions (PCEs) [1-3], multivariate adaptive regression splines (MARS) [4],
Gaussian process (GP) and Kriging models [5,6], and neural networks [7,8]. A pertinent chal-
lenge associated with surrogate construction involves the process of training that typically
requires a large number of model runs. In situations involving large-dimensional systems and
computationally intensive simulations, the training of a surrogate becomes challenging and
even prohibitive in some cases. A possible approach for mitigating this challenge involves
computation of global sensitivity measures such as Sobol” indices [9] to identify the impor-
tant parameters—i.e., parameters that predominantly contribute towards the variability of
the model output.

Sensitivity-based dimension reduction can help reduce the computational effort associ-
ated with surrogate construction, significantly. However, numerically estimating the Sobol’
indices, which involve multi-dimensional integrals, can be a demanding task in itself. In fact,
because of the large number of samples required, computation of Sobol’ indices is often
done using surrogate models, as shown in a variety of applications including in ocean mod-
eling [10,11], geosciences [12-14], and chemical kinetics [15-17] to name a few. We are
thus, faced with a “chicken-and-egg” problem: on the one hand, computing global sensitiv-
ity measures enables dimension reduction, which in turn enables efficient surrogate model
construction. On the other hand, computing sensitivity measures is expensive and is often
made possible by using surrogate models. Development of an approach for overcoming this
chicken-and-egg problem is a major goal of this article.

In this article, we propose a practical and efficient approach that focuses on optimal use
of computational resources for surrogate construction in a reduced input space. Specifically,
we reduce the dimensionality of the input space by using derivative-based global sensitivity
analysis [18-22], which enables a tractable approach for global sensitivity analysis [22].
The links between derivative-based global sensitivity measures (DGSMs) and total Sobol’
indices [18,21,22] provide a strong basis for their use in identifying important uncertainty
contributors. In addition to the construction of an efficient surrogate in the reduced space,
dimension reduction highlights key features of the input-output relationship encapsulated
by the model, and allows for an efficient approach to calibration of the important model
parameters.

We present a strategy for identifying and screening uncertain model inputs that are sig-
nificantly less important than the rest, thereby reducing the dimensionality of the problem
and enabling the construction of a reduced-space surrogate (RSS). Our approach combines
DGSMs and surrogate modeling in an iterative manner. To make optimum use of computa-
tional resources, batches of model evaluations are performed iteratively, and convergence of
our DGSM-based screening metric is tested successively. Moreover, a series of verification
steps incorporated in our method enable monitoring the accuracy of the parameter screening
and the resulting surrogate model. Our approach is agnostic to the choice of methodology
for constructing the surrogate. However, in the present work, we rely on sparse polynomial
chaos expansions (PCEs) to demonstrate the suitability of the proposed strategy.

The contributions of this article are as follows: (i) We establish a robust and practical
framework for dimension reduction and surrogate modeling using derivative-based global
sensitivity measures. Our approach is general in that it is applicable to a wide range of
applications. (ii) We present comprehensive numerical results demonstrating the viability of
our strategy using motivating applications: the classic borehole function, and a semilinear
elliptic PDE. (iii) We deploy our strategy in an application problem from chemical kinetics
with 19 uncertain rate-controlling parameters. The problem is studied in multiple regimes. It
is shown that the 19-parameter problem can be efficiently reduced to a 3- or 4-dimensional
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problem. The strategy is further implemented to a higher dimensional problem involving
33 uncertain rate-controlling parameters. In this case, it is shown that only 2 out of 33
parameters predominantly contribute to the uncertainty in the quantity of interest (Qol).
Moreover, computational gains using the proposed strategy are shown to increase significantly
with dimensionality.

The remainder of this article is structured as follows. In Sect. 2, we provide a brief intro-
duction to DGSMs as well as the polynomial chaos methodology used in the present work.
In Sect. 3, we present our proposed approach, where we also provide a detailed numerical
algorithm and a flow diagram to aid practitioners in implementing the presented framework.
Section 4 is devoted to numerical examples examining various aspects of our approach. This
is followed by implementation of our framework in a H/O; chemical kinetics problem, in
Sect. 5. Finally, concluding remarks are provided in Sect. 6.

2 Background

In this section, we introduce the notations used in the rest of the article, and present the
requisite background material on derivative-based global sensitivity measures and surrogate
modeling using polynomial chaos expansions.

2.1 Derivative-Based Global Sensitivity Analysis

Let G be a mathematical model that is a function of N uncertain inputs, ), 6, ..., O,.
The goal of sensitivity analysis is measuring the influence of each component of the input

vector § = [91 6 ... QND]T on the model output. In the present work, we consider the case
where the inputs are statistically independent.

Derivative-based global sensitivity analysis is performed by computing derivative based
global sensitivity measures (DGSMs) [18] for each uncertain parameter in the model. Specif-
ically, we consider the following DGSMs,

3G )\ >
,LL;:E{(%E))], i=1,...,Np. (1)

Here E denotes expectation over the uncertain parameters. Notice that this formulation
assumes that the function G is differentiable with respect to 6;, i = 1,..., Ny and the
3G()
a6;

If an analytic expression for G is available, the derivative in the above expression can
be computed directly. In real-world applications, however, G is often defined in terms of a
solution of a mathematical model. In the present work, we consider a generic computational
model and only assume that the model output depends differentiably on the parameter . A
simple approach to computing the gradient is to use finite-differences:

aG(#) ~ G@,...,0;1,6 + A6, 0i11,...,68z) — G(B)
36; A8; ’
Then, (1) can be evaluated by Monte Carlo (MC) sampling in the uncertain parameter space.
The total number of model realizations or function evaluations needed to compute w; for a

function G of Np random inputs and using N samples is therefore, N x (N, +1).Itis noted in
previous studies [21,22], and also observed in the numerical experiments in the present work,

partial derivatives, ( ) are square integrable.

i=1,...,Nyp. (2
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that a modest MC sample size is often sufficient for computing (1) with reasonable accuracy
to identify the unimportant inputs. Moreover, the computational efficiency for estimating u;
can be enhanced by using techniques such as automatic differentiation [23] or adjoint-based
gradient computation [24-27].
Consider the total Sobol’ sensitivity index [28],
VIE(G|0~:)]

7)) =1 VG 3)
where 6 ; is the random vector # with ith component removed, and V denotes the variance.
The total Sobol’ index quantifies the total contribution of #; to variance of the model G.
Components of # with small total Sobol’ index can be considered inessential and can be
fixed at nominal values. However, computing the total Sobol’ index is a computationally
expensive task for expensive-to-evaluate models with large number of uncertain parameters.
Fortunately, for parameters with continuous distributions, an upper bound on 7; can be
expressed in terms of w; as follows:

Cipi
V(G)’
where C; is the corresponding “Poincaré constant” and V(G) is the total variance of the
model output [20]. The upper bound in the above inequality is proportional to the product of
C; and ;. For the purpose of parameter screening as discussed later in Sect. 3, we consider
a normalized product, E:L}: to ensure that it lies between 0 and 1:

TE:) < )

G = i
o E;Ci#'i.

The Poincaré constant, C; is specific to the probability distribution of 8;. For 6; ~ U[a, b],
C; = (b—a)?/n?, and for 6; ~ N(u, 0%), we have C; = 0% (see [20] for more details). Here
N (u, o?) denotes a normal distribution with mean p and variance o2, and U[a, b] denotes
a uniform distribution on the interval [a, b].

)

2.2 Polynomial Chaos Expansion

We consider models with N;, random inputs, 1, ..., fy, that are modeled as statistically
independent random variables. The variables #; will take in physically meaningful ranges; it
is common to parameterize input uncertainties with canonical random variables &1, .. ., £,
which can be then shifted and scaled to obtain the corresponding 6/s. Typical choices for
distribution of &; include standard normal and uniform distribution on the interval [—1, 1].
Let

A'IIJ
f@) =[]fitx), xeR¥
i=l1
where f; are probability density functions of &§;,i =1,..., Nj,.
Consider a square integrable random variable G : R" — R;ie., [, G(§)* f(§)d§ < oo,

where D is the support of the distribution law of the random vector &. The PCE of G is a
mean-square convergent series expansion [1-3] of the form:

G(&) =) cWi(®), (6)

k=0
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where W;’s form a multivariate orthogonal polynomial basis—orthogonal with respect to
the joint probability distribution of &. In practice, a truncated expansion is used. Moreover,
in applications, G is a mathematical model of interest that takes a parameter vector @ (with
components in physically meaningful ranges) as input. Therefore, we write the truncated PC
representation of a model G as follows:

Nec
G6) ~ G*(8) = ch"pk (5(9)), (7

k=0

where £(#) is found by a simple linear transformation.

Computational strategies available for estimating the PC coefficients (cy’s) typically
involve techniques based on projection or regression. Projection-based methods consider
the orthogonal projection of G on the PC basis { lIJk}f:P‘G and compute the resulting expan-
sion coefficients via quadrature [3]. Regression-based methods such as least angle regression
(LAR) [29], and least absolute shrinkage and selection operator (LASSO) [30] aim to con-
struct a sparse PCE [31] by solving a penalized least-squares problem. Specifically in the
case of LAR, a penalty term comprising the £,-norm of the PC coefficients is used:

Npc 2
¢ = argmin E (Z ck Ve (§(0)) — G(B)) +Alel,, (8)
k=0
where ||c||, = Z?:E |ck |- The penalty term forces the minimization towards sparse coefficient

vectors resulting in sparse PC representations. In this work, we construct sparse PCEs with
LAR using UQLab [32], a general purpose uncertainty quantification software developed at
ETH Zurich.

3 Methodology

In this section, we outline the underlying framework for adaptively constructing a reduced-
space surrogate (RSS) using sensitivity analysis. The proposed methodology is described
as adaptive since the RSS is constructed only in situations where it is expected to yield
computational dividend as discussed further below. The term reduced-space implies that the
surrogate is constructed in areduced parameter space that sufficiently captures the uncertainty
in the model output. We begin by outlining an algorithm for parameter screening to assess the
importance of individual parameters for potential dimension reduction and construction of
an RSS. The overall adaptive framework that incorporates parameter screening as an integral
step is thereafter presented. Finally, we present metrics used for assessing the convergence
and accuracy of the RSS followed by a brief discussion on salient features of the proposed
framework.

3.1 Parameter Screening

Dimension reduction and subsequent construction of the RSS is enabled by identifying key
contributors to the uncertainty in the Qol. For this purpose, we estimate the upper-bound

Ci i, given in (4), on total Sobol’ index (7 (8;)) for each parameter 8;; the screening metrics,
{@F}?; 1» are used to identify parameters that are relatively unimportant.
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An initial set of n, samples is used to obtain a rough estimate of the metric. Based on
the associated metric value, an initial rank (’R,ffd) is assigned to each parameter. At each
iteration, a new set of samples is generated based on the joint probability distribution of #
and corresponding model output at each sample point is computed. The new set of gradient
evaluations combined with prior evaluations is used to update parameter ranks. Additionally,
deviation in the derivative-based sensitivity measure between successive iterations normal-
ized by the measure in the previous iteration is recorded for each parameter. The iterative
process is continued until parameter ranks between successive iterations are observed to be
consistent as well as the maximum deviation among all parameters (A ;) is below a certain
tolerance (7). The amount of computational effort associated with the screening process is
limited by the choice of maximum number of iterations, smax.

Key inputs to the screening procedure are as follows: (1) alimiting value 7 of the maximum
relative change in the sensitivity measure between successive iterations; (2) a limiting ratio
Tsereen OF the sensitivity metric relative to its maximum value; (3) a real number 8 € (0, 1)
to guide the number of new samples [Sn] at each iteration ([Bn;] is the smallest integer
greater than or equal to Bn1); (4) a set of samples {# k}ﬁlzl for the initial screening step in the
algorithm and the corresponding gradient evaluations {g*};.,, where g = V4G (0y). The
outputs are the set of active indices Ty.ive corresponding to the important parameters, the
total number of available model evaluations Nyqq1, and the enriched set of gradient evaluations
{gF }?ﬁ"f‘] . A general methodology for parameter screening is provided below in Algorithm 1.

Algorithm 1 Parameter screening with DGSMs: A generalized approach.

Input: 7 > 0, Tscreen > 0, Smin = 1, Smax = 1, B > 0, {gk};:]:p {gk}i\lnfl-

Neotal

Outp“t: 1—a{:tive, {gk}kzl y Ntotal-

1: procedure SCREENING

2:  Compute g8 = VoG(0r), k = Nt + 1, ..., Niotal + 1.

3: Niotal = Nrotal + 11 .

4:  Compute p;; = ﬁ Z?j‘f‘] (852

5:  Compute v;=m,forcach9,-,i=l,...,1\fp.

6:  Determine initial ranks: let R = {v; , v;,, ..., Viy, } such that

Vip 2V = 2 vi_.\.-p-

Set s = 1 and done = false.
while done == false AND 5 < sy do

. s=s5+1.
10 Draw ny; = [Bn;] new samples 8, k = Nyl + 1, ..., Niotal + Bs
11: Niotal = Niotal + Rs.
12: Compute gk = V'BG(gk):k=ns—l + 1., 01 + 0.
13: Compute {u; ; }?:"1 using the augmented sample {g }?ﬁ’f“.
14: Computtvg=m,i=l,...Np.
15: Determine new ranks R¢* based on {v; }:\:" .-
16: Compute Ap; = max (M)

l=i=N, Hs—1,i

17: if R7€® = R4 AND Ap; < 7 AND s > spin then
18: done = true
19: else
20: Set Rold = Rrew
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21 end if
22:  end while i
. [
23: Tcive ={i € {1,..., Np} : > Tycreen)-
vl

24: end procedure

3.2 Adaptive Surrogate Model Construction

We begin by allocating computational resources for constructing a cross-validation test suite
to be used for assessing the accuracy of the resulting surrogate. Naturally, the resources
allocated for this purpose depend upon the application as well as total amount of available
resources. The set of required inputs for parameter screening are initialized, and model
evaluations at n; random samples in the full-space are computed. These evaluations are
used to construct a surrogate in the full-space (FSS) using regression-based techniques.
If the surrogate is found to be sufficiently accurate for the given application, the process
is terminated. However, it is likely that a full-space surrogate constructed using a small
number of model evaluations would not provide a faithful representation of the input-output
relationship.

The available set of model evaluations are utilized and further enhanced during parameter
screening as discussed earlier. At the end of screening, the set of active indices, Tactive, 18
used to evaluate «, referred to as the degree of dimension reduction:

_ |Iactive| (9)
Ny '

where |Zyeiive | denotes the cardinality of Zyeiive . Scope for dimension-reduction increases as o
decreases. Hence, if « is considered to be small and computational gains are expected owing
to dimension reduction, the RSS is constructed and verified for accuracy using a combination
of model evaluations used for screening and those associated with the cross-validation test
suite. On the other hand, if « is close to 1, the set of inputs required for screening are updated as
needed, and a new set of n; samples and corresponding model evaluations are generated. The
FSS is reconstructed using the enriched set of evaluations and the aforementioned analysis is
repeated as illustrated in the flow-diagram in Fig. 1 that shows the overall parameter screening
and surrogate model construction method.

3.3 Assessment of the Surrogate

To assess accuracy of the resulting surrogate, one could estimate the leave-one-out cross
validation error as follows:

YN (GO — GPCV(E®,)))’
YN (G@®:) - )

€LOO = (10)

where N; is the number of training points, i = Nif Ztl

the model response, and GPC\F is the PC surrogate constructed using all but the ith model
realization. From (10), it appears that N; PCEs are needed to evaluate € oo. However, in
practice a modified formulation for ;oo [33], independent of GPCV is used; for an easy
reference, see [32, Eq. (1.27)]. Predictive accuracy of the surrogate is assessed by evaluating

G(#;) is the sample mean of
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accurate?

Is o small

Parameter Screening |-—r

enough?

v

Test RSS accuracy using
evaluations at Ny &
the validation test suite

Construct a reduced-
space surrogate (RSS)

Fig. 1 Flow-diagram outlining the adaptive strategy for constructing reduced-space surrogates

the relative £;-norm of the difference in predictions between the model and the surrogate
(€1,—2), as follows:

(52 (660 - 6™ 0)’]’

(11

€L-2 =

=% o]’

Here N, is the number of sampling points in the full parameter space at which model eval-
uations are available; this, in the case of an RSS, is given by the augmented set of model
evaluations used for validation and screening. Accuracy of the surrogate could be further
investigated by comparing probability density functions (PDFs) of the model output based
on model evaluations in the full parameter space and the RSS predictions corresponding to a
large number of samples (say, 10° for a high-dimensional input space). However, in realistic
problems involving complex, compute-intensive simulations, constructing the PDF based
on model evaluations would be infeasible. A practical alternative would be to compare a
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(normalized) histogram based on sparse model evaluations with the surrogate-based PDF in
order to gain some insight into the statistical quality of the surrogate.

3.4 Discussion on the Proposed Methodology

The amount of computational effort associated with the presented methodology can be mainly
attributed to two steps: I. Parameter Screening, and I1. Constructing a converged RSS. Compu-
tational gains are realized in situations where constructing the surrogate in the full parameter
space is more expensive than the combined cost associated with these steps. Determining
the optimal allocation of computational resources for these steps, however, is not possible a
priori. Hence, in the proposed framework, we exploit the set of model evaluations used in
parameter screening to simultaneously construct the FSS while keeping a track of its accu-
racy using the cross-validation test suite. This would help address situations where significant
dimension reduction is not possible, and hence, constructing the RSS might result in a com-
putational disadvantage. We suggest using a small number of samples in the initial screening
step (say, n; = 5) and a relatively large 7 (say, @(1071)) as a starting point with possible
reduction in T during subsequent screenings. Pseudo-random sampling approaches such as
Latin hypercube sampling (LHS) and quasi Monte Carlo (QMC) could be used to generate
samples in the input space.

Careful assessment and decision-making is required on whether or not to proceed with the
construction of the RSS at the end of each screening step. The user should account for factors
such as the possible degree of dimension reduction, accuracy of the concurrent FSS, and
availability of computational resources. Moreover, the stopping criterion for the screening
procedure i.e. the choice of Au; should be based on the application.

The applicability of the proposed framework depends upon the choice of the model output.
Since the screening metric involves computation of partial derivatives in the full parameter
space, the output must exhibit differentiable dependence on each parameter. It is therefore
likely that for a given application involving multiple outputs, the RSS can only be constructed
for a selected few, using the approach presented above. Hence, it is important to assess the
nature of the input-output relationship for a given model prior to implementing the present
framework.

Additionally, in some cases, the partial derivative of the output with respect to each
uncertain input is not available analytically. In these cases, one could use finite difference (FD)
to approximate the gradient as illustrated in 2. However, since FD requires model evaluations
at neighboring points, the underlying computational cost is expected to increase by a factor,
Np,+1, with N, being the number of inputs. A possible, more efficient alternative to FD, which
might be suitable in some cases, involves the use of adjoints for gradient computation [34].
In the adjoint approach, each gradient evaluation requires a solution of the state equation
(forward solve) and that of the corresponding adjoint equation; see e.g., [24-26]. The adjoint
method, however, requires the availability of an adjoint solver. Another alternative for efficient
gradient computation is the use of automatic differentiation [23].

Using the framework proposed in this section, we aim to construct a reliable surrogate
in the most efficient manner within the constraints of the computational budget. However, it
might be possible that for a given application, the RSS is not found to be sufficiently accurate.
In such a scenario, we suggest enriching the set of important inputs by incorporating the least
unimportant model input as determined after a series of screening steps, and re-constructing
the RSS. This process could be repeated depending upon the availability of resources and
the desired accuracy of the surrogate.
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4 Motivating Examples

In Sect. 3, we presented a framework for constructing an RSS (if deemed advantageous)
by identifying unimportant parameters based on estimates of the screening metric, a_;_: for
individual parameters. In this section, we motivate the proposed methodology by applying
it to two test problems, namely, the borehole function, and a semilinear elliptic PDE. Model
evaluations in these test problems are inexpensive. Therefore, we are able to compare the
relative importance of model parameters based on the screening metric (computed by sam-
pling the model) with those obtained from converged estimates of 7(8;) (computed using
the surrogate constructed in the full parameter space (FSS)). Additionally, to illustrate the
computational gains, we compare convergence trends as a function of training runs for the
RSS and the FSS using € oo in Eq. 10. Furthermore, as discussed earlier in Sect. 3, we
compare PDFs of the model output, obtained using the RSS, the FSS, as well as true model
evaluations, for the purpose of verification.

4.1 Borehole Function

The borehole function [32,35] is a benchmark reference problem in sensitivity analysis. It
models the discharge of water (Q) through a borehole in terms of geometrical and physical
inputs:

0= 2nT,(H, — Hy) - (12)

2LT, T,
In 1+ —— + =
(r;‘rw)[ + In(r/ru)r2 K, 1’}]

The radius of influence,  is fixed at 3698.30 m whereas all other parameters in the right hand
side of (12) are considered as uncertain. Hence, @ = Q(#) with

0=[ro LT, H, T H K.,]",

being the vector of uncertain parameters. Table 1 provides distributions of the uncertain input
parameters.

Cheap function evaluations of the discharge Q(#) enables construction of the FSS with
minimal effort. FSS predictions at a large set of MC samples in the input space are used
to obtain converged estimates of 7(6;). Shown in Fig. 2a are estimates of these indices
corresponding to the uncertain parameters in the borehole function using 106 MC samples in

Table 1 Description and distributions of uncertain inputs in the borehole function given by (12)

Parameter Distribution
Borehole radius, ry; (m) N(0.1,0.016)
Borehole length, L (m) L4[1120,1680]
Transmissivity of upper aquifer, T}, (m2 /year) U[63070,115600]
Potentiometric head of upper aquifer, H,, (m) 14[990,1110]
Transmissivity of lower aquifer, T} (m2 /year) 1463.1,116]
Potentiometric head of lower aquifer, H; (m) U[700,820]
Borehole hydraulic conductivity, Ky, (m/year) L{[9855,12045]
@ Springer
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Fig. 2 a Sobol’ total sensitivity index, 7 (¢;) for uncertain parameters in the borehole discharge function

in (12); b estimates of the screening metric (C; ;). plotted against number of samples. Also included in

the legend are estimates of 7 (#;) in each case; and ¢ estimates of é:;;: for individual parameters using
N = 5,10, 15, and 20 samples in the full parameter space

the input parameter space. These estimates are used to verify fidelity of parameter screening
based on the methodology presented in Sect. 3.

InFig. 2b, we plot estimates of the screening paramcter@;for a wide range of the number
of samples used for approximating u; using (1). Additionally, to illustrate a comparison of the
estimates of E:‘.;: obtained at the end of the initial screening step, i.e. N =5, with subsequent
steps, we plot them for individual parameters at N = 5, 10, 15, and 20 samples in Fig. 2c.

Estimates fora_ﬁ? are found to be in excellent agreement with 7 (6;) even when small number
of samples (5-10) are used. Consequently, the relative importance of uncertain parameters in
the borehole function is found to be consistent with predictions based on the Sobol’ index. In
the considered intervals for the uncertain parameters, it is clear that the discharge is insensitive

to T, and T;. Moreover, the sensitivity to K, is also small. We exploit these findings to reduce

the dimensionality of the problem: we can discount the variabilities in T;, Tj, and K,, by
fixing them at their respective nominal values.

Our goal as discussed earlier is to gain computational advantage by constructing surrogates
in a reduced input parameter space. To this end, we use LAR to construct PCEs in 5D and
4D spaces by fixing {7, T;} in the former and additionally fixing K,, in the latter at their
respective mean values. In Fig. 3a, we compare convergence of PCEs constructed in the
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Fig. 3 a A comparison of order of the leave-one-out-error (e 0p) as a function of number of regression
samples used for constructing the PCE in 4, 5, and 7 dimensions. The degree of the PCE constructed using
50 training points was found to be 3, 2,and 2 in the 4D, 5D, and 7D case respectively; b semilog plot of the
relative L—2 error norm (e —3) for the PCEs constructed in 4D, 5D, and 7D; and ¢ a comparison of PDFs of

the discharge, Q, generated using 106 samples from the marginal distributions of the uncertain parameters in
each case

full space (7D) with those constructed in the two reduced spaces (4D and 5D) using €100
(Eq. 10).

As expected, it is observed that the PCE constructed in the 4D space converges at a
much faster rate. For instance, if a PCE with ©(10~%) accuracy is sought, we need function
evaluations at only about 50 sample points in the 4D parameter space whereas the number of
samples needed in the full 7D space seems much higher. Latin hypercube sampling (LHS)
was used in each case. It must be pointed out that the error in Fig. 3a is not expected to
decrease monotonically with the increase in sample size owing to the penalty term in the
regularized optimization problem in Eq. 8. However, the plot of € _; as a function of sample
size for the three surrogate models in Fig. 3b clearly demonstrates the trade-off between
computational effort associated with surrogate construction and its predictive accuracy. For
a small sample size of 20, the relative error in the case of 4D PCE is found to be the smallest.
However, as the sample size increases, the higher order PCE becomes more accurate. This is
expected since the higher order PCE inherently contains more information pertaining to the
input-output relationship. Note that the same set of 50 samples in the validation test suite were
used in each case. Hence, when limited computational resources are available, the proposed
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methodology could yield substantial gains due to fast convergence as well as higher accuracy
of the surrogate in the reduced space. The gains are expected to increase significantly as the
dimensionality of the input space increases.

Specifically, the estimates for €} were found to be 0.0551 and 0.0112 for the 4D and 5D
PCE’s, respectively. In other words, the 4D PCE is accurate within 5.52% and the 5D PCE is
accurate within 1.12% of predictions based on the borehole function. Note that €, o, however,
is lower in the case of 4D PCE (Fig. 3). Generally, the required level of accuracy is problem
dependent. The present framework allows for moving towards higher fidelity reduced-space
surrogates based on the ranking of the parameter sensitivities.

Figure 3cillustrates a comparison of the PDFs of the discharge, Q obtained by propagating
10° random samples through the 7D PCE in the original input parameter domain as well as the
reduced-space PCEs constructed in 4 and 5 dimensions. A normalized histogram plot using
1000 model evaluations in the validation test suite is also included. It is evident from this
plot that the PDFs agree quite favorably with each other as well as the original model-based
histogram with respect to the modal estimate as well as the uncertainty associated with Q.
Consequently, it can be said that the reduced-space PCE is verified in a probabilistic sense.
In other words, the mode as well as the uncertainty in the output is reliably captured and
predicted by the reduced-space PCE.

4.2 Semilinear Elliptic PDE with Random Source Term

We consider the following semilinear elliptic PDE:

—kAu+cu’=q inQ,

13
u=0 onodf2. (13

Here € = (0, 1) x (0, 1), u is the state variable, and « and ¢ are coefficients of the diffusion
term and the nonlinear term in the above equation, respectively. We consider uncertainties in
Kk, ¢, and the source term. The right hand side function q is defined by

N=8 . .
q(x,y) = XI: o; sin (%) cos (%) s (14)
i=
where o;, i = 1, ..., 8 are random coefficients. Hence, u = u(#), where

9=[KCO.‘1(1‘2---(1’3:IT

is the vector of uncertain parameters. Distributions of the uncertain input parameters are
tabulated in Fig. 4 (left). The solution of (13) for a fixed set of values of the uncertain
parameters is also illustrated.

We aim to construct a reduced-space surrogate for the following Qol:

F@) = ﬁfDu(x; #)dx, (15)

where D is the region [2/5,3/5] x [2/5,3/5] C €, and | D| denotes the area of D. While
this model is considerably more complex than the borehole example, it can still be solved
efficiently. The equation was discretized using finite differences, and Newton's method was
used to solve the resulting nonlinear system on a 100 x 100 2D cartesian grid. We computed
converged estimates of the Sobol’ total-effect index 7 (6;), reported in Fig. 5 (left) using FSS
predictions at 10 MC samples in the input space. The FSS was constructed using model
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Fig. 4 Left: Table providing distributions of the individual uncertain parameters in (13). Right: Solution of
the 2D semilinear elliptic PDE (13) using ¥ = 0.075, ¢ = 1.5, and o; = 4.0

predictions at 500 training points in the 10-dimensional input space. Corresponding value of
€.00 wWas found to be 9.729 x 104, Sensitivity predictions based on the screening metric,
6;'.;;, plotted in Fig. 5 (right), are found to be in close agreement with 7 (8;), even for the case
when N =5. As N is increased from 5 to 20, estimates of the screening metric are observed
to converge. Based on the trends observed in Fig. 5, it can be said that the uncertainty in
the Qol in (15) is largely dependent on ¢, a2, @3, a4, and as. These observations underscore
the potential for computational gains by constructing an RSS in the 5D parameter space.
We illustrate the comparison of convergence characteristics of the PCEs constructed in the
full parameter space (10D) and the reduced space (5D) in Fig. 6a. As expected, the RSS
converges considerably faster. Using model evaluations at 90 sample points, € oo is found
to be two orders of magnitude smaller than that in the case of full-surrogate (O(10~%) vs.
O(1072)). Consequently, the computational effort for constructing the RSS in the present
test problem is expected to be much smaller. The comparison of predictive accuracy of the
PCEs using €1 7 is illustrated in Fig. 6b. It is observed that for a small sample size of 20,
the surrogate constructed in the reduced space performs better in terms of predictability.
However, as the sample size increases, the FSS is observed to be slightly more accurate
although the order of the accuracy is found to be consistent in both cases until the sample
size is less than 80. When the sample size increases to 90, the 10D PCE is observed to be more
accurate by an order of magnitude. However, the corresponding value of e; gp is @(1071).
Hence, the 10D PCE does not seem to have fully converged and requires additional model
evaluations. Therefore, considering fast convergence of the surrogate in the 5D space and
predictive accuracy comparable to the 10D PCE, the proposed methodology significantly
reduces computational effort in this case.

Using model evaluations at 1000 independent MC samples in the 10D parameter space,
the RSS was found to be accurate within 5%. In order to bolster confidence in the RSS, we
compare PDFs of the Qol as well as a normalized histogram plot based on sparse model
evaluations in the validation test-suite, in Fig. 6¢. While the two PDFs are in favorable
agreement, the modal estimate and the spread in the Qol based on the histogram is also
captured by them. Hence, the RSS could be used with a reasonable degree of confidence to
quantify the uncertainty in 7 (#) thereby leading to a computational advantage in this case.
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Table 2 Reaction mechanism for

H; /O, from [36] Reaction # Reaction
R H+0; =0+ 0OH
R2 O+Hy = H+OH
R Hy + OH = H,0 + H
Ra OH + OH = O + Hy0
Rs Hy+M=H+H+M
Re 0+0+M=0,+M
R1 O+H+M=OH+M
Rs H+OH+M = H)0+M
Ro H+0y+M=HOy +M
Rio HO; +H=Hy + 0,
Ru HO; 4+ H = OH + OH
Rz HO3 + 0 = 0; + OH
Ri3 HO3 + OH = H,0+ 03
Ris HO, + HOp = Hy0y + 0
Ris HyOp + M = OH 4 OH+ M
Ris Hy0; + H = H0 + OH
R17 H,05 + H = HOy + Hy
Rig Hy0; + O = OH + HO,
R19 H,0; + OH = HO;, + Hy0

5 Application: H2 /02 Reaction Kinetics

The proposed framework in Sect. 3 is implemented to the H; /O; reaction mechanism pro-
vided in [36]. The H; /O, reaction is gaining a lot of attention as a potential source of clean
energy for applications such as transportation [37] and fuel cell applications [38,39]. We begin
by providing the necessary background information for setting up the problem in Sect. 5.1.
Results and discussion based on the implementation of the proposed framework are provided
in Sect. 5.2. Finally, in Sect. 5.3, we provide a comparative analysis of the computational
cost involved in determining relative parameter importance using DGSMs and the total-effect
Sobol’ index as the dimensionality increases from 19 to 33 for the present application.

5.1 Problem Setup

The mechanism comprises of 19 reactions including chain reactions, dissociation/
recombination reactions, and formation and consumption of intermediate species as pro-
vided below in Table 2. The reaction rate for the ith reaction as a function of temperature is
given as follows:

ki(T) = A;T" exp(—Eq,i/RT), (16)

where A;, n;, and E, ; denote the pre-exponent, the index of T, and and the activation energy
corresponding to the ith reaction; and R is the universal gas constant. The TChem [40]
software package is used to model homogeneous ignition at constant pressure for a range
of initial conditions for the fuel-oxidizer mixture. During the simulation, the fuel-oxidizer
mixture goes through a radical build-up phase followed by a sharp increase in temperature
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as heat is released during the thermal runaway. We focus on quantifying the uncertainty in
the ignition delay due to uncertainty associated with the pre-exponent, A;, for each reaction.
The ignition delay is defined as the inflection point on the temperature profile during the
thermal runaway. The total number of uncertain parameters in the present case is 19. The
A;’s are considered to be uniformly distributed in the interval: [0.9A7, 1.1A7]; A} being the
nominal estimate corresponding to the ith reaction. The set of nominal values used in the
computations, for parameters in (16) are provided in [36].

While the dimensionality of the problem is moderate, constructing a surrogate in the 19-
dimensional parameter space could still be expensive. Hence, we explore the possibility of
constructing a reduced-space surrogate (RSS) using the framework presented in Sect. 3. In
the present study, we focus on two scenarios: fuel(Hz)-rich, and fuel(H;)-lean. Consider the
global reaction:

2H; + 07 — 2H,0 (17)

The equivalence ratio ¢ is defined as follows:

_ (My, /Mo,)obs
(My, /Mo, )st

The numerator in the right-hand-side represents the observed (obs) fuel-oxygen mass ratio
at a given condition and the denominator represents the stoichiometric (st) ratio of the same
quantity. Hence, ¢ = 1 at stoichiometric conditions. The equivalence ratio can be altered by
changing the amount of O3 in the mixture. In the case of a lean mixture, (17) can be written
as follows:

] (18)

2H; + @0z — 2H;0 + (@ — 1)O2 (@ > 1) (19)
Similarly, for the case when the mixture if fuel rich, (17) is modified as follows:
2H; + @0z = 2aH;0+2(1 —a)H; (x < 1) (20)
Equations (19) and (20) can be generalized as follows:
2H; + ¢0; — 2min(l, @)Hp0 + max(e — 1, 0)0; + max(0, 2 — 2a)Hy  (21)

From the above set of chemical equations, the relationship between ¢ and « can be easily
obtained as ¢ = é Since ¢ > 1 corresponds to a rich mixture, and ¢ < 1 corresponds to a
lean mixture, we consider ¢ = 2.0 and 0.5 to investigate the two scenarios respectively.

5.2 DGSM-Guided Surrogate Construction

We apply the parameter screening algorithm with the following parameters: Ticreen, Smins
Smax» B are fixed at 0.2, 3, 10, and 1.0 respectively for both cases. Additionally, the value of
7 is considered to be 1.0 x 10717 and 5.0 x 10~!7 in the rich and lean case respectively.
Such a small value of T for this application is a consequence of the nature of convergence
exhibited by the sensitivity measures. Moreover, the screening procedure is carried out for
atleast sy, number of iterations in order to bolster our confidence in the estimates.
Following the steps outlined in the flow-diagram in Fig. 1, model evaluations are initially
generated atn) =5 samples. The evaluations are used to construct a regression-based surrogate
in the full-space. As expected, the surrogate is found to be highly inaccurate. Moreover, unlike
the test problems in Sect. 4, we do not estimate the Sobol’ total-effect sensitivity indices in
the interest of following the overall framework closely. Hence, we proceed to the screening
step to estimate the screening metric for the uncertain pre-exponents, A;'s. Results are plotted
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Fig. 7 Top: Estimates of E:;; for A;’s in the case of fuel-rich mixture (left) and fuel-lean mixture (right).

Bottom: The value of Ay during three iterations within the screening step are plotted for the case of fuel-rich
mixture (left) and fuel-lean mixture (right)

below in Fig. 7 (top row) for both cases. Furthermore, we illustrate the decay in the value of
Aps with iterations in Fig. 7 (bottom row).

The screening metric estimates in the above plots are observed to converge with only a few
samples (5-10). Moreover, out of the 19 uncertain pre-exponents, only A1, Ag, A1s, and A7
seem to be important in the fuel-rich case, whereas, only A, Ag, and A5 seem important
in the fuel-lean case, based on the value of Tyereen. These observations are indicative of the
potential for significant reduction in the dimensionality of this problem. A reduced-space
surrogate constructed using the proposed framework could thus lead to large computational
gains. The decay of Au; withiterations is expected and builds our confidence in the screening
procedure in both cases.

A reduced-space surrogate (RSS) was constructed in 4D for the fuel-rich case, and in 3D
for the fuel-lean case. Figure 8 (left) illustrates a comparison of convergence characteristics
for the PCEs constructed in the full-space and the reduced-space for the fuel-rich case. Note
that the plot is generated using the implementation of least angle regression (LAR) for sparse
PCEs in UQLab. The leave-one-out cross validation error is observed to drop initially and
plateau with the increase in training points for the 19-dimensional PCE. However, in the case
of 4-dimensional PCE, the error exhibits a monotonic behavior and is found to be smaller
than ©(10~3) at 60 training points. Clearly, the RSS shows a much faster rate of convergence.
Additionally, the convergence of the relative error norm, e 7 in Fig. 8 (right) indicates that
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the reduced-space (4D) for the fuel (Hp)-rich case i.e. ¢ = 2.0. The degree of the PCE constructed using 60
training points was found to be 1 and 3 in the 19D and the 4D cases respectively. Right: semilog plot of the
relative L—2 error norm (ep_) for the PCEs constructed in 4D and 19D
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Fig. 9 A normalized histogram based on model evaluations at 1000 samples is plotted along with a PDF of
ignition delay for the fuel-rich case (left) and the fuel-lean case (right)

for the case of 10 samples, the 4D PCE is observed to be more accurate. However, the 19D
PCE is observed to be more accurate by an order of magnitude as the sample size increases.
Specifically, the 4D PCE was found to be accurate within 1.8% in the fuel-rich case, and
within 3.1% in the fuel-lean case. Therefore, the 4D PCE is still observed to be reasonably
accurate in this case. Moreover, its faster convergence as mentioned earlier should help
reduce computational effort associated with surrogate model construction. Similar trends
(not included) were observed in the fuel-lean case.

Model evaluations at 1000 samples in the test suite are further used to plot a normalized
histogram of the ignition time in Fig. 9. To verify the accuracy of the RSS in a probabilistic-
sense, we compare the histogram plot with a PDF of ignition time using surrogate predictions
at 109 samples in the reduced space in both cases. Clearly, the RSS captures the spread as well
as the modal estimate of the ignition delay in both scenarios. Hence, the proposed framework
has enabled significant dimension reduction and construction of an accurate RSS for multiple
scenarios pertaining to the Hp /O reaction mechanism.
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5.3 Comparative Cost Analysis: Higher-Dimensional Setting

In this section, we perform a comparative analysis of the computational cost associated with
obtaining converged estimates of parametric sensitivities using DGSM, and the total-effect
Sobol’ indices (7 (6;)). The former is computed using the parameter screening algorithm
(Algorithm 1), and the latter is estimated using a sparse-basis PCE. Note that estimating 7 (6;)
using a PCE has been shown to be more efficient compared to sampling techniques [41,42].
Moreover, a sparse-basis PCE requires fewer training points which enhances computational
savings [33,43]. To investigate the impact of the dimensionality, the analysis is performed
with 19 uncertain parameters, i.e. the pre-exponents (A;’s) as discussed earlierin 5.1 and 5.2,
and 33 uncertain parameters wherein the activation energies (E, ;’s) are considered to be
uncertain in addition to the A;’s. The E, ;’s are also considered to be uniformly distributed
in the interval: [0-9E§.5» I.IE;,I.], where E;‘_!. is the nominal value for the i'® reaction as
provided in [36]. Note that only those E, ;’s with a non-zero nominal value are considered
as uncertain, and therefore the total number of uncertain parameters in the high-dimensional
case is 33 as opposed to 38.

The 33-dimensional sparse basis PCE was assessed for its convergence characteristics
and its predictive accuracy using € oo [(see (10)] and ep 7 [see (11)] respectively as shown
in Fig. 10. The sparse-basis PCEs constructed in the 19 and the 33 dimensional parameter
space were considered to have converged once €, was found to be smaller than 6.0 x 10 3,
As observed in Figs. 8 and 10, the number of training points required in the 19D and the
33D cases are found to be 20 and 500 respectively. As expected, the predictive accuracy is
observed to increase with increase in the number of training points in both cases. The estimate
of €1 _» was found to be 7.22 x 102 using the converged 33D PCE and an independent set
of model evaluations at 1000 samples.

Before comparing the computational cost pertaining to the two approaches (DGSM-based
and Sobol’-based) and the impact of dimensionality, we verify that the parametric sensitivities
are consistent in both cases. Sensitivity estimates for the 33 uncertain parameters obtained
using the DGSM-based strategy, and by evaluating 7 (6;) using the sparse-basis PCE are plot-
ted and placed adjacent to each other for comparison in Fig. 11. The plots clearly indicate that
the relative importance of the uncertain parameters is consistent in both cases. Specifically,
both approaches reveal that the uncertainty in the ignition delay is predominantly due to the
uncertainty in E, ; and E, 1o with a minor contribution from E, 2, whereas, contributions

Fig. 10 A semi-log plot of €, o, 10°
and e _» as a function of the
number of training points in the
33D parameter space for the fuel
(Hp)-rich case i.e. ¢ = 2.0. The
degree of the PCE constructed
using 500 training points was
found to be 3

—e—logg(eLoo)
-® -logglen-2)

10 3 ) ; ,
100 200 300 400 500

Number of Training Points
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Fig. 11 Left: estimates of the screening metric (a-ﬁ;;;), obtained using N = 5, 10 samples in the full parameter
space; and Right: total-effect Sobol’ indices, 7 (6;) for the 33 uncertain rate-controlling parameters (A4;'s and
Ea, i ’S)

from other parameters is either zero or negligible. These results are clearly indicative of the
potential for dimension reduction in this case using the proposed sensitivity-driven approach.
A reasonably accurate RSS in a 2D parameter space could potentially capture the uncertainty
in the ignition delay due to the uncertainty in the 33 rate-controlling parameters.

The computational cost is estimated in terms of the number of function evaluations or
model runs, denoted by M in each case. In the case of DGSM-based approach presented
in this work, M = N(N, + 1) (N: number of samples, N,: number of parameters) as
discussed earlier in Sect. 2.1. In the case of PCE-based computation of 7(8;), M is the
sum total of the number of training points used for constructing the sparse-basis PCE and
the number of evaluations used for its verification. In Table 3, we provide a comparison of
M for the two approaches in the case of 19 and 33 uncertain parameters for the Hy /O,
reaction kinetics application. For the 19D case, estimating the converged estimates of the
screening metric (a;?) required 5 samples. However, since finite difference was used in
this work for estimating the gradient of the model output, a total of 100 model runs were
required. Additionally, the screening procedure is continued for one iteration using N = 10
samples to ensure the convergence of a;: Since these additional runs are essentially used
for verification, we denote them as Ny, . On the other hand, constructing the sparse-basis
PCE requires only 20 samples in the 19D parameter space with uncertain pre-exponents.
Additional model runs (N,,) typically ranging from O(10%)-O(10%) are needed to build a
cross validation test suite to verify the accuracy of the PCE. The DGSM-based approach could
thus yield computational gains especially when efficient gradient computation techniques
are used. The comparison is significantly more favorable for the proposed DGSM-based
framework in the higher dimensional case involving 33 uncertain parameters. Once again,
converged estimates of the screening metric (a-ﬂf) are obtained using only 5 samples in the
33D parameter space. For verification, the screening procedure is continued for one iteration
by evaluating the model output at 10 samples in 33 dimensions. Therefore, a total of 340
model runs are needed in this case including for gradient computation using finite difference
as well as verification. Whereas, as discussed earlier, constructing the sparse PCE itself
requires model runs at 500 training points to sufficiently converge. Additional model runs
(O(10%)-O(10%)) are required to further verify the accuracy of the resulting PCE. Note that
the analysis was performed for the fuel-rich case.
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Table 3 A comparison of computational cost for the DGSM-based and Sobol’-based parametric sensitivity
analysis in the case of 19 and 33 uncertain rate-controlling parameters

# of function evaluations/model runs (M)

19D 33D
G i; (DGSM-based) 519+ 1) = 100 + Ny, 5(33+ 1) = 170+ Ny,
T (6;) (PCE-based) 20+ Ny, 500 + Ny,

Based on our findings, it appears that the proposed DGSM-based approach can offer a sig-
nificant computational advantage especially in higher dimensions due to multiple factors: (1)
Computational effort required for estimating 7 (6;) is observed to increase substantially with
dimensionality even when using sparse-basis PCEs. Whereas, the DGSM-based estimates
converge with only a few samples, O(10!) even for a relatively higher-dimensional case.
Moreover, it must be noted that the computational gains associated with the proposed DGSM-
based approach could be enhanced significantly by employing efficient gradient computation
techniques such as those involving adjoints and automatic differentiation as mentioned earlier
in Sect. 2.1; (2) The number of model runs needed to verify the convergence of E?T;;: can be
controlled using the iterative strategy in this work and is expected to be much smaller than the
number of runs needed for verifying the accuracy of 7(#;) especially in high-dimensional
settings. Specifically, for the 33D case, model runs at 5 additional samples (correspond-
ing to the first iteration) were used to verify the convergence of a_;}: as opposed to 1000
model evaluations used to verify the accuracy of the PCE. It can thus be understood that for
higher dimensional problems involving hundreds of parameters, conventional approaches
(even sparse-basis PCEs) can quickly become prohibitive and the proposed DGSM-based
approach could help reduce the computational effort by several orders of magnitude.

6 Summary and Conclusion

In this work, we have presented an efficient and practical approach for constructing a
reduced-space surrogate for scientific and engineering applications. Dimension reduction
is accomplished by identifying uncertain parameters that contribute relatively less towards
the uncertainty in the Qol. These parameters deemed as unimportant are determined using
a screening metric (5) involving derivative-based sensitivity measures. Initially, the metric
is estimated using model evaluations at a small set of samples in the parameter domain.
These estimates are refined by subsequent enrichment of the sample set during the screening
procedure presented in Algorithm 1. The outcome of parameter screening is assessed for
the scope of dimension reduction. In a favorable scenario, a reduced-space surrogate (RSS)
is constructed. The RSS is tested for accuracy in a least-squares sense as well as a proba-
bilistic sense using a cross-validation test suite. In the proposed framework, a surrogate in
the full-space (FSS) is constructed in tandem with parameter screening using the available
set of model evaluations. Both, RSS and FSS are constructed using regression-based sparse
PCEs. Note however that the FSS is constructed in an independent manner to ensure that
the computational effort associated with the proposed methodology does not overshoot the
effort required to construct the FSS directly. Therefore, it does not impact the accuracy of
the RSS which is only constructed in situations where computational gains are expected.
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Parameter screening methodology was implemented to low-to-moderate dimensional test
problems and an accurate RSS was constructed to demonstrate potential for computational
gains in each case. Furthermore, the overall framework was implemented to a relatively
higher dimensional application involving kinetics of the H; /O; reaction mechanism. Signif-
icant dimension reduction (19 dimensions to 3 or 4 dimensions) was accomplished for two
different scenarios involving a fuel-rich and a fuel-lean mixture. In both cases, the resulting
RSS was able to capture the input-output relationship as well as the uncertainty in the Qol
with reasonable accuracy. Moreover, it was shown that the parameter screening procedure
(Algorithm 1) was able to determine the relative importance of the parameters using only 5
samples in an even higher dimensional case involving 33 uncertain rate-controlling param-
eters. It was observed that the parameter dimension could be reduced from 33 to 2 in this
case. Additional highlights of the proposed framework are as follows:

1. Although PCEs were used in this work, the proposed framework is agnostic to the choice
of the surrogate model construction method.

2. Substantial computational gains are expected in situations involving compute-intensive
simulations even if the scope for dimension reduction is small. However, computational
gains using the proposed framework are expected to increase significantly with the
increase in dimensionality of the parameter space.

3. Significant gains can be realized in situations where multiple surrogates need to be con-
structed as illustrated in the kinetics application. Other possible scenarios may include
inverse problems involving parameter estimation in a Bayesian setting.

4. Dimension reduction based on the proposed methodology could help reduce the effort
required for model calibration wherein only the important parameters are calibrated.

Based on the results presented for the test problems and the kinetics application, the
proposed framework seems quite promising in its potential for identifying the unimportant
model inputs. In fact, in the numerical tests and the chemical kinetics application presented
in this work, reasonable estimates of the screening metric are obtained during the initial
screening step with a few samples. This is indicative of a small degree of variability in the
gradient of the model output with respect to individual parameters, and therefore, a low
variance of the Monte Carlo estimator. These observations could be exploited to construct
efficient model surrogates in a reduced input space.

While the proposed approach has attractive features, it is important to remain cognizant
about the limitations of the framework as well. For instance, the Qol is required to be differen-
tiable with respect to each parameter in the considered domain. This condition once satisfied,
enhances the accuracy of the PCE-based surrogates as well. Moreover, in the presence of
severe non-linearity in the model output leading to significant variability in its gradient in
the considered input domain, the number of samples and hence, the computational effort
associated with the estimation of screening metrics would expectedly increase. The extent
of increase in the effort would of course depend upon the application. Also, we note that the
proposed methodology aims to reduce the computational effort pertaining to the total-effect
Sobol’ index, which is a variance-based measure. For severely nonlinear models, whose Qols
might exhibit heavy-tailed or multimodal distributions, the variance might not provide an ade-
quate representation of uncertainty. Possible remedies for such cases include the so-called
moment independent measures; see e.g., [44,45].

Additionally, the proposed framework does not account for the existence of possible
correlations between the uncertain inputs of the model. However, while the assumption of
independent inputs is not always justified, in many cases, correlations between inputs are not
well understood a priori, and assuming mutual independence could be reasonable at least in
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initial screening using DGSMs. On the other hand, if approximate correlations are known, we
recommend using a Gaussian process or Kriging-based surrogate since it provides a means
for incorporating the correlation between inputs. Implementation to applications involving
strongly correlated parameters could enhance the applicability of the proposed framework.
We consider that to be a potential direction for future studies related to this work.
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