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ABSTRACT

Viruses of bacteria and archaea impact natural, engineered and human ecosystems, but their study is
hampered by the lack of a universal or scalable taxonomic framework. Here we introduce vConTACT
v2.0, a network-based application to establish prokaryotic virus taxonomy that scales to thousands of
uncultivated virus genomes, and integrates distance-based hierarchical clustering and confidence scores
for all taxonomic predictions. Performance tests demonstrated significant improvements over the original

tool and near-identical (96%) correspondence to current International Committee on Taxonomy of
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Viruses (ICTV) viral taxonomy where genus-level assignments are available. Beyond these “known
viruses”, vConTACT v2.0 suggested automatic genus assignments for 1,364 previously unclassified
reference viruses, with perfectly scoring assignments submitted as new taxonomic proposals to ICTV.
Scaling experiments with 15,280 global ocean large viral genome fragments demonstrated that the
reference network was rapidly scalable and robust to adding large-scale viral metagenomic datasets.
Together these efforts provide a critically-needed, systematically classified reference network and an

accurate, scalable, and automatable taxonomic analysis tool.
Main text

Bacteria and archaea modulate the nutrient and energy cycles that drive ocean and soil ecosystems' *,
and impact humans by producing metabolites that affect health, behavior, and susceptibility to disease’.
Viruses that infect these microbes modulate these ‘ecosystem roles’ via killing, metabolic reprogramming
and gene transfer®’, with substantial impacts predicted in the ocean® ', soil'""'? and human
microbiomes'*'*. However, ecosystem-scale understanding is hampered by the lack of universal genes or
methods that could facilitate a formalized taxonomy and comparative surveys. In fact, viruses do not have
a single, universal marker gene'’, and, thus, no analog to the microbial 16S rRNA-based phylogenies and
operational taxonomic units (OTUs) are possible'’.

Another potential challenge is that many viruses exhibit ‘rampant genome mosaicism’'’, due to high
rates of horizontal gene transfer between viruses and their hosts. If broadly true, this would hamper the
creation of a genome-based prokaryotic virus taxonomy'®. Fortunately, explorations of viral sequence

: 19,20
space are revealing structure

and population genetic support for a biological species definition, driven
primarily by vertical evolution®', and new hypotheses to explain variable evolution among prokaryotic
viruses®. Such findings, alongside rapidly expanding viral genome databases, allowed the International
Committee on Taxonomy of Viruses (ICTV) to present a consensus statement suggesting a shift from the

‘traditional’ classification criteria® (e.g. virion morphology, single/multiple gene phylogenies) towards a

genome-centered, and perhaps one-day, largely automated, viral taxonomy*. This shift is particularly
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critical given the modern pace of viral discovery in which, as of November 2018, hundreds of thousands
of metagenome-derived viral genomes and large genome fragments (735,112 at IMG/VR®, with a total
of 110,384 “species’ or viral OTUs) now dwarf the 34,091 available from prokaryotic virus sequences in
the NCBI GenBank database®®. Together with the recently proposed ‘minimum information about
uncultivated virus genomes’ (MIUViGs) community guidelines”’, evaluation of approaches to establish a
scalable, genome-based viral taxonomy is needed to enable a universal classification framework. The
ability to classify thousands of microbial UViGs is invaluable for foundational hypothesis testing
anywhere microbes, and their viruses, might matter. With microbiome and phage therapy research
exploding, this includes ecosystems such as industrial bioreactors and the human gut and lung, as well as
the oceans, the deep-sea floor, and soils.

Multiple genome-based strategies have been proposed to develop such a unified taxonomic
framework for viruses infecting bacterial'>** 3, archaeal®* and eukaryotic®® hosts. For bacterial viruses
(“phages”™), an early approach to a universal taxonomy targeted phage relationships only by using
complete genome pairwise protein sequence comparisons in a phylogenetic framework (the “phage
proteomic tree”) and was broadly concordant with ICTV-endorsed virus groupings of the time'”. Such
efforts were not widely adopted, presumably because (i) the demand was limited (few metagenomics
studies existed), and (ii) the paradigm was that “rampant mosaicism” would blur taxonomic boundaries
and violate the assumptions of the underlying phylogenetic algorithms used in the analyses'’. Other
efforts sought to establish percent of genes shared and percent identity of shared genes cut-offs to define
genera and sub-family affiliations®**’, but lacked taxonomic resolution for several virus groups. This lack
of resolution was due to the likelihood that the mode and tempo of prokaryotic virus evolution could vary
significantly across the viral sequence space”. Building upon a prokaryotic classification algorithm, the
Genome Blast Distance Phylogeny (GBDP)*®, a freely accessible online tool (VICTOR) now provides for

classification of phage genomes via combined phylogenetic and clustering methods from nucleotide and
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protein sequences’'. Although a key advance, this method suffers from limited scalability (100 genomes
limit) and taxonomic assignment challenges for viruses that lack closely related reference genomes.
Alternatively, several groups reasoned that the highly variable evolutionary rates across phage

93939 to determine whether a

sequence space could be examined through gene sharing networks
meaningful structure, and therefore taxonomic signal, occurs in this space. These networks, based on
shared protein clusters (PCs) between viral genomes, were largely concordant with ICTV-endorsed taxa
independent of whether monopartite® (a single node type, i.e., viral genomes) or bipartite networks’**’
(two node types, i.e., viral genomes and genes) were used. Given these successes, we revisited the
monopartite gene sharing network approach to establish an iVirus* app (vConTACT v1.0, hereafter v1.0)
to automate a network-based classification pipeline for prokaryotic virus genomes. Performance tests
indicated that the network analytics used by v1.0 produced viral clusters (‘VCs’) that were ~75%
concordant with recently established ICTV prokaryotic viral genera, even with seven times more genomes
now available®. The capacity to incorporate these genomes and accuracy of the network-based analytics
have resulted in viral taxonomy applications across large-scale studies of ocean*'*?, freshwater® and

346 _ a1l environments where the viruses

soil*, and studies of single-virus amplified genomes (vSAGs)
observed were largely so novel as to not be classifiable outside of these gene-sharing network approaches.
These v1.0 advances were an important step forward, but they could not be used for automated tentative
taxonomic assignments. This is because v1.0 created artifactual VCs of both undersampled genomes and
highly overlapped regions of viral sequence space™, and also lacked several key, community-desired
features including per-VC confidence metrics, a metric for establishing hierarchical taxonomy, and
scalability.

Here we introduce and evaluate vConTACT v2.0 (hereafter v2.0), which significantly updates the
network analytics and feature set of the original program. We apply this program to (i) establish a

centralized, ‘living’ taxonomic reference network as a foundational community resource and (ii)

demonstrate that v2.0 is robust and scalable to modern datasets.
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RESULTS AND DISCUSSION

vConTACT v2.0 key features and updates

The underlying goal of vConTACT is to automatically assign viral genomes into relevant established
or tentatively new taxa, with performance assessed relative to ICTV-assigned, manually-curated taxa (see
Fig. 1 for conceptual overview). However, in the current ICTV taxonomy for prokaryotic viruses,
taxonomic classifications above the genus level are only sporadically available. For example, of the 2,304
prokaryotic virus genomes available at RefSeq, 84.2% are unclassified at the subfamily level, and 61.6%
are unclassified at the order level with virtually all of the remaining 38% lumped into a single
“Caudovirales” order. Moreover, among the Caudovirales, the three phenotypically recognized and
dominant bacterial virus family level designations — Podoviridae, Myoviridae and Siphoviridae — are

4749 and are thus in flux. Therefore, we

being called into question by genome-based taxonomy methods
focused specifically on assigning viruses at the genus level, as it is the most ‘stable’ level and constitutes
the principal taxon on which molecular classification is based on in the ICTV taxonomy.

In a network-based genome taxonomy framework (Fig. 1a), related genomes emerge as a group of
nodes strongly connected through multiple edges, here termed a Viral Cluster, or ‘VC’. In a taxonomic
context and based on the clustering of viral reference genomes, we have previously demonstrated that the
network parameters can be tuned such that the VCs best represent genus-level grouping of viral
genomes>". In the original v1.0, ~75% of VCs corresponded to established ICTV genera®® (‘concordant
VCs’), while the remaining mismatched VCs were termed ‘discordant VCs’. These mismatches in the
discordant VCs can occur from any of three scenarios (Fig. 1b): (i) VCs that wrongly clustered genomes
with no close relatives (termed ‘outlier genomes’ from “undersampled VCs’), (ii) a given VC that

contained multiple ICTV genera represented by virus genomes that shared many genes and/or modules

with other VCs (termed ‘overlapping VCs’), and (iii) VCs that encompassed multiple ICTV genera
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sharing many genes and/or gene modules across genomes within the VC, and within subsets of the
genomes in the VC (termed ‘structured VCs’). While a significant advance, v1.0 struggled to adequately
differentiate between these issues. Further, v1.0 lacked several key features to enable broader adoption
and utility as described above.

To address these issues in v2.0, we evaluated and ultimately implemented a new clustering algorithm,
established confidence scores and distance-based taxon separation for hierarchical taxonomy, and
optimized and evaluated scalability and robustness to a large-scale viral metagenomic dataset. Briefly,
after the MCL-clustered protein clusters are generated, we optimized the protein-cluster-based gene-
sharing information to establish an automated two-step process whereby VCs are defined using
ClusterONE®® (CL1), instead of MCL used in v1.0, and then subdivided using hierarchical clustering to
disentangle problematic regions of the networks (Fig. 1b, see Online Methods). This approach considers
edge weight (i.e., degree of connection between genomes) to identify outlier genomes that are weakly
connected with members of their VC compared to neighbour genomes, detect and separate genomes that
‘bridge’ overlapping VCs, and break down structured VCs into concordant VCs through distance-based
hierarchical clustering (Fig. 1b).

Additionally, v2.0 incorporates confidence scores for each VC to help differentiate between
meaningful taxonomic assignments and those that might be artifacts. Briefly, each VC receives two types
of confidence scores: a topology-based score (value range 0-1), which aggregates information about
network topological properties, and a taxonomy-based score (value range 0-1), which estimates the
likelihood of predicted VCs to be equivalent to a single ICTV genus (Online Methods). Higher values
indicate either more confident linkages within the VC or better taxonomic agreement for the topology and
taxonomy-based scores, respectively, and the taxonomy-based score is used to automatically optimize the
hierarchical clustering of structured VCs into ICTV-concordant ‘subclusters’.

Finally, although v2.0 is presented here as a monopartite (one type of node) network tool, it produces

the necessary output to also be visualized as a bipartite network (Supplementary Fig. 1). In these
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bipartite visualizations, two types of nodes are used to display genomes and their connecting, shared
protein clusters (PCs). This information about which PCs link a given set a viruses together are also
provided (Supplementary Table 1; see Online Methods), as it enables researchers to identify specific
core virus group genes that may be of value for establishing novel gene markers and other additional

downstream analyses.

General performance comparison of vConTACT versions 1.0 and 2.0

To assess clustering performance of v1.0 and v2.0, we quantified ICTV correspondence for the 940
archaeal and bacterial virus genomes that had ICTV genus-level classification (accessed January 2018,
see Online Methods and Supplementary Table 2). Clustering performance was evaluated through a
composite performance score of Accuracy (Acc) and Separation (Sep). Both Acc and Sep are aggregate
measures themselves (see Online Methods), which indicate clustering precision, and how resulting
clusters (or VCs) correspond to a single ICTV genus, respectively (Fig. 2a). Each of these metrics has a
value range from 0 to 1 with 1 indicating perfect clustering accuracy and/or coverage.

Compared to the original v1.0’s performance (which used MCL at an inflation factor, or IF, of 1.4,
see Online Methods), v2.0’s CL1, combined with hierarchical clustering, resulted in an overall
performance improvement of 28.8% (Fig. 2a). This increase indicated the overall improved ability of the
tool to correctly group viruses into their appropriate VC, and how each VC corresponded to its ICTV
genus counterpart. Though further feature enhancements also advanced v2.0, we wondered which aspect
of our changes most improved performance. To assess this, we further optimized v1.0’s MCL-based VC
clustering and found that, at an IF of 7, we could achieve nearly equivalent performance (Fig. 2a,
Supplementary Table 3) and more VCs predicted by the optimized MCL-based configuration as it
organized the 940 viral genomes into 180 VCs, whereas v2.0’s CL1 identified 157 VCs. However, higher
values in Sep for CL1 indicate better performance for assigning single genera into single VCs, even

though MCL at its optimal IF value (i.e., 7) generated more VCs (Supplementary Table 1). Thus,
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although more VCs were assigned to ICTV genera by the optimized MCL configuration, they were
largely discordant VCs of either lumped or split ICTV genera, or both; whereas this behavior was ~50%
reduced using CL1 (see Supplementary Fig. 2a and b). Among these 22 lumped or split VCs from the
optimized MCL configuration, the virus genomes shared very few proteins (average = 17% range: 1-30%;
Supplementary Fig. 1b) similarities, which modern cut-offs would suggest should have been separated
as separate genera, here outliers in the network. To better resolve these issues, we added a post-
processing, Euclidean distance-based hierarchical clustering step to split mismatched VCs in v2.0. This
step accurately and automatically classified 36 additional genera from the problematic structured VCs
(Supplementary Table 2), which increased v2.0’s Sep value by 7%. Together, these findings suggested
that both upgrading the clustering algorithm and adding hierarchical clustering were critical to improve

automatic VC assignments.

Performance assessment of vVConTACT v2.0 for complex genomic relationships

Next, we assessed how v2.0 specifically handled areas of the reference network that represent the
three broad scenarios that yield discordant VCs (Fig. 1b). First, 55% of ICTV genera are undersampled
(Supplementary Table 2), which in a gene-sharing network manifests as weakly connected, small VCs
prone to artifactual clustering (Fig. 1b, top row) due to outlier genomes only weakly connected to any
given VC. In v1.0, undersampled VCs accounted for 64% (28/44) of all discordant VCs, and could not be
resolved by increasing IF values (Fig. 2b and d and Supplementary Table 2). In contrast, v2.0
automatically and accurately handled these same 28 undersampled VCs (comprising 60 genomes) by
splitting the 37 problematic genera into 22 outliers (i.e., genera with only one member) and correctly
placing the remaining 38 genomes from 15 genera into 15 now concordant VCs (Fig. 2¢ and d and
Supplementary Table 2). Thus, v1.0 performed poorly on under-sampled VCs, whereas v2.0 was able to
automatically resolve all under-sampled VCs in this reference network into their appropriate ICTV

genera.
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Second, we evaluated the ability of v2.0 to handle overlapping VCs (Fig. 1b), which are those VCs
that share a greater fraction of genes with members of other VCs than typically expected, presumably due
to gene exchange that could erode structure of the network. While overlapping VCs cannot be
automatically identified in v1.0, we can detect them in v2.0 through a ‘match coefficient’ that measures
the connection within- and between- other VCs (see Online Methods). Sensitivity analyses established a
cluster overlap value of 0.8 as diagnostic (Online Methods). This approach identified nine overlapping
VCs (ICTV-classified genera only) containing 30 viruses across 11 ICTV genera. These included viruses
with known mosaic genomes*® (e.g., lambdoid or mu-like phages of the P22virus, Lambdavirus,

N15virus, and Becepmuvirus genera), recombinogenic temperate phages® -

(i.e., Mycobacterium phages
of the Bignuzvirus, Phayoncevirus, and Fishburnevirus genera and Gordonia phages of the genus
Wizardvirus), and three newly-established genera (i.e., Cd119virus, P100virus and archaeal
Alphapleolipovirus), all bearing low topology-based confidence scores (averages of 0.32 for these VCs
versus 0.52 for concordant VCs; P-value = 6.12¢-09, Mann-Whitney U test) (Supplementary Fig. 3a).
Overlapping VCs are also linked to high horizontal gene flow, since most viruses in these VCs were
classified as having high gene content variation (HGCF, Fig. 2e, Supplementary Fig. 3b) as assigned by
a recently proposed framework of phage evolutionary lifestyles*. Though unresolvable in v1.0, v2.0
could assign eight of the 11 ICTV genera (24 viruses) into 8 ICTV-concordant VCs (Supplementary
Table 2). The remaining 3 ICTV genera, all comprised of Mycobacterium phages™ (6 genomes), could
not be resolved (Supplementary Table 2), and may not be amenable to automated taxonomy. While
these highly recombinogenic genomes represent a minor portion of the viruses classified by ICTV, their
prevalence across environments remains to be determined.

Third, structured VCs (Fig. 1b, bottom row) contained genomes that our gene sharing networks
placed into a single VC due to many shared genes and/or gene modules across all the member genomes,

but distributed into several ICTV genera due to subsets of the genomes also sharing additional genes (see

Supplementary Note 1). While we showed in v1.0 that these structured VCs could be decomposed
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through hierarchical clustering”’, in v2.0, we formalized an optimized, quantitative hierarchical
decomposition distance measure for this process (Online Methods and Supplementary Fig. 4). In the
v2.0 network, 23 of the 31 discordant VCs (74%) were structured VCs, spanning 86 genera (Fig. 3a,b and
Supplementary Table 2). The automatic v2.0 approach resolved 30% (26 of 86) of these ICTV genera
from 6 of the 23 structured VCs (Fig. 3c¢).

Given such strong performance, even with challenging regions of viral sequence space, we suggest
that this gene sharing network already offers significant new taxonomic insights. As described earlier,
only 41% of the 2,304 reference virus genomes are classified by ICTV at the genus rank, which leaves
1,364 reference viruses that are currently not assigned to a genus. In our networks, these 1,364 reference
viruses organized into 404 well-supported VCs (Supplementary Table 2). Of these 1364, 544 were
assorted into 104 VCs with genomes from known ICTV taxa, whereas 820 formed 200 separate VCs. We
propose that the 820 can be classified and the 200 VCs represent bona fide novel virus genera, to be
evaluated as formal ICTV taxa. If adopted, this would immediately double the number of known
prokaryotic viral genera, as there are only 264 currently recognized. Beyond providing a starting point for
identifying areas of viral sequence space needing revision, the manual curation process itself would
provide feedback for improving v2.0.

As first evidence of the value of such an iterative process, we note that v2.0 clustering suggested an
updated taxonomy among ten currently established ICTV genera: Barnyardvirus, Bcep78virus,
Bpp1virus, Che8virus, Jerseyvirus, P68virus, Pbunavirus, Phietavirus, Phikmvvirus, and Yuavirus
(Supplementary Fig. 5 and Supplementary Note 2), and manual inspection had already recommended
some of these ICTV genera be revised (e.g. Phikmvvirus viruses, ICTV proposal 2015.007a-Db).
Hierarchical decomposition of structured VCs into subclusters indicated that the gene content-based
distance correctly recapitulated the ICTV taxonomy, but that the cut-offs used to define subclusters are
different from the ones currently used to delineate established genera (Fig. 3¢ and Supplementary Fig. 4).

It is long thought that universal cut-offs may not be appropriate across all of viral sequence space with the
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result that years of manual curation by experts has resulted in specialized demarcation cut-offs across
viral sequence space™*. However, just has recently been advanced for microbes® any steps towards this,
such as distances in well-sampled and well-resolved portions of the reference networks, will be invaluable
for automating virus taxonomy. The v2.0 VCs and subclusters provided here provide a case study and a
reference baseline for working with the ICTV to translate such network-derived cut-offs into systematic
taxonomic demarcation criteria.

Finally, there will be some taxon assignments that are not amenable to being resolved by gene-
sharing networks. For example, cases where genera are defined based on phenotypic or evolutionary
evidence, e.g., archaeal fuselloviruses™ (VC42) and bacterial microviruses®’ (VCs 30 and 49), a gene-
sharing network approach will not be appropriate (see Fig. 3¢ and Supplementary Table 2). However, an
automated vConTACT-based approach can help systematically identify such problematic taxa and

drastically speed up these critical revisions to our taxonomy as new data become available.

vConTACT v2.0 is scalable to modern virome datasets

Beyond accurate classification, a major bottleneck regarding automated taxonomic assignments is the
ability to scalably and robustly integrate large sets of newly discovered virus genomes. To evaluate this,
we added 15,280 curated viral genomes and large genome fragments (> 10 kb) from the Global Ocean
Virome (GOV) dataset*! to our reference network in successive 10% increments (i.e., 0%, 10%, ..., 100%
of the total dataset), totalling 16,960 sequences (Fig. 4a). Through this process, we evaluated 2 types of
network changes to assess robustness. First, we checked whether the incremental addition of GOV data to
the network would lead to changes in node connections, as estimated by the ‘change centrality’ metrics
(CC, values range from 0-1 with 0 indicating no change and 1 indicating complete change, see Fig. 4b).
Second, we evaluated the concordance between v2.0 clustering and ICTV genera using the same
performance metrics as above (Sn, Acc & PPV, see Fig. 4¢). As seen in Fig. 4b, a large fraction of the

data initially experiences a moderate change (CC = 0.4), but the whole dataset eventually stabilized, as

11
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CC values for most of the data ranged from 0 to 0.1. A similar trend was observed for accuracy (4cc, Fig.
4c¢). This indicated that, not only can v2.0 scalably handle thousands of new input sequences, but our
original reference network clustering is robust to large-scale data additions such that the underlying
reference network remains consistent with established ICTV genera.

Outside of better sampled genera or VCs, we also examined whether GOV data may partially resolve
ICTV outlier and singleton genomes as a proxy for assessing the taxonomic ramifications of so much new
data. We reasoned that more data might create new connections to singletons such that outliers may
become better connected to new or existing VCs. We found that, of 38 single-member VCs of singleton
and outlier genomes (Supplementary Fig. 6), three Mycobacterium phage VCs were improved, while
two other Mycobacterium virus genomes were merged into larger heterogeneous VCs now composed of
six ICTV genera, which did not constitute an improvement. This implies that even though the GOV data
derive from an environment very different to that of most of the reference taxa (oceans vs soils and
humans), these environmental data could help improve some taxon assignments of isolate genomes.
Separately, looking at the overall taxonomic impact, we observed that 919 new VCs were created with the
full GOV dataset (15, 280 total contigs). Given the strong concordance of the ‘known’ VCs to ICTV
genera, we posit that these new VCs represent 919 new viral genera that are not represented among the
264 ICTV genera already known from RefSeq genomes. If true, this demonstrates the power of
integrating viral sequence datasets from under-explored environments to better map viral sequence space.
While enticing, we agree with the recent consensus statement that any taxonomic reference network be
constrained to complete genomes**, and that large genome fragments commonly derived from

metagenome-based studies be utilized in a relevant manner to address questions specific to that study.

Community availability and future needs
The utility of v2.0 depends upon its expert evaluation and community availability. In close discussion

with members of the ICTV Bacterial and Archaeal Viruses Subcommittee, we made the resulting
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optimized tool available in two ways. First, the source code is available through Bitbucket
(https://bitbucket.org/MAVERICLab/vcontact2) as a downloadable python package. V2.0 is a highly
scalable tool, with memory and CPU requirements concomitant with the amount of sequences processed.
The largest memory requirements are by the all-versus-all protein comparisons used to build the protein
clusters. Overall, there is a strong linear (R* = 0.99, see Supplementary Fig. 7) correlation between
number of sequences and runtimes. For example, running the full virus dataset RefSeq with Diamond (for
the protein comparisons) would take ~10 minutes on a regular laptop, while a GOV-sized dataset would
run for several hours. Second, for ease of use, v2.0 is also available as an app through iVirus*, the viral
ecology apps and data resource embedded in the CyVerse Cyberinfrastructure, with detailed usage

protocols available through Protocol Exchange (https://www.nature.com/protocolexchange/) and

protocols.io (https://www.protocols.io/). Finally, the curated reference network is available at each of

these sites, and will be updated approximately bi-yearly with as complete genomes become available and
resources exist to support this effort.

Although v2.0 performance metrics are strong and provide a critically needed, systematic reference
viral taxonomic network, limitations remain. First, the complete reference network needs to be rebuilt
each time new data are added. Avoiding this reconstruction step will require the development of
approximation methods and/or a placement algorithm (akin to PPlacer for 16S phylogenies™®) to
incorporate new data. Second, CL1-based VC generation may require manual parameter optimization if
datasets of an extreme, and probably unlikely, nature are encountered. Such datasets would have to be
dominated by overlapping genomes (i.e., those that share a large proportion of genes), and though such
genomes exist (e.g., the HGCF Mycobacterium phages), they are currently rare among cultured isolates
and their frequency in nature remains unknown. Notably, at least for the oceans, such highly
recombinogenic viruses are likely uncommon as the incremental addition of GOV data resulted in a stable
network and separate analyses of a more recent version of this GOV dataset found ocean viral populations

to be quite structured®. However, in case such datasets dominated by overlapping genomes are

13



333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

encountered, we have added an auto-optimization option for determining the optimal distance for
hierarchical decomposition of structured VCs in v2.0.

Third, solving other future needs will require improved understanding of the broader viral sequence
landscape and evolutionary processes. For example, although v2.0 handles reference prokaryotic virus
genomes (including ssDNA or dsDNA phages) and large GOV genome fragments, this framework has
not been designed, tested or validated for eukaryotic viruses. These viruses will require new solutions as
they have broader genomic configurations, such as genome segmentation, overlapping genes, ambisense
transcriptional gene configurations, that pose unique computational challenges®®’. However, even these
viruses can be classified using genome-based metrics (e.g., hidden Markov models protein profiles and
genomic organization models) and network analytics, at least at the family-level®. Separately, shorter
complete prokaryotic virus genomes and small fragments of larger genomes (e.g., <3 PCs or < 5 genes)
are of low statistical power in gene-sharing networks, and will require new solutions to establish higher
confidence VCs or remain taxonomically inaccessible via these approaches. Finally, genomes identified
as singletons, outliers or overlapping are currently excluded from the gene-sharing network, which leaves
a large fraction of viral sequence space unclassified. Although singletons and outliers can be resolved by
the addition of new data, overlapping VCs can remain challenging to resolve, particularly for the HGCF
phages® that are highly recombinogenic. Such mosaic virus genomes are challenging for viral taxonomy.
However, they are identifiable in the networks and, at least to date, represent a small fraction of known
viral sequence space. Given increased gene flow among temperate phages™, it will be valuable to explore
viral sequence space in environments where temperate phages are thought to predominate (e.g., soils®,
human gut®).

In spite of these limitations, vConTACT v2.0 already provides upgrades in performance and its
feature set (per-VC confidence scores, user-desired outputs and usability) such that it offers a scalable,
robust, systematic and automated means to classify large swaths of bacterial and archaeal virus sequence

space. Its limitations are largely surmountable through future research, and coordinated efforts with the
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research community and the ICTV will only make these gene-sharing network approaches more scalable
and broadly applicable. Assuming broad acceptance of these efforts, and parallel efforts with eukaryotic
viruses””, we might finally have the foundation needed to realize the consensus statement goals®*?’ of
establishing a genome-based viral taxonomy to better capture the broader viral sequence landscape

emerging from environmental surveys.

METHODS

Data sets. Full-length viral genomes were obtained from the National Center for Biotechnology

Information (NCBI) viral reference dataset”®®

(‘ViralRefSeq’, version 85, as of January, 2018),
downloaded from NCBI's viral genome page (https://www.ncbi.nlm.nih.gov/genome/viruses/) and
eukaryotic viruses were removed. The resulting file contained a total of 2,304 RefSeq viral genomes
including 2,213 bacterial viruses and 91 archaeal viruses (Supplementary Table 2). In parallel, the ICTV
taxonomy (ICTV Master Species List v1.3, as of February, 2018) was retrieved from the ICTV homepage

(https://talk.ictvonline.org/files/master-species-lists/). ICTV-classifications were available for a subset of

genomes at each taxonomic rank, and the final dataset included: 884 viruses from two orders, 974 viruses
from 23 families, 363 viruses from 28 subfamilies, and 940 viruses from 264 genera. To maintain
hierarchical ranks of taxonomy, we manually incorporated 2016 and 2017 ICTV updates****** to NCBI

taxonomy when ICTV taxonomy was absent.

Generation of viral protein clusters. Both version 1 and 2 of vConTACT share an identical protein
clustering initial step, in which viral proteins are grouped in protein clusters (PCs) through MCL,
followed by the formation of viral clusters (VCs) using either MCL (version 1) or ClusterOne (version 2).
First, a total of 231,166 protein sequences were extracted from the 2,304 viral genomes (above). Second,

to group protein sequences into homologous protein clusters (PCs)™, all proteins were subjected to all-
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versus-all BLASTP® searches (default parameters, cut-offs of 1E” on e-value and 50 on bit score). Third,
PCs were generated by applying MCL (inflation factor of 2.0), and resulted into all the proteins being
organized into 25,513 PCs, with a fraction of proteins (26,625 or 11.5%) as singletons (i.e. isolated

protein with no relatives).

Calculating genome similarity between viruses. The resulting output was parsed in the form of a matrix
comprised of genomes, PCs and singleton proteins (i.e., 2,304 X 52,138 matrix) (Supplementary Table

1). We then determined the similarities between genomes by calculating a one-tailed P value of observing
at least ¢ PCs in common between each pair of genomes, based on the following hypergeometric equation

as per Lima-Mendez et al*:

min(a,b) C5ch=L

P zo) =X = )

in which ¢ is the number of PCs in common; a and b are the numbers of PCs and singletons in genomes A
and B, respectively; and # is the total number of PCs and singletons in the dataset. The hypergeometric
formula calculates the probability of sharing a number of common PCs between two genomes at or above
the number (¢) under the null hypothesis that the observed result is likely to occur by chance. A score of
similarity between genomes was obtained by taking the negative logarithm (base 10) of the
hypergeometric P-value multiplied by the total number of pairwise genome comparisons (i.e., (2,304 X
2,303)/2). Genome pairs with a similarity score >1 were previously shown to be significantly similar
through permutation test where PCs and singleton proteins with genome pairs having a similarity score
below the given threshold (negative control) were randomly rearranged. None of the genome pairs in this
negative control produced similarity score >1, indicating values above this threshold did not occur by

chance™.
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Network visualization. The gene (protein)-sharing network was constructed, in which nodes are

genomes and edges connect significantly similar genomes. This network was visualized with Cytoscape

software (version 3.6.0; http://cytoscape.org/), using an edge-weighted spring embedded model, which

places the genomes sharing more PCs closer to each other.

Parameter optimization for viral cluster formation of vConTACT v1.0 and 2.0. Due to different
criteria for parameter optimization between the clustering methods, different number and size of the
clusters are often generated, which can make objective performance comparisons difficult”’. Thus, to
more comprehensively compare performance, v1.0’s MCL-based VCs were generated at inflation factors
(IFs) of 2.0 to 7.0 by 1.0 increments, with an optimal IF of 1.4 showing the highest intra-cluster clustering
coefficient (ICCC)* (Supplementary Table 2 and Supplementary Fig. 8). Unlike MCL, which uses a
single parameter” (i.e., the inflation factor), VC formation with CL1 (used in vConTACT v2.0), involves
multiple parameters that can detect complex network relationships®’. The three main parameters of CL1,
minimum density/node penalty, haircut, and overlap, automatically quantify (i) the cohesiveness of a
cluster, (ii) the boundaries of the clusters (i.e. outlier genomes), and (iii) the size of overlap between
clusters , respectively™. Of these parameters, the first one is used to detect the coherent groups of VCs as

follows:

Win(V)

¢= Win (V)+ Woyur (V)+pIC|

2

in which W;,, (V) and W,,,; (V) are the total weight of edges that lie within cluster V and that connect the
cluster V and the rest of the network, respectively, |C| is the size of the cluster, p is a penalty that counts
the possibility of uncharted connections for each node.

The second parameter, the haircut, can find loosely connected regions of the network (outliers) by

measuring the ratio of connectivity of the node g within the cluster ¢ to that of its neighbouring node # as:
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Doue= kX5 Wy /28 Wy, 3)

in which k is the number of edges of the node g, and Wis the total weight of edges of the respective
nodes g and h. If the total weight of edges from a node (h) to the rest of the cluster (c) is less than x times
that we specified the average weight of nodes (g) within the given cluster, CL1 will remove the node (h)
from a given VC and consider it an outlier.

The third CL1 parameter, the overlap size, determines the maximum allowed overlap (w) between two

clusters, measured by the match coefficient, as follows:

w = i%/axb 4)

in which i is the size of overlap, which is divided by the product of the sizes of the two clusters under
consideration (a and b). Since CL1 identifies overlap between VCs, it can find both hierarchical and
overlapping structures within viral groups. This ability is a significant improvement over v1.0, as v1.0’s
MCL cannot handle modules with overlaps’. Specifically, for each pair of clusters, CL1 calculates the
overlap score between them (above) and merges these clusters if the overlap is larger than a given
threshold. Thus, in the resulting output file, viral groups (or clusters) having the identical member viruses
can be found in multiple clusters, called ‘overlapping viral clusters’ (Supplementary Table 2 and Fig.
1b, middle row).

To determine the best parameter combination to use for CL1, we tested a wide range of values for
the three aforementioned parameters: minimum density ranging from 0 to 1 by 0.1 increments; node
penalty from 1 to 10 by 1.0; haircut from 0 to 1 by 0.05; overlap from 0 to 1 by 0.05) and default settings
for the other parameters: 2 as minimum cluster size, weighted as edge weight, single-pass as merging,
unused nodes as seeding. This resulted in 53,361 clustering results, which we evaluated individually to
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determine the highest performance on our genome data set (above)To identify the best parameter
combination, we used the geometric mean value of prediction accuracy (Acc) and clustering-wise
separation (Sep, see next section), as previously described®. The final, optimized CL1 parameters were a
minimum density of 0.3, a node penalty of 2.0, a haircut of 0.65, and an overlap of 0.8, which resulted in
280 VCs (Supplementary Table 2).

Next, to further decompose ‘discordant VCs’, we added as a post-clustering step in v2.0, which
allows additional hierarchical separation of such VCs into sub-clusters using the unweighted pair group
method with arithmetic mean (UPGMA) with pairwise Euclidean distances (implemented in Scipy). To
determine the optimal distance for sub-clustering of VCs, we assessed the distances of sub-clusters across
all the VCs in the network. We tested the effect of these distances (ranging from 1 to 20 in 0.5
increments) and picked as optimal distance the one which maximized the composite score by multiplying
the prediction accuracy (4cc) and clustering-wise separation (Sep) at the ICTV genus rank (see next
section). A distance of 9.0 yielded the highest composite score of Acc and Sep (Supplementary Fig. 4).
Notably, vConTACT v2.0 was designed to help users optimize these parameters for grouping of
genomes/contigs into VCs and distance for post-decomposition of VCs into sub-clusters. This tool
automatically evaluates the robustness of each VCs and sub-clusters, , based on the external performance

evaluation statistics (below).

Performance comparison between vConTACT v1.0 and v2.0. Six external quality metrics were used
to compare clustering performance between MCL and CL1% (Fig. 2a) . Specifically, the performance of
v1.0 (MCL) and v2.0 (CL1 alone and CL1 + hierarchical sub-clustering) were evaluated based on : (i)
cluster-wise sensitivity, Su (ii) positive predictive value, PPV (iii) geometric mean of Sn and PPV, Acc
(iv) cluster-wise separation, Sep.; (v) complex (ICTV taxon)-wise separation Sep,,, and (vi) geometric
mean of Sep.; and Sep,,, Sep. As an internal parameter, we computed the intra- and inter-cluster proteome

similarities (fraction of shared genes between genome that are within the same VCs and different VCs,
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respectively). For v€ConTACT v1.0, we only included clustering results which had been determined to
yield the highest clustering accuracy value (i.e., inflation factor of 7.0), and this configuration was used
for comparison to v2.0’s clustering. Therefore, testing each parameter combination (6 performance
metrics, for one taxon rank, for 10 clustering results, all cross-compared; i.e., 6 x 1 x 45) resulted in 270
comparisons.
To generate six external measures, we first built a contingency table 7, in which row i corresponds to the
i" annotated reference complex (i.e., ICTV-recognized order, family, subfamily, or genus), and column j
corresponds to the /" predicted complex (i.e., sub-/clusters). The value of a cell T);denotes the number of
member viruses in common between the i reference complex and j” predicted complex.
Sensitivity: The sensitivity can be defined as the fraction of member viruses of complex i which are found
in sub-/cluster ;.
Sni; = Ti;/N; &)

In the formula above, N; is the number of member viruses of complex i. We then calculated the coverage
of complex i by its best-matching cluster Sn,, , as the maximal fraction of member viruses of complex i
assigned to the same sub-/cluster by the formula below:

Sneo, = max;Z,Sn; ; 6)
The clustering-wise sensitivity was computed as the weighted average of Sn,, over all complexes.

Higher Sn values indicate a better coverage of the member viruses in the real complexes as:

Sn = Z?:1Ni5ncoi
i N
i=1 Vi

(7
Positive predictive value: The positive predictive value (PPV) indicates the proportion of member viruses
of the sub-/cluster j which belong to complex i, relative to the total number of member viruses of the sub-

/cluster assigned to all complexes by:

PPVij = Tij/%i=1 Tij = Tij/T, ®)
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where T ; is the marginal sum of a column j. We calculated the maximal fraction of member viruses of
sub-/cluster j found in the same annotated complex PPVcl]. , as the prediction reliability of sub-/cluster j to
belong to its best-matching complex as:

PPVy; = max{-,PPV; ©)
The clustering-wise PPV was then computed as the weighted average of PPVcl].over all sub/clusters by:

m
i—1 T iPPV.
21_1 .J cl]

PPV = =

(10)

Higher PPV values indicate that the predicted sub-/clusters are likely to be true positives.
Accuracy: As a summary metric, the Acc can be obtained by computing the geometrical mean of the Sn

and PPV values as:

Acc = VSn X PPV (11)

Complex- and Cluster-wise separations: With the same contingency table used for Sn, PPV, and Acc, we

calculated the relative frequencies with respect to the marginal sums for each row (mei'].) and each
column (Fcozi,j)» respectively:
Frow;; = Tij/Xjz1Ti; (12)
Feory; = Tij/Xi=1Tij (13)
Then the separation is computed as the product of column-wise and row-wise frequencies as:.
Sepij = Feoy; X Frow,; (14)
The separation values range from 0 to 1, with 1 indicating a perfect correspondence between complex j

and sub-/cluster i (i.e., the cluster contains all the members of the complex and only them). Additionally,

the separation penalizes the case when member viruses of a given complex are split into multiple sub-
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/clusters. The complex-wise Sep,, and cluster-wise Sep,; values are calculated as the average of Sepc,,

over all complexes, and of S epcy; over all sub-/cluster, respectively:

Yi=15epco;

Sepco = . (15)
27'11531701-
Sep. = % (16)

To estimate these separation results as a whole, the geometric mean (clustering-wise separation; Sep) of

Sep., and Sep.; was computed:

Sep = /Sepco X Sepq (17)

High clustering-wise separation values indicate a bidirectional correspondence between a sub-/cluster and
each ICTV taxon: a score of 1.0 indicates that a cluster corresponds perfectly to each taxon. For overall
comparison, we used a composite score™’, calculated by multiplying Acc by Sep.

As an internal measure, the fraction of PCs*® between two genomes (i.e., proteome similarity) was

computed by using the geometric index (G). The proteome similarity was estimated as:

_ _IN@ON®)
Ca8 = Tyl v 18

in which N(4) and N(B) indicate the number of PCs in the genomes of A and B, respectively. A total of

400,234 pairs of genomes with >1% proteome similarity are shown in Supplementary Table 4.

Clustering-based confidence score. To generate confidence scores for each viral cluster prediction, we

69,70

used three previously described confidence scoring methods™", with some modifications. Two of them

exploit the network topology properties by assessing the weight of cluster quality and the probability of
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cluster quality. We then combined these two values as an aggregate topology-based confidence score per

VC. For the first scoring method, we computed the quality (Q) of sub-cluster (c) as:

Qc = Win/ Win + Woye) (19)

in which W;,, and W,,; are the total weight of edges that lie within sub-cluster ¢ and across others,
respectively. For the second method, we evaluated the P-value of a one-sided Mann-Whitney U test for
in-weights and out-weights of sub-clusters. The rationale behind this test is that sub-clusters with a lower
P-value contains significantly higher in-weights than out-weights, thus indicative that a formed sub-
cluster is valid, and not a random fluctuation. These two independent values, weight of cluster quality and
the probability of cluster quality are then multiplied to derive a topology-based confidence score for each
cluster. Along with this confidence score, we quantified the likelihood that each sub-cluster corresponds
to an ICTV-approved genus (or equivalent) by using distance threshold that are specified at the ICTV

genus rank, which we refer to as “taxon predictive score”. This score can be calculated as:

prediction = ¥ 1;; /1, (20)

Specifically, for a sub-cluster (c) having the genus-level assignment, vConTACT v2.0 automatically
measures the maximum distance between taxonomically-known member viruses and calculate the scores
by dividing the sum of links having less than the given maximum distance threshold between nodes (i
and j) by the total number of links (I.) between all nodes. For a sub-cluster that does not have the genus-
level assignment, v2.0 uses Euclidean distance of 9.0 that can maximize the prediction accuracy and

clustering-wise separation (see above) as distance threshold.

23



576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591
592

593
594

595

596
597

598
599

600
601

602
603

604
605

606

Measuring effect of GOV on network structural changes. GOV contigs (14,656 sequences) were
added in 10% increments (randomly selected at each iteration) to NCBI Viral RefSeq and processed using
vConTACT v2.0 with one difference — Diamond’" instead of BLASTp was used to construct the all-
versus-all protein comparison underlying the PC generation. For running this large number of sequences,
high-memory computer nodes from the Ohio State supercomputer Center’> were used. Once generated,
vConTACT v2.0 networks were post-processed using a combination of the Scipy’”, Numpy, Pandas’ and
Scikit-learn” python 3.6 packages. Networks were rendered using iGraph’®. The method to calculate
change centrality was calculated as described previously’’. CCs were calculated in a successive way, in
which each addition was compared to Viral RefSeq 85 independently of other additions (0% versus 10%,

0% vs 20%, [....], 0% vs 100%).

Code availability. The vConTACT v2.0 package is freely distributed through Bit Bucket as a python

package (https://bitbucket.org/MAVERICLab/vcontact?).
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Figure 1. Virus genome classification visualized as networks. (a) Left side panel: matrix of shared
protein clusters (PCs, grey blocks) between a set of virus genomes can be visualized as a network of
interconnected nodes, as shown on the right-side of the panel. Each node in this sample 6-node network
represents a virus genome that may be connected to other nodes through edges. The edge value represents
the strength of connectivity between nodes. If a set of nodes have considerably higher edge weights than
the rest of the network they are linked to, these are grouped together to form a viral cluster, or “VC’. (b)
Each row depicts a node clustering scenario in which vConTACT v2.0 has improved upon. On the left
side, each scenario is first depicted as a genome-PC matrix highlighting how shared protein clusters
between certain genomes may induce erroneous virus groupings due to outlier genomes, overlapping viral
groups or VCs containing multiple viral groups. On the right side of the matrices, the topology of each
clustering scenario is depicted as small networks of nodes (color-coded according to the ICTV genera
colors next to the matrices), and shows how vConTACT version 1 and 2 handled clustering of
problematic genomes and/or VCs. (¢) Heatmap key corresponding to the various values related to edge
weight in (a) and (b), which serve to connect the nodes in the networks and shows how closely related
each connected node is to other nodes based on the number of common PCs between genomes.

Figure 2. Performance evaluation of vConTACT versions 1.0 and 2.0 on prokaryotic virus genomes.
(a) The same colors denote individual performance metrics for the ICTV genera (G) including 940 viral
genomes , which are achieved by the Markov clustering (MCL) algorithm at each inflation factor (v1.0)
as well as ClusterONE (CL1) and CL1 followed by distance-based hierarchical clustering (CL1 + H)
(v2.0), respectively. For more objective comparisons, MCL at an inflation factor of 7.0 followed by
hierarchical clustering (IF 7.0 + H) with the same distance (i.e., 9.0) used for v2.0 was included. The total
height and number of each bar indicate the composite score for overall performance comparison (Fig. 2a).
For details, see Online Methods. (b, ¢) Gene-sharing networks were built using 2,304 archaeal and
bacterial virus genomes retrieved from Viral RefSeq v85. Viral clusters (VCs) were obtained by
vConTACT v1.0 (b) and v2.0 (¢) that used MCL with inflation factor (IF) of 7.0 and CL1, respectively
(see Online Methods). For both networks, genomes (nodes) are color-coded according to their taxonomic
assignments. For example, genomes (only members of the ICTV-recognized genus) that are classified in
VCs containing a single ICTV genus are colored in cyan, while genomes found in VCs containing more
than two genera are colored in pink. Genomes without ICTV genus affiliation are in grey. Nodes with
bold borders indicate those that were correctly identified either as outlier, overlap genomes or separate
VCs through v1.0 (b), compared to v2.0 (¢). Genomes whose taxonomic assignments and/or annotation
are incomplete are colored in yellow, identified through v2.0 (¢). For details, see Supplementary Figs 3
and 5 and Supplementary Table 2. (d) Box plots of the percentage of shared protein clusters (PCs)
between member viruses within 28 v1.0—generated undersampled VCs having
22 genera before (pink), and after (cyan) removal of outlier and/or
separation into individual clusters by v?2.0. (e) Pie charts depicting the number of
overlapping genomes that belong to the high (HGCF) or low (LGCF) gene content flux evolutionary
modes or mixed and lytic or temperate phages. Data on the lifestyle and evolutionary modes of 74 viruses
were collected from Mavrich and Hatfull**. For details, see Supplementary Fig. 3.

Figure 3. Application of the hierarchical decomposition to discordant VCs. (a) Distribution of all 31
discordant VCs across the archaeal and bacterial virus gene sharing network, where genomes (nodes) of
the given VCs are highlighted in pink and others in grey. (b) Box plots show the fraction (%) of protein
clusters (PCs) that were shared within an ICTV genus (i.e., intra-genus proteome similarity) and between
multiple genera (i.e., inter-genera similarity) found in each discordant VC including structured clusters
whose member genera have similar inter-genera and intra-genus similarities (black dot). (c¢) Left, A full
link dendrogram is represented. Note that the Euclidean distance of nine yielded the highest composite
score of accuracy (4cc) and clustering-wise separation (Sep) for sub-clusters from all v2.0-generated
VCs, which was used to split the discordant clusters (Online Methods and Supplementary Fig. 4).
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Right, module profiles showing the presence and absence of 7,662 total protein clusters (PCs) across 362
genomes. Each row represents a phage and each column represents a PC, with a unique color (left of the
module) representing the genome’s VC and ICTV genus, respectively. Sub-clusters, which are generated
by distance-based hierarchical grouping, are represented across all discordant VCs on the right side of the
heat map. From the 12 discordant VCs, 37 sub-clusters (corresponding to a single ICTV genus), are
highlighted as green boxes. For details, see Supplementary Table 2.

Figure 4. Adding the Global Ocean Virome to NCBI Viral RefSeq. (a) Selected network images from
the largest connected component of GOV-additions. Red nodes are virus RefSeq genomes, and grey
nodes are GOV. Despite adding 15,280 new genomes, the network maintains its overall structure. (b)
Pairwise heatmap comparison at all GOV incremental additions using normalized mutual information
(NMI) values. NMI measures VC similarity to other VCs by comparing genome content changes across
incremental additions of data. Darker blue hues correspond to more similar information content (i.e.
genomes maintaining the same VC membership). (¢) Boxplots depicting the average Euclidean distance
within VCs across GOV data increments. Grey boxes are samples prior to hierarchical trimming, while
blue boxes are post-trimming. Points represent discordant VCs, with darker hues representing increasing
discordance (i.e., more genera per VC). (d) Change centralities on a per-genome (gray) and per-VC
(aqua) basis through successive, 10% increments of GOV data. A value of zero in change centrality (Y-
axis) represent no change in any of the nodes connected to the origin node (or that the node was
removed), while a value of one represents origin node creation. High change centrality scores imply that
nodes are being created adjacent to the origin node, with the further a node’s creation is from the origin
node, the less of an impact it has on the origin node’s centrality. Dotted lines in each violin represent
quartiles, whereas the width of each violin plot is scaled to be equal between GOV % (X-axis), such that
distributions can be compared between datasets. (¢) GOV network performance through successive data
accumulations. As GOV sequences are added (X-axis), individual performance score (ranging from 0 to
1, Y-axis; calculated from the clustering-wise positive predictive value (PPV), clustering-wise sensitivity
and accuracy) across genus- and family-level predictions (represented by circular and square data points,
respectively) generally trend towards stabilization.

Supplementary Figure 1. Bipartite network of reference virus genomes generated by vConTACT 2.
(a) The full network is represented (b) Close-up of 3 viral clusters displayed as bipartite network. In this
configuration, pink nodes represent individual genomes, while dark grey nodes depict proteins clusters
that are shared between viral clusters.

Supplementary Figure 2. Clustering comparisons between vConTACT v1.0 and v2.0 (a) Number of
total viral clusters (VCs), and genus-assigned VCs, concordant and discordant VCs, as detected by
vConTACT v1.0 (left) and v2.0 (right). Discordant VCs are (i) those that have a mix of the different
genera (i.e., lumped genera), (ii) those that have different member virus(es) of the same genus by splitting
them into multiple clusters (i.e., split genera), or (iii) mix of (i) and (ii). (b) Proteome similarities of
viruses within 22 concordant VCs of vConTACT version 1.0. For all plots, the x-axis is the individual
pairwise comparisons and y-axis is the proteome similarity (i.e., percentage fraction of shared protein
cluster between genomes). In the case of VCs 6, 26, 66, and 130 (highlighted by bold borders), these all
contains taxonomically-misplaced member virus(es) of the Che8virus, Pbunavirus, PI100virus, and
Bcep78virus, respectively, all of which were correctly captured by v2.0 and ratified by the ICTV ( see
Supplementary Fig. 5). Like these four VCs, the remaining 18 VCs contained distant relatives, with only
1-30% of similarities to the rest of the given clusters or discrete viral group(s) displaying a number of
discontinuous similarities, which were identified as outliers or separated VCs by v2.0, respectively (see
Supplementary Table 4).
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Supplementary Figure 3. vConTACT v2.0-based detection and characterization of overlapping
viral genomes. (a) Box plots depicting the distribution of the topology-based confidence scores between
viruses identified as overlaps and non-overlaps, which vConTACT v2.0 placed into two clusters (see
panel b) and single clusters, respectively. For details, see Methods. (b) List of phages and archaeal viruses
identified as overlaps and their ICTV genus. Details on the lifestyle and evolutionary modes of 74 viruses
were collected from Mavrich and Hatfull® and from the Actinobacteriophage Database website
(http://phagesdb.org/). The high (HGCF) and low (LGCF) gene content flux evolutionary modes indicate
the predicted lifestyle based on the gene content dissimilarity between viral genomes. Bioinformatically-
predicted temperate phages indicate those that contain the integrase (for integrating temperate phage
genomes into host) or parA (partitioning gene found in extrachromosomal temperate phages) genes.

Supplementary Figure 4. Evaluation of optimal distance thresholds for hierarchical clustering of
VCs. The X-axis denotes distance threshold increments from dist=1 to dist=20 in 0.5 intervals. The Y-
axis denotes composite scores by multiplying Accuracy (Acc, cyan) and clustering-wise separation (Sep,
pink) when trying to recapitulate ICTV genera, which are geometric means of Sensitivity and Positive
predictive value as well as Complex-wise separation and Cluster-wise separation, respectively. From
these data, a distance of 9.0 yielded the highest composite score for the sub-clusters partitioned from all
vConTACT v2.0-generated viral clusters. For details, see Online Methods.

Supplementary Figure 5. vConTACT v2.0-based detection and characterization of boundary
genome(s) within the ICTV-recognized genera. (a) Box plots show the percentage of shared protein
clusters (PCs) between members of an ICTV genus (red), and the same metrics after excluding viruses
recognized as outlier(s) by vConTACT v2.0 (cyan). The proteome similarities for the Barnyardvirus are
shown between (1) member viruses of the Barnyardvirus, (2) Mycobacterium virus Barnyard and the
remaining members of the Barnyardvirus, (3) the Barnyardvirus and Patiencevirus, (4) Mycobacterium
virus Barnyard and the Patiencevirus, and (5) the Barnyardvirus without outliers. For the Phikmvvirus,
the proteome similarities between (1) member viruses of the Phikmvvirus, (2) Pseudomonas virus
phiKMV and the remaining members of the Phikmvvirus, and (3) Pseudomonas virus phiKMV and
members of VC 33 are shown, respectively. (b) Module profiles show the presence (dark) and absence
(light) of homologous PCs across genomes. Each row represents a virus and each column a PC. The
genomes were hierarchically clustered based on pairwise Euclidean distance. The ICTV and vConTACT
v2.0 classifications are indicated next to each virus.

Supplementary Figure 6. Evaluation of singletons/outlier genomes over GOV increments. Thirty-
eight ICTV recognized singleton and outlier genomes (one per row) were observed to evaluate whether
the addition of GOV sequences would improve their classification. The coloring gradient on the left
indicates the numbers of genera per VC. Clearly improved clustering was observed in 3 of the 38
genomes (black bolded), with 2 genomes clustering to 6-genera discordant VCs (red), though the
majority saw only minor, if any, change in their clustering assignment.

Supplementary Figure 7. vConTACT v2.0 computational runtimes. In the plot, processing time (in
seconds, Y-axis) is plotted against increasing GOV sequence data (GOV % added, X-axis). There is a
strong linear correlation between runtime and memory usage with data volume to be processed.

Supplementary Figure 8. Impact of the inflation factor on viral genome clustering based on the
Markov clustering (MCL) algorithm. Left panel: average intra-cluster clustering coefficient (ICCC)
and number of viral clusters (VCs), which are predicted as a function of the inflation factors ranging from
1.0 to 5.0 with a step of 0.2, are indicated. Right panel: Curve representing the ICCC values for the
network containing 2,304 archaeal and bacterial virus genomes.
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Supplementary Table 1: A genome-gene matrix. In this matrix, a total of 231,166 protein-coding genes
from 2,304 bacterial and archaeal virus genomes are shown, along with their annotations, protein clusters
and singleton proteins (i.e., isolated protein with no relatives). Each singleton protein was represented as
the blank in the column of “cluster”.

Supplementary Table 2. List of 2,304 archaeal and bacterial virus genomes used to evaluate
vConTACT v1.0 and v2.0. Genomes were retrieved from NCBI RefSeq, their main taxonomic features
from NCBI and ICTV as well as the clustering outputs from vConTACT v1.0 and v2.0 is indicated.
Particularly for v2.0, additional features for viral clusters (VCs) by CL1 and subclusters by CL1 followed,
by distance-based hierarchical clustering, as well as quality and p-values, were used to generate the
topology-based score. For each subcluster, a taxonomy-based scores is also provided. For the outlier
genomes, their parent VCs (i.e., those from which v2.0 separated the given genomes as outliers) are
included. For the genomes identified as part of overlapping VCs, dual VC membership is represented by
‘/’. The former VC, as an overlapping cluster, can be also found in the latter cluster (mix of two VCs).
See Online Method for details.

Supplementary Table 3. Clustering performance evaluations of the vConTACT v1.0, v2.0, and v2.0
followed by distance-based hierarchical clustering for the genus rank. The numbers represent the
values of Sensitivity (Sn), Positive prediction value (PPV), and Accuracy (geometrical mean of Sr and
PPV, Acc) as well as Cluster-wise separation (Sep.;), Complex-wise separation (Sep.,), and Clustering-
wise separation (Sep) across all clustering results, respectively. “Distance” indicates whether a
hierarchical clustering was applied to all VCs (either “NoDist” if no clustering was applied, or “9” if a
clustering with a cutoff of 9.0 on euclidean distance was applied).

Supplementary Table 4. Fraction of PCs in common between 2,304 genomes. The average shared PC
percentage is calculated based on the geometric formula (see Online Methods) and 400,234 pairs of
genomes having >1% proteome similarity are shown. For vConTACT v1.0 that uses MCL, the proteome
similarities of VCs was further calculated with IFs of 1.4 and 2.0 to 7.0 by a step of 1.0. The VC and
ICTV taxa (i.e., subfamily and genera) that each genome belongs to are represented.
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ve_1 $ Intra-genus @ Inter-genera @ Structured VCs

(T4-like phages)

» ﬁ . *-ﬁ%ﬂa *E*
(@]
5 2
B ¥
o
© $@$? ? *
@ +
S : + +
X 0* -o-'.'*
: ® 6 0 06 06 06 060 06 0 0606 0 0 060 00 0 000 0 0
G Ve 25 A DO AN OO - MW OO - © 0N T OON W ON ONO OO O N
W 1 T - - NN NN ® MmO S S+ NGO O F B 00O — N~ A
ve2 = \Cs 36, 219, 276 O 0O 0O 0O | | | | | | | | | | | | | |1 = | I~ N N | |
T >>>>OOOOOOOOOOOOOOOOOI O‘OOOIOI OIUIOO
VC_30 VCJXA‘AVC{‘Q > > > > > > > > > > > > >>>>> >>>>> >g> >

Viral cluster (VC)_1@®

Compostie
(Acc & Sep) g
I S .
I @
[}
. | iz
Distance . © %
T LA 1 ©
20 10 1 g © N
| oS Protein clusters (PCs) Sub-clusters

T VC_1-
ﬂ - I i 1-15 )

e

I | | Tl T | 2.0
KI

L1 [
i 16-1
1 N 181

i
R
e
(=)
o SL

211 210

: 180

| | i 18-1
[ T ; iR
| | i 211

L - = é-gaﬂn_

) ==

I ! 12-0 120




Change Centrality
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