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We focus on an efficient approach for quantification of uncertainty in complex chemical reaction net-
works with a large number of uncertain parameters and input conditions. Parameter dimension reduction
is accomplished by computing an active subspace that predominantly captures the variability in the quan-
tity of interest (Qol). In the present work, we compute the active subspace for a H,/O, mechanism that
involves 19 chemical reactions, using an efficient iterative strategy. The active subspace is first computed
for a 19-parameter problem wherein only the uncertainty in the pre-exponents of the individual reaction
rates is considered. This is followed by the analysis of a 36-dimensional case wherein the activation en-
ergies and initial conditions are also considered uncertain. In both cases, a 1-dimensional active subspace
is observed to capture the uncertainty in the Qol, which indicates enormous potential for efficient statis-
tical analysis of complex chemical systems. In addition, we explore links between active subspaces and
global sensitivity analysis, and exploit these links for identification of key contributors to the variability
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1. Introduction

Time evolution of a chemically reacting system is largely depen-
dent upon rate constants associated with individual reactions. The
rate constants are typically assumed to exhibit a certain correla-
tion with temperature (e.g., Arrhenius-type). Hence, accurate spec-
ification of the rate-controlling parameters is critical to the fidelity
of simulations. However, in practical applications, these parameters
are either specified using expert knowledge or estimated based
on a regression fit to a set of sparse and noisy data [1-4]. Inten-
sive research efforts in recent years within the field of uncertainty
quantification (UQ) address the quantification and propagation of
uncertainty in system models due to inadequate data, parametric
uncertainty, and model errors [5-11].

In complex mechanisms involving a large number of reactions,
characterizing the propagation of uncertainty from a large set of
inputs to the model output is challenging due to the associated
computational effort. A major focus of this article is the imple-
mentation of a robust framework that aims to identify important
directions in the input space that predominantly capture the vari-
ability in the model output. These directions, which constitute the
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so called active subspace [12], are the dominant eigenvectors of a
matrix derived from the gradient information of the model output
with respect to an input. The active subspace methodology thus
focuses on reducing the dimensionality of the problem, and hence
the computational effort associated with uncertainty propagation.
The focus here is on input parameter dimension reduction. This is
different from techniques such at Computational Singular Perturba-
tion (CSP) [13-17] that aim to reduce the complexity of stiff chem-
ical systems by filtering out the fast timescales from the system.
The latter is done, for instance, using the eigenvectors of the sys-
tem Jacobian to decouple the fast and slow processes; see e.g., [16].

The application problem considered in this work is the Hy/O,
reaction mechanism from [18]. This mechanism has gained a lot
of attention as a potential source of clean energy for locomo-
tive applications [19], and more recently in fuel cells [20,21]. The
mechanism involves 19 reactions including chain reactions, dissoci-
ation/recombination reactions, and formation and consumption of
intermediate species; see Table 1. For each reaction, the reaction
rate is assumed to follow an Arrhenius correlation with tempera-
ture:

ki(T) = A;T" exp(—E,;/RT), (1)

where A; is the pre-exponent, n; is the temperature exponent, Eg;
is the activation energy corresponding to the ith reaction, and R is
the universal gas constant. The Arrhenius rate law in (1) is often
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Table 1

Reaction mechanism for H,/OQ, from [18].
Reaction #  Reaction
R H+0; = 0+0H
Ra 0O+H; = H-+OH
Rs H; +OH = H,0+H
Ra OH+ OH = O0+H0
Rs H,+M = H+H+M
Rg 0+0+M = 0;+M
Ry O+H+M = OH+M
Rs H+OH+M = H;0+M
Rg H+0;+M = HO; +M
R HO, +H = Hy+0,
Ry HO, +H = OH+OH
R HO, +0 = 0,+0H
Rz HO, +0OH = H,0+0;
Ris HO; +HO; = H,0:+0;
Ris H,0,+M = OH+OH+M
Ris H;0, +H = H,0+0H
Ruz H,0, +H = HO,+H,
Rig H;0,+0 = OH+HO,
Rig H,0, +OH = HO; +H,0

interpreted in a logarithmic form as follows:
log(k;) = log(A;) + n;log(T) — E,i/RT. (2)

The global reaction associated with the H,/O, mechanism can be
considered as follows:

2H, + 0, — 2H,0. (3
The equivalence ratio (®) is given as follows:
— (MHZ/MOZ)ODS (4)
(MHQ/MOZ)St ’

where the numerator on the right-hand-side denotes the ratio of
the fuel (H,) and oxidizer (O,) at a given condition to the same
quantity under stoichiometric conditions. In this study, computa-
tions were performed at fuel-rich conditions, & = 2.0. Homoge-
neous ignition at constant pressure is simulated using the TChem
software package [22] using an initial pressure, Py = 1 atm and
initial temperature, T, = 900 K. The time required for the rate of
temperature increase to exceed a given threshold, regarded as ig-
nition delay is recorded.

We seek to understand the impact of uncertainty in the rate-
controlling parameters, pre-exponents (A;’s) and the activation en-
ergies (E;;'s) as well as the initial pressure, temperature, and the
equivalence ratio on the ignition delay. The log(A;)'s associated
with all reactions and the E,;’s with non-zero nominal estimates
are considered to be uniformly distributed about their nominal es-
timates provided in [18]. Temperature exponent, n; for each re-
action is fixed to its nominal value, also provided in [18]. The
initial conditions are also considered to be uniformly distributed
about their respective aforementioned values. The total number of
uncertain inputs is 36 which makes the present problem computa-
tionally challenging due to the large number of uncertain parame-
ters in addition to the initial conditions. To address this challenge,
we focus on reducing the dimensionality of the problem by com-
puting the active subspace. This involves repeated evaluations of
the gradient of a model output with respect to the input parame-
ters. Several numerical techniques are available for computing the
gradient, such as finite differences and more advanced methods in-
volving adjoints [23-25]. The adjoint-based method requires a so-
lution of the state equation (forward solve) and the corresponding
adjoint equation. Hence, it is limited by the availability of an ad-
joint solver. Additional model evaluations at neighboring points are
required if finite difference is used which increases the computa-
tional effort. Regression-based techniques, which can be suitable

for active subspace computations, on the other hand, aim to es-
timate the gradient by approximating the model output using a
regression fit. These are computationally less intensive than the
former. However, as expected, there is a trade-off between compu-
tational effort and accuracy in the two approaches for estimating
the gradient.

In this work, we adopt an iterative strategy to reduce the
computational effort associated with active subspace computation.
Moreover, we explore two approaches for estimating the gradient
of the ignition delay with respect to the uncertain rate-controlling
parameters: pre-exponents (A;'s), the activation energies (Ey;’s), as
well as the initial conditions: Py, Tp, and ®g. Note that the equiv-
alence ratio corresponding to the initial molar ratios of H; and
0, is denoted as ®g. The first approach uses finite differences to
estimate the gradient and will be referred to as the perturbation
approach throughout the article. The second approach is adapted
from [12, Algorithm 1.2] and involves repeated regression-fits to a
subset of available model evaluations, and is regarded as the re-
gression approach in this work.

An alternate strategy to dimension reduction involves comput-
ing the global sensitivity measures associated with the uncertain
inputs of a model. Depending upon the estimates of the sen-
sitivity measures, only the important inputs are varied for the
purpose of uncertainty quantification (UQ). Sobol’ indices are com-
monly used as global sensitivity measures [26]. They are used to
quantify the relative contributions of the uncertain inputs to the
variance in the output, either individually, or in combination with
other inputs. Multiple efforts have focused on efficient computa-
tion of the Sobol' indices [27-30] including the derivative-based
global sensitivity measures (DGSMs), developed to compute ap-
proximate upper bounds for the Sobol' indices with much fewer
computations [31,32]. It was noted in [33,34] that DGSMs can be
approximated by exploiting their links with active subspaces. This
led to the definition of the so-called activity scores. In Section 3,
we build on these ideas to provide a complete analysis of links be-
tween Sobol indices, DGSMs, and activity scores for functions of
independent random inputs whose distribution law belongs to a
broad class of probability measures. It is worth mentioning that
computing global sensitivity measures provides important informa-
tion about a model that go beyond dimension reduction. By identi-
fying parameters with significant impact on the model output, we
can assess regimes of validity of the model formulation, and gain
critical insight into the underlying physics in many cases.

The main contributions of this paper are as follows:

« Active subspace discovery in a high-dimensional H,/O, kinet-
ics problem involving 36 uncertain inputs: The methodology
presented in this work successfully demonstrated that a 1-
dimensional active subspace can reasonably approximate the
uncertainty in the Qol, indicating immense potential for com-
putational savings. The presented analysis can also guide prac-
titioners in other problems of chemical kinetics on using the
method of active subspaces to achieve efficiency in uncertainty
propagation.

» Comprehensive numerical investigation of the perturbation and
the regression approaches: We investigate the suitability of
both approaches for estimating the gradient of ignition delay
in the Hy/O, mechanism. Specifically, we compare resulting ac-
tive subspaces, surrogate models, and the ability to approxi-
mate global sensitivity measures through a comprehensive set
of numerical experiments. Our results reveal insight into the
merits of the methods as well as their shortcomings.

« Analysis of the links between global sensitivity measures: By
connecting the recent theoretical advances in variance-based
and derivative-based global sensitivity analysis to active sub-
spaces, we provide a complete analysis of the links between
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total Sobol’ indices, DGSMs, and activity scores for a broad class
of probability distributions. Our analysis is concluded by a re-
sult quantifying approximation errors incurred due to fixing
unimportant parameters, deemed so by computing their activ-
ity scores.

This article is organized as follows. In Section 2, a brief theoret-
ical background on the active subspace methodology is provided.
In Section 3, it is shown that the activity scores provide a reason-
able approximation to the DGSMs especially in a high-dimensional
setting. Additionally, a relationship between the three global sen-
sitivity measures, namely, the activity scores, DGSMs, and the
total Sobol’ indices is established. In Section 4, a systematic frame-
work for computing the active subspace is provided. Numerical
results based on the perturbation approach are compared with
those obtained using the regression approach. The active subspace
is initially computed for a 19-dimensional H,/O; reaction kinetics
problem wherein only the A;’s are considered as uncertain. We
further compute the active subspace for a 36-dimensional Hy/O;
reaction kinetics problem in Section 5. For both settings, the
convergence characteristics and the predictive accuracy of the two
approaches is compared for a given amount of computational ef-
fort. The two approaches are observed to yield consistent results,
and a 1-dimensional active subspace is observed to capture the un-
certainty in the ignition delay. Finally, a summary and discussion
based on our findings is included in Section 6.

2. Active subspaces

Herein, we use a random vector & € Q € RM» to parameterize
model uncertainties, where N, is the number of uncertain inputs.
In practical computations, the canonical variables &;,i=1,...,Np,
are mapped to physical ranges meaningful in a given mathemati-
cal model. As mentioned in the introduction, an active subspace is
a low-dimensional subspace that consists of important directions
in a model’s input parameter space [12]. The effective variability
in a model output f due to uncertain inputs is predominantly cap-
tured along these directions. The directions constituting the active
subspace are the dominant eigenvectors of the positive semidefi-
nite matrix

c= [Q (Ve ) (Ve )T (d8), (5)

with p(d&) = w (E)d&, where 7 (£) is the joint probability density
function of &. Herein, f is assumed to be a square integrable func-
tion with continuous partial derivatives with respect to the in-
put parameters; moreover, we assume the partial derivatives are
square integrable. Since C is symmetric and positive semidefinite,
it admits a spectral decomposition:

C=WAW', (6)

Here A = diag(Aq, ..., Ay,) with the eigenvalues A;'s sorted in de-
scending order

Mzkzz---zkm,z&

and W has the (orthonormal) eigenvectors wy,...,wy, as its
columns. The eigenpairs are partitioned about the rth eigenvalue
such that A;/A; 1 > 1,

wotw w, A=t | )

The columns of W; = [w1 ---wr] span the dominant eigenspace
of C and define the active subspace, and A; is a diagonal ma-
trix with the corresponding set of eigenvalues, Aq,...,A;, on its
diagonal. Once the active subspace is computed, dimension reduc-
tion is accomplished by transforming the parameter vector & into

¥ =W] & e R". The elements of y are referred to as the set of active
variables.
Consider the function

G) = f(W.y),
Following [12], we use the approximation

f(&) =~ f(W,W]E) = G(W{&).

That is, the model output f(£), in the original parameter space, is
approximated by G(W] &) in the active subspace. We could confine
uncertainty analysis to the inputs in the active subspace whose di-
mension is typically much smaller (in applications that admit such
a subspace) than the dimension of the original input parameter.
To further expedite uncertainty analysis, one could fit a regres-
sion surface to G using the following sequence of steps, as outlined
in [12, Chapter 4].

yecR.

1. Consider a given set of N data points, (Ei-, f(Ei-)), i=1,...,N.
2. For each &, compute y; = W] §;. Note that G(y;) ~ f(&).
3. Use data points (yi, f(El-)), i=1,...,N, to compute a regression

surface G(y) ~ G(y). A
4. Overall approximation, f(&) ~ G(W]&).

In practice, the matrix C defined in (5) is approximated using
pseudo-random sampling techniques such as Monte Carlo or Latin
hypercube sampling (used in this work):

PN 1 N T AT AT
Cr = ;(ng(&))(vgf(éi)) =WAW (8)

Clearly the computational effort associated with constructing the
matrix € scales with the number of samples, N. Hence, an itera-
tive computational approach is adopted in this work to gradually
increase N until the dominant eigenpairs are approximated with
sufficient accuracy; see Section 4.

3. GSA measures and their links with active subspaces

Consider a function f = f(&1, 3, ..., én,). While the active sub-
space framework described above does not make any assumptions
about independence of the inputs &;, i=1,...,Np, the classical
framework of variance based sensitivity analysis [26,35] assumes
that the inputs are statistically independent. While extensions to
the cases of correlated inputs exist [36-39], we limit the discussion
in this section to the case of random inputs that are statistically
independent and are either uniformly distributed or distributed
according to the Boltzmann probability distribution. Note that a
measure [ on R is referred to as a Boltzmann measure if it is ab-
solutely continuous with respect to the Lebesgue measure and ad-
mits a density of the form 7 (x) = Cexp{-V(x)}, where V is a con-
tinuous function and C a normalization constant [32]. An important
class of Boltzmann distributions are the so called log-concave dis-
tributions, which include Normal, Exponential, Beta, Gamma, Gum-
bel, and Weibull distributions. Note also that the uniform distribu-
tion does not fall under the class of Boltzmann distributions [32].

The total-effect Sobol' index (Ti(f)) of a model output, f(&)
quantifies the total contribution of the input, &; to the variance of
the output [26]. Mathematically, this can be expressed as follows:

Ve [ELf1E.4]
v

where & ; is the input parameter vector with the ith entry re-
moved. Here E[f|§ ;] denotes the conditional expectation of f
given & ; and its variance is computed with respect to & ;. The
quantity, V(f) denotes the total variance of the model output. The
total-effect Sobol’ index accounts for the contribution of a given

T(f)=1- (9)
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input to the variability in the output by itself as well as due to
its interaction or coupling with other inputs. Determining accu-
rate estimates of T;(f) typically involves a large number of model
runs and can therefore be prohibitive in the case of compute-
intensive applications. Derivative based global sensitivity measures
(DGSMs) [31] provide a means for approximating informative up-
per bounds on T;(f) at a lower cost; see also [40].
For f: Q — R, we consider the DGSMs,

vi(f) —E{(gg) } fg(ﬂ) n(§)dE, i=1,...,N,.

Here s is the joint PDF of & Note that v;(f) is the ith diagonal
element of the matrix C as defined in (5). Consider the spectral
decomposition written as C= Zfil )Lkwkw;‘r. Herein, we use the
notation (-, -) for the Euclidean inner product. The following re-
sult provides a representation of DGSMs in terms of the spectral
representation of C:

Lemma 3.1. We have v;(f) = Zfi] Arler, w)2.

Proof. Note that v;(f) = eiTCel-, where e; is the ith coordinate vec-
tor in RN, i = 1,..., N,. Therefore, v;(f) = ef(zfil Akwkwl)ei =

N, 2
i1 Arle, W)t O

In the case where the eigenvalues decay rapidly to zero, we can
obtain accurate approximations of v;(f) by truncating the summa-
tion:

r
vp(h) = Y Ml wi?, =1, N,

r <Np.

The quantities v;(f) are called activity scores in [33,34], where
links between GSA measures and active subspaces is explored. The
following result, which can also be found in [33,34], quantifies the
error in this approximation. We provide a short proof for com-
pleteness.

Proposition 3.1. For 1 <r <N,
0<v(f) = vir() <A1, i=1,..., N

Proof. Note that, v;(f)—v;,.(f)= Zk—m L (e, w)? =0, which
gives the first inequality. To see the upper bound, we note,

N N
2 2

D0 Ml W) <A ) (e W)’ <A

k=r+1 k=r+1

The last inequality holds because 1= |g?2 = Zfil {e;, wk)2 >
N,
Z:kir-ﬂ <ei’wk)2' =

The utility of this result is realized in problems with high-
dimensional parameters in which the eigenvalues A;,i=1,...,Np,
decay rapidly to zero; in such cases, this result implies that
vi(f)=v;,(f), where r is the numerical rank of C. This will be es-
pecially effective if there is a large gap in the eigenvalues.

The relations recorded in the following lemma will be useful in
the discussion that follows.

Lemma 3.2. We have

(a) ZN" v (f) =
( ) 1':1 Ui(f)

Zket Ak
N
= Zkil A

Proof. The first statement of the lemma holds, because

Np Ny 1 r
S =33 Al wy)? ZMZ(%W}(
i=1 i1 k=1

= ZM”WU Z}\k

The statement (b) follows immediately from (a), because v;(f) =

vin, (). O

It was shown in [32] that the total-effect Sobol’ index T;(f) can
be bounded in terms of v;(f):
L(f) =

vi(f), i=1,....N, (10)

V(f )
where for each i, ; is an appropriate Poincaré constant that de-
pends on the distribution of &;. For instance, if §; is uniformly dis-
tributed on [—1, 1], then G = 4/72; and in the case &; is normally
distributed with variance o2, then G; = 2. Note that (10) for the
special cases of uniformly distributed or normally distributed in-
puts was established first in [31]. The bound (10) provides a strong
theoretical basis for using DGSMs to identify unimportant inputs.

Combining Proposition 3.1 and (10), shows an interesting link
between the activity scores and total-effect Sobol’ indices. Specifi-
cally, by computing the activity scores, we can identify the unim-
portant inputs. Subsequently, one can attempt to reduce parameter
dimension by fixing unimportant inputs at nominal values.

Suppose activity scores are used to approximate DGSMs, and
suppose &; is deemed unimportant as a result, due to a small activ-
ity score. We want to estimate the approximation error that occurs
once &; is fixed at a nominal value. To formalize this process, we
proceed as follows. Let & be given and let z be a nominal value for
&;. Consider the reduced model, obtained by fixing &; at the nomi-
nal value:

fOE2) = &L E . G128, By,
and consider the following relative error indicator:
fo (FE) - FO (& 2))? u(dE)

Jo f(8)* u(dé) '

This error indicator is a function of z with z distributed according
to the distribution of £;.

£(z) =

Theorem 3.1. We have E,{£(2)} < 2C1-(v,-=r(f) + A1)/ V(f), for 1 <
r < Np.

Proof. Note that, since [, f(£)? (d&)
> V(f), we have

b _ D (E. )2 _ T
E(£) = g ] [ 1® — 0@ 2)? i@} =21,

where the equality can be shown using arguments similar to the
proof of the main result in [41]. Using this, along with (10) and
Proposition 3.1, we have

= V() + (Jo &) n(dB))?

E.{£(@)} < vi(f) < [U:r(f)"‘krﬂ]

V(f ) V(f )

O
In [40] the screening metric
fsi Vi (f) , (11 )
Zf:p‘l Gvi(f)

was shown to be useful for detecting unimportant inputs. We can
also bound the normalized DGSMs using activity scores as follows.

bi(f) =
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It is straightforward to see that
Guir(N+Ar1)  Gui(h)
Y G ) X G

with k; = G/(3"; Gv; -(f)). The case A,.q ~ 0,motivates the defini-
tion of normalized activity scores

~ Gv;
Uf‘r(f) — Nl 1,T(f) .
21 Gvir(F)
i=1
Remark 3.1. If the random inputs &;,i=1,..., N, are iid, then the

G's in the definition of the normalized screening metric will cancel
and

U;(f) = + KiArs1,

B(f) = ,}j;'(f) | T e wi)

zi:l Vi (f) 2511 )\'k
The expression for the denominator follows from Lemma 3.2(b).

Also, in the iid case, using Lemma 3.2(a) we can simplify the nor-
malized activity scores as follows:

vir(f)  _ ) kk(eiawk)2_
Z?E1 vi.r(f) ZE:1 )"k

The significance of the developments in this section are as fol-
lows. Theorem 3.1 provides a theoretical basis for parameter di-
mension reduction using activity scores. This is done by providing
an estimate of the error between the reduced model and the orig-
inal model. If a precise ranking of parameter importance based on
total-effect Sobol’ indices is desired, one can first identify unim-
portant inputs by computing activity scores, and then perform a
detailed variance based GSA of the remaining model parameters.
This approach will provide great computational savings as variance
based GSA will now be performed only for a small number of in-
puts deemed important based on their activity scores. Moreover,
the presented result covers a broad class of input distributions
coming from the Boltzmann family of distributions. Additionally,
the normalized activity scores discussed above provide practical
screening metrics that require only computing the activity scores.
This is in contrast to the bound in Theorem 3.1 that requires the
variance V(f) of the model output.

bir(f) =

4. Methodology

In this section, we outline the methodology for computing
the active subspace in an efficient manner. The proposed frame-
work is employed to analyze a 19-dimensional H,/O, reaction Ki-
netics problem whereby the logarithm of the pre-exponent (4;)
in the rate law associated with individual reactions provided in
Table 1 is considered to be uniformly distributed in the interval,
[0.97log(A?), 1.03 log(A7)]; A} is the nominal estimate provided
in [18]. Two approaches are explored for estimating the gradient
of ignition delay with respect to log(A;): a perturbation approach
that involves computation of model gradients using finite differ-
ence in order to construct the matrix € in (8), and a regression
approach that involves a linear regression fit to the available set of
model evaluations in order to approximate the gradient. The active
subspace is computed in an iterative manner to avoid unnecessary
model evaluations once converged is established.

As discussed earlier, gradient estimation using finite differences
requires additional model evaluations at the neighboring points in
the input domain. Hence, for N samples in a d-dimensional param-
eter space, N(d + 1) model evaluations are needed. On the other
hand, gradient estimation using the regression-based approach in-
volves a series of linear regression fits to subsets of available
evaluations as discussed in [12, Algorithm 1.2]. Hence, the com-
putational effort is reduced by a factor (d+1) when using the

100 — .
N
L] i
T -
P
5 ] |
10 L T
. IR
= " s
:S‘* ¢ e . : : : :T e
< L
L
10710_ ¢ + ]
e N = 1000
+ n = 20 .
n = 40
n = 80
= n = 120 .
10°19 L . L
0 5 10 15 20
Index (i)

Fig. 1. A comparison of the normalized eigenvalue spectrum, (A;/Ao) using n = {20,
40, 80, 120} samples with that obtained using a much larger sample size, N = 1000.

regression-based approach. In other words, for the same amount
of computational effort, the regression approach can afford a sam-
ple size that is (d + 1) times larger than that in the case of pertur-
bation approach. The specific sequence of steps for computing the
active subspace is discussed as follows.

We begin by evaluating the gradient of the model output, ng,
at an initial set of ny samples (generated using Monte Carlo sam-
pling) denoted by &;, i = 1,..., ng. Using the gradient evaluations,
the matrix, € is computed. Eigenvalue decomposition of € yields
an initial estimate of the dominant eigenspace, W, and the set of
corresponding eigenvalues, f\l. Note that W is obtained by parti-
tioning the eigenspace around A; such that the ratio of subsequent

. A . .
eigenvalues, (ﬁ) > @(101). At each subsequent iteration, model
4

evaluations are generated at a new set of n, samples. The new set
of gradient evaluations are augmented with the available set to re-
construct € followed by its eigenvalue decomposition. The relative
change in the norm of the difference in squared value of individ-
ual components of the dominant eigenvectors between subsequent
iterations is evaluated. The process is terminated and the result-
ing eigenspace is considered to have convgrged once the maxi-
mum relative change at iteration k, max(swl’f}) (j is used as an
index for the eigenvectors), is smaller than a given tolerance, .
A regression fit to G(WIE) is used as a surrogate to characterize
and quantify the uncertainty in the model output. Moreover, the
components of the eigenvectors in the active subspace are used to
compute the activity scores, v.(f), which provide an insight into the
relative importance of the uncertain inputs. Note that the index, r,
corresponds to the number of eigenvectors in W;. The sequence of
steps as discussed are outlined in Algorithm 1.

To assess its feasibility and suitability, we implement
Algorithm 1 to compute the active subspace for the 19-dimensional
H;/0, reaction kinetics problem by perturbing log (A;) by 3% about
its nominal value as discussed earlier. For the purpose of verifi-
cation, € was initially constructed using a large set of samples
(N = 1000) in the input domain. The gradient was estimated using
finite difference, and hence, a total of 20,000 model runs were
performed. In Fig. 1, we illustrate the comparison of the resulting
normalized eigenvalue spectrum by plotting (A;/Ag) (i=1,...,19)
corresponding to N = 1000 and the same quantity corresponding
to a much smaller set of samples, n = {20, 40, 80, 120}. We ob-
serve that the dominant eigenvalues, A4, ..., A4, are approximated
reasonably well with just 20 samples. As expected, the accuracy of
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Algorithm 1 An iterative strategy for discovering the active sub-
space.
Input: 6, 6y, B, 7.
Output: A, W, v.(f)

1: procedure ACTIVE SUBSPACE COMPUTATION

2 Setk=0

3 Draw n;, random samples, {I;‘i}?:"l according to mg.

4

5

Set Nigtal = 1
For each i=1,..., Ny, compute f(&) and the gradient

g = Vef&)
6: Compute C and its eigenvalue decomposition C=
Niotal . X . . .
Nr;:al Zl [gl][g‘ll-r =Wk A T
1=

BN AP " " "
. . k) _ 1 k) _ (k) (k)
7. Partition: A(){ Aw | Wk =Wk WP,

Kik) c Rprr

8: loop
o: Setk =k+1
10: Draw ny = [Bn;_;] new random samples {&; ?:“1 Be
[0,1]
1 Set Niotal =.Ntotal +
12: Compute g' = Vg f(§), i=m_q+1,...,m_y + M
C é 1 Ntctal . T
13: ompute =N,o kg 2'][g']
14: Eigenvalue decomposition, € = W A COW@T
15: Partition the eigenspace of € as shown in Step 7
o IORE 2 (WETH2),
16: Compute 6W§k). Sk — 21’1 J=1,....1
g | WED2]l,
17: if max (é\f\lgk}) < 7 then
i ,
18: break
19: end if

20: end loop
r
21:  Compute v;,(f) = ¥ kjwl?j,i =1,...,Np.
=N

22z Normalize v; (f) as ¥;,(f) = Zvivr—(f()f)
17r

23: end procedure

higher-index eigenvalues is observed to improve with the sample
size. Since A; is roughly an order of magnitude larger than A,, we
expect a 1-dimensional active subspace to reasonably approximate
the uncertainty in the ignition delay. To further confirm this,
we evaluate a relative L2 norm of the difference (SLN;") between
the squared value of corresponding components of the dominant
eigenvector, computed using N = 1000 (wq y) and n = {20, 40, 80,
120} (wyq ) as follows:

nen WSy = Wil (12)
-n _ ZTLN 102
L lw? Iz

The quantity, g?{”, was found to be @(10~2) in all cases. Thus,
even a small sample size, n = 20, seems to approximate the domi-
nant eigenspace with reasonable accuracy in this case. The iterative
strategy therefore offers a significant potential for computational
gains.

The active subspace for the 19-dimensional problem was also
computed using regression-based estimates of the gradient that do
not require model evaluations at neighboring points as discussed
earlier. The quantity, maxj(SWﬁ}) defined in Algorithm 1 was used
to assess the convergence behavior of the two approaches. Using

a set tolerance, T = 0.05, it was observed that both perturbation
and regression approaches took 8 iterations to converge. Note that
the computational effort at each iteration was considered to be
the same in both cases. More specifically, 5 new random sam-
ples were added for the perturbation approach at each iteration.
However, as discussed earlier, a total of 100 (=5 x(19+ 1)) model
runs were needed to obtain the model prediction and its gradients
at these newly generated samples. Hence, in the case of regres-
sion, 100 new random samples were generated at each iteration
since gradient computation does not require additional model runs
in this case. Thus, including the initial step, a total of 900 model
runs were required to obtain a converged active subspace in both
cases.

The accuracy of the two approaches was assessed by estimat-
ing si‘;‘" using the components of the dominant eigenvector in
the converged active subspace in each case in (12). The quantity,
sf{” was estimated to be 0.0657 and 0.1050 using perturbation
and regression respectively. Hence, the perturbation approach was
found to be relatively more accurate. Squared values of the indi-
vidual components of the dominant eigenvector from the two ap-
proaches and for the case using N = 1000 in the perturbation ap-
proach are plotted in Fig. 2 (left). The set of eigenvector compo-
nents for the three cases are found to be in excellent agreement
with each other, indicating that both approaches have sufficiently
converged and are reasonably accurate for this setup.

As mentioned earlier, the model output f{€) i.e. the ignition de-
lay in the H;/O, reaction in this case, varies predominantly in a
1-dimensional active subspace. Hence, f€) can be approximated as
C(WTS) in the 1-dimensional active subspace. The plots of G ver-

sus \T\IIE, regarded as the sufficient summary plot (SSP), obtained
using the perturbation-based and regression-based gradient esti-
mates are compared in Fig. 2 (right). The dominant eigenvector
obtained using perturbation is based on N = 45 samples which
requires M = 900 model runs. For the same amount of compu-
tational effort, we can afford N = 900 samples when using re-
gression. Hence, the SSP from regression is based on 900 points:
(W], GOW]E))), j=1,...,900. On the other hand, the SSP from
perturbation is plotted using only 45 points as mentioned earlier.
Nevertheless, the illustrative comparison clearly indicates that the
two SSPs are in excellent agreement. Moreover, it is interesting to
note that the response in ignition delay based on the considered
probability distributions for log (A;) although non-linear, can be ap-
proximated by a 1-dimensional active subspace.

We further estimated the normalized activity scores for indi-
vidual uncertain inputs (#; ,; =1 since a 1-dimensional active sub-
space seems reasonably accurate) using the components of the
dominant eigenvector as shown in Algorithm 1 (steps 21 and 22).
The activity scores for the 19 uncertain pre-exponents (A;'s), esti-
mated using the perturbation and regression strategies are plotted
in Fig. 3. The activity scores based on the two approaches for gra-
dient estimation agree favorably with each other as well as those
based on the screening metric involving the DGSMs in [40]. It is
observed that the uncertainty associated with the ignition delay is
largely due to the uncertainty in Ay while Aq, A5, and Aq; are also
observed to contribute significantly towards its variance.

The above comparisons indicate that the gradient of the igni-
tion delay with respect to the uncertain A;’s is reasonably approx-
imated using both perturbation and regression approaches in this
case. Since both approaches yield consistent results and are com-
parable in terms of convergence and accuracy, we could use either
for the purpose of active subspace computation for this setting. In
the following section, we shift our focus to the higher-dimensional
H, /0, reaction kinetics application wherein the activation energies
in the rate law as well as initial pressure, temperature, and stoi-
chiometric conditions are also considered to be uncertain.
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Fig. 2. Left: An illustrative comparison of individual squared components of the converged dominant eigenvector obtained using perturbation and regression strategies using
M = 900 model runs in each case. Additionally, the dominant eigenvector components obtained using M = 20,000 model runs (corresponding to N = 1000 samples) in
the perturbation strategy (test case), used to assess the accuracy of the two strategies are also plotted. Right: An illustrative comparison of the SSPs generated using the

perturbation and the regression strategies for computing the active subspace.
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Fig. 3. Left: A bar-graph of normalized activity scores (i},'s) for the 19 uncer-
tain pre-exponents (A;'s); r denotes the number of eigenvectors in the dominant
eigenspace.

5. H/0, reaction kinetics: higher-dimensional case

For the high-dimensional case, we aim to investigate the impact
of uncertainty in the following problem parameters on the ignition
delay associated with the H,/0, reaction: (i) pre-exponents (A;'s);
(ii) the activation energies (E,;'s); and (iii) the initial pressure (Pg),
temperature (Tp), and stoichiometry (®g). The log(A;)’s, E;;’s for
all reactions except Rg — Rg, Ri3 (due to zero nominal values for
Eq), and the initial conditions were considered to be uniformly dis-
tributed, and perturbed by 2% about their nominal values. Note
that the magnitude of the perturbation was selected such that the
ignition delay assumes a physically meaningful value in the input
domain. The nominal values of the rate parameters, A;'s and Ej;’s
were taken from [18]. The nominal values of Py, Ty, and &y were
considered to be 1.0 atm, 900 K, and 2.0 respectively.

5.1. Computing the active subspace

The active subspace was computed using the iterative pro-
cedure outlined in Algorithm 1. The convergence of the eigen-
vectors was examined by tracking the quantity ‘maxj(Swg')j)'. In

Fig. 4 (right), we examine max; (SW?)},) with increasing iterations
for the perturbation and the regression approaches discussed ear-
lier in Section 4. At each iteration, we improve our estimates of
the matrix € by estimating the gradient of the ignition delay at
5 new randomly generated samples in the 36-dimensional input
space. However, gradient computation at these 5 samples requires
185 (=5 x (36 +1)) model runs when using perturbation. For the
same computational effort, the regression approach can afford 185
new samples at each iteration. It is observed that using v = 0.05,
the active subspace requires 4 iterations (925 model runs) to con-
verge in the case of perturbation, and 9 iterations (1850 model
runs) to converge in the case of regression. Hence, the computa-
tional effort required to obtain a converged active subspace is dou-
bled when using regression to approximate the gradient. Moreover,
gradient estimation in the perturbation approach can be made
more efficient by using techniques such as automatic differen-
tiation [42] and adjoint computation [23]. These techniques al-
though not pursued here are promising directions for future efforts
pertaining to this work. In Fig. 4 (right), we compare individual
components of the dominant eigenvector in the converged active
subspace obtained using the two approaches. The components are
observed to be in excellent agreement with each other.

In Fig. 5, we plot the SSP for the perturbation approach (left)
and the regression approach (center) in a 1-dimensional active
subspace. A 1-dimensional polynomial fit is also illustrated in
both cases. Moreover, the two surrogates are shown to be consis-
tent with each other (right). From these results, it is clear that a
1-dimensional active subspace captures the variability in the igni-
tion delay with reasonable accuracy, and that the two approaches
yield consistent results.

5.2. Surrogate Assessment

The 1-dimensional surrogate (G) shown in Fig. 5 for the pertur-
bation and regression approaches is investigated for its ability to
capture the uncertainty in the ignition delay. Specifically, we com-
pare probability density functions (PDFs) obtained using the true
set of model evaluations, and 1-dimensional surrogates (&'s) based
on the two approaches, as shown in Fig. 6. Note that the three
PDFs were evaluated using the same set of 10* samples in the
cross-validation set. The PDFs are observed to be in close agree-
ment with each other. Specifically, the modal estimate and the un-
certainty (quantified by the spread in the distributions) is found
to be consistent for the three cases. To confirm this, we further
compute the first-order (mean) and the second-order (standard
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Fig. 4. Left: An illustrative comparison of individual components of the dominant eigenvector in the converged active subspace i.e., at the end of 4 iterations in the perturba-
tion approach and 9 iterations in the regression approach. Right: A comparison of the convergence behavior of the perturbation and the regression approaches. Convergence

is accomplished once man((SWS{)j) assumes a value smaller than 0.05.
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Fig. 5. Sufficient summary plots (SSPs) for the case of perturbation (left) and re-
gression (center). A polynomial fit of degree 2 and 3 as shown in the plots is used
as a surrogate in the perturbation and regression approaches respectively. An illus-

trative comparison of the two surrogates is also provided (right).
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Fig. 6. A comparison of the PDFs of ignition delay, obtained using model evalua-
tions (solid line) and 1-dimensional surrogates using the regression-based strategy
(dashed line) and the perturbation-based strategy (dashed-dotted line). The same
set of 10% samples in the cross-validation set were used in each case.

deviation) statistics of the estimates of the ignition delay obtained
using the model, 1-dimensional surrogate from perturbation, and
1-dimensional surrogate from regression at the cross-validation
sample set. The mean and standard deviation estimates are pro-
vided in Table 2. The mean and the standard deviation estimates
obtained using the model and the 1-dimensional surrogates are

Table 2

The mean (u), and the standard deviation (o),
computed using the model (G), and the surro-
gate (G) based on the two strategies at 10 sam-
ples in the cross-validation set.

Distribution w o

G (Model) 0.15 0.14
G (Perturbation-based) 0.15 013
G (Regression-based) 0.15 0.13

found to be in close agreement. Hence, the uncertainty in the ig-
nition delay is accurately captured in both cases.

5.3. GSA consistency check

The normalized activity scores (i} ;) based on the 1-dimensional
active subspace, obtained using the two approaches for gradi-
ent estimation (perturbation and regression), are compared with
the total-effect Sobol’ indices in Fig. 7. Note that the Sobol’ in-
dices were computed using the verified 1-dimensional surrogate
(6) in the active subspace, obtained using the perturbation ap-
proach. Several useful inferences can be drawn. Firstly, the nor-
malized activity scores from the two approaches and the total-
effect Sobol’ indices are found to be in close agreement with each
other. Secondly, as expected, ¥;, based on perturbation exhibits
a better agreement with the total-effect Sobol’ indices since the
1-dimensional surrogate based on the same approach was used
to evaluate the Sobol’ indices. This observation demonstrates that
the proposed framework is self-consistent. Thirdly, the variability
in the ignition delay is predominantly due to the uncertainty in
A1, Ag, and Ty while contributions from the uncertainty in Aqs, A7,
and E,j5, and Ty are also found to be significant. The remaining
rate parameters, initial pressure (Py), and stoichiometry (®g) do
not seem to impact the ignition delay in their considered intervals.
Therefore, GSA has helped identify the important rate parameters
i.e. key contributors to the uncertainty, and also demonstrated that
among the considered uncertain initial conditions, the ignition de-
lay is mainly impacted by the perturbations in the initial tempera-
ture in the considered interval.

As shown in the PDF plotted in Fig. 6, the ignition delay as-
sumes a wide range of values, i.e. from about 2 ms to 400 ms.
However, for many practical applications, a much smaller ignition
delay (0.1 ms-1 ms) might be of interest. The authors would like to
point out that the proposed framework was also implemented to
such a regime by using a nominal value of the initial temperature,
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Fig. 7. Bar graphs illustrating individual activity scores for the uncertain rate parameters and the initial conditions for the H,/O; reaction.

Ty, = 1000 K, and the initial pressure, P, = 1.5 atm. Our analy-
sis for this regime once again revealed that a 1-dimensional ac-
tive subspace was able to capture the variability in the ignition
delay due to the uncertainty in the rate-controlling parameters
and the input conditions. The sensitivity trends were also found to
be qualitatively similar to those presented in Fig. 7. We have not
included these results in the interest of brevity. Therefore, the pro-
posed methodology was tested for its robustness and applicabil-
ity for a wide range of conditions pertaining to the considered
application.

6. Summary and discussion

In this work, we focused on the uncertainty associated with
the rate-controlling parameters in the H,/O; reaction mechanism
as well as the initial pressure, temperature and stoichiometry,
and its impact on ignition delay predictions. The mechanism in-
volves 19 different reactions and in each case, the reaction rate de-
pends upon the choice of a pre-exponent and an activation energy.
Hence, in theory, the evolution of the chemical system depends
upon 38 rate parameters and three initial conditions. However, we
considered epistemic uncertainty in all pre-exponents and activa-
tion energies with non-zero nominal values i.e. a total of 33 rate
parameters instead of 38 in addition to the three initial conditions.
To facilitate efficient uncertainty analysis, we focused our efforts
on reducing the dimensionality of the problem by identifying im-
portant directions in the parameter space such that the model out-
put predominantly varies along these directions. These important
directions constitute the active subspace. Additionally, we demon-
strated that the activity scores, computed using the components of
the dominant eigenvectors provide an efficient means for approxi-
mating derivative based global sensitivity measures (DGSMs). Fur-
thermore, we established generalized mathematical linkages be-
tween the different global sensitivity measures: activity scores,
DGSMs, and total Sobol’ index which could be exploited to reduce
computational effort associated with global sensitivity analysis.

Active subspace computation requires repeated evaluations of
the gradient of the Qol i.e. the ignition delay. For this purpose,
we explored two approaches, namely, perturbation and regression.

Both approaches were shown to yield consistent results for the
19-dimensional problem wherein only the pre-exponents were
considered to be uncertain. It was observed that the computational
effort required to obtain a converged active subspace was compa-
rable for the two approaches. However, the predictive accuracy of
the perturbation approach was found to be relatively higher. More-
over, a 1-dimensional active subspace was shown to reasonably ap-
proximate the uncertainty in the ignition delay. Additionally, the
activity scores were also shown to be consistent with the screen-
ing metric estimates based on DGSMs in [40]. An iterative proce-
dure was adopted to enhance the computational efficiency.

The active subspace was further computed for a 36-dimensional
problem wherein all pre-exponents and activation energies with
non-zero nominal estimates as well as the initial conditions were
considered uncertain. Once again, consistent results were obtained
using the two approaches. A 1-dimensional active subspace was
shown to reasonably capture the uncertainty in the ignition delay
in this case. However, the computational effort required to com-
pute a converged active subspace using perturbation was found
to be half of the effort required in the case of regression. Pre-
dictive accuracy of the two approaches was found to be compa-
rable. Hence, perturbation seems like a preferred approach for the
higher-dimensional problem based on our findings. GSA results in-
dicated that the variability in the ignition delay is predominantly
due to the uncertainty in the rate parameters, A; and Ag with sig-
nificant contributions from A5, Ay7, and Eg ;5. Additionally, the ig-
nition delay was found to be sensitive towards Ty,

Based on our findings, the perturbation approach is preferable
for active subspace computation; the computational cost of this
approach can be reduced significantly if more efficient gradient
computation techniques (e.g., adjoint-based approaches or auto-
matic differentiation) are feasible. The regression-based approach
can be explored in situations involving intensive simulations where
gradient computation is very challenging.

We also mention that alternate regression-based approaches
such as ones based on computing a global quadratic model have
been proposed and used in the literature; see e.g., [43]. The ap-
plicability of such an approach in the context of high-dimensional
chemical reaction networks is subject to future work.
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The computational framework presented in this work is agnos-
tic to the choice of the chemical system and can be easily adapted
for other systems as long as the quantity of interest is continu-
ously differentiable in the considered domain of the inputs. We
have demonstrated that the active subspace could be exploited for
efficient forward propagation of the uncertainty from inputs to the
output. The resulting activity scores and the low-dimensional sur-
rogate could further guide optimal allocation of computational re-
sources for calibration of the important rate-controlling parameters
and input conditions in a Bayesian setting. Additionally, dimen-
sion reduction using active subspaces could assist in developing
robust formulations for predicting discrepancy between simula-
tions and measurements due to epistemic uncertainty in the model
inputs.
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