
Protecting Sensitive Data in Android SQLite
Databases Using TrustZone

Francis Akowuah, Amit Ahlawat and Wenliang Du
Electrical Engineering and Computer Science Department

Syracuse University
Syracuse, NY, USA

{feakowua, aahlawat, wedu}@syr.edu

Abstract—Applications use SQLite databases for storing data
such as fitness/health information, contacts, text messages, cal-
endar among others. Such information is sensitive and worth
protecting. SQLite engine do not have built-in security to protect
databases, rather, it relies on its environment such as the
operating system to provide security for database content. While
Android provides security mechanisms for SQLite databases,
it has been shown to be inadequate. Proposed solutions are
not able to protect sensitive database content when the OS
is compromised. Also, some existing solutions fall short in
protecting sensitive data if the SQLite database file is relocated
to an environment that do not have any security restrictions.
We propose a hardware isolation solution, leveraging ARM’s
TrustZone to protect sensitive content of databases. We design
and implement a prototype system on Hikey development board
to demonstrate that TrustZone can be integrated with Android
to protect SQLite data. Evaluation results shows our system is
practical in and do not break the design patterns in Android
application development.

Index Terms—TrustZone, SQLite, Database, Android

I. INTRODUCTION

SQLite is a free in-process library that implements SQL

database engine. It has been widely deployed in many systems

to provide database functionality. One reason for SQLite’s

wide-spread use is due to its high storage efficiency, small

memory needs and fast query operations. Android and iOS

ship with SQLite and also make available a rich set of APIs for

mobile application developers to implement databases in their

apps. Common mobile apps that have natural use of databases

include email, text messaging, settings, calendar among others.

As mobile device use have become a part of the modern life,

some mobile applications end up storing private and sensitive

information such as blood pressure and sugar, passwords, SSN

among others in SQLite databases. SQLite databases are stored

as a cross-platform file and data is stored without obscurity.

Hence, anyone or application that has direct access to the

database file can read and modify the whole database content.

This calls for measures to protect sensitive data stored in

databases.

Morever, the SQLite engine, unlike client-server DBMS

such as Oracle and SQL Server, do not not have built-in se-

curity such as authentication, authorization or crypto systems,

therefore, it relies on its environment (such as the operating

system) to provide the required security. The Android oper-

ating system meets this need by providing multiple security

mechanisms for SQLite databases and the application as a

whole. First, Android provides a User-ID (UID) based access

control policy on the app’s installation directory. That is, each

application is sandboxed and therefore it is only the application

process that can access the content of its installation directory.

When an application uses SQLite, the SQLite database, which

is a cross-platform file is stored in the application’s installation

directory. Therefore SQLite databases are isolated from other

apps on the Android mobile device. Secondly, Android uses

its permission framework together with Content Providers

to provide access control for SQLite databases. When an

application wants to share its database with other application,

it uses Content Providers to do so. The app developer may use

Android-defined or user-defined permissions to restrict access

to the SQLite database. For example, READ CONTACTS

permission only allows the contacts database to be read;

it cannot be written to. However, these Android security

mechanisms are not sufficient in the event where a malicious

application compromises the operating system to gain root

privileges. It can bypass all the sandboxing security features

and gain direct access to the database file. Davi et al [1]

have shown that Android’s sandbox model is inadequate since

applications can escalate the permissions that they have been

granted. [2] also show rooting attacks are possible on Android.

In order to enhance the security of SQLite database, encyp-

tion and access control solutions have been proposed. Encryp-

tion can be applied to a database’ field or record as well as the

databse file as seen in [3]–[9]. Although encryption is a viable

solution to protect database content, crypto key management

has been a difficult task for many developers since the key

is usually stored in the executable file or generated in the

same process or (compromised) computing environment. This

has enabled attackers to discover keys as seen in [10].The

malicious app can gain access to the encryption key and

then decrypt the database. Our solution improves upon pure

encryption solutions by isolating the environment in which

the crypto key is stored and used. Android also provides File

Disk Encryption (FDE) which encrypts all the data on the

filesystem. However, FDE protects data only when the mobile

device is locked; FDE is disabled when the device owner

unlocks the device and all data becomes plaintext.

Other than crypto solutions, the research community has

proposed a couple of access control solutions. Mutti et al

Int'l Conf. Security and Management | SAM'18 | 227

ISBN: 1-60132-488-X, CSREA Press ©

[11] integrated SQLite and SELinux in order to enforce

fine grain access control at the lowest level in the database

based on context security. Their solution requires changes to

both the OS and the SQLite library. Similarly, Ali-Gombe

et al [12] proposed a solution that defines access control for

both database schema and entities by merging static bytecode

weaving and database query rewriting to achieve low-level

access control for Android native providers at the application

level. Hence their solution do not make any change to the un-

derlying OS, rather, it provides a Controller stub that statically

weaves into the target application. It also provides Controller

interface that is used for setting access levels. Unfortunately,

these proposed access control systems are weak against the

adversary that has gained elevated privileges. Also, they fail to

protect sensitive data if the database file is moved to a different

environment that do not have proposed access controls defined.

For instance, the adversary can send the database file to a

remote computer. For stronger privacy and security guarantees

in a compromised OS and protecting the data whenever it is

moved to a new environment, we believe that isolation solution

is better than access controls mechanisms.

Therefore, we propose column-level encryption backed by

a hardware isolation solution that protects sensitive database

content in a compromised environment. We undertake the non-

trivial challenge to integrate TrustZone with Android such that

we can maintain the app’s interaction with SQLite databases

across two operating systems. We securely enter the sensitive

data in the secure world and then ensure that the crypto key

and sensitive data stays in the TEE always.

Our contributions include the exploration of integrating

ARM’s TrustZone with Android to protect sensitive data on the

Android OS. Secondly, we design and implement a prototype

system on Hikey board running Android 7.1 and OPTEE OS.

Lastly, we provide security analysis and evaluation of our

system.

Paper is outlined as follows. §II gives background on

SQLite and ARM TrustZone while §III discuss our threat

model and assumptions. §IV and §V provides the design

principles and system overview respectively. In §VI, we give

the security analysis of the system. Evaluation, related work

and conclusion are discussed in §VII, §VIII and §IX.

II. BACKGROUND

We provide some background on SQLite databases and the

storage options available in Android for its application. Also,

we briefly describe the ARM TrustZone technology.

A. Storage Options For Android Apps

The Android OS provide multiple ways to store persistent

data. The options include Shared Preferences, Internal Storage,

External Storage, SQlite Databases and Network Connection

(on web server). External Storage make data publicly available

on the device whereas Shared Preferences, SQLite Databases

and Internal Storage keep the data private to the application.

This work only focuses on SQLite Databases.

B. SQLite

SQLite [13], the most widely deployed software in the

world, is a relational database management system (RDBMS)

similar to MySQL, PostgreSQL and SQL Server. However,

SQLite does not have the client-server model that the afore-

mentioned RDBMSs have. Hence, SQLite do not require

a server, administration tasks or any complex configuration

process. Yet, applications that embed SQLite still enjoy all

the power of a relational database. On the Android platform,

SQLite is used to manage system and user databases storing

several types of information including contacts, SMS mes-

sages, and web browser bookmarks. Besides its use on mobile

devices, SQLite has been used in aviations, electronics, health

applications etc. The entire database is stored in a single cross-

platform file and runs in the same process as the app. SQLite

is free for both commercial or private purposes.

SQLite is an ACID compliant database that implements

most of the SQL standard. It does not implement SQL com-

mands such as RIGHT OUTER JOIN, FULL OUTER JOIN,

GRANT and REVOKE. SQLite VIEWs are read-only. The

interested reader is referred to [13] for a complete list of SQL

features that are not implemented in SQLite.

Android and iOS provide strong support for applications

to use SQLite by making available application program-

ming interfaces (APIs) for creating, querying and mod-

ifying databases. Android provides many classes in an-
droid.database.sqlite package for database management. IOS

also provides a similar support through the CoreData frame-

work.

SQLite is not the only data persistence solution on the

Android OS even though this research focuses on SQLite.

Alternatives include Realm DB [14], Couchbase Lite [15],

Berkeley DB [16], ORMLite [17] among others. Android has

introduced the Room Persistence Library [18] to allow fluent

database access. Room is an abstraction layer over SQLite.

While the Android app developer has the option to the SQLite

APIs and Room APIs, the documentation recommends the

latter.

C. ARM TrustZone

TrustZone (Fig. 1) is ARM’s trusted execution environment

(TEE) technology that enables CPU to run in two modes:

secure and normal modes. Normal world or mode is where

the normal computations of the CPU takes place. System

and third-party applications run in the normal world. Secure

world, on the other hand, is used for secure and private-

sensitive computations. Similar to the normal world, the secure

world has user space and kernel layer. Applications that run

in the secure world’s user layer is called Trusted Applications

(TA) or Trustlets. Many CPUs shipped with mobile devices

have Trustzone. Currently, only vendors and OEMs utilize the

security guarantees of the technology since it is locked when

the device ships.

228 Int'l Conf. Security and Management | SAM'18 |

ISBN: 1-60132-488-X, CSREA Press ©

Fig. 1. ARM TrustZone

Fig. 2. Threat model

III. THREAT MODEL AND ASSUMPTIONS

A. Attacker Model

We consider a threat model (depicted in Fig. 2) whereby

the normal world is compromised. Although the attacker

can attack the upper layers of Android enabling privilege

escalation by leveraging attacking techniques in [1], [19], [20]

and [21], he does not gain root privileges. We consider a strong

adversary who is also able to attack the lower layers of android

enabling him to gain root privileges using techniques as those

discussed in [22] and [23]. Thus, the attacker is able to bypass

all the security mechanisms in the normal world operating

system (Android) and for that reason we do not trust the

normal world’s user-space applications and operating system.

We, however, trust the secure world applications and operating

system. The TrustZone technology provides hardware isolation

that do not allow our strong adversary to access resources in

the TEE.

Lastly, the attacker is able to decompile (using tools such as

[24] and analyze the Android application’s APK file allowing

attacker to gather information about database operations in

the application. The attacker is able to learn about any secrets

the developer mistakenly placed in the source code such as a

crypto key or password.

The attacker’s intent is to read the sensitive content of

the SQlite database and/or to relocate the database file to an

environment that has no restrictions on reading the database

content. The attacker is also interested in carrying out static

and dynamic leakage attacks [6] by observing the ciphertext

values to learn a pattern or infer plaintext values.

B. Assumptions

Our system includes Trusted Applications (TA) that run in

the secure world. The TAs do not contain a large amount of

code. We assume that there are no vulnerabilities in our TAs.

Sensitive data are inputted and encryted in the secure

world of our system. The data should not be given to the

normal world for display purposes. Therefore, we assume

SchrodinText [25] is implemented on the Android OS so that

sensitive data can be securely be displayed to the user without

giving it the normal world.

IV. INTEGRATING TRUSTZONE WITH ANDROID

The Android Framework support applications to use SQLite

by providing APIs in the android.database.sqlite package.

The APIs interact with the SQLite library which is found

in the Native Library layer via Java Native Interface (JNI).

SQLite library returns the results of the database operations

to the framework via JNI. Finally, the result is given to the

application. Fig 3a demonstrates how android apps interact

with the SQLite library.

As seen above, no trusted execution environment (TEE)is

involved in the app’s interaction with SQLite. We have the

non-trivial challenge to integrate TrustZone with Android such

that we can maintain the app’s interaction with databases

across two operating systems (Android and Secure OS) as

shown in Fig 3b. We want this integration to be transparent to

the app developer as much as possible such that he does not

bother about how his apps interacts with TrustZone.

To achieve our goal, we consider the following in our

design: (1) SQLite database placement, (2) securely inputting

the sensitive data (3) building secure world components to

interact with normal world app and (4) securely displaying

the sensitive data. We discuss items (2) to (4) in subsequent

sections.

The placement of the SQLite database can impact the

system’s performance. We have the option of placing the

whole database in the secure world, splitting the database into

sensitive and non-sensitive databases or the more challenging

option of maintaining one database in the normal world whilst

protecting the sensitive data from the secure world. We choose

to design and implement the last option. Our design aims to

have (1) a small Trusted Computing Base (TCB), (2) require

minimal changes to the OS, (3) minimize the number of

switches between the normal and secure worlds and (4) avoid

query rewriting when possible.

V. SYSTEM OVERVIEW

In this section, we describe our system components and how

they interact. Fig. 4 shows the high-level view of our system.

A. System Components

We discuss the various components that make up our

proposed system. We describe the Trusted Applications (TA)

that we implemented. A TA is an application that runs in the

user-space of the Secure OS. TAs have the full power of the

Int'l Conf. Security and Management | SAM'18 | 229

ISBN: 1-60132-488-X, CSREA Press ©

Fig. 3. (a) How applications interact with the SQLite Library. (b) Integration
of Android and TrustZone

Fig. 4. System overview

CPU and the memory of the device. SchrodinText component

is assumed to be already present on the experimental setup.

Interested reader is referred to [25] for details on SchrodinText.

1) Modified Android Framework: We introduce new API

to the android.database.sqlite.SQLiteDatabase class. Methods

insertTZ(), queryTZ() and updateTZ() are used for inserting,

querying and updating sensitive fields respectively. Consid-

ering the intent of the attacker in our attacker model, we do

not make changes to the delete functionality. Applications that

do not have any sensitive field to protect can still use stock

Android’s APIs to carry out SQLite operations.

Given that we consider a Normal World OS that is compro-

mised requires that we protect the sensitive data that the user

enters using the keyboard. Leveraging techniques described in

[26], we moved the keyboard UI to the Secure World while

preserving the binding between the keyboard UI and Android’s

UI widget called EditText. In Android, EditText triggers the

keyboard UI. To trigger the secure keyboard UI, we extend

EditText to include a type called secure. The developer uses

the extended EditText (with secure type) to communicate to

the Android Framework that he intends to capture a sensitive

data that will be stored in the SQLite database. The app’s

secure keyboard request is sent via a modified InputMethod-
ManagerService (IMMS) Framework service to a new proxy

IME system app which then interacts with the Keyboad TA

(§V-A3). The keyboard TA displays the secure keyboard UI.

We add LED light to the Secure World which is only lit when

the CPU is operating in the Secure mode indicating to the user

that keyboard input will be captured in the secure world.

2) Crypto TA - Encrypting /decrypting sensitive data: :
Crypto TA is a trusted application (written in C with 615

LOC) that runs in the secure world. As its name suggests,

it is responsible for encrypting and decrypting sensitive data

using AES 256 CBC mode. It generates random IV for each

sensitive data to thwart static and dynamic leakage attacks

discussed in [6]. Let C represent the sensitive data’s ciphertext.

The TA concatenates the random IV (IV) with the ciphertext.

Let S = C + IV . Crypto TA encodes S before sending to

the normal world (E = Enc(S)). The encoding step is done

to prevent loss of data as it moves between worlds. Without

encoding, we realized C could not be decrypted correctly after

retrieving from the Normal World. The ciphertext contained

non-printable characters that the normal world could not

render correctly.

To decrypt the data, the Crypto TA extracts the IV and C
from E after which it applies the decryption function.

3) Keyboard TA: The Keyboard TA communicates with the

Keyboard UI to obtain the sensitive data from the user. After

capturing the user input, the typed sensitive data is forwarded

to the Crypto TA for encryption and encoding. Crypto TA

returns E (§V-A2) to the Keyboard TA which is then returned

to the proxy IME app. Using its binding with the app’s Editext,

the proxy IME app returns E to the Secure EditText. The app

code can then access E by calling EditText’s getText() method.

4) Bridge: The Bridge is a native component that invokes

the secure world. It has 634 lines of C code. Apps interact with

the Bridge via TEEBrideManager which serves as an interface

for the TEEBridge service. TEEBridge is a system service that

we added to the Android Framework.

B. System Workflow

Here we describe how our system works. Our system cur-

rently do not support SQL commands that includes a sensitive

column in the WHERE clause. Allowing filtering on a sensitive

field can enable the attacker to make a correct guess.

1) Sensitive data insertion:: User presses on secure Edit-

Text widget and obtains a secure keyboard UI from the secure

world. This switches the CPU to the Secure Mode. User

enters sensitive data and dismisses the secure keyboard. The

Keyboard TA invokes the Crypto TA to encrypt and encode

the inputted data as described in §V-A2. After receiving results

from the Crypto TA, the Keyboard TA returns the encoded

ciphertext (E) to the secure EditText. The app code obtains

the Secure EditText’s text by caling getText(). Using an-
droid.database.sqlite.SQLiteDatabase.insert() method, the app

inserts the text obtained into the SQLite database. Fig 5 shows

this workfow.

Fig. 5. Workflow for inserting sensitive data

2) Retrieving and displaying sensitive data:: Applications

display database content to user in UI widgets such as

TextBox. When the OS is compromised the attacker is able to

230 Int'l Conf. Security and Management | SAM'18 |

ISBN: 1-60132-488-X, CSREA Press ©

steal sensitive data when it is being displayed in an UI widget.

For this reason, we cannot decrypt the sensitive data in secure

world and send it to the normal world for display purpose. We

need a solution that can display the data in the secure world

without giving the plaintext to the normal world. SchrodinText

[25] provides such solution and as stated in §III-B, we assume

that SchrodinText is already implemented on Android.

We add queryTZ() method to the an-
droid.database.sqlite.SQLiteDatase class. This method

retrieves the encoded ciphertext E from the database

and calls SchrodinText’s setCiphertext to bind E to the

SchrodinTextView (modified version of Android’s UI widget

TextView). SchrodinText interacts with the CrytoTA to decrypt

the sensitive data. SchrodinText then displays the plaintext

from the Secure World without giving the data to the Normal

World. This workflow is shown in Fig. 6

Fig. 6. Workflow for retrieving and displaying sensitive data

3) Updating sensitive data:: Our system allow sensitive

data to be updated. This process is similar to inserting sensitive

data (§5). In this workflow, we assume the row data to be

updated is loaded in UI widgets and that the sensitive data is

attached to secure EditText. This ensures that data is securely

captured in the secure world. After data capture, app code

calls android.database.sqlite.SQLiteDatabas.update() method

to update.

C. Implementation

We implement our system on LeMaker’s Hikey development

board which is powered by the Kirin 620 SoC with octa

core ARM Cortex-A53 64-bit CPU up to 1.2GHz and high

performance Mali450-MP4 GPU. Hikey also has 1GB/2GB

LPDDR3 DRAM (800MHz) and 8GB eMMC storage on

board. We run Android 7.1 and Linaro’s OPTEE [27] in the

normal world and secure world respectively.

VI. SECURITY ANALYSIS

In this section, we present the security analysis of our

system. Our analysis assumes that the TrustZone platform is

trusted and the secure boot process has initialized the integrity-

verified OPTEE OS. We do not consider hardware attacks, side

channel attacks and DOS attacks.

A. Database Security Analysis

The intent of the adversary is to bypass all security mech-

anisms in the Android operating system in order to read the

sensitive content of the SQLite database. Our goal is not to

prevent the attacker from getting access to the data, rather, we

want to prevent him from having knowledge of the sensitive

data. In our system, the sensitive content was entered and

Fig. 7. Performance measurement

encrypted in the secure world where the adversary is unable to

access. The crypto key stays in the secure world and it is never

given to the normal world. Therefore, when the adversary gets

direct access to the SQLite database file, he cannot decrypt and

read the sensitive data since the key is hidden secure world.

The adversary is also interested in observing patterns in

ciphertext to infer plaintext. We prevent this or make it harder

by generating random IVs for each sensitive data so that

two plaintext of the same value do not generate the same

ciphertext.

Moreover, the adversary may send database file to a remote

computer to evade other security restrictions existing in the

android OS. Our system ensures the crypto key does not

leave the secure world making it impossible for adversary to

send both the crypto key and the database file together to

the remote computer. Unlike most encryption methods where

the key is generated and/or stored in the same execution

environment (normal world) as the ciphertext, our hardware

isolation guarantees that key is always isolated from the

ciphertext.

B. Keyboard Security Analysis

When the keyboard UI is called, it switches the CPU to

the Secure Mode where the normal world cannot monitor

any of the secure I/O ports. This guarantee is given by

the ARM TrustZone from the hardware. Thus, the normal

world adversary cannot switch the screen input or screen USB

input thereby preventing keylogging attacks. To prevent screen

capture attacks, TrustZone also blocks the normal world from

switching the HDMI output of the screen. Lastly, we do not

disclose the input to the normal world.

VII. EVALUATION

In this section, we evaluate our design with regards to

ease of adoption, performance and effectiveness. Using real

world open source applications, we tested how easy it is for

developers to adopt our system to protect sensitive data in their

database. Also, we measured the performance overhead that is

introduced as a result of the changes we made to the Android

framework and the integration of ARM TrustZone. Lastly, we

evaluate the effectiveness of our system in a few use cases.

Int'l Conf. Security and Management | SAM'18 | 231

ISBN: 1-60132-488-X, CSREA Press ©

A. Performance Measurement

We evaluate performance in terms of the SQL language’s

CRUD commands, namely, INSERT, SELECT, UPDATE and

DELETE. We compare the time it takes to execute the CRUD

commands in three scenarios: (1) CRUD operations without

any encryption, (2) CRUD operations using Android’s Crypto

API and (3) CRUD operations using our system (encryption

with hardware isolation)

1) INSERT and UPDATE: We observe an overhead averag-

ing 100 milliseconds when inserting or updating a record. This

is as a result of the time that it takes to switch to and back

from the secure world. Further, we observed the encryption

algorithm in the TA takes about 18 ms. We used the encryption

APIs implemented by OPTEE OS in our TA. overhead was

however not noticeable on our testing app.

2) DELETE: Deleting a record from a table did not incur

overhead because we maintain only one database in the normal

world. So deletion occurs in the normal world without secure

world involvement.

3) QUERY: The SELECT command itself did not introduce

any performance overhead because it did not involve any

transition to the secure world. However, obtaining the query

results from the SQLiteCursor object incurs an overhead as

the ciphertext is decrypted in the secure world.

Fig.7 gives a summary of the performance measurement.

Chart clearly shows that the overhead our system incurs is due

to the world switch since the time for using Android crypto

APIs is not significantly different from the time that our system

incurs.

B. Ease of Adoption

Here we evaluate how easily developers may adopt our

system to protect their sensitive database content. Developers

need to only call our system’s API and this usually require

a line or few lines of code. Code snippet below shows how

a developer would use our secure EditText that would trigger

the keyboard UI in the secure world.

<EditText
android:id="@+id/editText"
android:inputType="secure" �

}

Line � sets the inputType to secure. This is the only line

needed to allow the user to capture the sensitive data in the

secure world.

C. Impact on Content Providers, Loaders and Adapters

SQLite is the popular backend for Content Providers. Con-

tent Provider is an interface that allow applications to share

their data in a controlled manner. We evaluate the system

to see if our changes to the Android framework breaks that

design pattern. Also we wanted to ensure that our system still

works with Loaders. Loader classes such as CursorLoader and

AsyncTaskLoaders are used to perform slow operations so that

it does not block the UI.

We developed a simple application that perform SQL CRUD

operations on a content provider application that uses our

system. Further, we modified an open source application to use

our test Content Provider’s URI. The results show our system

do not break the behavior of content provider in android app

development. Developers do not have to make any change

to the way they have been writing their content provider

applications.

VIII. RELATED WORK

SESQLite [11] incorporated SELinux, a mandatory access

control system, with SQLite. Our work differs from SESQLite

in two ways. First their goal was to provide a fine-grained

access control on SQLite database, whereas our goal is to

explore how Trustzone is used to preserve the confidentiality

of SQLite database content. Secondly, SESQLite is an access

control solution whereas we propose an isolation solution.

Essentially, if the database file is copied to another device,

SESQLite fails to protect the sensitive information since the

access control policy file will be missing from the new en-

vironment. Our solution, on the other hand, protects sensitive

content since the key that encrypts on the sensitive data stays

in the secure world of the original device. Ali-Gombe et al

[12] also propose an access control solution with the goal of

providing a fine-grained access control for android’s native

content providers. [12] differs from [11] in terms of where

the access control was implemented. SESQLite integrated the

access policies in the database engine while [12] enforced

the access constraints at the application level by hooking

the CRUD method calls and forcing query-rewriting where

necessary. Essentially, considering the Android stack, while

[12]’s solution applies to the application level, our solution

applies to the framework level and [11] applies their solution to

the SQLite library which is found under Native Library layer.

[28] propose an architecture for a secure database environment

on Android by entirely separating the database management

system from the application domain.

SQLite’s source code is open-source and can be extended

to achieve many purposes such as leaving hooks to imple-

ment encryption mechanisms [29]. These hooks have been

implimented in [30] and [31] to provide encryption support

for SQLite. Further, SQLite Encryption Extension (SSE) [32]

also supports the encryption of the whole database content

including the metadata. It allows SQLite to read and write

encrypted database files. Unlike the regular publicly available

SQLite, SEE’s source code and precompiled binaries are only

available to licensees. Whereas SEE can read and write files

created by the public version SQLite, the vice-versa is not true.

SQLCipher [9] is an open source and commercial extension

to SQLite that provides transparent 256-bit encryption of

database files. While our work implements encryption, it is

done by a trusted application in the secure world of TrustZone

thereby hardening the security of the key. We do not put extra

burden on SQLite as we want it to maintain its acclaimed fast

and lightweight features.

232 Int'l Conf. Security and Management | SAM'18 |

ISBN: 1-60132-488-X, CSREA Press ©

IX. CONCLUSION

In this paper, we have discussed how ARM TrustZone is

integrated with Android to protect sensitive data in SQLite

databases. In our prototype system, we implemented a column-

level encryption backed with hardware isolation by making

changes to the Android Framework code. Evaluation results

show an overhead in performance but we conclude our system

is practical as the overhead incurred was not significantly

different from the overhead incurred when using Android’s

Crypto APIs. We posit that the overhead which stems from

context switching between worlds can be reduced as hardware

technology improves. We envisage our system to be deployed

by mobile device vendors. Our solution can also enable app

developers to build apps that are HIPAA compliant.

REFERENCES

[1] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, “Privilege
escalation attacks on android,” in Proceedings of the 13th International
Conference on Information Security, ser. ISC’10. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 346–360. [Online]. Available: http://dl.acm.
org/citation.cfm?id=1949317.1949356

[2] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in 2012 IEEE Symposium on Security and Privacy, May
2012, pp. 95–109.

[3] D. E. Denning, Field Encryption and Authentication. Boston,
MA: Springer US, 1984, pp. 231–247. [Online]. Available: https:
//doi.org/10.1007/978-1-4684-4730-9 19

[4] C.-C. Chang and C.-W. Chan, “A database record encryption scheme
using the rsa public key cryptosystem and its master keys,” in 2003 In-
ternational Conference on Computer Networks and Mobile Computing,
2003. ICCNMC 2003., Oct 2003, pp. 345–348.

[5] Microsoft. (2018, 12) Encrypt a column of data. [Online]. Avail-
able: https://docs.microsoft.com/en-us/sql/relational-databases/security/
encryption/encrypt-a-column-of-data

[6] E. Shmueli, R. Vaisenberg, Y. Elovici, and C. Glezer, “Database
encryption: An overview of contemporary challenges and design
considerations,” SIGMOD Rec., vol. 38, no. 3, pp. 29–34, Dec. 2010.
[Online]. Available: http://doi.acm.org/10.1145/1815933.1815940

[7] G. I. Davida, D. L. Wells, and J. B. Kam, “A database encryption
system with subkeys,” ACM Trans. Database Syst., vol. 6, no. 2, pp.
312–328, Jun. 1981. [Online]. Available: http://doi.acm.org/10.1145/
319566.319580

[8] E. Shmueli, R. Waisenberg, Y. Elovici, and E. Gudes, “Designing
secure indexes for encrypted databases,” in Proceedings of the 19th
Annual IFIP WG 11.3 Working Conference on Data and Applications
Security, ser. DBSec’05. Berlin, Heidelberg: Springer-Verlag, 2005,
pp. 54–68. [Online]. Available: http://dx.doi.org/10.1007/11535706 5

[9] SqlCipher. (2017, 12) Full database encryption for sqlite. [Online].
Available: https://www.zetetic.net/sqlcipher/

[10] S. Mendoza. (2018, 06) Samsung pay: To-
kenized numbers, flaws and issues. [Online].
Available: https://www.blackhat.com/docs/us-16/materials/
us-16-Mendoza-Samsung-Pay-Tokenized-Numbers-Flaws-And-Issues-wp.
pdf

[11] S. Mutti, E. Bacis, and S. Paraboschi, “Sesqlite: Security enhanced
sqlite: Mandatory access control for android databases,” in Proceedings
of the 31st Annual Computer Security Applications Conference, ser.
ACSAC 2015. New York, NY, USA: ACM, 2015, pp. 411–420.
[Online]. Available: http://doi.acm.org/10.1145/2818000.2818041

[12] A. Ali-Gombe, G. G. Richard, III, I. Ahmed, and V. Roussev, “Don’t
touch that column: Portable, fine-grained access control for android’s
native content providers,” in Proceedings of the 9th ACM Conference
on Security & Privacy in Wireless and Mobile Networks, ser.
WiSec ’16. New York, NY, USA: ACM, 2016, pp. 79–90. [Online].
Available: http://doi.acm.org/10.1145/2939918.2939927

[13] SQLite. (2017, 12) About sqlite. [Online]. Available: https://www.
sqlite.org/about.html

[14] Realm. (2018, 02) Realm database. [Online]. Available: https:
//realm.io/products/realm-database/

[15] Couchbase. (2018, 02) Getting started - android. [On-
line]. Available: https://developer.couchbase.com/documentation/mobile/
current/couchbase-lite/java.html#getting-started

[16] O. Berkeley. (2018, 02) Building berkeley db for android. [On-
line]. Available: https://docs.oracle.com/cd/E17276 01/html/installation/
build android intro.html

[17] ORMLite. (2018, 02) Ormlite - lightweight java orm supports android
and sqlite. [Online]. Available: http://ormlite.com/sqlite java android
orm.shtml

[18] A. Doc. (2018, 02) Save data in a local database using room. [Online].
Available: https://developer.android.com/training/data-storage/room/

[19] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin,
“Permission re-delegation: Attacks and defenses,” in Proceedings of
the 20th USENIX Conference on Security, ser. SEC’11. Berkeley,
CA, USA: USENIX Association, 2011, pp. 22–22. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2028067.2028089

[20] Y. Zhou and X. Jiang, “Detecting passive content leaks and pollution
in android applications,” in Proceedings of the 20th Network and
Distributed System Security Symposium (NDSS), 2013.

[21] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and
B. Shastry, “Towards taming privilege-escalation attacks on android.”
in Proceedings of the 20th Network and Distributed System Security
Symposium (NDSS), 2012.

[22] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in 2012 IEEE Symposium on Security and Privacy, May
2012, pp. 95–109.

[23] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of
mobile malware in the wild,” in Proceedings of the 1st ACM Workshop
on Security and Privacy in Smartphones and Mobile Devices, ser.
SPSM ’11. New York, NY, USA: ACM, 2011, pp. 3–14. [Online].
Available: http://doi.acm.org/10.1145/2046614.2046618

[24] Apktool. (2018, 06) A tool for reverse engineering android apk files.
[Online]. Available: https://ibotpeaches.github.io/Apktool/

[25] A. Amiri Sani, “Schrodintext: Strong protection of sensitive textual
content of mobile applications,” in Proceedings of the 15th Annual
International Conference on Mobile Systems, Applications, and Services,
ser. MobiSys ’17. ACM, 2017, pp. 197–210. [Online]. Available:
http://doi.acm.org/10.1145/3081333.3081346

[26] K. Ying, A. Ahlawat, B. Alsharifi, Y. Jiang, P. Thavai, and W. Du,
“Truz-droid: Integrating trustzone with mobile operating system.” in
Proceedings of The 16th ACM International Conference on Mobile
Systems, Applications, and Services, ser. MobiSys ’18, 2018.

[27] S. Mendoza. (2018, 06) Open portable trusted execution environment.
[Online]. Available: https://www.op-tee.org/

[28] J. H. Park, S. M. Yoo, I. S. Kim, and D. H. Lee, “Security architecture for
a secure database on android,” IEEE Access, vol. 6, pp. 11 482–11 501,
2018.

[29] H. Liu and Y. Gong, “Analysis and design on security of sqlite,” 07
2013.

[30] Z. Yuehua and Z. Weiling, “Design and realization of database encrypt
module based on sqlite,” Computer Engineering and Design, vol. 29,
no. 16, pp. 4132–4134, Aug 2008.

[31] L. Shunhe and L. Jiajin, “Analysis and research of the encryption method
for sqlite,” Computer Applications and Software, vol. 25, no. 10, pp. 70–
72, Oct 2008.

[32] SEE. (2017, 12) Sqlite encryption extension software configuration
management system. [Online]. Available: https://www.sqlite.org/see/
doc/trunk/www/index.wiki

Int'l Conf. Security and Management | SAM'18 | 233

ISBN: 1-60132-488-X, CSREA Press ©

