Int'l Conf. Security and Management | SAM'18 |

227

Protecting Sensitive Data in Android SQLite
Databases Using TrustZone

Francis Akowuah, Amit Ahlawat and Wenliang Du
Electrical Engineering and Computer Science Department
Syracuse University
Syracuse, NY, USA
{feakowua, aahlawat, wedu}@syr.edu

Abstract—Applications use SQLite databases for storing data
such as fitness/health information, contacts, text messages, cal-
endar among others. Such information is sensitive and worth
protecting. SQLite engine do not have built-in security to protect
databases, rather, it relies on its environment such as the
operating system to provide security for database content. While
Android provides security mechanisms for SQLite databases,
it has been shown to be inadequate. Proposed solutions are
not able to protect sensitive database content when the OS
is compromised. Also, some existing solutions fall short in
protecting sensitive data if the SQLite database file is relocated
to an environment that do not have any security restrictions.
We propose a hardware isolation solution, leveraging ARM’s
TrustZone to protect sensitive content of databases. We design
and implement a prototype system on Hikey development board
to demonstrate that TrustZone can be integrated with Android
to protect SQLite data. Evaluation results shows our system is
practical in and do not break the design patterns in Android
application development.

Index Terms—TrustZone, SQLite, Database, Android

I. INTRODUCTION

SQLite is a free in-process library that implements SQL
database engine. It has been widely deployed in many systems
to provide database functionality. One reason for SQLite’s
wide-spread use is due to its high storage efficiency, small
memory needs and fast query operations. Android and i0S
ship with SQLite and also make available a rich set of APIs for
mobile application developers to implement databases in their
apps. Common mobile apps that have natural use of databases
include email, text messaging, settings, calendar among others.

As mobile device use have become a part of the modern life,
some mobile applications end up storing private and sensitive
information such as blood pressure and sugar, passwords, SSN
among others in SQLite databases. SQLite databases are stored
as a cross-platform file and data is stored without obscurity.
Hence, anyone or application that has direct access to the
database file can read and modify the whole database content.
This calls for measures to protect sensitive data stored in
databases.

Morever, the SQLite engine, unlike client-server DBMS
such as Oracle and SQL Server, do not not have built-in se-
curity such as authentication, authorization or crypto systems,
therefore, it relies on its environment (such as the operating
system) to provide the required security. The Android oper-
ating system meets this need by providing multiple security

mechanisms for SQLite databases and the application as a
whole. First, Android provides a User-ID (UID) based access
control policy on the app’s installation directory. That is, each
application is sandboxed and therefore it is only the application
process that can access the content of its installation directory.
When an application uses SQLite, the SQLite database, which
is a cross-platform file is stored in the application’s installation
directory. Therefore SQLite databases are isolated from other
apps on the Android mobile device. Secondly, Android uses
its permission framework together with Content Providers
to provide access control for SQLite databases. When an
application wants to share its database with other application,
it uses Content Providers to do so. The app developer may use
Android-defined or user-defined permissions to restrict access
to the SQLite database. For example, READ_CONTACTS
permission only allows the contacts database to be read;
it cannot be written to. However, these Android security
mechanisms are not sufficient in the event where a malicious
application compromises the operating system to gain root
privileges. It can bypass all the sandboxing security features
and gain direct access to the database file. Davi et al [1]
have shown that Android’s sandbox model is inadequate since
applications can escalate the permissions that they have been
granted. [2] also show rooting attacks are possible on Android.

In order to enhance the security of SQLite database, encyp-
tion and access control solutions have been proposed. Encryp-
tion can be applied to a database’ field or record as well as the
databse file as seen in [3]-[9]. Although encryption is a viable
solution to protect database content, crypto key management
has been a difficult task for many developers since the key
is usually stored in the executable file or generated in the
same process or (compromised) computing environment. This
has enabled attackers to discover keys as seen in [10].The
malicious app can gain access to the encryption key and
then decrypt the database. Our solution improves upon pure
encryption solutions by isolating the environment in which
the crypto key is stored and used. Android also provides File
Disk Encryption (FDE) which encrypts all the data on the
filesystem. However, FDE protects data only when the mobile
device is locked; FDE is disabled when the device owner
unlocks the device and all data becomes plaintext.

Other than crypto solutions, the research community has
proposed a couple of access control solutions. Mutti et al

ISBN: 1-60132-488-X, CSREA Press ©

228

[11] integrated SQLite and SELinux in order to enforce
fine grain access control at the lowest level in the database
based on context security. Their solution requires changes to
both the OS and the SQLite library. Similarly, Ali-Gombe
et al [12] proposed a solution that defines access control for
both database schema and entities by merging static bytecode
weaving and database query rewriting to achieve low-level
access control for Android native providers at the application
level. Hence their solution do not make any change to the un-
derlying OS, rather, it provides a Controller stub that statically
weaves into the target application. It also provides Controller
interface that is used for setting access levels. Unfortunately,
these proposed access control systems are weak against the
adversary that has gained elevated privileges. Also, they fail to
protect sensitive data if the database file is moved to a different
environment that do not have proposed access controls defined.
For instance, the adversary can send the database file to a
remote computer. For stronger privacy and security guarantees
in a compromised OS and protecting the data whenever it is
moved to a new environment, we believe that isolation solution
is better than access controls mechanisms.

Therefore, we propose column-level encryption backed by
a hardware isolation solution that protects sensitive database
content in a compromised environment. We undertake the non-
trivial challenge to integrate TrustZone with Android such that
we can maintain the app’s interaction with SQLite databases
across two operating systems. We securely enter the sensitive
data in the secure world and then ensure that the crypto key
and sensitive data stays in the TEE always.

Our contributions include the exploration of integrating
ARM’s TrustZone with Android to protect sensitive data on the
Android OS. Secondly, we design and implement a prototype
system on Hikey board running Android 7.1 and OPTEE OS.
Lastly, we provide security analysis and evaluation of our
system.

Paper is outlined as follows. §II gives background on
SQLite and ARM TrustZone while §III discuss our threat
model and assumptions. §IV and §V provides the design
principles and system overview respectively. In §VI, we give
the security analysis of the system. Evaluation, related work
and conclusion are discussed in §VII, §VIII and §IX.

II. BACKGROUND

We provide some background on SQLite databases and the
storage options available in Android for its application. Also,
we briefly describe the ARM TrustZone technology.

A. Storage Options For Android Apps

The Android OS provide multiple ways to store persistent
data. The options include Shared Preferences, Internal Storage,
External Storage, SQlite Databases and Network Connection
(on web server). External Storage make data publicly available
on the device whereas Shared Preferences, SQLite Databases
and Internal Storage keep the data private to the application.
This work only focuses on SQLite Databases.

Int'l Conf. Security and Management | SAM'18 |

B. SOLite

SQLite [13], the most widely deployed software in the
world, is a relational database management system (RDBMS)
similar to MySQL, PostgreSQL and SQL Server. However,
SQLite does not have the client-server model that the afore-
mentioned RDBMSs have. Hence, SQLite do not require
a server, administration tasks or any complex configuration
process. Yet, applications that embed SQLite still enjoy all
the power of a relational database. On the Android platform,
SQLite is used to manage system and user databases storing
several types of information including contacts, SMS mes-
sages, and web browser bookmarks. Besides its use on mobile
devices, SQLite has been used in aviations, electronics, health
applications etc. The entire database is stored in a single cross-
platform file and runs in the same process as the app. SQLite
is free for both commercial or private purposes.

SQLite is an ACID compliant database that implements
most of the SQL standard. It does not implement SQL com-
mands such as RIGHT OUTER JOIN, FULL OUTER JOIN,
GRANT and REVOKE. SQLite VIEWs are read-only. The
interested reader is referred to [13] for a complete list of SQL
features that are not implemented in SQLite.

Android and iOS provide strong support for applications
to use SQLite by making available application program-
ming interfaces (APIs) for creating, querying and mod-
ifying databases. Android provides many classes in an-
droid.database.sqlite package for database management. IOS
also provides a similar support through the CoreData frame-
work.

SQLite is not the only data persistence solution on the
Android OS even though this research focuses on SQLite.
Alternatives include Realm DB [14], Couchbase Lite [15],
Berkeley DB [16], ORMLite [17] among others. Android has
introduced the Room Persistence Library [18] to allow fluent
database access. Room is an abstraction layer over SQLite.
While the Android app developer has the option to the SQLite
APIs and Room APIs, the documentation recommends the
latter.

C. ARM TrustZone

TrustZone (Fig. 1) is ARM’s trusted execution environment
(TEE) technology that enables CPU to run in two modes:
secure and normal modes. Normal world or mode is where
the normal computations of the CPU takes place. System
and third-party applications run in the normal world. Secure
world, on the other hand, is used for secure and private-
sensitive computations. Similar to the normal world, the secure
world has user space and kernel layer. Applications that run
in the secure world’s user layer is called Trusted Applications
(TA) or Trustlets. Many CPUs shipped with mobile devices
have Trustzone. Currently, only vendors and OEMs utilize the
security guarantees of the technology since it is locked when
the device ships.

ISBN: 1-60132-488-X, CSREA Press ©

Int'l Conf. Security and Management | SAM'18 |

Normal World
(Non-Trusted)

Software
Data

Hardware

Fig. 1. ARM TrustZone

i
ik

Normal Secure
World World
Apps Trusted Apps

Android OS TEE OS

X v

Fig. 2. Threat model

III. THREAT MODEL AND ASSUMPTIONS

A. Attacker Model

We consider a threat model (depicted in Fig. 2) whereby
the normal world is compromised. Although the attacker
can attack the upper layers of Android enabling privilege
escalation by leveraging attacking techniques in [1], [19], [20]
and [21], he does not gain root privileges. We consider a strong
adversary who is also able to attack the lower layers of android
enabling him to gain root privileges using techniques as those
discussed in [22] and [23]. Thus, the attacker is able to bypass
all the security mechanisms in the normal world operating
system (Android) and for that reason we do not trust the
normal world’s user-space applications and operating system.
We, however, trust the secure world applications and operating
system. The TrustZone technology provides hardware isolation
that do not allow our strong adversary to access resources in
the TEE.

Lastly, the attacker is able to decompile (using tools such as
[24] and analyze the Android application’s APK file allowing
attacker to gather information about database operations in
the application. The attacker is able to learn about any secrets
the developer mistakenly placed in the source code such as a
crypto key or password.

The attacker’s intent is to read the sensitive content of
the SQlite database and/or to relocate the database file to an
environment that has no restrictions on reading the database
content. The attacker is also interested in carrying out static
and dynamic leakage attacks [6] by observing the ciphertext
values to learn a pattern or infer plaintext values.

229

B. Assumptions

Our system includes Trusted Applications (TA) that run in
the secure world. The TAs do not contain a large amount of
code. We assume that there are no vulnerabilities in our TAs.

Sensitive data are inputted and encryted in the secure
world of our system. The data should not be given to the
normal world for display purposes. Therefore, we assume
SchrodinText [25] is implemented on the Android OS so that
sensitive data can be securely be displayed to the user without
giving it the normal world.

IV. INTEGRATING TRUSTZONE WITH ANDROID

The Android Framework support applications to use SQLite
by providing APIs in the android.database.sqlite package.
The APIs interact with the SQLite library which is found
in the Native Library layer via Java Native Interface (JNI).
SQLite library returns the results of the database operations
to the framework via JNI. Finally, the result is given to the
application. Fig 3a demonstrates how android apps interact
with the SQLite library.

As seen above, no trusted execution environment (TEE)is
involved in the app’s interaction with SQLite. We have the
non-trivial challenge to integrate TrustZone with Android such
that we can maintain the app’s interaction with databases
across two operating systems (Android and Secure OS) as
shown in Fig 3b. We want this integration to be transparent to
the app developer as much as possible such that he does not
bother about how his apps interacts with TrustZone.

To achieve our goal, we consider the following in our
design: (1) SQLite database placement, (2) securely inputting
the sensitive data (3) building secure world components to
interact with normal world app and (4) securely displaying
the sensitive data. We discuss items (2) to (4) in subsequent
sections.

The placement of the SQLite database can impact the
system’s performance. We have the option of placing the
whole database in the secure world, splitting the database into
sensitive and non-sensitive databases or the more challenging
option of maintaining one database in the normal world whilst
protecting the sensitive data from the secure world. We choose
to design and implement the last option. Our design aims to
have (1) a small Trusted Computing Base (TCB), (2) require
minimal changes to the OS, (3) minimize the number of
switches between the normal and secure worlds and (4) avoid
query rewriting when possible.

V. SYSTEM OVERVIEW

In this section, we describe our system components and how
they interact. Fig. 4 shows the high-level view of our system.

A. System Components

We discuss the various components that make up our
proposed system. We describe the Trusted Applications (TA)
that we implemented. A TA is an application that runs in the
user-space of the Secure OS. TAs have the full power of the

ISBN: 1-60132-488-X, CSREA Press ©

230

Android OS Android OS

Framework API: Framework API:
SQLiteDatabase SQLiteDatabase

SQLiteCursor... SQLiteCursor...

Secure OS

Trusted
Application

JINI JNI

SQLite Lib SQLite Lib

‘ Filesystem ‘ | Filesystem ‘

(a) (b)

Fig. 3. (a) How applications interact with the SQLite Library. (b) Integration
of Android and TrustZone

Normal World

| Modified Android
Framework

Secure World

| Crypto TA ” SchrodinText

i i i

TEE OS (OPTEE)

Keyboard
TA

—

Bridge

Fig. 4. System overview

CPU and the memory of the device. SchrodinText component
is assumed to be already present on the experimental setup.
Interested reader is referred to [25] for details on SchrodinText.

1) Modified Android Framework: We introduce new API
to the android.database.sqlite.SQLiteDatabase class. Methods
insertTZ(), queryTZ() and updateTZ() are used for inserting,
querying and updating sensitive fields respectively. Consid-
ering the intent of the attacker in our attacker model, we do
not make changes to the delete functionality. Applications that
do not have any sensitive field to protect can still use stock
Android’s APIs to carry out SQLite operations.

Given that we consider a Normal World OS that is compro-
mised requires that we protect the sensitive data that the user
enters using the keyboard. Leveraging techniques described in
[26], we moved the keyboard UI to the Secure World while
preserving the binding between the keyboard UI and Android’s
Ul widget called EditText. In Android, EditText triggers the
keyboard UI. To trigger the secure keyboard UI, we extend
EditText to include a type called secure. The developer uses
the extended EditText (with secure type) to communicate to
the Android Framework that he intends to capture a sensitive
data that will be stored in the SQLite database. The app’s
secure keyboard request is sent via a modified InputMethod-
ManagerService (IMMS) Framework service to a new proxy
IME system app which then interacts with the Keyboad TA
(§V-A3). The keyboard TA displays the secure keyboard UL
We add LED light to the Secure World which is only lit when
the CPU is operating in the Secure mode indicating to the user
that keyboard input will be captured in the secure world.

2) Crypto TA - Encrypting /decrypting sensitive data: :
Crypto TA is a trusted application (written in C with 615
LOC) that runs in the secure world. As its name suggests,
it is responsible for encrypting and decrypting sensitive data

Int'l Conf. Security and Management | SAM'18 |

using AES 256 CBC mode. It generates random IV for each
sensitive data to thwart static and dynamic leakage attacks
discussed in [6]. Let C' represent the sensitive data’s ciphertext.
The TA concatenates the random IV (I'V) with the ciphertext.
Let S = C + IV. Crypto TA encodes S before sending to
the normal world (E = Enc(S)). The encoding step is done
to prevent loss of data as it moves between worlds. Without
encoding, we realized C' could not be decrypted correctly after
retrieving from the Normal World. The ciphertext contained
non-printable characters that the normal world could not
render correctly.

To decrypt the data, the Crypto TA extracts the IV and C'
from E after which it applies the decryption function.

3) Keyboard TA: The Keyboard TA communicates with the
Keyboard UI to obtain the sensitive data from the user. After
capturing the user input, the typed sensitive data is forwarded
to the Crypto TA for encryption and encoding. Crypto TA
returns F (§V-A2) to the Keyboard TA which is then returned
to the proxy IME app. Using its binding with the app’s Editext,
the proxy IME app returns I to the Secure EditText. The app
code can then access F by calling EditText’s get7Text() method.

4) Bridge: The Bridge is a native component that invokes
the secure world. It has 634 lines of C code. Apps interact with
the Bridge via TEEBrideManager which serves as an interface
for the TEEBridge service. TEEBridge is a system service that
we added to the Android Framework.

B. System Workflow

Here we describe how our system works. Our system cur-
rently do not support SQL commands that includes a sensitive
column in the WHERE clause. Allowing filtering on a sensitive
field can enable the attacker to make a correct guess.

1) Sensitive data insertion:: User presses on secure Edit-
Text widget and obtains a secure keyboard UI from the secure
world. This switches the CPU to the Secure Mode. User
enters sensitive data and dismisses the secure keyboard. The
Keyboard TA invokes the Crypto TA to encrypt and encode
the inputted data as described in §V-A2. After receiving results
from the Crypto TA, the Keyboard TA returns the encoded
ciphertext (£) to the secure EditText. The app code obtains
the Secure EditText’s text by caling getText(). Using an-
droid.database.sqlite.SQLiteDatabase.insert() method, the app
inserts the text obtained into the SQLite database. Fig 5 shows
this workfow.

Secu

android.database.sqlite.SQLiteDatabase.insert()

Fig. 5. Workflow for inserting sensitive data

2) Retrieving and displaying sensitive data:: Applications
display database content to user in UI widgets such as
TextBox. When the OS is compromised the attacker is able to

ISBN: 1-60132-488-X, CSREA Press ©

Int'l Conf. Security and Management | SAM'18 |

steal sensitive data when it is being displayed in an UI widget.
For this reason, we cannot decrypt the sensitive data in secure
world and send it to the normal world for display purpose. We
need a solution that can display the data in the secure world
without giving the plaintext to the normal world. SchrodinText
[25] provides such solution and as stated in §III-B, we assume
that SchrodinText is already implemented on Android.

We add queryTZ() method to the an-
droid.database.sqlite.SQLiteDatase class. This method
retrieves the encoded ciphertext E from the database
and calls SchrodinText’s setCiphertext to bind E to the
SchrodinTextView (modified version of Android’s UI widget
TextView). SchrodinText interacts with the CrytoTA to decrypt
the sensitive data. SchrodinText then displays the plaintext
from the Secure World without giving the data to the Normal
World. This workflow is shown in Fig. 6

android.database.sqlite.SQLiteDatabase.queryTZ()]

3

Fig. 6. Workflow for retrieving and displaying sensitive data

3) Updating sensitive data:: Our system allow sensitive
data to be updated. This process is similar to inserting sensitive
data (§5). In this workflow, we assume the row data to be
updated is loaded in UI widgets and that the sensitive data is
attached to secure EditText. This ensures that data is securely
captured in the secure world. After data capture, app code
calls android.database.sqlite.SQLiteDatabas.update() method
to update.

C. Implementation

We implement our system on LeMaker’s Hikey development
board which is powered by the Kirin 620 SoC with octa
core ARM Cortex-A53 64-bit CPU up to 1.2GHz and high
performance Mali450-MP4 GPU. Hikey also has 1GB/2GB
LPDDR3 DRAM (800MHz) and 8GB eMMC storage on
board. We run Android 7.1 and Linaro’s OPTEE [27] in the
normal world and secure world respectively.

VI. SECURITY ANALYSIS

In this section, we present the security analysis of our
system. Our analysis assumes that the TrustZone platform is
trusted and the secure boot process has initialized the integrity-
verified OPTEE OS. We do not consider hardware attacks, side
channel attacks and DOS attacks.

A. Database Security Analysis

The intent of the adversary is to bypass all security mech-
anisms in the Android operating system in order to read the
sensitive content of the SQLite database. Our goal is not to
prevent the attacker from getting access to the data, rather, we
want to prevent him from having knowledge of the sensitive
data. In our system, the sensitive content was entered and

231

LIPOATE

DELETE

"l

SELECT

|

Tirme: [ms)

WADSP m Custorn 05 m Cryplo AP

Fig. 7. Performance measurement

encrypted in the secure world where the adversary is unable to
access. The crypto key stays in the secure world and it is never
given to the normal world. Therefore, when the adversary gets
direct access to the SQLite database file, he cannot decrypt and
read the sensitive data since the key is hidden secure world.

The adversary is also interested in observing patterns in
ciphertext to infer plaintext. We prevent this or make it harder
by generating random IVs for each sensitive data so that
two plaintext of the same value do not generate the same
ciphertext.

Moreover, the adversary may send database file to a remote
computer to evade other security restrictions existing in the
android OS. Our system ensures the crypto key does not
leave the secure world making it impossible for adversary to
send both the crypto key and the database file together to
the remote computer. Unlike most encryption methods where
the key is generated and/or stored in the same execution
environment (normal world) as the ciphertext, our hardware
isolation guarantees that key is always isolated from the
ciphertext.

B. Keyboard Security Analysis

When the keyboard UI is called, it switches the CPU to
the Secure Mode where the normal world cannot monitor
any of the secure I/O ports. This guarantee is given by
the ARM TrustZone from the hardware. Thus, the normal
world adversary cannot switch the screen input or screen USB
input thereby preventing keylogging attacks. To prevent screen
capture attacks, TrustZone also blocks the normal world from
switching the HDMI output of the screen. Lastly, we do not
disclose the input to the normal world.

VII. EVALUATION

In this section, we evaluate our design with regards to
ease of adoption, performance and effectiveness. Using real
world open source applications, we tested how easy it is for
developers to adopt our system to protect sensitive data in their
database. Also, we measured the performance overhead that is
introduced as a result of the changes we made to the Android
framework and the integration of ARM TrustZone. Lastly, we
evaluate the effectiveness of our system in a few use cases.

ISBN: 1-60132-488-X, CSREA Press ©

232

A. Performance Measurement

We evaluate performance in terms of the SQL language’s
CRUD commands, namely, INSERT, SELECT, UPDATE and
DELETE. We compare the time it takes to execute the CRUD
commands in three scenarios: (1) CRUD operations without
any encryption, (2) CRUD operations using Android’s Crypto
API and (3) CRUD operations using our system (encryption
with hardware isolation)

1) INSERT and UPDATE: We observe an overhead averag-
ing 100 milliseconds when inserting or updating a record. This
is as a result of the time that it takes to switch to and back
from the secure world. Further, we observed the encryption
algorithm in the TA takes about 18 ms. We used the encryption
APIs implemented by OPTEE OS in our TA. overhead was
however not noticeable on our testing app.

2) DELETE: Deleting a record from a table did not incur
overhead because we maintain only one database in the normal
world. So deletion occurs in the normal world without secure
world involvement.

3) QUERY: The SELECT command itself did not introduce
any performance overhead because it did not involve any
transition to the secure world. However, obtaining the query
results from the SQLiteCursor object incurs an overhead as
the ciphertext is decrypted in the secure world.

Fig.7 gives a summary of the performance measurement.
Chart clearly shows that the overhead our system incurs is due
to the world switch since the time for using Android crypto
APIs is not significantly different from the time that our system
incurs.

B. Ease of Adoption

Here we evaluate how easily developers may adopt our
system to protect their sensitive database content. Developers
need to only call our system’s API and this usually require
a line or few lines of code. Code snippet below shows how
a developer would use our secure EditText that would trigger
the keyboard UI in the secure world.

<EditText
android:id="@+id/editText"
android:inputType="secure" O

Line @ sets the inputType to secure. This is the only line
needed to allow the user to capture the sensitive data in the
secure world.

C. Impact on Content Providers, Loaders and Adapters

SQLite is the popular backend for Content Providers. Con-
tent Provider is an interface that allow applications to share
their data in a controlled manner. We evaluate the system
to see if our changes to the Android framework breaks that
design pattern. Also we wanted to ensure that our system still
works with Loaders. Loader classes such as CursorLoader and
AsyncTaskLoaders are used to perform slow operations so that
it does not block the UL

Int'l Conf. Security and Management | SAM'18 |

We developed a simple application that perform SQL CRUD
operations on a content provider application that uses our
system. Further, we modified an open source application to use
our test Content Provider’s URI. The results show our system
do not break the behavior of content provider in android app
development. Developers do not have to make any change
to the way they have been writing their content provider
applications.

VIII. RELATED WORK

SESQLite [11] incorporated SELinux, a mandatory access
control system, with SQLite. Our work differs from SESQLite
in two ways. First their goal was to provide a fine-grained
access control on SQLite database, whereas our goal is to
explore how Trustzone is used to preserve the confidentiality
of SQLite database content. Secondly, SESQLite is an access
control solution whereas we propose an isolation solution.
Essentially, if the database file is copied to another device,
SESQLite fails to protect the sensitive information since the
access control policy file will be missing from the new en-
vironment. Our solution, on the other hand, protects sensitive
content since the key that encrypts on the sensitive data stays
in the secure world of the original device. Ali-Gombe et al
[12] also propose an access control solution with the goal of
providing a fine-grained access control for android’s native
content providers. [12] differs from [11] in terms of where
the access control was implemented. SESQLite integrated the
access policies in the database engine while [12] enforced
the access constraints at the application level by hooking
the CRUD method calls and forcing query-rewriting where
necessary. Essentially, considering the Android stack, while
[12]’s solution applies to the application level, our solution
applies to the framework level and [11] applies their solution to
the SQLite library which is found under Native Library layer.
[28] propose an architecture for a secure database environment
on Android by entirely separating the database management
system from the application domain.

SQLite’s source code is open-source and can be extended
to achieve many purposes such as leaving hooks to imple-
ment encryption mechanisms [29]. These hooks have been
implimented in [30] and [31] to provide encryption support
for SQLite. Further, SQLite Encryption Extension (SSE) [32]
also supports the encryption of the whole database content
including the metadata. It allows SQLite to read and write
encrypted database files. Unlike the regular publicly available
SQLite, SEE’s source code and precompiled binaries are only
available to licensees. Whereas SEE can read and write files
created by the public version SQLite, the vice-versa is not true.
SQLCipher [9] is an open source and commercial extension
to SQLite that provides transparent 256-bit encryption of
database files. While our work implements encryption, it is
done by a trusted application in the secure world of TrustZone
thereby hardening the security of the key. We do not put extra
burden on SQLite as we want it to maintain its acclaimed fast
and lightweight features.

ISBN: 1-60132-488-X, CSREA Press ©

Int'l Conf. Security and Management | SAM'18 |

IX. CONCLUSION

In this paper, we have discussed how ARM TrustZone is
integrated with Android to protect sensitive data in SQLite
databases. In our prototype system, we implemented a column-
level encryption backed with hardware isolation by making
changes to the Android Framework code. Evaluation results
show an overhead in performance but we conclude our system
is practical as the overhead incurred was not significantly
different from the overhead incurred when using Android’s
Crypto APIs. We posit that the overhead which stems from
context switching between worlds can be reduced as hardware
technology improves. We envisage our system to be deployed
by mobile device vendors. Our solution can also enable app
developers to build apps that are HIPAA compliant.

[1]

[5]

[6]

[8]

[9]
[10]

(11]

[12]

[13]

[14]

REFERENCES

L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, “Privilege
escalation attacks on android,” in Proceedings of the 13th International
Conference on Information Security, ser. ISC’10. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 346-360. [Online]. Available: http://dl.acm.
org/citation.cfm?id=1949317.1949356

Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in 2012 IEEE Symposium on Security and Privacy, May
2012, pp. 95-109.

D. E. Denning, Field Encryption and Authentication. Boston,
MA: Springer US, 1984, pp. 231-247. [Online]. Available: https:
//doi.org/10.1007/978-1-4684-4730-9_19

C.-C. Chang and C.-W. Chan, “A database record encryption scheme
using the rsa public key cryptosystem and its master keys,” in 2003 In-
ternational Conference on Computer Networks and Mobile Computing,
2003. ICCNMC 2003., Oct 2003, pp. 345-348.

Microsoft. (2018, 12) Encrypt a column of data. [Online]. Avail-
able: https://docs.microsoft.com/en-us/sql/relational-databases/security/
encryption/encrypt-a-column-of-data

E. Shmueli, R. Vaisenberg, Y. Elovici, and C. Glezer, “Database
encryption: An overview of contemporary challenges and design
considerations,” SIGMOD Rec., vol. 38, no. 3, pp. 29-34, Dec. 2010.
[Online]. Available: http://doi.acm.org/10.1145/1815933.1815940

G. I. Davida, D. L. Wells, and J. B. Kam, “A database encryption
system with subkeys,” ACM Trans. Database Syst., vol. 6, no. 2, pp.
312-328, Jun. 1981. [Online]. Available: http://doi.acm.org/10.1145/
319566.319580

E. Shmueli, R. Waisenberg, Y. Elovici, and E. Gudes, “Designing
secure indexes for encrypted databases,” in Proceedings of the 19th
Annual IFIP WG 11.3 Working Conference on Data and Applications
Security, ser. DBSec’05. Berlin, Heidelberg: Springer-Verlag, 2005,
pp. 54-68. [Online]. Available: http://dx.doi.org/10.1007/11535706_5
SqlCipher. (2017, 12) Full database encryption for sqlite. [Online].
Available: https://www.zetetic.net/sqlcipher/

S. Mendoza. (2018, 06) Samsung pay: To-
kenized numbers, flaws and issues. [Online].
Available: https://www.blackhat.com/docs/us- 1 6/materials/

us-16-Mendoza- Samsung- Pay-Tokenized- Numbers-Flaws- And- Issues-wp.

pdf

S. Mutti, E. Bacis, and S. Paraboschi, “Sesqlite: Security enhanced
sqlite: Mandatory access control for android databases,” in Proceedings
of the 31st Annual Computer Security Applications Conference, ser.
ACSAC 2015. New York, NY, USA: ACM, 2015, pp. 411-420.
[Online]. Available: http://doi.acm.org/10.1145/2818000.2818041

A. Ali-Gombe, G. G. Richard, III, I. Ahmed, and V. Roussev, “Don’t
touch that column: Portable, fine-grained access control for android’s
native content providers,” in Proceedings of the 9th ACM Conference
on Security & Privacy in Wireless and Mobile Networks, ser.
WiSec "16. New York, NY, USA: ACM, 2016, pp. 79-90. [Online].
Available: http://doi.acm.org/10.1145/2939918.2939927

SQLite. (2017, 12) About sqlite. [Online]. Available: https://www.
sqlite.org/about.html

Realm. (2018, 02) Realm database.
//realm.io/products/realm-database/

[Online]. Available: https:

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

233

Couchbase. (2018, 02) Getting started - android. [On-
line]. Available: https://developer.couchbase.com/documentation/mobile/
current/couchbase-lite/java.html#getting-started

O. Berkeley. (2018, 02) Building berkeley db for android. [On-
line]. Available: https://docs.oracle.com/cd/E17276_01/html/installation/
build_android_intro.html

ORMLite. (2018, 02) Ormlite - lightweight java orm supports android
and sqlite. [Online]. Available: http://ormlite.com/sqlite_java_android_
orm.shtml

A. Doc. (2018, 02) Save data in a local database using room. [Online].
Available: https://developer.android.com/training/data-storage/room/

A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin,
“Permission re-delegation: Attacks and defenses,” in Proceedings of
the 20th USENIX Conference on Security, ser. SEC’11. Berkeley,
CA, USA: USENIX Association, 2011, pp. 22-22. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2028067.2028089

Y. Zhou and X. Jiang, “Detecting passive content leaks and pollution
in android applications,” in Proceedings of the 20th Network and
Distributed System Security Symposium (NDSS), 2013.

S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and
B. Shastry, “Towards taming privilege-escalation attacks on android.”
in Proceedings of the 20th Network and Distributed System Security
Symposium (NDSS), 2012.

Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in 2012 IEEE Symposium on Security and Privacy, May
2012, pp. 95-109.

A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of
mobile malware in the wild,” in Proceedings of the 1st ACM Workshop
on Security and Privacy in Smartphones and Mobile Devices, ser.
SPSM ’11. New York, NY, USA: ACM, 2011, pp. 3—14. [Online].
Available: http://doi.acm.org/10.1145/2046614.2046618

Apktool. (2018, 06) A tool for reverse engineering android apk files.
[Online]. Available: https://ibotpeaches.github.io/Apktool/

A. Amiri Sani, “Schrodintext: Strong protection of sensitive textual
content of mobile applications,” in Proceedings of the 15th Annual
International Conference on Mobile Systems, Applications, and Services,
ser. MobiSys "17. ACM, 2017, pp. 197-210. [Online]. Available:
http://doi.acm.org/10.1145/3081333.3081346

K. Ying, A. Ahlawat, B. Alsharifi, Y. Jiang, P. Thavai, and W. Du,
“Truz-droid: Integrating trustzone with mobile operating system.” in
Proceedings of The 16th ACM International Conference on Mobile
Systems, Applications, and Services, ser. MobiSys ’18, 2018.

S. Mendoza. (2018, 06) Open portable trusted execution environment.
[Online]. Available: https://www.op-tee.org/

J. H. Park, S. M. Yoo, I. S. Kim, and D. H. Lee, “Security architecture for
a secure database on android,” IEEE Access, vol. 6, pp. 11482—11501,
2018.

H. Liu and Y. Gong, “Analysis and design on security of sqlite,” 07
2013.

Z. Yuehua and Z. Weiling, “Design and realization of database encrypt
module based on sqlite,” Computer Engineering and Design, vol. 29,
no. 16, pp. 4132-4134, Aug 2008.

L. Shunhe and L. Jiajin, “Analysis and research of the encryption method
for sqlite,” Computer Applications and Software, vol. 25, no. 10, pp. 70—
72, Oct 2008.

SEE. (2017, 12) Sqlite encryption extension software configuration
management system. [Online]. Available: https://www.sqlite.org/see/
doc/trunk/www/index.wiki

ISBN: 1-60132-488-X, CSREA Press ©

