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ABSTRACT
We report a generic smartphone app 
for quantitative annotation of complex 
images. The app is simple enough to 
be used by children, and annotation 
tasks are distributed across app users, 
contributing to efficient annotation. We 
demonstrate its flexibility and speed by 
annotating >30,000 images, including 
features of rice root growth and structure, 
stem cell aggregate morphology, and 
complex worm (Caenorhabditis elegans) 
postures, for which we show that the 
speed of annotation is >130-fold faster 
than state-of-the-art techniques with 
similar accuracy.

METHOD SUMMARY
We developed a smartphone app for 
Android phones in Java, utilizing Firebase 
as the database backend for storing 
images and user drawings. Images 
from the database are either randomly 
or sequentially presented to users, 
who can freeform draw on each image 
and upload the annotated image and 
annotated contours to the database for 
quantitative analysis. The app conforms 
to material design and focuses on a clean 
user interface for better usability and a 
smooth drawing experience.
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The accelerating ease of collecting very 
large image data sets (terabytes to 
petabytes) has led to a shift in scientific 
bottlenecks from image collection to 
image analysis across many disciplines, 
including connectomics [1–3], cell lineage 
tracing [4], and ethology [5–8]. Although 
highly specialized computational 
pipelines are emerging to address this 
new bottleneck, these pipelines require 
significant effort to develop, are compu-
tationally expensive and not error-free, 
and may still rely on human image 
annotation to establish ground truths. The 
widespread dependence on human image 
annotation or correction is likely to 
continue, and yet tools for image 
annotation, especially at large scales, 
often do not meet the needs of 
researchers.

Specifically, tools for quantitative 
annotation of images are hindered by a 

trade-off between speed, accuracy and 
versatility. Some automated tools require 
extensive tuning or parameter optimi-
zation prior to annotation to enhance 
accuracy, and many image processing 
pipelines are not well-suited for hetero-
geneous image sets. In addition, many 
tools for human annotation limit the way 
users can define image features of interest, 
for example, via rectangles, polygons or 
circles [9]. Annotation speed is limited by 
the complexity of annotation software and, 
ultimately, how quickly annotators can 
mark phenotypes accurately [10]. Equally 
critical for efficient annotation of large 
datasets is ease in distributing annotation 
tasks, as well as broadness in settings or 
locations where users can annotate. To 
serve the greatest number of researchers 
effectively, tools for large-scale image 
annotation should be generalizable, fast 
and accurate.
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Here we report a highly versatile, 
fast and quantitative method for image 
annotation. Features of interest of an 
arbitrary image can be annotated simply 
from users’  finger- or stylus-tracings 
(Supplementary Movie 1). We demonstrate 
the use of a simple and intuitive smart-
phone- and tablet-based app to annotate 
complex body postures in Caenorhabditis 
elegans, morphology of stem cell aggre-
gates, and root growth of Oryza sativa (rice) 
and Zea mays (corn). We crowd-sourced 
annotations of over 16,000 nematode 
images, 500 stem cell aggregate images, 
and 900 root images, with a total of over 
30,000 user annotations (Figure 1A–E).

MATERIALS & METHODS
Development of image annotation app
The app is written in Java, utilizing Android 
Studio to package the app for Android 
phones. Briefly, the app loads images from 
an online database managed on Firebase 
to the user’s Android device, on which users 
draw their best annotation. The structure 
of our database is shown in Figure 2. The 
user then has the option to clear their 
annotation and try annotating again before 
uploading, to report the image as something 
they are unable to annotate, or to load a new 
random image from the cloud database. 
Once the user is satisfied with their 
annotation, they upload their annotated 
image (as well as vectors of the annota-
tion’s trajectory) and are immediately 
presented with another image from the 
image set. The app conforms to material 
design and focuses on clean user interfaces 
for better usability and a smoother drawing 
experience. During beta-testing, we 
recruited six users, four of whom work with 
C. elegans on a daily basis, with the other 
two having some general knowledge of the 
worm. Although we collected more annota-
tions from other users, including children, 
only the annotations from these six users 
were used in our behavioral analysis of C. 
elegans, and they make up >90% of the total 
annotations collected.

User annotation speed
We collect timestamps when users upload 
images and drawing vectors with a resolution 
of 1 s, based on the user’s device’s time. To 
determine a conservative average user 
annotation speed, we grouped all annota-

tions by user and computed the time 
between each upload for that user. All inter-
upload times were pooled. Because inter-
upload times could range from a few 
seconds to days depending on the user’s 
usage frequency, we imposed an upper 
threshold of 30 s for worm image annota-
tions and an upper threshold of 90 s for root 
image annotations to determine the average 
user annotation speed.

Worm tracking
We built upon an existing worm tracker [11] 
for our initial image analysis and to identify 
movie frames where worms were partially 
self-occluded (i.e., ambiguous). A subset of 
these frames was uploaded to our database 
for annotation. Using the generative algorithm 
included in the existing worm tracker to 
predict worm posture for occluded shapes, 
we optimized parameters for our data set and 
found predicted worm postures for several 
full videos from which we had drawn 
ambiguous postures for our database. The 
worm tracker uses MATLAB software (we 
used MATLAB version 2017a). To evaluate the 
time required to process individual frames 
using this worm tracker, we used MATLAB to 
measure how long the point-swarm (PS) 
optimization (generation of alternative 
posture predictions) required for each 
ambiguous frame. This step took an average 
of 776.2 ± 5.2 s/ambiguous frame (95% CI; 
n = 66) with parallel processing (a local pool 
consisting of four cores). After this generative 
step, a progressive optimizing interpolation 
(POI) step evaluates the alternative posture 
predictions to determine which makes sense 
in the context of the worm postures in the 
surrounding frames. For this step, we timed 
the total time until a solution was generated. 
For a movie with 444 ambiguous frames, this 
step required 155.5  s/ambiguous frame 
(equivalent to the time required for >20 human 
annotations). Combined, the PS and POI 
tracking steps required on average 931.7 s/
ambiguous frame, or the equivalent of 133 
human annotations. The computers used 
were Dell Precision Tower model 5810 with 
32 GB RAM and Intel Xeon CPU (model 
E5-1620 v4, 3.5 GHz).

Similarity score calculation
In order to compare two worm annotations, 
or a worm annotation to ground truth, we 
matched 100 points between two worm 

midlines and computed the Euclidean 
distance between each pair, summing all of 
these distances and normalizing the distance 
by 75% of the width of that particular worm 
at each of the 100 matched points. In some 
cases for earlier versions of the app, we 
reconstructed occluded (ambiguous) worm 
shapes from user drawings as opposed to 
user vectors (Supplementary Figure 
1A). Mathematically this is represented as:

Consensus generation
To construct consensus midlines from user 
annotations, we noted that even for pairs of 
reconstructed midlines that were below a 
zero similarity score, users were making 
essentially the same annotation. To identify 
a threshold similarity score below which we 
could consider two annotations to be from 
distinct groups, we modeled the distribution 
of similarity scores from user–user compar-
isons (Figure 3C) as a mixture of gaussians. 
The primary mode was centered at -0.068 
and the secondary mode was centered at 
-3.260 (Supplementary Figure 1B). To ensure 
that most generally similar annotations were 
grouped together, we computed a threshold 
two standard deviations below the primary 
mode, a similarity score value of -0.809. We 
found that several other methods of identi-
fying this similarity score threshold identified 
thresholds that ranged from slightly positive 
to slightly negative. These methods included 
the Otsu thresholding method on user–user 
similarity scores and searching for the 
lowest threshold of the user–user similarity 
scores for which the Wilcoxon rank-sum test 
failed to reject the null hypothesis that the 
user–user similarity scores and user–
ground truth similarity scores were drawn 
from the same distribution at the 5% signif-
icance level.

Having identified a reasonable threshold, 
we generated consensus contours. During 
this process, we used the projections of 
worm backbones into the space of the first 
five eigenvectors. We identified and removed 
annotations whose eigenvector projections 
were outside of the range of C. elegans 
posture space. Then, for each source image, 
we identified all annotations of the source 
image and removed any remaining outlier 
annotations of that image, where an outlier 
is a value more than three absolute devia-
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tions away from the median. We computed 
similarity scores for all pairs of annotations 
and used our previously identified threshold 
to identify pairs of images that were very 
similar to one another. We further grouped 
these pairs into larger groups of similar 
annotations and identified the group of 
similar annotations with the largest number 
of members. For example, if image pairs 
(1, 2), (2, 3) and (5, 6) all have similarity scores 
above our threshold, we take the union of 
all pairs that contain images 1, 2 and 3 and, 
separately, the union of all pairs that contain 
images 5 and 6. If more images belong to the 
first union set than the second, we use the 
first set to calculate a consensus contour by 
finding the centroid of this group of contours 
in the 5D space of posture projections.

RESULTS & DISCUSSION
Our app is indiscriminate to the nature of 
images or annotations. Worm images on our 
database were derived from brightfield and 
darkfield microscope configurations, solid 
and liquid imaging environments, and 
included both processed and binarized 
images as well as unprocessed frames from 
raw videos (Figure 1B). Stem cell aggregate 
images on our database were derived from 
phase images of both live and fixed aggre-
gates grown in tissue culture plates as well 
as aggregates grown in microfluidic 
devices [12] (Figure 1C). For both nematode 
and stem cell aggregate applications, users 
are presented with randomized images from 
the full dataset and draw a single contour. 
This generic annotation scheme could also 
be used to trace individual cells or features 
of developing embryos (such as Drosophila 
melanogaster, Xenopus or zebrafish), to name 
a few. To allow users to annotate video 
frames in a pre-defined order (e.g., when 
temporal context is critical to annotation) 
and in cases where an image contains 
multiple features of interest, we created a 
second version of the app that presents 
uploaded images in order and allows users 
to draw as many contours as needed. We 
used this app version to annotate rice and 
corn root systems (Figure 1D–E). We expect 
that these two versions of the app could 
serve many other image annotation 
problems equally well with little to no 
changes of the source code.

The app is extremely easy for annotators 
to use. By using smartphones as the basis 

for our image annotation system, users 
need only draw with a finger or stylus, as 
compared to the greater difficulty of drawing 
with a computer mouse or, as in ImageJ, 
drawing piecewise lines. The interface 
itself is simple and intuitive compared to 
popular image annotation and analysis 
tools. We had 7–12 year-olds use the worm 
tracing app, and found that it was simple 
enough for them to use without help after a 
brief explanation (Figure 3A). Although the 
quality of children’s annotations was far 
more variable than annotations by adults, 
many of the children’s annotations were 
of indistinguishable quality compared to 
those of adults and annotations inconsistent 
with other user’s annotations were easy to 
identify.

We sought to demonstrate that our 
app enabled fast annotation. For two of 
our applications, we quantified the time 
between image uploads of individual 
users as a conservative estimate of time 
per annotation. For worm tracing, which 
always required a single user-drawn 
contour, the average annotation time was 

7 ± 0 s/image (95% CI) and for root tracing, 
which often required multiple contours per 
image, the average annotation time was 
14 ± 1 s/image (95% CI). To benchmark user 
annotation speed in our app, we annotated 
worm images using ImageJ  [13], which 
routinely required more time. In addition to 
the importance of individual users’ speed, 
overall speed is dependent on how many 
users can annotate in parallel. Smartphone-
based annotation not only allows us to 
easily distribute image annotation tasks 
as narrowly (a single expert) or broadly 
(general public) as desired, it also expands 
geospatial locations and settings where 
users can annotate [14].

We assessed the ability of users to trace 
known shapes accurately. We did this by 
comparing averaged hand-drawn worm 
postures to computationally generated 
ground truth postures. For worms with 
unambiguous postures, we matched 
points along the averaged hand-drawn 
worm midlines with points along the corre-
sponding ground truth midline and summed 
the Euclidean norm of all point pairs. To 
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Figure 1. Versatile smartphone annotation of images. (A) Screen capture of Android interface of 
worm tracing app, ‘Wurm Paint’. See Supplemental Movie 1 for a video of the app in use. (B) User 
annotations of worm posture in binary image, grayscale brightfield image and grayscale darkfield 
image. (C) User annotations of stem cell aggregate morphology using app with same source code 
as Wurm Paint. (D) User annotations of rice root structure. Left-hand images temporally precede 
right-hand images. (E) User annotations of corn root structure. Left-hand images temporally 
precede right-hand images.
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determine an overall similarity between 
any two worm midlines, we reasoned that 
an acceptably similar midline should lie 
within the center three-quarters of the 
worm’s total width at any given point. We 
therefore normalized similarity scores 
so that a score of one indicated identical 
midlines, any positive score indicated 
that the midlines were on average less 
than three-quarters of the worm width 
apart, and negative similarity scores 
indicated that midlines were further than 
three-quarters of the worm width apart 
(Figure 3B). Most averaged annotations 
of unambiguous postures had similarity 
scores above zero when compared to 
their corresponding ground truth midline, 
including data collected from non-expert 
annotators (Figure 3C). We concluded that 
the annotation accuracy was sufficiently 
high for tracing worms.

To further demonstrate a practical appli-
cation of our app, we focused on using 
annotations of ambiguous C. elegans 
postures to reconstruct the dynamics 
of worm behavior. Ambiguous postures 
result from segmentation errors or, more 
frequently, the worm partially occluding 
itself, for example during stereotyped Ω- or 
δ-turns. A major advantage of using human 
annotators is the ability to quickly generate 
varied predictions for images that humans 
and algorithms alike struggle to find a 
ground truth for. C. elegans postures are 
often simplistic and sinusoidal, but ∼7% of 
the worms’ behavior results in postures that 
are impossible to segment using current 
tools. One approach relies on computa-
tionally expensive optimization to attempt 
a quantitative posture description [11,15]. 
Although accurate in most instances, this 
state-of-the-art strategy for predicting 

ambiguous nematode posture requires on 
average 931.7 s (n = 66) per video frame. 
Based on our average worm annotation 
time, users can make predictions approx-
imately 130-fold faster than this compu-
tational strategy. User predictions for 
individual ambiguous images varied, but 
could typically be grouped into several 
distinct shapes, indicating that there were 
often only a few reasonable predictions for 
each ambiguous posture (Figure 4A). To 
characterize this variability quantitatively, 
we calculated pairwise similarity scores 
comparing different annotations of the 
same image for >500 source images and 
found that similarity scores peaked between 
zero and one and had a left-skewed distri-
bution with a significant tail (Figure 4B). 
This is consistent with our observation that 
although there is significant variability in 
user annotations, users are frequently in 
agreement with one another, suggesting 
the utility of a consensus-based approach 
in identifying a best solution. The ease 
and speed of generating viable predictions 
based on human intelligence with the app 
gives it particular advantage in analyzing 
images where a single ‘correct’ solution is 
non-existent and several solutions have 
high likelihood.

To resolve the ambiguities in our postural 
data set, we used annotations to create a 
consensus prediction for ambiguous images 
(Figure 4C). For each source image, we first 
eliminated annotations that were outliers 
or that created shapes outside of C. elegans 
postural space, then used pairwise similarity 
scores to identify groups of similar annota-
tions. We chose the group containing the 
most individual annotations, and averaged 
annotations in this group to come to a 
consensus contour. We compared these 
disambiguated annotations to predictions 
generated by the state-of-the-art computa-
tional method and found that the mode of the 
similarity score distribution was -1, indicating 
that although consensus contours had 
somewhat reduced accuracy, they overall 
agreed well with computational predic-
tions (Supplementary Figure 1B). Further, 
for frames where initial segmentation failed, 
users could correctly annotate grayscale 
source images, while computational 
predictions were erroneous.

C. elegans is a powerful model organism 
with a large suite of tools for genetic manip-
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ulation [16,17]. These tools, along with a fully 
mapped nervous system [18], have enabled 
researchers to identify molecular mecha-
nisms and individual genes associated with 
behavioral phenotypes [19–21]. However, 
quantitative analysis of some of the most 
complex behaviors, large-angle turns that 
commonly include ambiguous postures, 
remains difficult, and gaps in quanti-
fiable behavior prevent dynamic posture 
analysis altogether. Using our consensus 
worm contours, we recreated the postural 
repertoire and behavioral dynamics of C. 
elegans. We sought to answer how signifi-
cantly complex worm postures affect the 
overall shape space of C. elegans. To answer 
this, we calculated the first four principle 
components of C. elegans’ shape space [22] 
(‘eigenworms’) using either unambiguous 
results alone or both unambiguous results 
and consensus contours (Figure  5A, 
Supplementary Figure 1C). Consistent with 
prior reports, we found that the first four 
principle components were very similar 
with or without ambiguous postures [11]. 
Interestingly, the fractional variance of the 
worm’s posture space captured by these 
eigenworms is greater when ambiguous 
postures are included (Figure 5B). Lastly, 
we recreated complete timeseries of 
the first four eigenworm amplitudes for 
individual worms using the consensus 
contours (Figure 5C). These traces fill in 
the gaps left by ambiguous shapes and 
outperform the computational prediction 
in some cases where the worm is tightly 
coiled (Supplementary Movie 2). In addition 
to adding to our knowledge of C. elegans 
behavioral dynamics purely through image 
annotation, this app can help improve 
existing posture prediction algorithms by 
using these results.

Our app-based annotation scheme 
allows researchers from any field to quickly 
and easily annotate complex images in 
quantitative ways. Here, we demonstrated its 
flexibility and speed in annotating rice root 
growth and structure, stem cell aggregate 
morphology and complex worm postures, 
where we showed that the app is ∼130-fold 
faster than state-of-the-art posture optimi-
zation techniques. We expect that the app 
will be useful as an alternative to creating 
complex and bespoke computational 
image processing pipelines, as a way to 
complement and augment existing compu-

tational pipelines, and as a simple way to 
generate consensus ground truths towards 
improving machine-learning algorithms for 
image processing.

FUTURE PERSPECTIVE
As image datasets become larger and the 
demand for more nuanced analysis of 
complex image features becomes 
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indicates the threshold we use to calculate consensus contours. n = 44.
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commonplace, human annotation will 
remain important in establishing ground 
truths and correcting outputs from 
automated analysis pipelines. We will 
continue to need tools for large-scale human 
annotation to accomplish these tasks. Here, 
we demonstrated an efficient method for 
collecting complex annotations; the time 
needed for an individual annotation is 

shorter than a comparable annotation using 
other software. Thus, this is a useful tool 
even when the total number of annotations 
needed is modestly scaled. For applications 
that require much greater scale, recruitment 
of more annotators may be necessary. 
Several methods for recruiting annotators 
include paying annotators a small amount 
of money for each annotation by integrating 

with Amazon Turk [9], gamifying the app [23], 
or creating a citizen science effort [1]. We 
envision that this type of accurately human-
curated images will support (by providing 
ground truth) and complement (in rare and 
unanticipated scenarios) machine-learning 
approaches as they become dominant in 
image-based analyses for many fields of 
scientific inquiry.
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analysis. All children who annotated using 
the app did so with the verbal consent of 
their parents, and no demographic or other 
information was collected from them.

Annotations from users of our example 
app published on Google Play are not 
included in this study, but we inform users on 
our Google Play site, on our app information 
site (https://sites.google.com/view/wurm/
app-privacy-policy), and within the app itself 
what information we collect: user emails so 
that they may establish an account; annota-
tions they produce; and timestamps of when 
each annotation is updated. No demographic 
information is collected from users and we 
do not contact users via their email or share 
their email addresses.
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