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ABSTRACT

We report a generic smartphone app
for quantitative annotation of complex
images. The app is simple enough to
be used by children, and annotation
tasks are distributed across app users,
contributing to efficient annotation. We
demonstrate its flexibility and speed by
annotating >30,000 images, including
features of rice root growth and structure,
stem cell aggregate morphology, and
complex worm (Caenorhabditis elegans)
postures, for which we show that the
speed of annotation is >130-fold faster
than state-of-the-art techniques with
similar accuracy.

METHOD SUMMARY

We developed a smartphone app for
Android phones in Java, utilizing Firebase
as the database backend for storing
images and user drawings. Images
from the database are either randomly
or sequentially presented to users,
who can freeform draw on each image
and upload the annotated image and
annotated contours to the database for
quantitative analysis. The app conforms
to material design and focuses onaclean
user interface for better usability and a
smooth drawing experience.
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The accelerating ease of collecting very
large image data sets (terabytes to
petabytes) has led to a shift in scientific
bottlenecks from image collection to
image analysis across many disciplines,
including connectomics [1-3], cell lineage
tracing [4], and ethology [5—8]. Although
highly specialized computational
pipelines are emerging to address this
new bottleneck, these pipelines require
significant effort to develop, are compu-
tationally expensive and not error-free,
and may still rely on human image
annotation to establish ground truths. The
widespread dependence on humanimage
annotation or correction is likely to
continue, and yet tools for image
annotation, especially at large scales,
often do not meet the needs of
researchers.

Specifically, tools for quantitative
annotation of images are hindered by a
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trade-off between speed, accuracy and
versatility. Some automated tools require
extensive tuning or parameter optimi-
zation prior to annotation to enhance
accuracy, and many image processing
pipelines are not well-suited for hetero-
geneous image sets. In addition, many
tools for human annotation limit the way
users can defineimage features of interest,
for example, via rectangles, polygons or
circles [9]. Annotation speed is limited by
the complexity of annotation software and,
ultimately, how quickly annotators can
mark phenotypes accurately [10]. Equally
critical for efficient annotation of large
datasets s easein distributing annotation
tasks, as well as broadness in settings or
locations where users can annotate. To
serve the greatest number of researchers
effectively, tools for large-scale image
annotation should be generalizable, fast
and accurate. >
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Here we report a highly versatile,
fast and quantitative method for image
annotation. Features of interest of an
arbitrary image can be annotated simply
from users’ finger- or stylus-tracings
(Supplementary Movie 1). We demonstrate
the use of a simple and intuitive smart-
phone- and tablet-based app to annotate
complex body postures in Caenorhabditis
elegans, morphology of stem cell aggre-
gates, and root growth of Oryza sativa (rice)
and Zea mays (corn). We crowd-sourced
annotations of over 16,000 nematode
images, 500 stem cell aggregate images,
and 900 root images, with a total of over
30,000 user annotations (Figure 1A-E).

The app is written in Java, utilizing Android
Studio to package the app for Android
phones. Briefly, the app loads images from
an online database managed on Firebase
to the user's Android device, on which users
draw their best annotation. The structure
of our database is shown in Figure 2. The
user then has the option to clear their
annotation and try annotating again before
uploading, toreport the image as something
they are unable to annotate, or to load a new
random image from the cloud database.
Once the user is satisfied with their
annotation, they upload their annotated
image (as well as vectors of the annota-
tion's trajectory) and are immediately
presented with another image from the
image set. The app conforms to material
design and focuses on clean user interfaces
for better usability and a smoother drawing
experience. During beta-testing, we
recruited six users, four of whom work with
C. elegans on a daily basis, with the other
two having some general knowledge of the
worm. Although we collected more annota-
tions from other users, including children,
only the annotations from these six users
were used in our behavioral analysis of C.
elegans, and they make up >90% of the total
annotations collected.

We collect timestamps when users upload
images and drawing vectors with aresolution
of 1 s, based on the user’s device's time. To
determine a conservative average user
annotation speed, we grouped all annota-
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tions by user and computed the time
between each upload for that user. All inter-
upload times were pooled. Because inter-
upload times could range from a few
seconds to days depending on the user’s
usage frequency, we imposed an upper
threshold of 30 s for worm image annota-
tions and an upper threshold of 90 s for root
image annotations to determine the average
user annotation speed.

We built upon an existing worm tracker [11]
for our initial image analysis and to identify
movie frames where worms were partially
self-occluded (i.e., ambiguous). A subset of
these frames was uploaded to our database
for annotation. Using the generative algorithm
included in the existing worm tracker to
predict worm posture for occluded shapes,
we optimized parameters for our data set and
found predicted worm postures for several
full videos from which we had drawn
ambiguous postures for our database. The
worm tracker uses MATLAB software (we
used MATLAB version 2017a). To evaluate the
time required to process individual frames
using this worm tracker, we used MATLAB to
measure how long the point-swarm (PS)
optimization (generation of alternative
posture predictions) required for each
ambiguous frame. This step took an average
of 776.2 + 5.2 s/ambiguous frame (95% Cl;
n = 66) with parallel processing (a local pool
consisting of four cores). After this generative
step, a progressive optimizing interpolation
(POI) step evaluates the alternative posture
predictions to determine which makes sense
in the context of the worm postures in the
surrounding frames. For this step, we timed
the total time until a solution was generated.
For a movie with 444 ambiguous frames, this
step required 155.5 s/ambiguous frame
(equivalent to the time required for >20 human
annotations). Combined, the PS and POI
tracking steps required on average 931.7 s/
ambiguous frame, or the equivalent of 133
human annotations. The computers used
were Dell Precision Tower model 5810 with
32 GB RAM and Intel Xeon CPU (model
E5-1620 v4, 3.5 GHz).

In order to compare two worm annotations,
or a worm annotation to ground truth, we
matched 100 points between two worm
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midlines and computed the Euclidean
distance between each pair, summing all of
these distances and normalizing the distance
by 75% of the width of that particular worm
at each of the 100 matched points. In some
cases for earlier versions of the app, we
reconstructed occluded (ambiguous) worm
shapes from user drawings as opposed to
user vectors (Supplementary Figure
1A). Mathematically this is represented as:

1=, 100 || midline1; — midline2; I,
i=1=0.75-worm thickness;

To construct consensus midlines from user
annotations, we noted that even for pairs of
reconstructed midlines that were below a
zero similarity score, users were making
essentially the same annotation. To identify
athreshold similarity score below which we
could consider two annotations to be from
distinct groups, we modeled the distribution
of similarity scores from user—user compar-
isons (Figure 3C) as a mixture of gaussians.
The primary mode was centered at -0.068
and the secondary mode was centered at
-3.260 (Supplementary Figure 1B). To ensure
that most generally similar annotations were
grouped together, we computed a threshold
two standard deviations below the primary
mode, a similarity score value of -0.809. We
found that several other methods of identi-
fying this similarity score threshold identified
thresholds that ranged from slightly positive
to slightly negative. These methods included
the Otsu thresholding method on user—user
similarity scores and searching for the
lowest threshold of the user—user similarity
scores for which the Wilcoxon rank-sum test
failed to reject the null hypothesis that the
user—user similarity scores and user—
ground truth similarity scores were drawn
from the same distribution at the 5% signif-
icance level.

Havingidentified a reasonable threshold,
we generated consensus contours. During
this process, we used the projections of
worm backbones into the space of the first
five eigenvectors. We identified and removed
annotations whose eigenvector projections
were outside of the range of C. elegans
posture space. Then, for each source image,
we identified all annotations of the source
image and removed any remaining outlier
annotations of that image, where an outlier
is a value more than three absolute devia-
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tions away from the median. We computed
similarity scores for all pairs of annotations
and used our previously identified threshold
to identify pairs of images that were very
similar to one another. We further grouped
these pairs into larger groups of similar
annotations and identified the group of
similar annotations with the largest number
of members. For example, if image pairs
(1,2),(2,3) and (5, 6) all have similarity scores
above our threshold, we take the union of
all pairs that contain images 1,2 and 3 and,
separately, the union of all pairs that contain
images 5 and 6. If more images belong to the
first union set than the second, we use the
first set to calculate a consensus contour by
finding the centroid of this group of contours
in the 5D space of posture projections.

Our app is indiscriminate to the nature of
images or annotations. Worm images on our
database were derived from brightfield and
darkfield microscope configurations, solid
and liquid imaging environments, and
included both processed and binarized
images as well as unprocessed frames from
raw videos (Figure 1B). Stem cell aggregate
images on our database were derived from
phase images of both live and fixed aggre-
gates grown in tissue culture plates as well
as aggregates grown in microfluidic
devices [12] (Figure 1C). For both nematode
and stem cell aggregate applications, users
are presented with randomized images from
the full dataset and draw a single contour.
This generic annotation scheme could also
be used to trace individual cells or features
of developing embryos (such as Drosophila
melanogaster, Xenopus or zebrafish), to name
a few. To allow users to annotate video
frames in a pre-defined order (e.g., when
temporal context is critical to annotation)
and in cases where an image contains
multiple features of interest, we created a
second version of the app that presents
uploaded images in order and allows users
to draw as many contours as needed. We
used this app version to annotate rice and
cornroot systems (Figure 1D—E). We expect
that these two versions of the app could
serve many other image annotation
problems equally well with little to no
changes of the source code.

The app is extremely easy for annotators
to use. By using smartphones as the basis
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Figure 1. Versatile smartphone annotation of images. (A) Screen capture of Android interface of
worm tracing app, ‘Wurm Paint’. See Supplemental Movie 1 for a video of the app in use. (B) User
annotations of worm posture in binary image, grayscale brightfield image and grayscale darkfield
image. (C) User annotations of stem cell aggregate morphology using app with same source code
as Wurm Paint. (D) User annotations of rice root structure. Left-hand images temporally precede
right-hand images. (E) User annotations of corn root structure. Left-hand images temporally
precede right-hand images.

for our image annotation system, users
need only draw with a finger or stylus, as
compared to the greater difficulty of drawing
with a computer mouse or, as in ImageJ,
drawing piecewise lines. The interface
itself is simple and intuitive compared to
popular image annotation and analysis
tools. We had 7-12 year-olds use the worm
tracing app, and found that it was simple
enough for them to use without help after a
brief explanation (Figure 3A). Although the
quality of children’s annotations was far
more variable than annotations by adults,
many of the children’s annotations were
of indistinguishable quality compared to
those of adults and annotations inconsistent
with other user’s annotations were easy to
identify.

We sought to demonstrate that our
app enabled fast annotation. For two of
our applications, we quantified the time
between image uploads of individual
users as a conservative estimate of time
per annotation. For worm tracing, which
always required a single user-drawn
contour, the average annotation time was
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7 + 0 s/image (95% Cl) and for root tracing,
which often required multiple contours per
image, the average annotation time was
14+ 1 s/image (95% Cl). To benchmark user
annotation speed in our app, we annotated
worm images using ImagedJ [13], which
routinely required more time. In addition to
the importance of individual users’ speed,
overall speed is dependent on how many
users can annotate in parallel. Smartphone-
based annotation not only allows us to
easily distribute image annotation tasks
as narrowly (a single expert) or broadly
(general public) as desired, it also expands
geospatial locations and settings where
users can annotate [14].

We assessed the ability of users to trace
known shapes accurately. We did this by
comparing averaged hand-drawn worm
postures to computationally generated
ground truth postures. For worms with
unambiguous postures, we matched
points along the averaged hand-drawn
worm midlines with points along the corre-
sponding ground truth midline and summed
the Euclidean norm of all point pairs. To
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Figure 2. App database structure. Top-level (left) and expanded (right) structure of the root tracing
app database. All apps have similarly structured databases. ‘bad_images’ contains mapping

to user-reported images. ‘master_upload’ defines which source image sets are live on the app,

as well as the number of images in each source set. User feedback is stored in the ‘ratings’
structure. Finally, ‘uploads’ maps user annotations (with user id, image name, and date and time of
annotation) to the source image. In newer app versions available on our Github, we also save line
trajectories at the bottom of the ‘uploads’ structure. To initialize the app, only the ‘master_upload’

structure is needed.

determine an overall similarity between
any two worm midlines, we reasoned that
an acceptably similar midline should lie
within the center three-quarters of the
worm'’s total width at any given point. We
therefore normalized similarity scores
so that a score of one indicated identical
midlines, any positive score indicated
that the midlines were on average less
than three-quarters of the worm width
apart, and negative similarity scores
indicated that midlines were further than
three-quarters of the worm width apart
(Figure 3B). Most averaged annotations
of unambiguous postures had similarity
scores above zero when compared to
their corresponding ground truth midline,
including data collected from non-expert
annotators (Figure 3C). We concluded that
the annotation accuracy was sufficiently
high for tracing worms.
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To further demonstrate a practical appli-
cation of our app, we focused on using
annotations of ambiguous C. elegans
postures to reconstruct the dynamics
of worm behavior. Ambiguous postures
result from segmentation errors or, more
frequently, the worm partially occluding
itself, for example during stereotyped Q- or
§-turns. A major advantage of using human
annotators is the ability to quickly generate
varied predictions forimages that humans
and algorithms alike struggle to find a
ground truth for. C. elegans postures are
often simplistic and sinusoidal, but ~7% of
the worms’ behavior results in postures that
are impossible to segment using current
tools. One approach relies on computa-
tionally expensive optimization to attempt
a quantitative posture description [11,15].
Although accurate in most instances, this
state-of-the-art strategy for predicting
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ambiguous nematode posture requires on
average 931.7 s (n = 66) per video frame.
Based on our average worm annotation
time, users can make predictions approx-
imately 130-fold faster than this compu-
tational strategy. User predictions for
individual ambiguous images varied, but
could typically be grouped into several
distinct shapes, indicating that there were
often only a few reasonable predictions for
each ambiguous posture (Figure 4A). To
characterize this variability quantitatively,
we calculated pairwise similarity scores
comparing different annotations of the
same image for >500 source images and
found that similarity scores peaked between
zero and one and had a left-skewed distri-
bution with a significant tail (Figure 4B).
This is consistent with our observation that
although there is significant variability in
user annotations, users are frequently in
agreement with one another, suggesting
the utility of a consensus-based approach
in identifying a best solution. The ease
and speed of generating viable predictions
based on human intelligence with the app
gives it particular advantage in analyzing
images where a single ‘correct’ solution is
non-existent and several solutions have
high likelihood.

Toresolve the ambiguities in our postural
data set, we used annotations to create a
consensus prediction forambiguous images
(Figure 4C). For each source image, we first
eliminated annotations that were outliers
or that created shapes outside of C. elegans
postural space, then used pairwise similarity
scores to identify groups of similar annota-
tions. We chose the group containing the
most individual annotations, and averaged
annotations in this group to come to a
consensus contour. We compared these
disambiguated annotations to predictions
generated by the state-of-the-art computa-
tional method and found that the mode of the
similarity score distribution was -1, indicating
that although consensus contours had
somewhat reduced accuracy, they overall
agreed well with computational predic-
tions (Supplementary Figure 1B). Further,
forframes where initial segmentation failed,
users could correctly annotate grayscale
source images, while computational
predictions were erroneous.

C. elegans is a powerful model organism
with a large suite of tools for genetic manip-
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ulation[16,17]. These tools, along with a fully
mapped nervous system [18], have enabled
researchers to identify molecular mecha-
nisms and individual genes associated with
behavioral phenotypes [19-21]. However,
quantitative analysis of some of the most
complex behaviors, large-angle turns that
commonly include ambiguous postures,
remains difficult, and gaps in quanti-
fiable behavior prevent dynamic posture
analysis altogether. Using our consensus
worm contours, we recreated the postural
repertoire and behavioral dynamics of C.
elegans. We sought to answer how signifi-
cantly complex worm postures affect the
overall shape space of C. elegans. To answer
this, we calculated the first four principle
components of C. elegans’shape space [22]
(‘eigenworms’) using either unambiguous
results alone or both unambiguous results
and consensus contours (Figure 5A,
Supplementary Figure 1C). Consistent with
prior reports, we found that the first four
principle components were very similar
with or without ambiguous postures [11].
Interestingly, the fractional variance of the
worm’s posture space captured by these
eigenworms is greater when ambiguous
postures are included (Figure 5B). Lastly,
we recreated complete timeseries of
the first four eigenworm amplitudes for
individual worms using the consensus
contours (Figure 5C). These traces fill in
the gaps left by ambiguous shapes and
outperform the computational prediction
in some cases where the worm is tightly
coiled (Supplementary Movie 2). In addition
to adding to our knowledge of C. elegans
behavioral dynamics purely throughimage
annotation, this app can help improve
existing posture prediction algorithms by
using these results.

Our app-based annotation scheme
allows researchers from any field to quickly
and easily annotate complex images in
quantitative ways. Here, we demonstrated its
flexibility and speed in annotating rice root
growth and structure, stem cell aggregate
morphology and complex worm postures,
where we showed that the app is ~130-fold
faster than state-of-the-art posture optimi-
zation techniques. We expect that the app
will be useful as an alternative to creating
complex and bespoke computational
image processing pipelines, as a way to
complement and augment existing compu-
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Figure 3. Intuitive and accurate annotation of images. (A) Annotations by 7-12 year-olds. (B) Sketch
of similarity score calculations. For each panel, two worm contours (white overlaid with yellow or
blue) are reconstructed based on ground truth or annotated midlines. 100 points along the midline
are matched, and the Euclidean distance between each pair is computed. Here we show this at

ten points along the backbone (red lines). Yellow and blue highlight the center three-quarters of

the worm'’s width. (C) Probability density of similarity scores for unambiguous posture solutions
compared to averaged user annotations of the same unambiguous postures. The dashed red line
indicates the threshold we use to calculate consensus contours. n = 44.
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Figure 4. Generating accurate consensus predictions for ambiguous images. (A) Example set of
ambiguous images. (B) Probability density of similarity scores for comparison between different
user annotations of the same ambiguous posture. The dotted red line indicates the threshold
we use to calculate consensus contours. The threshold was determined by modeling probability
density as a mixture of two Gaussians (see Methods); n = 26,098. (C) lllustration of consensus
generation scheme.

tational pipelines, and as a simple way to

generate consensus ground truths towards
improving machine-learning algorithms for
image processing.
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As image datasets become larger and the
demand for more nuanced analysis of
complex image features becomes
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Figure 5. Reconstruction of continuous behavior dynamics from annotations. (A) Representation
of first four principle components of worm posture (‘eigenworms’) including both unambiguous
and ambiguous postures from four annotated videos in our dataset (37,784 frames). As reported

in other works, our eigenworms both with and without ambiguous postures were very similar

(see Supplementary Figure 2C). (B) Cumulative variance captured by each additional eigenworm
(‘mode’) for both unambiguous images only and both unambiguous and ambiguous images
together. (C) Traces of amplitude of first four eigenworms in time for an individual worm. Dark
purple lines are amplitudes calculated for unambiguous postures viaimage processing. Gaps in
purple lines correspond with frames containing ambiguous postures that are usually associated
with reorientation of the worm. Blue lines are computational predictions for the full video, including
ambiguous postures. Red dots represent consensus contours for individual frames found using app
user annotations. Yellow highlighted regions are time points where computational predictions do
not match consensus predictions (highlighted red in Supplementary Movie 2). The top inset image
is the unphysical computational prediction at the timepoint corresponding to the grey dashed line.
The bottom inset image is the consensus contour prediction generated from the app at the same
timepoint. For the amplitudes of the first eigenworm in particular, the red dots follow two opposing
sinusoidal contours simultaneously, one contour representing the opposite head orientation of the

worm compared to the other contour.

» commonplace, human annotation will
remain important in establishing ground
truths and correcting outputs from
automated analysis pipelines. We will
continue to need tools for large-scale human
annotation to accomplish these tasks. Here,
we demonstrated an efficient method for
collecting complex annotations; the time
needed for an individual annotation is
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shorter than a comparable annotation using
other software. Thus, this is a useful tool
even when the total number of annotations
needed is modestly scaled. For applications
that require much greater scale, recruitment
of more annotators may be necessary.
Several methods for recruiting annotators
include paying annotators a small amount
of money for each annotation by integrating
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with Amazon Turk[9], gamifying the app [23],
or creating a citizen science effort [1]. We
envision that this type of accurately human-
curated images will support (by providing
ground truth) and complement (in rare and
unanticipated scenarios) machine-learning
approaches as they become dominant in
image-based analyses for many fields of
scientific inquiry.
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