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ABSTRACT

In this paper, we investigate hyperelastic and viscoelastic model parameters using Global Sensitivity Analysis
(GSA). These models are used to characterize the physical response of many soft-elastomers, which are used in
a wide variety of smart material applications. Recent research has shown the effectiveness of using fractional-
order calculus operators in modeling the viscoelastic response. The GSA is performed using parameter subset
selection (PSS), which quantifies the relative parameter contributions to the linear and nonlinear, fractional-
order viscoelastic models. Calibration has been performed to quantify the model parameter uncertainty; however,
this analysis has led to questions regarding parameter sensitivity and whether or not the parameters can be
uniquely identified given the available data. By performing GSA we can determine which parameters are most
influential in the model, and fix non-influential parameters at a nominal value. The model calibration can then
be performed to quantify the uncertainty of the influential parameters.
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1. INTRODUCTION

Many adaptive structures require accurate estimation of the underlying material’'s viscoelastic behavior.
The nature of the viscoelastic response presents many modeling challenges as the stress response can vary
significantly with changes in deformation rate. Extensive research has been done in this field;*? however,
accurately predicting this rate-dependent phenomenon continues to pose a significant challenge. Recent research
has shown the viability of using fractional-order operators in describing viscoelastic behavior.® Fractional-order
operators present interesting numerical difficulties, but efficient methods make sampling based model analysis
feasible.?

Sensitivity analysis is a key component of performing parameter estimation. In many models, the parameters
do not play a significant role in the overall behavior of the system, making them difficult to estimate using
measured data. Global Sensitivity Analysis (GSA) serves as a tool of identifying how uncertainties in the model
output can be apportioned to uncertainties in the input model parameters.® Based on the results obtained from
the GSA, parameter estimation can be performed on the remaining sensitive parameters. In many cases, the GSA
may find that all model parameters significantly impact the model output; however, that does not mean one will

Further author information: (Send correspondence to P.M.)
P.M.: E-mail: prmiles@ncsu.edu, Telephone: 1-919-515-0682

Behavior and Mechanics of Multifunctional Materials Xlll, edited by Hani E. Naguib, Proc. of SPIE
Vol. 10968, 1096806 - © 2019 SPIE - CCC code: 0277-786X/19/318 - doi: 10.1117/12.2514160

Proc. of SPIE Vol. 10968 1096806-1

Downloaded From: https:/fwww.spiedigitallibrary.org/conference-proceedings-of-spie on 17 Jul 2019
Terms of Use: hitps://www.spiedigitallibrary.org/terms-of-use



necessarily be able to uniquely identify their parameter distributions when performing estimation. By assuming
the model parameters are random variables, it is natural to approach the parameter estimation problem from a
Bayesian perspective. This enables us to use Markov Chain Monte Carlo (MCMC) methods, which will provide
us with an estimate for the parameter posterior densities.

The remainder of this paper is presented in the following sections. The key thermodynamic relations and
theory that describe the hyperelastic and viscoelastic models are summarized in Section 2. The methods and
results of our sensitivity analysis are outlined in Section 3. Preliminary model calibration is discussed in Section 4,
and concluding remarks are provided in Section 5.

2. THEORY

The modeling framework behind this approach has been discussed extensively in,*® but we include a few
key model components for reference. We develop a model to calculate the nominal stress response within the
material for comparisons with the experimental measurements. The work conjugate variable to the deformation
gradient is the nominal stress,” so we begin by defining an energy density function to relate these variables. The
thermodynamic framework for the energy function is generalized by including thermal effects, but the analysis
and model validation will assume isothermal deformation. The total energy density function per reference volume
is given by

¥ =P (Fix,0) + T(Fik, ©, &k ). (1)

The energy is split into two distinct components: 1., is the conserved, hyperelastic free energy function and T
is an energy function that depends on a non-conserved tensor order parameter. The hyperelastic model depends
on the deformation gradient F;x and temperature © while T is also a function of a set of internal variables,
Y (v =1,...,n non-measurable internal states). These internal states contribute to the dissipation observed
during rate-dependent deformation.

A correction term is added to (1) to account for incompressible deformation, which is typical of elastomers.
The total free energy density is then

zﬁzw—P(J—l); (2)

where p is the unknown Lagrange multiplier, which represents a hydrostatic stress and J = det(Fjx). Incom-
pressible deformation is thus described by J = 1.

The nominal stress is found by taking the derivative of the total energy density with respect to the deformation
gradient, X
0 O _ aT
ik = gpe = pps —pIHixc + g, 3

where we have used the identity 83% = JH;x and H;xFjx = 6;;.7 Similarly, the viscoelastic stress is found
by taking the derivative with respect to the internal state variable, £}, yielding

oY YT
Y= = 4
K= ogy, ~ oe @

Here QY denotes the viscoelastic stress.® The origin of the work conjugate stress s;x and viscoelastic stress Q;x
are determined by combining the first and second laws of thermodynamics. A summary of the thermodynamic
framework can be found in.®° Prior research has extended this framework in the context of both linear and
nonlinear viscoelasticity.® The derivation satisfies both first and second laws of thermodynamics, leading to the
relation,

ik =1"&x (5)
which is the viscoelastic constitutive law analogous to a spring-dashpot model in one dimension.” We can

subsequently use this relationship in our linear viscoelastic model formulation. Moving forward we consider the
case where v = 1 and subsequently remove it from our notation.
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2.1 Nonaffine Hyperelastic Model

In conjunction with the viscoelastic model, a nonaffine hyperelastic energy function is implemented!®
1 1
N = $Geli = GeXlyou M(BNoe — 1) + Ge Y (N + 1), (6)
: J
J

where G, is the crosslink network modulus, G, is the plateau modulus, A,,,, is the maximum stretch of the
effective affine tube, and I, = A\;; is the first stretch invariant where summation on i is implied. Prior research
has found this model to yield comparable results to higher order Ogden models, but with fewer phenomenological
parameters.®

2.2 Linear Viscoelastic Model

In the linear case we hypothesize that the non-conservative energy function has the quadratic form

T, = %’Y (Fix — &ix) (Fix — &ix) s (7)

which leads to the spring-dashpot relation

. 1 .
Qix + ;Q-:'K =vFk, (8)

where 7 =2

To reduce the number of terms in the model, we take the rates of the internal state variables to be proportional
to the local fractional time derivative of deformation. The details of this fractional derivative can be found in.?
We express this assumption as _

§ik = pLDf Fig, 9)
and by using (5) and (9) we obtain
Qix = n.Df Fig, (10)

where 1, = nur, and Df is the fractional time derivative of deformation. For more details regarding the
numerical implementation of fractional-order derivatives, the reader is referred to.* The order of the fractional
derivative is denoted by a. This is the form of the viscoelastic constitutive law analogous to a spring-dashpot
model in the one dimensional fractional model.

2.3 Nonlinear Viscoelastic Model

The nonlinear non-conservative energy function has the form

0o
Ty = %'Y&K&K — Boo ';Ffb—_.K&K + BoctPoo- (11)

A full description of the model derivation and assumptions can be found in.> Here, we consider the key relation-
ship required for analysis of our nominal stress. The viscoelastic contribution to the nominal stress is found to

be
0TNL o 08k (1 . 0 400
F Boo [87% — OF 5 (;(r@msm —nDy 31‘K))]' (12)

Here 8..,n, and « are viscoelastic model parameters, and « is the order of the fractional derivative operator
(D%). For details regarding fractional-order operators, please see.>* A brief description is also provided in
Appendix A.
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2.4 Model Parameters

When considering sensitivity analysis, we will consider the following sets of parameters. The combined
parameter set for the hyperelastic and linear viscoelastic model is

9L = [Gcace:/\mamn:a]' (13)
Similarly, when combining the hyperelastic with the nonlinear viscoelastic model we will consider,

Onr = [Gc; Gey Amaz, 1, @, 7, [B] (14)

3. SENSITIVITY ANALYSIS

Our initial analysis utilizes several methods for performing sensitivity analysis (SA). Each algorithm ap-
proaches the problem in a slightly different way, and by comparing the analyses we can gain an overall improved
picture of the truly sensitivity components of the model. The constitutive model parameters often vary many
orders of magnitude, which can lead to erroneous interpretation of parameter sensitivity. To account for these
vary magnitudes, we perform gradient operations in a scaled space, which has been outlined in Section 3.1. We
then perform Parameter Subset Selection (PSS) as outlined in Section 3.2 to assess global sensitivity.

3.1 Scaled Gradient Evaluations

To account for vastly different parameter scales, we utilize a scaled gradient method when calculating sensi-
tivity matrices. The basic approach we consider takes all parameters to be uniformly distributed such that

O ~UBF™ — 6:|07°™ ], 6™ + 8:|07™)). (15)

Here, 6°™, i = 1,...,p, represents the nominal values of the parameters § = [f,...,0,]. The value of J; is
estimated using expert knowledge of parameter variability. To avoid issues associated with differences in units of
magnitudes for different sets of parameters, we transform all the distributions in Equation (15) to 2{[0,1]. The
transformation scales all input, while removing units and ensuring that parameters containing relatively large
values do not affect the analysis disproportionately. To transofrm back to the physical input values for the model
evaluations, we the use the mapping

gu (x) = diag(fu — 6)x + 61, (16)

where z is a p—vector with values between 0 and 1, and 6, and 6, are the vectors with the lower and upper
bounds of the parameters 8. Note that in our problem, the upper and lower bound vectors are

where 8™°™ is the vector of nominal values for the parameters.

3.2 Quasi-Global Parameter Subset Selection (PSS)

The PSS serves as a means of reducing the number of parameters in the calibration by systematically com-
paring the eigenvalues of the Fisher Information matrix with respect to some threshold. The details of PSS are
summarized in Algorithm 3.1, and more details can be found in.!! Within the PSS algorithm, we consider a
sensitivity matrix of the form

o @) o G ko)
5= ; ; , (18)
S eie) o e

where 6* is a nominal set of parameter values, and f is the model for our quantity of interest (Qol). To account
for variability in the parameter space, we propose a methodology that explores the space of # to obtain a measure
for global sensitivity, while employing the underlying theory behind Algorithm 3.1.

Proc. of SPIE Vol. 10968 1096806-4

Downloaded From: https:/fwww.spiedigitallibrary.org/conference-proceedings-of-spie on 17 Jul 2019
Terms of Use: hitps://www.spiedigitallibrary.org/terms-of-use



Algorithm 3.1: Parameter subset selection algorithm to determine locally unidentifiable parameters.*?

(0) Set 7 = p, where p is the number of parameters in the model, and construct the sensitivity
matrix S following relation (18). We note that the variable n changes with the iterations of the
algorithm.

(1) Compute the matrix ST.S and its eigenvalues, and order their magnitudes as

Ml < | <00 < M.

(2) If |A1] > €, where € is some prescribed threshold value, stop. We take all the parameters to be
identifiable.

(3) If |[A1] < €, then one of the parameters is not identifiable. Proceed as follows.

(4) Identify the component with the largest magnitude in the eigenvector Af; associated with Aj.
This component corresponds to the least identifiable parameter.

(5) Remove the column in S corresponding to the component identified in Step 4, set n =n —1
and repeat Step 1.

To construct a quasi-global sensitivity matrix, we use a method similar to Morris screening.!® We obtain the
elementary effects

of
si; = PTR 169, £=1,..., K
¢ _f(a:‘i;ﬁf,...,6§_1,8§+A,9§+1,...,9§)—f(xi;ﬁf) 19
st = (19)
A
_ f(a1;6° + A - e)) — f(z1;6)

- X ,
where A is the step size and e; is the jth canonical vector. We evaluate these effects via a sampling procedure

which reflects the uncertainty in the parameter values. We average over all the sampled sensitivity entries to
obtain the sensitivity measures

1 X
£
Stj = E Z Sij'
£=1
This provides a quasi-global sensitivity matrix
STI S;:p
St = : : . (20)
SN1 3pr

We employ this quasi-global sensitivity matrix along with Algorithm 3.1 for the parameter subset selection
investigation in this paper.

3.3 Results

We generate a global sensitivity matrix for the linear and nonlinear viscoelastic model by sampling 2000 times
throughout the parameter space, calculating a local sensitivity matrix, and then average to estimate a global
approximation. The global estimate was then used in the parameter subset selection algorithm to identify the
sensitive parameters in the model. From the first iteration of the PSS algorithm, we observe the eigenvalues of
the Fisher information matrix, shown in Figure 1. The results of our PSS are presented in Tables 1 and 2 for the
linear and nonlinear model, respective. We have shown the minimum magnitude eigenvalue at each iteration as
well as the corresponding eigenvector components.
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For the linear viscoelastic model, the PSS algorithm removed parameters in the order G.,7n, . However, in
light of the relative eigenvalue spectra observed in Figure 1(a), none of the jumps in eigenvalues is signficiant
enough to justify removing parameters from calibration. In contrast, when considering the nonlinear viscoelastic
model, the PSS algorithm removed parameters in the following order: +,7n, and G,.. Based on the results of the
PSS and in light of the differences observed in the eigenvalues in Figure 1(b), we conclude that + is non-influential.
The noticeable jump between the 6" and 7" eigenvalues indicate that the last parameter is significantly less
influential than the other terms. With this information, we will perform parameter estimation for the linear set

9?1ov = [GmGe:)ﬁmamn:ang]s (21)

and leave the nonlinear set for future work

9%201/ = [Gc: Amam , 6] (22)
O . . . . 0re .
107 10 o
' o o
107t 1072}
I ° °
<7102} ° 3 <710}
[ °
10°} 10
i i i i
4L | | | | 8L ! ]
10 1 2 3 4 5 10 1 2 3 4 5 6 7
| |
(a) Linear (b) Nonlinear

Figure 1. Eigenvalues from first iteration of PSS algorithm.

Table 1. Results from Algorithm 3.1 with the quasi-global sensitivity matrix to determine noninfluential parameters in

.

Eigenvector Af;, with corresponding parameters

Iteration  |Aq] G. G, Mmaz 7 &
1 2.54e-04 |-1.69e-01 9.02e-01 -3.95e-01 -3.27e-02 -1.09e-02
2 3.33e-04 |-8.00e-03  — 1.86e-02 -8.52e-01 -5.23e-01
3 1.66e-03| 1.67e-02 —  -8.83e-02 - 9.96e-01

4 5.85e-03 |-1.83e-01 —  -9.83e-01 - —

Result: All parameters are influential.

Table 2. Results from Algorithm 3.1 with the quasi-global sensitivity matrix to determine noninfluential parameters in

QNL.
Eigenvector A#;, with corresponding parameters
Iteration  |Aq] G- G. Amaz 7 & y 8
1 3.12e-08 |-2.54e-01 -2.53e-01 1.23e-03 5.27e-01 -1.20e-04 5.49e-01 5.40e-01
2 2.23e-03 [-4.61e-01 -2.42e-01 -8.60e-02 8.49e-01 -1.85e-02 —  -2.34e-02
3 4.47e-03 (-2.38e-01 9.16e-01 -3.11e-01 —  -8.71e-02 —  -4.53e-03
4 4.62e-02 | 8.99e-02 — -9.12e-01 — 1.10e-01 —  -3.86e-01
Result: The parameter +y is not influential.
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4. MODEL CALIBRATION

We calibrate the remaining influential parameters by employing the Bayesian techniques detailed in.% %6 This
calibration serves two purposes: (1) construct marginal densities for the input parameters and thus characterize
inherent uncertainties, and (2) produce pairwise correlation plots to assess parameter identifiability. We consider
all five parameters from the linear model, namely the set (21). Note that this set is the same as the calibration
in® with a Riemann-Liouville implementation for the fractional time derivative instead of a Caputo definition.
We calibrate the model with respect to stretch-stress data collected at a stretch rate of 6.7 x 10~° Hz for the
dielectric elastomer Very High Bond (VHB) 4910 (made by 3M). For more details regarding the experimental
data collection, please see.® The calibration is performed using the Delayed Rejection Adaptive Metropolis
(DRAM) algorithm,'? and the resulting chains are presented in Figure 2.

16.0 *
8 15.5
(5] U
G] 7 QO 15.0
14.5
6
14.0
0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 1.5 2.0 2.5
1ed 1ed
L ] L ]
5.1 ' . . ® . 0.14
' .

4.8 S Ae ‘- ““ 0.11
. .« .
4.7 ° o 0.10
0.0 05 1.0 15 2.0 25 0.0 0.5 1.0 1.5 2.0 2.5
1ed 1ed
L]
38

36

34

0.0 05 1.0 15 2.0 25
lteration 1ed

Figure 2. Sampling history from calibration of linear viscoelastic model.

We conclude that the marginal paths have converged qualitatively by observing that the appearance of
each chain being analogous to white noise with no significant jumps in mean behavior or stagnation regions.
Rigorous statistical convergence tests are discussed in.1* 16 With chains that have converged to the fixed posterior
distribution, we construct marginal densities with a kernel density estimate (KDE) algorithm and present these
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densities along the main diagonal of Figure 3. We note that many of the parameters appear to have qualitatively
converged to a Gaussian distribution; however, that is not required by the algorithm. To verify whether or not
the posteriors are actually normally distributed, we could plot the chains on a Q-Q plot, but it is not important
for the current analysis.

Another feature of the calibration process is an indication of potential parameter correlation. This is visualized
in the off-diagonal elements of Figure 3. In the upper-triangular elements, we observe pairwise correlation plots,
and in the lower-triangular elements we see the corresponding two-dimensional posterior distribution. Figure 3
reveals significant correlation structure between several parameters, including the fractional order. This is
understandable, as the fractional order of the derivative affects the entire model response for a given set of
physical parameters. Correlated parameters is a perfectly valid outcome of the calibration, and in this case none
of the parameter correlations appear to be single-valued. This supports the conclusion that all the parameters
in (21) were significant, and in this case were identifiable given the data used to calibrate.

5. CONCLUDING REMARKS

In this paper we have shown how global parameter subset selection (PSS) can be used to identify the most
sensitive parameters in a linear and nonlinear viscoelastic model. These results can then be used to help determine
which parameters to include in model calibration with respect to data. We note that for the models presented
here, the relative eigenvalue spectra of the linear viscoelastic model in conjunction with hyperelasticity revealed all
five model parameters to be important. However, when considering the nonlinear model, we observe a significant
jump for the last eigenvalue, and conclude that the parameter v can be fixed a nominal value for subsequent
calibration. Calibration results are presented for the linear viscoelastic model, showing that all parameter
distributions were identifiable, support the conclusion of the GSA. Calibrating the nonlinear viscoelastic model
is left as future work.
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APPENDIX A. NUMERICAL METHODS

For more details regarding the numerical implementation, the reader is referred to.* A few key definitions are
provided below for clarity. Note that for our analysis we consider the Riemann-Liouville definition for fractional
derivatives®®

Bl 0 = [y g |, ey (23)

where n = [a]. We will restrict our analysis further by only considering the regime where a € [0,1); therefore
n =1, and the definition simplifies to

o _ 1 d [ f(s)
Dg [f)] = T(i—a)dt /0 = S)ads- (24)

Gaussian Quadrature, Riemann-Sum (GQRS)

The challenge that arises in evaluating the fractional derivative is the singularity that occurs at the right
end point. However, many quadrature methods are suitable for evaluating the integral over regions reasonably
far away from the singularity. As an optimal approach we consider using Gaussian Quadrature (GQ) in regions
far from the singularity and estimate near the singularity using a Riemann-Sum (RS) approximation. For more
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Figure 3. (Main diagonal) Marginal posterior densities, (Lower triangular) joint kernel densities estimates, and (Upper
triangular) pairwise correlation. Plot made using.'”!®

details regarding GQ and RS the reader is referred to.%?° This is accomplished by breaking the integral into

two parts:
b f(SJ o b—br f(SJ s b f(S) \
I, _l (RO S .

cQ RS

-

where by = ¢(b— a). We can adjust the portion of the integral solved via GQ and that using the RS approach
by specifying different values for ¢. For example, we consider the case where ¢ = 0.05 which means that 95%
of the interval is approximated using GQ, and the remaining 5% is approximated using a reasonable number of
terms in our RS method.

Proc. of SPIE Vol. 10968 1096806-9

Downloaded From: https:/fwww.spiedigitallibrary.org/conference-proceedings-of-spie on 17 Jul 2019
Terms of Use: hitps://www.spiedigitallibrary.org/terms-of-use



REFERENCES

[1] Bergstrém, J. and Boyce, M., “Constitutive modeling of the large strain time-dependent behavior of elas-
tomers,” Journal of the Mechanics and Physics of Solids 46(5), 931-954 (1998).

[2] Holzapfel, G. A., “On large strain viscoelasticity: continuum formulation and finite element applications
to elastomeric structures,” International Journal for Numerical Methods in Engineering 39(22), 3903-3926
(1996).

[3] Mashayekhi, S., Miles, P., Hussaini, M. Y., and Oates, W. S., “Fractional viscoelasticity in fractal and
non-fractal media: Theory, experimental validation, and uncertainty analysis,” Journal of the Mechanics
and Physics of Solids 111, 134-156 (2018).

[4] Miles, P., Pash, G., Oates, W., and Smith, R. C., “Numerical techniques to model fractional-order nonlinear
viscoelasticity in soft elastomers,” in [ASME 2018 Conference on Smart Materials, Adaptive Structures and
Intelligent Systemns], VO01T03A021, American Society of Mechanical Engineers (2018).

[5] Smith, R. C., [Uncertainty Quantification: Theory, Implementation, and Applications], Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA (2014).

[6] Miles, P., Hays, M., Smith, R., and Oates, W., “Bayesian uncertainty analysis of finite deformation vis-
coelasticity,” Mechanics of Materials 91, 35-49 (2015).

[7] Holzapfel, G. A., [Nonlinear solid mechanics], vol. 24, Wiley Chichester (2000).

[8] Holzapfel, G. A. and Simo, J. C., “A new viscoelastic constitutive model for continuous media at finite
thermomechanical changes,” International Journal of Solids and Structures 33(20), 3019-3034 (1996).

[9] Peng, S., Valanis, K., and Landel, R., “Nonlinear viscoelasticity and relaxation phenomena of polymer
solids,” Acta Mechanica 25(3-4), 229-240 (1977).

[10] Davidson, J. D. and Goulbourne, N., “A nonaffine network model for elastomers undergoing finite deforma-
tions,” Journal of the Mechanics and Physics of Solids 61(8), 1784-1797 (2013).

[11] Leon, L., Smith, R. C., Oates, W. S., and Miles, P., “Analysis of a multi-axial quantum-informed ferroelectric
continuum model: Part 2sensitivity analysis,” Journal of Intelligent Material Systems and Structures 29(13),
28402860 (2018).

[12] Quaiser, T. and Monnigmann, M., “Systematic identifiability testing for unambiguous mechanistic
modeling—application to jak-stat, map kinase, and nf-x b signaling pathway models,” BMC systems bi-
ology 3(1), 50 (2009).

[13] Morris, M. D., “Factorial sampling plans for preliminary computational experiments,” Technometrics 33(2),
161-174 (1991).

[14] Haario, H., Laine, M., Mira, A., and Saksman, E., “Dram: efficient adaptive meme,” Statistics and com-
puting 16(4), 339-354 (2006).

[15] Haario, H., Saksman, E., Tamminen, J., et al., “An adaptive metropolis algorithm,” Bernoulli T(2), 223-242
(2001).

[16] Gelman, A., Stern, H. S., Carlin, J. B., Dunson, D. B., Vehtari, A., and Rubin, D. B., [Bayesian data
analysis], Chapman and Hall/CRC (2013).

[17] Waskom, M., Botvinnik, O., O’Kane, D., Hobson, P., Ostblom, J., Lukauskas, S., Gemperline, D. C.,
Augspurger, T., Halchenko, Y., Cole, J. B., Warmenhoven, J., de Ruiter, J., Pye, C., Hoyer, S., Vanderplas,
J., Villalba, S., Kunter, G., Quintero, E., Bachant, P., Martin, M., Meyer, K., Miles, A., Ram, Y., Brunner,
T., Yarkoni, T., Williams, M. L., Evans, C., Fitzgerald, C., Brian, and Qalieh, A., “mwaskom/seaborn:
v0.9.0 (july 2018),” (July 2018).

[18] Miles, P., “prmiles/memeplot: v0.0.0,” (Aug. 2018).

[19] Podlubny, L., [Fractional differential equations: an introduction to fractional derivatives, fractional differ-
ential equations, to methods of their solution and some of their applications], vol. 198, Academic press
(1998).

[20] Smith, R. C., [Smart material systems: model development], vol. 32, SIAM, Philadelphia, PA (2005).

Proc. of SPIE Vol. 10968 1096806-10

Downloaded From: https:/fwww.spiedigitallibrary.org/conference-proceedings-of-spie on 17 Jul 2019
Terms of Use: hitps://www.spiedigitallibrary.org/terms-of-use



