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ABSTRACT
We consider the problem of maximizing the multilinear extension

of a submodular function subject a single matroid constraint or mul-

tiple packing constraints with a small number of adaptive rounds

of evaluation queries.

We obtain the first algorithms with low adaptivity for submodu-

lar maximization with a matroid constraint. Our algorithms achieve

a 1 − 1/e − ϵ approximation for monotone functions and a 1/e − ϵ
approximation for non-monotone functions, which nearly matches

the best guarantees known in the fully adaptive setting. The num-

ber of rounds of adaptivity isO (log2 n/ϵ3), which is an exponential

speedup over the existing algorithms.

We obtain the first parallel algorithm for non-monotone submod-

ular maximization subject to packing constraints. Our algorithm

achieves a 1/e −ϵ approximation usingO (log(n/ϵ ) log(1/ϵ ) log(n+
m)/ϵ2) parallel rounds, which is again an exponential speedup in

parallel time over the existing algorithms. For monotone functions,

we obtain a 1−1/e−ϵ approximation inO (log(n/ϵ ) logm/ϵ2) paral-
lel rounds. The number of parallel rounds of our algorithm matches

that of the state of the art algorithm for solving packing LPs with a

linear objective (Mahoney et al., 2016).

Our results apply more generally to the problem of maximizing

a diminishing returns submodular (DR-submodular) function.
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•Theory of computation→Approximation algorithms anal-
ysis; Continuous optimization; Parallel algorithms; Packing
and covering problems; Discrete optimization.
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1 INTRODUCTION
A set function f on a finite ground setV is submodular if it satisfies

the following diminishing returns property: f (A ∪ {v}) − f (A) ≥
f (B ∪ {v}) − f (B) for all setsA ⊆ B and all elements v ∈ V \B. The
general problem of optimizing a submodular function subject to

constraints captures many problems of interest both in theory and

in practice, including maximum coverage, social welfare maximiza-

tion, influence maximization in social networks, sensor placement,

maximum cut, minimum cut, and facility location. Submodular op-

timization problems have received considerable attention over the

years, leading to the development of a rich theory and applications

in a wide-range of areas such as machine learning, computer vision,

data mining, and economics. At a high level, these developments

have established that diminishing returns often implies tractability:

submodular functions can be minimized in polynomial time and

they can be approximately maximized subject to a wide range of

constraints.

More recently, the diminishing returns property has been gener-

alized and studied in continuous domains [2, 8–10, 28, 29]. Most of

these works study the following continuous diminishing returns sub-
modular (DR-submodular) property: a differentiable function is DR-

submodular if and only if the gradient is monotone decreasing (if

x⃗ ≤ y⃗ coordinate-wise, ∇f (x⃗ ) ≥ ∇f (y⃗)), and a twice-differentiable

function is DR-submodular if and only if all the entries of the Hes-

sian are non-positive (
∂2f (x⃗ )
∂xi ∂x j

≤ 0 for all i, j ∈ [n]). DR-submodular

optimization bridges continuous and discrete optimization. Indeed,

the multilinear extension of a submodular set function is a DR-

submodular function and DR-submodular maximization was stud-

ied in the context of submodular maximization starting with the

influential work of Calinescu et al. [12]. The multilinear relaxation

framework is a very general and powerful approach for submodu-

lar maximization and it has led to the current best approximation

algorithms for a wide variety of constraints including cardinality

constraints, knapsack constraints, matroid constraints, etc. Recent

work has shown that DR-submodular optimization problems have

applications beyond submodular maximization [8–10, 29].

The problem of maximizing a DR-submodular function subject

to a convex constraint is a notable example of a non-convex opti-

mization problem that can be solved with provable approximation

guarantees. The continuous Greedy algorithm [30] developed in the

context of the multilinear relaxation framework applies more gen-

erally to maximizing DR-submodular functions that are monotone
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increasing (if x⃗ ≤ y⃗ coordinate-wise then f (x⃗ ) ≤ f (y⃗)). Chekuri et
al. [13] developed algorithms for bothmonotone and non-monotone

DR-submodular maximization subject to packing constraints that

are based on the continuous Greedy and multiplicative weights

update framework.

A significant drawback of these algorithms is that they are inher-

ently sequential and adaptive. Recent lines of work have focused

on addressing these shortcomings and understanding the trade-offs

between approximation guarantee, parallelization, and adaptivity.

These efforts have led to the development of distributed algorithms

for submodular maximization in parallel models of computation

such as MapReduce [6, 7, 17, 21, 24–26]. These works parallelize

the Greedy algorithm and its variants and achieve various tradeoffs

between the approximation guarantee and the number of rounds of

MapReduce computation and other resources, such as memory and

communication. The algorithms developed in these works run se-

quential Greedy algorithms on each of the machines and thus their

decisions remain highly adaptive. Starting with the work of Balkan-

ski and Singer [5], there have been very recent efforts to understand

the tradeoff between approximation guarantee and adaptivity for

submodular maximization [3–5, 14, 15, 18]. The adaptivity of an

algorithm is the number of sequential rounds of queries it makes

to the evaluation oracle of the function, where in every round the

algorithm is allowed to make polynomially-many parallel queries.

Most of these works have focused on monotone submodular maxi-

mization with a cardinality constraint, leading to a nearly-optimal

1−1/e−ϵ approximation and nearly-optimalO (logn/ϵ2) adaptivity.
Chekuri and Quanrud [14] consider the more general setting of

multiple packing constraints, which capture several constraints of

interest, including cardinality, knapsack, partition and laminar ma-

troids, matchings, and their intersection. They give an algorithm for

monotone DR-submodular maximization with packing constraints

that is based on the continuous Greedy and multiplicative weights

update frameworks [13]. The algorithm achieves a 1−1/e−ϵ approx-
imation using O (log(n/ϵ ) log2m/ϵ4) rounds of adaptivity, where
m is the number of packing constraints.

This line of works is related to parallel algorithms for optimiz-

ing linear objectives subject to constraints such as packing linear

programs. This problem was originally studied in the pioneering

work of Luby and Nisan [22] with O (log2 n/ϵ4) rounds of parallel
computation. This bound was the best known for decades before

the recent improvement toO (log2 n/ϵ3) by [1] and then to the state

of the art O (log2 n/ϵ2) by [23].

Despite the significant progress, there are several significant chal-

lenges that remain in submodular maximization with low adaptivity.

First, a lot these algorithms are ad-hoc and significantly exploiting

the simplicity of the cardinality constraint. Second, most of these

algorithms can only handle the monotone objective function and it

is not clear how to get close to 1/e approximation, even for a single

cardinality constraint. Indeed, Chekuri and Quanrud [14] identify

the non-monotone case as a significant open problem in this area.

1.1 Our Techniques and Contributions
In this work, we address both of the above challenges, and simulta-

neously (1) design a novel interface between algorithms for linear

objective and algorithms for submodular objective, and (2) develop

generic techniques for handling non-monotone objectives. Our new

techniques lead to new algorithms with nearly optimal approxima-

tions for multiple packing constraints as well as a single matroid

constraint for both monotone and non-monotone submodular ob-

jectives in poly-logarithmic number of rounds of adaptivity. Note

that for the case of a matroid constraint, no algorithm better than

Greedy was known and our algorithms achieve an exponential im-

provement in adaptivity. Before our work, it was also not known

how to get close to 1/e approximation for non-monotone objec-

tives in a sublinear number of rounds, even for a single cardinality

constraint.

We now describe at a high level some of the main difficulties in

parallelizing the existing algorithms and our approach for overcom-

ing them. In previous continuous Greedy algorithms for a matroid

constraint, the algorithm repeatedly computes a maximum weight

base with respect to the current gradient and adds it to the solution.

The gradient is used as a proxy for the change in the objective value

when the solution changes. A problem with this approach is that

the gradient changes quickly when we update a lot of coordinates

and, as a result, the algorithm can only take small steps and it needs

a linear number of adaptive rounds. Another approach is to change

one coordinate at a time and update the gradient every time, which

leads to a faster algorithm but still a linear number of adaptive

rounds (the number of coordinate updates could be linear).

In contrast, our algorithms use multiplicative updates instead
of additive updates and the gradient at (an upper bound of) the
future point instead of the current point. Using the gradient at the

future point ensures that we never overestimate the gain (due to

the diminishing returns of the objective), which was the problem

that led to the small steps in the previous works. The multiplicative

updates allow us to have a safe guess for (an upper bound of) the

future point without underestimating the gain too much. These

techniques lead to an algorithm formonotone objectives with nearly

optimal approximation and poly-logarithmic number of rounds of

adaptivity. For the non-monotone case, our algorithm naturally

combineswith themeasured continuous Greedy algorithm to obtain

a 1/e approximation. It should be emphasized that this combination

is enabled by our above technique for estimating the gain correctly

even for large steps and when there are negative gains. Previous

works use the gradient at the current solution, which overestimates

the gain due to diminishing return and it can be detrimental when

the overestimation changes negative values to positive values. This

issue leads to sophisticated analyses even for a monotone objective,

let alone the non-monotone case. Indeed, [14] identified this issue as

a major obstacle preventing their techniques from being applicable

to non-monotone objectives.

For the packing constraints, the previous work [14] uses the

approach of Young [31] for packing LPs and the resulting proof is

fairly complex because of the overestimation of the gain from the

gradient. Their algorithm needs to find other ways to make progress

(via filtering) when the overestimation is beyond the tolerable error.

Instead, our technique above allows for accurate estimation of the

gain even when there are negative gains, which allows us to use

state of the art techniques for packing LPs [23] and retain much

of the simplicity and elegance of their algorithm and proof for the

linear objectives. We note that our analysis is substantially more

involved than in the linear setting, since the linear approximation
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to the submodular function given by the gradient is changing over

time.

Our algorithm and analysis for packing constraints are a signifi-

cant departure from previous work such as [14]. The algorithm of

[14] deals with the changing objective by dividing the execution of

the algorithm into phases where, within each phase, the objective

value increases by ϵ times the optimal value. This division makes

the analysis easier. For instance, the Greedy algorithm would like

to pick coordinates whose gain is proportional to the difference

between the optimal value and the current solution value. Within

each phase, up to an 1+ϵ factor, this threshold is the same. The total

saturation of the constraints also behaves similarly. The fact that,

up to an 1 + ϵ approximation, all relevant quantities are constant is

extremely useful in this context because one can adapt the analysis

from the case of a linear objective. However, this partition can lead

to a suboptimal number of iterations: there are Ω(1/ϵ ) phases and
the number of iterations might be suboptimal by a Ω(1/ϵ ) factor.
In contrast, our algorithm does not use phases and our analysis has

a global argument for bounding the number of iterations. A global

argument exists for the linear case, but here we need a much more

general argument to handle the non-linear objective. The resulting

argument is intricate and requires the division of the iterations into

only two parts, instead of Ω(1/ϵ ) phases.
Our algorithms only rely on DR-submodularity and they fur-

ther draw an important distinction between convex optimization

and (non-convex) DR-submodular optimization: Nemirovski [27]

showed that there are unconstrained minimization problems with

a non-smooth convex objective for which any parallel algorithm

requires Ω((n/ logn)1/3 log(1/ϵ )) rounds of adaptivity to construct
an ϵ-optimal solution, whereas the adaptive complexity of DR-

submodular maximization is exponentially smaller in the dimen-

sion.

1.2 Our Results
Our contributions for a matroid constraint are the following.

Theorem 1. For every ϵ > 0, there is an algorithm for maximizing
a DR-submodular function f : [0, 1]n → R+ subject to the constraint
x⃗ ∈ P, where P is a matroid polytope, with the following guarantees:

• The algorithm is deterministic if provided oracle access for
evaluating f and its gradient ∇f ;
• The algorithm achieves an approximation guarantee of 1 −
1/e − ϵ for monotone functions and 1/e − ϵ for non-monotone
functions;
• The number of rounds of adaptivity and evaluations of f and

∇f are O
(
log

2 n
ϵ 3

)
.

The guarantee on the number of rounds of adaptivity is under the
assumption that, for every vector x⃗ , the entries of the gradient ∇f (x⃗ )
are at most poly(n/ϵ ) f (x⃗∗), where f (x⃗∗) is the optimal solution value.
This assumption is satisfied when f is the multilinear extension of a
submodular function, since the gradient entries are upper bounded by
the singleton values.

Our algorithm is the first low-adaptivity algorithm for submod-

ular maximization with a matroid constraint, and it achieves an

exponential speedup in the number of adaptive rounds over the

existing algorithms with only an arbitrarily small loss in the ap-

proximation guarantee. We note that the algorithm is not a parallel

algorithm in the NC sense, since we are working with a general

polymatroid constraint and checking feasibility involves minimiz-

ing the so-called border function of the polymatroid, which is a

general submodular function minimization problem (see e.g., Chap-

ter 5 in [20]).

Our contributions for packing constraints are the following.

Theorem 2. For every ϵ > 0, there is an algorithm for maximizing
a monotone DR-submodular function f : [0, 1]n → R+ subject to
multiple packing constraints Ax⃗ ≤ 1⃗, where A ∈ Rm×n+ with the
following guarantees:
• The algorithm is deterministic if provided oracle access for
evaluating f and its gradient ∇f ;
• The algorithm achieves an approximation guarantee of 1 −
1/e − ϵ ;
• The number of rounds of adaptivity and evaluations of f and

∇f are O
(
log(n/ϵ ) log(m)

ϵ 2

)
.

Our packing algorithms are NC algorithms and the number of

parallel rounds matches the currently best parallel algorithm for

linear packing [23]. Along with [1], the result of [23] was the first

improvement in decades for solving packing LPs in parallel since

the original work of Luby and Nisan [22]. As shown in Figure 1,

our algorithm is nearly identical to the linear packing algorithm of

[23], thus suggesting that our algorithm’s performance improves if

the objective has additional structure.

Theorem 3. For every ϵ > 0, there is an algorithm for maximizing
a general (non-monotone) DR-submodular function f : [0, 1]n → R+
subject to multiple packing constraints Ax⃗ ≤ 1⃗, where A ∈ Rm×n+

with the following guarantees:
• The algorithm is deterministic if provided oracle access for
evaluating f and its gradient ∇f ;
• The algorithm achieves an approximation guarantee of 1/e−ϵ ;
• The number of rounds of adaptivity and evaluations of f and

∇f are O
(
log(n/ϵ ) log(1/ϵ ) log(m+n)

ϵ 2

)
.

The approximation guarantee of our algorithm nearly matches

the best approximation known for general submodular maximiza-

tion in the sequential setting, which is 0.385 ≈ 1/e + 0.0171 [11].
Prior to our work, the best result for non-monotone submodu-

lar maximization is a 1/(2e )-approximation for a cardinality con-

straint [3]. No previous result was known even for a single packing

constraint.

2 PRELIMINARIES
Let f : [0, 1]n → R+ be a non-negative function. The function

is diminishing returns submodular (DR-submodular) if ∀x⃗ ≤ y⃗ ∈
[0, 1]n (where ≤ is coordinate-wise), ∀i ∈ [n], ∀δ ∈ [0, 1] such that

x⃗ + δ 1⃗i and y⃗ + δ 1⃗i are still in [0, 1]n , it holds

f (x⃗ + δ 1⃗i ) − f (x⃗ ) ≥ f (y⃗ + δ 1⃗i ) − f (y⃗),

where 1⃗i is the i-th basis vector, i.e., the vector whose i-th entry is

1 and all other entries are 0.

If f is differentiable, f is DR-submodular if and only if ∇f (x⃗ ) ≥
∇f (y⃗) for all x⃗ ≤ y⃗ ∈ [0, 1]n . If f is twice-differentiable, f is
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1: procedure LinearPacking
2: η ← ϵ

2 lnm
3: x⃗i ←

ϵ
n ∥A:i ∥∞

∀i ∈ [n]

4: while f (x⃗ ) ≤ (1 −O (ϵ ))M do
5: c⃗i ← ∇i f (x⃗ )

6: m⃗i ← max

{(
1 −M ·

(A⊤∇smaxη (Ax⃗ ))i
c⃗i

)
, 0

}
7: d⃗ ← ηx⃗ ◦ m⃗

8: x⃗ ← x⃗ + d⃗
9: end while
10: end procedure

1: procedure SubmodPacking
2: η ← ϵ

2(2+lnm)

3: x⃗i ←
ϵ

n ∥A:i ∥∞
∀i ∈ [n]

4: while f (x⃗ ) ≤ (1 − exp(−1 +O (ϵ )))M do
5: λ ← M − (1 + η) f (x⃗ )
6: c⃗i ← ∇i f ((1 + η)x⃗ )

7: m⃗i ← max

{(
1 − λ ·

(A⊤∇smaxη (Ax⃗ ))i
c⃗i

)
, 0

}
8: d⃗ ← ηx⃗ ◦ m⃗

9: x⃗ ← x⃗ + d⃗
10: end while
11: end procedure

Figure 1: The algorithm on the left is the algorithm of Mahoney et al. [23] for maximizing a linear function f (x⃗ ) =
〈⃗
c, x⃗

〉
. The

algorithm on the right is our algorithm formonotone DR-submodularmaximization. In both algorithms,M is an approximate
optimal solution value:M ≤ f (x⃗∗) ≤ (1 + ϵ )M .

DR-submodular if and only if all the entries of the Hessian are

non-positive, i.e., ∂2f
∂xi ∂x j

(x⃗ ) ≤ 0 for all i, j ∈ [n].

For simplicity, throughout the paper, we assume that f is dif-

ferentiable. We assume that we are given black-box access to an

oracle for evaluating f and its gradient ∇f . We extend the function

f to Rn+ as follows: f (x⃗ ) = f (x⃗ ∧ 1⃗), where (x⃗ ∧ 1⃗)i = min{xi , 1}.
An example of a DR-submodular function is the multilinear

extension of a submodular function д. The multilinear extension is

defined as

G (x⃗ ) = E[д(R (x⃗ ))] =
∑
S ⊆V

д(S )
∏
i ∈S

x⃗i
∏

i ∈V \S

(1 − x⃗i ),

where R (x⃗ ) is a random subset of V where each i ∈ V is included

independently at random with probability x⃗i .
We now define the two problems that we consider.

DR-submodular maximization with a polymatroid con-
straint.

We consider the problem of maximizing a DR-submodular func-

tion subject to a polymatroid constraint: max f (x⃗ ) subject to x⃗ ∈ P,
where P = {x⃗ : x⃗ (S ) ≤ r (S ) ∀S ⊆ V , x⃗ ≥ 0} and r : 2

V → R+
is monotone, submodular, and normalized (r (∅) = 0). We use the

notation x⃗ (S ) as shorthand for

∑
i ∈S x⃗i , i.e., we interpret x⃗ as a

modular function. When r is the rank function of a matroid, P is

the matroid polytope. We refer the reader to Chapter 5 in [20] for

more background on matroids and polymatroids.

This problem generalizes the problem of maximizing the mul-

tilinear extension of a submodular function subject to a matroid

constraint. Rounding algorithms such as pipage rounding and swap

rounding allow us to round without any loss a fractional solution

in the matroid polytope, and thus our results imply low-adaptive

algorithms for submodular maximization with a matroid constraint.

DR-submodular maximization with packing constraints.
We consider the problem of maximizing a DR-submodular function

subject to packing constraints Ax⃗ ≤ 1⃗, where A ∈ Rm×n+ . The prob-

lem generalizes the packing problem with a linear objective and the

problem of maximizing the multilinear extension of a submodular

set function subject to packing constraints.

Since we can afford an ϵ additive loss in the approximation, we

may assume that every non-zero entry Ai, j satisfies
ϵ
n ≤ Ai, j ≤

n
ϵ .

Moreover, we may assume that the optimal solution x⃗∗ satisfies

Ax⃗∗ ≤ (1 − ϵ )1⃗.

Basic notation.We use e.g. x⃗ = (x⃗1, . . . , x⃗n ) to denote a vector
in Rn . We use e.g. A to denote a matrix in Rm×n . For a vector

a⃗ ∈ Rn , we let D(a⃗) be the n × n diagonal matrix with diagonal

entries ai , andD(a⃗)
+
be the pseudoinverse ofD(a⃗), i.e., the diagonal

matrix with entries 1/ai if ai , 0 and 0 otherwise.

We use the following vector operations: x⃗∨y⃗ is the vector whose

i-th coordinate is max{xi ,yi }; x⃗ ∧ y⃗ is the vector whose i-th coor-

dinate is min{xi ,yi }; x⃗ ◦ y⃗ is the vector whose i-th coordinate is

xi · yi . We write x⃗ ≤ y⃗ to denote that x⃗i ≤ y⃗i for all i ∈ [n]. Let 0⃗

(resp. 1⃗) be the n-dimensional all-zeros (resp. all-ones) vector. Let

1⃗S ∈ {0, 1}
V
denote the indicator vector of S ⊆ V , i.e., the vector

that has a 1 in entry i if and only if i ∈ S .
We let I be the identity matrix. For two matrices A and B, we

write A ⪯ B to denote that B − A ⪰ 0, i.e., B − A is positive

semidefinite.

We will use the following result that was shown in previous

work [13].

Lemma 4 ([13], Lemma 7). Let f : [0, 1]n → R+ be a DR-
submodular function. For all x⃗∗ ∈ [0, 1]n and x⃗ ∈ [0, 1]n , f (x⃗∗∨x⃗ ) ≥
(1 − ∥x⃗ ∥∞) f (x⃗

∗).

The softmax function. Let η ∈ R+ and smaxη : Rm+ → R+

be the function smaxη (z⃗) = η ln
(∑m

j=1 e
1

η zj
)
. Note that ∥z⃗∥∞ ≤

smaxη (z⃗) ≤ η lnm + ∥z⃗∥∞. We use ∇smaxη (z⃗) to denote the gradi-

ent of smaxη , i.e., ∇j smaxη (z⃗) =
∂smaxη (z⃗ )

∂zj
= e

1

η zj∑m
ℓ=1 e

1

η zℓ
.

We will use the following results that quantify the change in

softmax due to an update. Similar results have been proved in the

previous work of Mahoney et al. [23]. The proof can be found in

the full version of this paper.
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Lemma 5. Let x⃗ , d⃗ ∈ Rm+ , andA ∈ R
m×n
+ . If 1

η ∥Ad⃗ ∥∞ ≤ 1/2, then

smaxη
(
A(x⃗ + d⃗ )

)
≤ smaxη (Ax⃗ )

+
〈
A⊤∇smaxη (Ax⃗ ), d⃗ + ∥Ax⃗ ∥∞ · 1/η · D(x⃗ )

+ · (d⃗ ◦ d⃗ )
〉
.

This immediately yields a very useful corollary.

Corollary 6. Suppose that ∥Ax⃗ ∥∞ ≤ 1, under the same condi-
tions from Lemma 5. Letting d⃗ = ηMx⃗ , whereM is a diagonal matrix
such thatM ⪯ I, one has that

smaxη
(
A(x⃗ + d⃗ )

)
≤ smaxη (Ax⃗ ) + η

〈
A⊤∇smaxη (Ax⃗ ),Mx⃗ +M

2x⃗
〉

Furthermore, given λ ∈ R+, c⃗ ∈ R
n
+, and letting

Mii =
*.
,
1 − λ ·

(
A⊤∇smaxη (Ax⃗ )

)
i

c⃗i

+/
-
∨ 0 ,

one has that

smaxη
(
A(x⃗ + d⃗ )

)
− smaxη (Ax⃗ )

⟨⃗c, d⃗⟩
≤

1

λ
.

3 MONOTONE MAXIMIZATION WITH A
MATROID CONSTRAINT

In this section, we consider the problem of maximizing a mono-

tone DR-submodular function subject to a polymatroid constraint:

max f (x⃗ ) subject to x⃗ ∈ P, where P = {x⃗ : x⃗ (S ) ≤ r (S ) ∀S ⊆
V , x⃗ ≥ 0} and r : 2

V → R+ is monotone, submodular, and nor-

malized (r (∅) = 0). For α ∈ [0, 1], we use αP to denote the set

αP = {αx⃗ : x⃗ ∈ P}. We use x⃗∗ to denote an optimal solution to

maxx⃗ ∈P f (x⃗ ).
Our algorithm is shown in Algorithm 1. The algorithm requires

an (1 + ϵ ) approximation to the optimum value, more precisely, a

valueM such thatM ≤ f (x⃗∗) ≤ (1 + ϵ )M . An n-approximation to

f (x⃗∗) isM0 = maxi ∈[n] f (⃗1i ). Given this value, we can try 2 lnn/ϵ

guesses forM :M0, (1 + ϵ )M0, (1 + ϵ )
2M0, . . . in parallel and return

the best solution from all the guesses.

In this section, we assume that, for every vector x⃗ , the entries
of the gradient ∇f (x⃗ ) are at most DM , where D = poly(n/ϵ ). This
assumption is satisfied when f is the multilinear extension of a

submodular function, since ∇i f (x⃗ ) ≤ f (⃗1i ) ≤ f (x⃗∗) ≤ (1 + ϵ )M .

Our algorithm and analysis for non-monotone maximization sub-

ject to a polymatroid constraint is an extension of the monotone

case, and it is given in Appendix 6.

High level overview of the approach. The starting point of

our algorithm is the continuous Greedy approach for submodular

maximization. Algorithms based on continuous Greedy are iterative

algorithms that increase the solution over time. In each iteration, the

algorithms take the linear approximation given by the gradient at

the current solution, and find a base of the matroid that maximizes

this linear approximation. The optimum linear-weight base is given

by the Greedy algorithm that considers the elements in decreasing

order according to the weights and adds the current element if it

is feasible to do so. Given this base b⃗, the algorithms perform the

update x⃗ ← x⃗ + ηb⃗, where η is an appropriately chosen step size.

As mentioned in the introduction, there are two important points

to note about the above iterative schemes: (1) since the gradient

changes very quickly, the step size η needs to be very small to

ensure a good approximation guarantee, and (2) the updates in-

crease the coordinates of the solution by small amounts and we

need polynomially many iterations to converge.

We overcome the above difficulties as follows. By choosing our

update vector very carefully, we ensure that the coordinates of

the solution are increasing multiplicatively, and the algorithm con-

verges in only a poly-logarithmic number of iterations. The idea

of using multiplicative updates is reminiscent of the work of Luby

and Nisan for solving LPs in parallel, but it cannot be implemented

directly in the submodular setting, since the linear approximation

given by the gradient is changing too quickly. Our key idea here is

that, instead of using the gradient at the current solution, we use the

gradient at (1 + ϵ )x⃗ , which is an upper bound on the solution after
the multiplicative update. This strikes the right balance between

how large the step size is and how much we are underestimating

the gain.

We now briefly discuss the algorithm and in particular how to

construct the update vectors. In order to obtain the nearly-optimal

1−1/e−ϵ approximation, the algorithm builds the solution over 1/ϵ
epochs (iterations of the outer for loop), and each epoch decreases

by an ϵ factor the distance between the optimal value and the cur-

rent solution value. (The reader may find it helpful to first consider

the variant of our algorithm with a single epoch, which leads to a

1/2 − ϵ approximation.) In a given epoch, the algorithm iteratively

updates the solution as follows. We first compute the gradient at

the future point (line 8). To ensure that we are updating the most

valuable coordinates, we bucket the gradient values of the coordi-

nates that can be increased into logarithmically many buckets, and

we update each bucket in turn as shown on lines 12–16.

A key difficulty in the analysis is to show that the above updates

increase the solution very fast while at the same time the function

value gain is proportional to the optimal solution. To this end,

we use the structure of the polymatroid constraint to construct

an evolving solution based on x⃗∗ and our current solution (see

Lemma 7 and the solutions o⃗(t ) defined below). We use a subtle

charging argument to relate the solution gain after each update to

this evolving solution and to relate it to the optimum solution. We

also use the structure of the tight sets of the polymatroid to show

that the solution is increasing very fast and the algorithm terminates

in a poly-logarithmic number of iterations (see Lemmas 8 and 13).

Analysis of the approximation guarantee. We will use the

following lemma in the analysis of the approximation guarantee of

Algorithm 1. We drop the vector notation for notational simplicity.

Lemma 7. Consider three vectors a,b, c such that a + c ∈ P, b ∈ P,
and a ≤ b. There exists a vector d such that 0 ≤ d ≤ c , b +d ∈ P, and
∥c − d ∥1 ≤ ∥b − a∥1.

Proof. We let ei denote the i-th basis vector, i.e., then-dimensional

vector whose i-th entry is 1 and all other entries are 0. For a vec-

tor x ∈ P, we say that a set S ⊆ V is x-tight if x (S ) = r (S ). The
submodularity of r implies that, if S and T are x-tight then S ∪T
and S ∩T are also x-tight. Thus, for every element u ∈ V , there is a

unique minimal x-tight set that contains u.

Let
ˆb = a and

ˆd = c . We will iteratively increase
ˆb and decrease

ˆd until
ˆb becomes equal to b; at that point, the vector

ˆd will be
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Algorithm 1 Algorithm for monotone maximization with a poly-

matroid constraint.

1: M is an approximate optimal solution value: M ≤ f (x⃗∗) ≤
(1 + ϵ )M , where x⃗∗ ∈ argmaxx⃗ ∈P f (x⃗ ), D is chosen such that

∥∇f (x⃗ )∥∞ ≤ MD.
2: z⃗ ← 0

3: for j ← 1 to 1/ϵ do
4: x⃗ (0) ← ϵ 2

nD 1⃗

5: t ← 0

6: Let д(x⃗ ) = f (x⃗ + z⃗)

7: while д(x⃗ (t ) ) − д(x⃗ (0) ) ≤ ϵ ((1 − 10ϵ )M − д(x⃗ (0) )) do
8: c⃗i ← ∇iд((1 + ϵ )x⃗

(t ) )
9: Let T (x⃗ ) for x⃗ ∈ ϵ

1+ϵ P be the maximal set S such that

x⃗ (S ) = ϵ
1+ϵ r (S ).

10: Letv1 = maxi<T (x⃗ (t ) ) c⃗i andv2 be the maximum power

of 1 + ϵ such that v2 ≤ v1.
11: y⃗ ← 0

12: for i from 1 to n do
13: if c⃗i ≥ v2 then
14: Let y⃗i be the maximum value such that

y⃗i ≤ ϵx⃗
(t )
i and (1 + ϵ ) (x⃗ (t ) + y⃗) ∈ ϵP.

15: end if
16: end for
17: x⃗ (t+1) ← x⃗ (t ) + y⃗
18: t ← t + 1
19: end while
20: z⃗ ← z⃗ + x⃗ (t )

21: end for
22: return z⃗

the desired vector d . We will maintain the following invariants:

ˆb + ˆd ∈ P, ˆd ≥ 0,
ˆb can only increase,

ˆd can only decrease, and the

total amount by which the coordinates of
ˆb increase is at least the

total amount by which the coordinates of
ˆd decrease.

The update procedure is as follows. Let i be a coordinate such that
ˆbi < bi . Let δ ≥ 0 be the maximum amount such that

ˆb+δei + ˆd ∈ P.
We increase

ˆbi bymin{δ ,bi − ˆbi }. If ˆbi reaches bi , we are done with
this coordinate and we can move on to the next coordinate that

needs to be increased. Otherwise, there is a ( ˆb + ˆd )-tight set that

contains i . Let T be the minimal ( ˆb + ˆd )-tight set that contains i .

Since b ∈ P, T contains a coordinate j for which ˆdj > 0: since

b ≥ ˆb and bi > ˆbi , we have b (T ) > ˆb (T ); since b is feasible and

T is ( ˆb + ˆd )-tight, we have b (T ) ≤ r (T ) = ˆb (T ) + ˆd (T ). Let j ∈ T

be such that
ˆdj > 0. Let γ > 0 be the maximum amount such that

ˆb + ˆd + γei − γej ∈ P. Let δ = min{bi − ˆbi ,γ , ˆdj }. We update
ˆb and

ˆd as follows: we increase coordinate i in ˆb by δ , and we decrease

coordinate j in ˆd by δ . Note that this update maintains the desired

invariants. We repeat this procedure until
ˆbi becomes equal to bi .

Note that after each step where we increase
ˆb and decrease

ˆd , either

1) δ = bi − ˆbi , or 2) the minimal tight set of
ˆb + ˆd containing i

shrinks (the case δ = γ ) or 3) one coordinate of ˆd becomes 0 (the

case δ = ˆdj ) so the procedure finishes in a finite number of steps.

When the update procedure terminates, we have
ˆb = b and we

let d = ˆd . It follows from the invariants above that d has the desired

properties. □

We now show that the algorithm achieves a 1 − 1/e − ϵ approx-

imation guarantee. We consider each iteration of the algorithm

and we analyze the increase in value when updating x⃗ (t ) to x⃗ (t+1) .
Using Lemma 7, we show that we can define a sequence of vec-

tors o⃗(t ) based on x⃗ (t ) and the optimal solution that allows us to

relate the gain of the algorithm to the optimum value. To this end,

consider iteration j of the outer for loop. We define a vector o⃗(t )

for each iteration t of the while loop as follows. Let x⃗ (−1) = 0 and

o⃗(−1) = z⃗ ∨ x⃗∗ − z⃗; note that o⃗(−1) ∈ P. Suppose we have already
defined a vector o⃗(t ) such that x⃗ (t ) + ϵ

1+ϵ o⃗
(t ) ∈ ϵ

1+ϵ P. We define

o⃗(t+1) to be the vector d guaranteed by Lemma 7 for a = 1+ϵ
ϵ x⃗ (t ) ,

b = 1+ϵ
ϵ x⃗ (t+1) , c = o⃗(t ) . By Lemma 7, the vector o⃗(t+1) has the

following properties:

(P1) x⃗ (t+1) + ϵ
1+ϵ o⃗

(t+1) ∈ ϵ
1+ϵ P,

(P2) 0 ≤ o⃗(t+1) ≤ o⃗(t ) ,
(P3)

ϵ
1+ϵ ∥o⃗

(t ) − o⃗(t+1) ∥1 ≤ ∥x⃗
(t+1) − x⃗ (t ) ∥1,

(P4) support(o(t+1) ) ⊆ V \T (x⃗ (t+1) ) by (P1), where the support
is the set of non-zero coordinates.

We now use these properties to relate the algorithm’s gain to that

of z⃗ ∨ x⃗∗ − z⃗. We start with the following observations. Recall that

we are considering a fixed iteration j of the outer for loop, and t
indexes the iterations of the while loop in the current iteration j.

Lemma 8. We have

(a) For every x⃗ ∈ ϵ
1+ϵ P, there is a unique maximal set S satisfying

x⃗ (S ) = ϵ
1+ϵ r (S ).

(b) For every t , we have T (x⃗ (t ) ) ⊆ T (x⃗ (t+1) ).
(c) The values v1 and v2 are non-increasing over time.

Proof. (a) Since r is submodular and x⃗ is modular, the set

{S ⊆ V : x⃗ (S ) = ϵ
1+ϵ r (S )} is closed under intersection and

union, and thus it has a unique maximal set.

(b) Since x (t+1) ≥ x (t ) , T (x⃗ (t ) ) remains tight with respect to

x⃗ (t+1) , i.e., x⃗ (t+1) (T (x⃗ (t ) )) = ϵ
1+ϵ r (T (x⃗

(t ) )). Thus the max-

imality and uniqueness of T (x⃗ (t+1) ) imply that T (x⃗ (t ) ) ⊆

T (x⃗ (t+1) ).
(c) Sinceд is DR-submodular and x⃗ (t ) ≤ x⃗ (t+1) , we have∇д((1+

ϵ )x⃗ (t ) ) ≥ ∇д((1+ϵ )x⃗ (t+1) ). Additionally,T (x⃗ (t ) ) ⊆ T (x⃗ (t+1) ).
Thusv1 is non-increasing and thereforev2 is non-increasing.

□

We note that the gradient is non-negative when the function is

monotone. We state the lemmas with ∇д(·) ∨ 0⃗ so that they apply

to both monotone and non-monotone functions, as we will reuse

them for non-monotone maximization.

Lemma 9. We have

д(x⃗ (t+1) ) −д(x⃗ (t ) ) ≥
ϵ (1 − ϵ )

1 + ϵ

〈
∇д((1 + ϵ )x⃗ (t ) ) ∨ 0⃗, o⃗(t ) − o⃗(t+1)

〉
.

95



Submodular Maximization with Matroid and Packing Constraints in Parallel STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

Proof. We have

д(x⃗ (t+1) ) − д(x⃗ (t ) )
(1)
≥ ⟨y⃗,∇д(x⃗ (t+1) )⟩

(2)
≥ ⟨y⃗,∇д((1 + ϵ )x⃗ (t ) )⟩

(3)
≥ ∥y⃗∥1v2

(4)
≥ ∥y⃗∥1v1 (1 − ϵ )

(5)
≥ (1 − ϵ )

∥y⃗∥1

∥o⃗(t ) − o⃗(t+1) ∥1

〈
∇д((1 + ϵ )x⃗ (t ) ) ∨ 0⃗, o⃗(t ) − o⃗(t+1)

〉
(6)
≥ (1 − ϵ )

ϵ

1 + ϵ

〈
∇д((1 + ϵ )x⃗ (t ) ) ∨ 0⃗, o⃗(t ) − o⃗(t+1)

〉
,

where (1) holds by concavity along non-negative directions, (2) is

due to x⃗ (t+1) ≤ (1 + ϵ )x⃗ (t ) and gradient monotonicity, (3) and (4)

are due to the choice of y⃗, v2, and v1, (6) is due to property (P3).
We can show (5) as follows. By property (P4), we have

support(o⃗(t ) ) ⊆ V \ T (x⃗ (t ) ). Thus we have ∇iд((1 + ϵ )x⃗
(t ) ) ≤ v1

for all i ∈ support(o⃗(t ) ). By property (P2), we have o⃗
(t+1) ≤ o⃗(t ) .

Thus〈
∇д((1 + ϵ )x⃗ (t ) ), o⃗(t ) − o⃗(t+1)

〉
≤ v1∥o⃗

(t ) − o⃗(t+1) ∥1 .

□

By repeatedly applying Lemma 9, we obtain the following lemma.

Lemma 10. We have

д(x⃗ (t+1) ) − д(x⃗ (0) )

≥
ϵ (1 − ϵ )

1 + ϵ

〈
∇д((1 + ϵ )x⃗ (t ) ) ∨ 0⃗, o⃗(0) − o⃗(t+1)

〉
≥

ϵ (1 − ϵ )

1 + ϵ

(
д(o⃗(0) − o⃗(t+1) + (1 + ϵ )x⃗ (t ) ) − д((1 + ϵ )x⃗ (t ) )

)
.

Proof. By Lemma 9 and DR-submodularity, we have

д(x⃗ (t+1) ) − д(x⃗ (0) )

≥
ϵ (1 − ϵ )

1 + ϵ

t∑
j=0

〈
∇д((1 + ϵ )x⃗ (j ) ) ∨ 0⃗, o⃗(j ) − o⃗(j+1)

〉
≥

ϵ (1 − ϵ )

1 + ϵ

t∑
j=0

〈
∇д((1 + ϵ )x⃗ (t ) ) ∨ 0⃗, o⃗(j ) − o⃗(j+1)

〉
=

ϵ (1 − ϵ )

1 + ϵ

〈
∇д((1 + ϵ )x⃗ (t ) ) ∨ 0⃗, o⃗(0) − o⃗(t+1)

〉
≥

ϵ (1 − ϵ )

1 + ϵ

(
д(o⃗(0) − o⃗(t+1) + (1 + ϵ )x⃗ (t ) ) − д((1 + ϵ )x⃗ (t ) )

)
.

□

Lemma 10 implies that every iteration of the while loop increases

at least one coordinate, and thus the while loop eventually termi-

nates.

Lemma 11. In every iteration t , we have T (x⃗ (t ) ) , V , i.e., some
coordinate increases in each iteration.

Proof. Suppose that x⃗ (t ) (V ) = ϵ
1+ϵ r (V ). By properties (P1) and

(P2), we have o⃗
(t+1) = 0. By Lemma 10 and monotonicity, we have

д(x⃗ (t+1) ) − д(x⃗ (0) )

≥
ϵ (1 − ϵ )

1 + ϵ

(
д(o⃗(0) + (1 + ϵ )x⃗ (t ) ) − д((1 + ϵ )x⃗ (t ) )

)
≥

ϵ (1 − ϵ )

1 + ϵ
(д(x⃗ (0) + o⃗(0) ) − д((1 + ϵ )x⃗ (t ) ))

≥
ϵ (1 − ϵ )

1 + ϵ

(
f (z⃗ ∨ x⃗∗) − 2D∥x⃗ (0) ∥1 − д((1 + ϵ )x⃗

(t ) )
)
.

In the last inequality, we used the fact that ∥x⃗ (0) + o⃗(0) − o⃗(−1) ∥1 ≤

2∥x⃗ (0) ∥1 (by Lemma 7). By observing д((1+ϵ )x⃗ (t ) ) ≤ (1+ϵ )д(x⃗ (t ) )

and adding ϵ (1 − ϵ ) (д(x⃗ (t ) ) − д(x⃗ (0) )) to both sides, we obtain:

(1 + ϵ (1 − ϵ )) (д(x⃗ (t+1) ) − д(x⃗ (0) ))

≥
ϵ (1 − ϵ )

1 + ϵ

(
f (z⃗ ∨ x⃗∗) − 2D∥x⃗ (0) ∥1 − (1 + ϵ )д(x⃗ (0) )

)
.

By monotonicity, f (z⃗∨ x⃗∗) ≥ f (x⃗∗), and we also have 2D∥x⃗ (0) ∥1 ≤

2ϵ2M ; ϵд(x⃗ (0) ) ≤ 2ϵM . Thus the gain is large enough for the while

loop to terminate. □

Thus the algorithm terminates. Finally, we show that the solution

returned is a 1 − 1/e −O (ϵ ) approximation.

Lemma 12. The solution z⃗ returned by Algorithm 1 is feasible and
it satisfies f (z⃗) ≥ (1 − 1/e −O (ϵ ))M ≥ (1 − 1/e −O (ϵ )) f (x⃗∗).

Proof. For each iteration j of the outer for loop, let z⃗ (j ) be the
solution z⃗ at the beginning of the iteration. Consider an iteration j .

In each iteration t of the while loop, we have x⃗ (t ) ∈ ϵP, and thus

z⃗ (j+1) − z⃗ (j ) ∈ ϵP. Since there are 1/ϵ iterations, the final solution
z⃗ is in P.

We now analyze the approximation guarantee. For each iteration

j, the terminating condition of the while loop guarantees that

f (z⃗ (j+1) ) − f (z⃗ (j ) ) ≥ ϵ ((1 − 10ϵ )M − f (z⃗ (j ) )) .

By rearranging, we obtain

(1 − 10ϵ )M − f (z⃗ (j+1) ) ≤ (1 − ϵ ) ((1 − 10ϵ )M − f (z⃗ (j ) )) .

Thus, by induction,

(1 − 10ϵ )M − f (z⃗ (1/ϵ ) ) ≤ (1 − ϵ )1/ϵ (1 − 10ϵ )M,

and thus we obtain a 1 − 1/e −O (ϵ ) approximation. □

Analysis of the number of iterations. We now upper bound

the total number of iterations of Algorithm 1, and thus the number

of rounds of adaptivity.

Lemma 13. The total number of iterations and rounds of adaptivity
is O (log2 n/ϵ3).

Proof. Consider an iteration j of the outer for loop. Recall that

the valuesv1 andv2 are non-increasing over time, the solutions x⃗ (t )

are non-decreasing, the gradient values c⃗ are non-increasing (by

DR-submodularity), and the sets T (x⃗ (t ) ) can only gain coordinates

(by Lemma 8).

Let us now divide the iterations of the while loop into phases,

where a phase is comprised of the iterations with the same value

v2.
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Claim 14. There are O (logn/ϵ ) iterations in a phase.

Proof. Over the iterations of a phase, the set

{i : i < T (x⃗ (t ) ) and c⃗i ≥ v2}

cannot gain new coordinates. Additionally, each iteration of a phase

increases at least one coordinate. Thus the coordinate i that is
increased in the last iteration of the phase is increased in all of the

iterations of the phase. Each iteration of the phase, except possibly

the last iteration, increases coordinate i by a multiplicative (1 + ϵ )

factor (if we have y⃗i < ϵx⃗
(t )
i in some iteration t , after the update

we cannot increase coordinate i anymore and i ∈ T (x⃗ (t+1) )). We

can only increase a coordinateO (logn/ϵ ) times before the solution

goes out of P. Thus the phase has O (logn/ϵ ) iterations. □

Claim 15. The number of phases is O (log(n/ϵ )/ϵ ).

Proof. As noted earlier, the value v2 is non-increasing over

time. Our assumption on the gradient entries guarantees that v2 ≤
poly(n/ϵ )M . We now show that v2 ≥ poly(ϵ/n)M , since otherwise

the terminating condition of the while loop is satisfied. Suppose that

v2 ≤
ϵ 2
n M . Since the support of o⃗(t+1) is contained in V \T (x⃗ (t ) )

(by properties P2 and P4), we have〈
∇д((1 + ϵ )x⃗ (t ) ), o⃗(t+1)

〉
≤ (1 + ϵ )v2n ≤ (1 + ϵ )ϵ2M .

By DR-submodularity and monotonicity, we have〈
∇д((1 + ϵ )x⃗ (t ) ), o⃗(0)

〉
≥ д((1 + ϵ )x⃗ (t ) + o⃗(0) ) − д((1 + ϵ )x⃗ (t ) )

≥ д(x⃗ (0) + o⃗(0) ) − д((1 + ϵ )x⃗ (t ) ) .

By Lemma 10 and the above inequalities,

д(x⃗ (t+1) ) − д(x⃗ (0) ) ≥
ϵ (1 − ϵ )

1 + ϵ

〈
∇д((1 + ϵ )x⃗ (t ) ) ∨ 0⃗, o⃗(0) − o⃗(t+1)

〉
≥

ϵ (1 − ϵ )

1 + ϵ

(
д(x⃗ (0) + o⃗(0) ) − д((1 + ϵ )x⃗ (t ) ) − (1 + ϵ )ϵ2M

)
≥

ϵ (1 − ϵ )

1 + ϵ

(
f (z⃗ ∨ x⃗∗) − 2D∥x⃗ (0) ∥1 − д((1 + ϵ )x⃗

(t ) )

− (1 + ϵ )ϵ2M
)
.

In the last inequality, we used the fact that ∥x⃗ (0) + o⃗(0) − o⃗(−1) ∥1 ≤

2∥x⃗ (0) ∥1 (by Lemma 7). By monotonicity, f (z⃗ ∨ x⃗∗) ≥ f (x⃗∗), and
thus the gain is large enough for the while loop to terminate.

To summarize, we have poly(ϵ/n)M ≤ v2 ≤ poly(n/ϵ )M , and

thus there are O (log(n/ϵ )/ϵ ) different values of v2. □

Therefore the total number of iterations is O (1/ϵ ) ·O (logn/ϵ ) ·
O (log(n/ϵ )/ϵ ) = O (log2 n/ϵ3). □

4 MONOTONE MAXIMIZATION WITH
PACKING CONSTRAINTS

Our algorithm for monotone DR-submodular maximization subject

to packing constraints is shown in Algorithm 2. Similarly to the

algorithm for a matroid constraint, the algorithm requires an (1+ϵ )
approximation to the optimum value. We obtain the value M by

guessing as before. If in some iteration of the algorithm the update

vector d⃗ on line 8 is equal to 0, the guessed value is too high and

the algorithm can terminate.

High level overview of the approach. Our algorithm is based

on the Lagrangian-relaxation approach developed in the context of

solving packing and covering LPs [22, 23, 31], and in particular the

algorithm of [23] that achieves the currently best parallel running

time. Analogously to [23], our algorithm replaces the hard packing

constraints Ax⃗ ≤ 1⃗ (equivalently, ∥Ax⃗ ∥∞ ≤ 1) with the constraint

smax(Ax⃗ ) ≤ 1, which is a smooth convex approximation to the

original constraint. We can think of the smax(Ax⃗ ) as a potential
that measures how much progress the algorithm is making towards

satisfying the constraints. The overall approach is to start with

a small solution x⃗ and to iteratively increase it over time, while

ensuring the objective value f (x⃗ ) increases sufficiently; here time

is tracking the softmax potential: t = smax(Ax⃗ ) and t is increasing
from 0 to 1. When the objective function is linear, the approach of

[23] as well as previous works is the following. In each iteration,

the algorithm of [23] picks a subset of the coordinates to update

based on the gradient of the softmax function, and it updates the

selected coordinates in such a way that the increase in softmax is

not too large.

A natural strategy for extending this approach to the submodular

setting is to “linearize” the function: compute the gradient at the

current solution and use the linear approximation to the function

given by the gradient. As before, a key difficulty with this approach

is that the gradient is changing very fast and we cannot make large

updates. To overcome this difficulty, we use the same strategy as in

the matroid case and compute the gradient at a future point. This

allows us to make large, multiplicative updates to the solution and

to converge in a small number of iterations. The resulting algorithm

is nearly identical to the linear algorithm (see Figure 1).

While the algorithm is nearly identical to the linear case, our

analysis is substantially more involved due to the fact that the

linear approximation is changing over time and it is a significant

departure from previous works such as [14]. Previous algorithms,

such as the linear packing algorithm of [31] and the submodular

packing of [14], are divided into phases where, within each phase,

the objective value increases by ϵ times the optimal value. This

division makes the analysis easier. For instance, the Greedy algo-

rithm would like to pick coordinates whose gain is proportional to

the difference between the optimal value and the current solution

value. Within each phase, up to an 1+ ϵ factor, this threshold is the

same. The total saturation of the constraints also behaves similarly.

The fact that, up to an 1 + ϵ approximation, all relevant quantities

are constant is extremely useful in this context because one can

adapt the analysis from the case of a linear objective. However, this

partition can lead to a suboptimal number of iterations: there are

Ω(1/ϵ ) phases and the number of iterations might be suboptimal by

a Ω(1/ϵ ) factor. Instead, we remove the phases and develop a global

argument on the number of iterations. A global argument exists

for the linear case [23] but here we need a more general argument

with varying selection thresholds over the iterations and varying

contributions from different coordinates over the iterations. Intu-

itively, a coordinate is important if its marginal gain on the current

solution is high. We can show that, on aggregate, the coordinates

of the optimal solution are important. However, over the iterations,

different coordinates might be important at different times. In con-

trast, in the linear case, the relative importance is exactly the same
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over the iterations. Thus, in the linear case, we know that the al-

gorithm keeps increasing, say, the most important coordinate in

the optimal solution and that coordinate cannot exceed 1 so the

algorithm finishes quickly. In our case, this is not clear because

different coordinates are important at different times so the algo-

rithm might increase different coordinates in different iterations

and can prolong the process. Nonetheless, because the solution

always increases and by the diminishing return property, we know

that the importance of all coordinates decreases over time. We use

this property to relate the contribution from different iterations and

effectively argue that the algorithm cannot keep selecting different

coordinates at different times. The precise argument is intricate and

requires the division of the iterations into only two parts, instead

of Ω(1/ϵ ) phases (see Lemma 20).

Algorithm 2 Algorithm for maxx⃗ ∈[0,1]n : Ax⃗ ≤(1−ϵ )⃗1 f (x⃗ ), where

f is a non-negative monotone DR-submodular function and A ∈
Rm×n+ .

1: η ← ϵ
2(2+lnm)

2: M is an approximate optimal solution value: M ≤ f (x⃗∗) ≤
(1 + ϵ )M , where x⃗∗ ∈ argmaxx⃗ : Ax⃗ ≤(1−ϵ )⃗1 f (x⃗ ).

3: x⃗i ←
ϵ

n ∥A:i ∥∞
∀i ∈ [n]

4: while f (x⃗ ) ≤ (1 − exp(−1 + 10ϵ ))M do
5: λ ← M − (1 + η) f (x⃗ )
6: c⃗i ← ∇i f ((1 + η)x⃗ ) ∀i ∈ [n]

7: m⃗i ←
(
1 − λ ·

(A⊤∇smaxη (Ax⃗ ))i
c⃗i

)
∨ 0, for all i with c⃗i , 0,

and m⃗i = 0 if c⃗i = 0

8: d⃗ ← ηx⃗ ◦ m⃗

9: x⃗ ← x⃗ + d⃗
10: end while

The following lemma shows that every iteration makes progress

at the right rate. More precisely, we show that the ratio between

the change in the value of f and the change in smaxη is at least

equal to the current distance to x⃗∗ in function value.

Lemma 16. We have

f (x⃗ + d⃗ ) − f (x⃗ )

smaxη (A(x⃗ + d⃗ )) − smaxη (Ax⃗ )
≥ λ.

Proof. Using Corollary 6 we bound

smaxη (A(x⃗ + d⃗ )) − smaxη (Ax⃗ ) ≤
1

λ
· ⟨∇f (x⃗ + ηx⃗ ), d⃗⟩

(1)
≤

1

λ
( f (x⃗ + d⃗ ) − f (x⃗ )) ,

where (1) is due to concavity along the direction of d⃗ and the fact

that ∇f (x⃗ + ηx⃗ ) ≤ ∇f (x⃗ + d⃗ ), since d⃗ ≤ ηx⃗ . □

Next we show that every iteration is well defined, in the sense

that it performs a nonzero update on the vector x⃗ .

Lemma 17. In every iteration we have d⃗ , 0⃗.

Proof. Suppose for contradiction that there is an iterationwhere

d⃗ = 0⃗. Then for all coordinates i ∈ [n],

∇i f ((1 + η)x⃗ ))(
A⊤∇smaxη (Ax⃗ ))

)
i

< λ .

Therefore

f (x⃗∗ ∨ (1 + η)x⃗ ) − f ((1 + η)x⃗ )

≤ ⟨∇f ((1 + η)x⃗ ), x⃗∗ ∨ (1 + η)x⃗ − (1 + η)x⃗⟩

(1)
≤ ⟨∇f ((1 + η)x⃗ ), x⃗∗⟩

< λ · ⟨A⊤∇smaxη (Ax⃗ ), x⃗
∗⟩

≤ λ · ∥∇smaxη (Ax⃗ )∥1∥Ax⃗
∗∥∞

(2)
≤ λ(1 − ϵ ) .

In (1) we used the fact that (a ∨ b) − b ≤ a, for a,b ≥ 0, and in (2)

we used ∥∇smaxη (Ax⃗ )∥1 ≤ 1, and ∥Ax⃗∗∥∞ ≤ 1 − ϵ .
However, from monotonicity we have f (x⃗∗) ≤ f (x⃗∗ ∨ (1 + η)x⃗ ),

and from concavity along nonnegative directions, we get that f ((1+
η)x⃗ ) ≤ (1 + η) f (x⃗ ). Therefore we get that

f (x⃗∗ ∨ (1 + η)x⃗ ) − f ((1 + η)x⃗ ) ≥ M − (1 + η) f (x⃗ ) = λ .

This yields a contradiction. □

By the specification of the algorithm, the final solution is a good

approximation. We show that it satisfies the packing constraints.

For the remainder of the analysis, we use j to index the iter-

ations of the algorithm and we let x⃗ (j ) and x⃗ (j+1) be the vector

x⃗ at the beginning and end of iteration j, respectively. We let

λ(j ) , c⃗ (j ) ,m⃗(j ) , d⃗ (j ) be the variables defined in iteration j.

Lemma 18. The solution x⃗ returned by the algorithm satisfies
∥Ax⃗ ∥∞ ≤ smaxη (Ax⃗ ) ≤ 1 − 2ϵ .

Proof. We show that the algorithm maintains the invariant that

smaxη (Ax⃗ ) ≤ 1− ϵ . Since x⃗ (1) is the initial vector defined on line 1

of Algorithm 2, we have smaxη (Ax⃗
(1) ) ≤ η lnm + ∥Ax⃗ (1) ∥∞ ≤ 2ϵ .

By Lemma 16, in every iteration j,

smaxη (Ax⃗
(j+1) ) − smaxη (Ax⃗

(j ) )

≤
1

M − (1 + η) f (x⃗ (j ) )
·
(
f (x⃗ (j+1) ) − f (x⃗ (j ) )

)
.

Let T be the final iteration. Summing up we get that

smaxη (Ax⃗
(T ) ) ≤ 2ϵ +

T−1∑
j=1

f (x⃗ (j+1) ) − f (x⃗ (j ) )

M − (1 + η) f (x⃗ (j ) )
.

Defineд(α ) = f (x⃗ (j ) )+α ( f (x⃗ (j+1) )−f (x⃗ (j ) )). Because f (x⃗ (j+1) ) ≥

f (x⃗ (j ) ), the function д is non-decreasing. We have∫
1

0

д′(α )

M − (1 + η)д(0)
dα ≤

∫
1

0

д′(α )

M − (1 + η)д(α )
dα

=
1

1 + η
ln

(
M − (1 + η)д(0)

M − (1 + η)д(1)

)
.

Thus,

smaxη (Ax⃗
(T ) ) ≤ 2ϵ +

1

1 + η
· ln *

,

M − (1 + η) f (x⃗ (1) )

M − (1 + η) f (x⃗ (T ) )
+
-
.
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Using f (x⃗ (1) ) ≥ 0 and M − (1 + η) f (x⃗ (T ) ) ≥ M − (1 + η)M (1 −
1/ exp(1 − 10ϵ )) ≥ M (exp(10ϵ − 1) − η), due to the termination

condition, we obtain

smaxη (Ax⃗
(T ) ) ≤ 2ϵ + ln

(
1

exp(10ϵ − 1) − η

)
≤ 2ϵ + ln

(
1

(1 + 2ϵ ) exp(8ϵ − 1) − ϵ/4

)
≤ 2ϵ + 1 − 8ϵ = 1 − 6ϵ .

Since the final iteration increases the softmax by at most ϵ , the
lemma follows. □

Finally, we analyze the number of iterations performed before the

algorithm terminates. We do this in two steps. First, we relate the

value of a single coordinate to the update steps that have increased

it. In the second step, we show that there must be a coordinate that

has been updated sufficiently, so that it must have increased a lot

after only a small number of iterations.

Formally, we first bound the total increment on each coordinate.

Lemma 19. Consider coordinate i . If the final value of x⃗i is at most
n/ϵ then

∑
j m⃗

(j )
i = O (log(n/ϵ )/η).

Proof. For every iteration j, we have

x⃗
(j+1)
i = x⃗

(j )
i + d⃗

(j )
i = x⃗

(j )
i (1 + ηm⃗

(j )
i ) ≥ x⃗

(j )
i exp(ηm⃗

(j )
i /2) ,

where we used 1 + z ≥ exp(z/2) for all z ≤ 1. Therefore, letting T
be the last iteration,

x⃗
(T+1)
i ≥ x⃗

(1)
i · exp

*.
,

T∑
j=1

ηm⃗
(j )
i /2

+/
-
.

Since the initial value of x⃗i is at least ϵ
2/n2, and the final value of

x⃗i is at most n/ϵ ,

n3/ϵ3 ≥ x⃗
(T+1)
i /x⃗

(1)
i ≥ exp

*.
,

η

2

T∑
j=1

m⃗
(j )
i
+/
-
,

which implies

∑T
j=1 m⃗

(j )
i = O (ln(n/ϵ )/η). □

Finally, we bound the total number of iterations of the algorithm.

Lemma 20. The number of iterations run by Algorithm 2 is at most

O
(
log(n/ϵ )

ϵη

)
= O

(
log(n/ϵ ) log(m)

ϵ 2

)
.

Proof. First, we note that a simple analysis follows from par-

titioning the iterations into O (log(n/ϵ )) epochs, each of which

corresponding to an interval where ⟨⃗c, x⃗∗⟩ stays bounded within a

constantmultiplicative factor. Showing that for each of these phases,

there exists a coordinate i for which
∑
j m⃗

(j )
i is large enough will

yield the result. Instead, we can obtain a refined bound on the

number of iterations by partitioning the iterations into only two

parts.

First, we notice that ⟨⃗c, x⃗∗⟩ monotonically decreases over time,

and λ ∈ [M/3,M]. Also, define y⃗ = c⃗/λ. Using a similar argument

to Lemma 17, we obtain that, for every iteration j,

⟨y⃗ (j ) , x⃗∗⟩ =
1

λ(j )
⟨∇f ((1 + η)x⃗ (j ) ), x⃗∗⟩

≥
1

λ(j )
⟨∇f ((1 + η)x⃗ (j ) ), x⃗∗ ∨ (1 + η)x⃗ (j ) − (1 + η)x⃗ (j )⟩

≥
1

λ(j )
f (x⃗∗ ∨ (1 + η)x⃗ (j ) ) − f ((1 + η)x⃗ (j ) )

≥
1

λ(j )
(M − (1 + η) f (x⃗ (j ) )

= 1 .

Let j2 be the last iteration of the algorithm, and let v2 = ⟨⃗c
(j2 ) , x⃗∗⟩.

We divide the iterations into two parts: let T2 be the iterations

j where v2 ≤ ⟨⃗c
(j ) , x⃗∗⟩ < 9v2, and T1 be the iterations where

⟨⃗c (j ) , x⃗∗⟩ ≥ 9v2.
First we bound the number of iterations in T2. Consider an itera-

tion j in T2. By definition, we have ⟨y⃗ (j ) , x⃗∗⟩ ∈ [v2/λ
(1) , 27v2/λ

(1)
]

so there exists α ≤ 1 so that ⟨αy⃗ (j ) , x⃗∗⟩ ∈ [1, 27] for all iterations
j ∈ T2.

We also have ⟨∇smax(Ax⃗ (j ) ),Ax⃗∗⟩ ≤ ∥∇smaxη (Ax⃗
(j ) )∥1∥Ax⃗

∗∥∞ ≤

1 − ϵ , which also gives us that〈
D(αy⃗ (j ) )+A⊤∇smax(Ax⃗ (j ) ),D(αy⃗ (j ) )x⃗∗

〉
≤ 1 − ϵ .

Combining this with ⟨αy⃗ (j ) , x⃗∗⟩ ∈ [1, 27], we obtain that〈⃗
1 − D(αy⃗ (j ) )+A⊤∇smax(Ax⃗ (j ) ),D(αy⃗ (j ) )x⃗∗

〉
≥ ϵ .

Therefore adding up across all iterations in T2, and using y⃗ (j ) ≤

3y⃗ (j0 ) , where j0 is the first iteration in T2, we have∑
j ∈T2

〈⃗
1 − D(αy⃗ (j ) )+A⊤∇smax(Ax⃗ (j ) ),D(αy⃗ (j0 ) )x⃗∗

〉
≥ ϵ |T2 |/3 .

Because ∥D(αy⃗ (j0 ) )x⃗∗∥1 ≤ 27, by averaging, there exists a coordi-

nate i such that∑
j ∈T2

*.
,

*.
,
1 −

(A⊤∇smax(Ax⃗ (j ) ))i

αy⃗
(j )
i

+/
-
∨ 0

+/
-
≥ ϵ |T2 |/81 .

Using the fact that α ≤ 1 and the definition of y⃗, we see that this
also gives us that ∑

j ∈T2

m⃗
(j )
i ≥ ϵ |T2 |/81 ,

so, by Lemma 19, we have |T2 | = O (log(n/ϵ )/(ϵη)).
Next we bound the number of iterations in T1. For any iteration

j ∈ T1, we have

⟨y⃗ (j ) , x⃗∗⟩ ≥ 9v2/λ
(j ) ≥ 9v2/λ

(1) ≥ 3 .

Let j1 be the last iteration in T1. Let α =
3

⟨y⃗ (j
1
), x⃗ ∗⟩

≤ 1. Similarly to

before, we have〈
D(αy⃗ (j ) )+A⊤∇smax(Ax⃗ (j ) ),D

(α
3

y⃗ (j )
)
x⃗∗

〉
≤ 1 − ϵ ,

where we use y⃗ (j ) = 1

λ (j ) c⃗
(j ) ≥ 1

λ (j ) c⃗
(j1 ) = λ (j

1
)

λ (j ) y⃗
(j1 ) ≥ 1

3
y⃗ (j1 ) . Thus

for our specific choice of α we obtain:〈⃗
1 − D(αy⃗ (j ) )+A⊤∇smax(Ax⃗ (j ) ),D

(α
3

y⃗ (j1 )
)
x⃗∗

〉
≥ ϵ .
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So adding up across all iterations inT1, and using ∥D(αy⃗
(j1 ) )x⃗∗∥1 =

3, by averaging, there exists a coordinate i such that∑
j ∈T1

*.
,

*.
,
1 −

(A⊤∇smax(Ax⃗ (j ) ))i

αy⃗
(j )
i

+/
-
∨ 0

+/
-
≥ ϵ |T1 | .

Just like before, by Lemma 19, this gives us that |T1 | =
O (log(n/ϵ )/(ϵη)).

□

5 NON-MONOTONE MAXIMIZATION WITH
PACKING CONSTRAINTS

Our algorithm for non-monotone DR-submodular maximization is

shown in Algorithm 3. We obtain the valueM by guessing like in

the monotone case. Unlike the monotone case, we now include the

constraints x⃗ ≤ (1−ϵ )1⃗ into the matrixA, i.e., we solve the problem

max{x⃗ ∈ Rn+ : Ax⃗ ≤ (1 − ϵ )1⃗} where the constraints Ax⃗ ≤ (1 − ϵ )1⃗

include the constraints x⃗ ≤ (1−ϵ )1⃗. For simplicity, we letm denote

the number of rows of this enlarged matrix A, i.e., m = m′ + n
where m′ is the original number of packing constraints. Due to

space constraints, we omit the proofs. They can be found in the full

version of our paper [16].

Algorithm 3 Algorithm for maxx⃗ ∈Rn+ : Ax⃗ ≤(1−ϵ )⃗1
f (x⃗ ), where f

is a non-negative DR-submodular function and A ∈ Rm×n+ . The

constraint Ax⃗ ≤ (1 − ϵ )1⃗ includes the constraints x⃗ ≤ (1 − ϵ )1⃗.

1: η ← ϵ
2 lnm

2: M is an approximate optimal solution value: M ≤ f (x⃗∗) ≤
(1 + ϵ )M , where x⃗∗ ∈ argmaxx⃗ : Ax⃗ ≤(1−ϵ )⃗1 f (x⃗ ).

3: x⃗i ←
ϵ

n ∥A:i ∥∞
, ∀i ∈ [n]

4: z⃗ ← x⃗
5: t ← smaxη (Az⃗)
6: while f (x⃗ ) ≤ exp(−1 − 10ϵ )M do
7: λ ← M · (e−t − 2ϵ ) − f (x⃗ )
8: c⃗i ← (1 − x⃗i )∇i f ((1 + η)x⃗ ) ∨ 0 ∀i ∈ [n]

9: m⃗i ←
(
1 − λ ·

(A⊤∇smax(Az⃗ ))i
c⃗i

)
∨ 0 for all i with c⃗i , 0,

and m⃗i = 0 if c⃗i = 0

10: d⃗ ← ηx⃗ ◦ m⃗

11: x⃗ ← x⃗ + d⃗ ◦ (⃗1 − x⃗ )

12: z⃗ ← z⃗ + d⃗
13: t ← smaxη (Az⃗)
14: end while

Lemma 21. We have

f (x⃗ + d⃗ ◦ (⃗1 − x⃗ )) − f (x⃗ )

smaxη (A(z⃗ + d⃗ )) − smaxη (Az⃗)
≥ λ.

Lemma 22. Let t and t ′ be the values of t at the beginning and the
end of an iteration. Assume that t ′ ≤ 1. Let x⃗ and x⃗ ′ be the values of
x⃗ at the beginning and the end of the same iteration. We have

et
′

· f (x⃗ ′) ≥ (1 − 2eϵ ) (t ′ − t )M + et · f (x⃗ )

Lemma 23. We have the invariant that ∥x ∥∞ ≤ (1 + ϵ ) (1 − e−t ).

Lemma 24. In every iteration, we have d⃗ , 0⃗.

By the design of the algorithm, the final solution is a good approx-

imation. The following lemma shows that it satisfies the packing

constraints.

Lemma 25. The solution x⃗ returned by the algorithm satisfies
∥Ax⃗ ∥∞ ≤ smaxη (Ax⃗ ) ≤ 1 − 2ϵ .

Finally, we can bound the total number of iterations:

Lemma 26. The number of iterations is at most

O
(
log(n/ϵ ) log(1/ϵ )

ϵη

)
= O

(
log(n/ϵ ) log(1/ϵ ) log(m)

ϵ 2

)
.

6 NON-MONOTONE MAXIMIZATIONWITH A
MATROID CONSTRAINT

In this section, we consider the problem of maximizing a non-

monotone DR-submodular function subject to a polymatroid con-

straint. The algorithm and analysis are an extension of the algo-

rithm and analysis for monotone functions from Section 3. The

key modification to the algorithm is the multiplication by 1⃗ − z⃗
to dampen the growth of the solution that we borrow from the

measured continuous greedy algorithm [19]. For complete proofs,

we refer the reader to the full version of our paper [16].

Algorithm 4 Algorithm for non-monotone maximization subject

to a polymatroid constraint.

1: M is an approximate optimal solution value: M ≤ f (x⃗∗) ≤
(1 + ϵ )M , where x⃗∗ ∈ argmaxx⃗ ∈P f (x⃗ ), D is chosen such that

∥∇f (x⃗ )∥∞ ≤ MD.
2: z⃗ ← 0

3: for j ← 0 to 1/ϵ − 1 do
4: x⃗ (0) ← ϵ 2

nD 1⃗

5: t ← 0

6: Let д(x⃗ ) = f ( (⃗1 − z⃗)◦x⃗ + z⃗)

7: while д(x⃗ (t ) )−д(x⃗ (0) ) ≤ ϵ
(
( 1

1+ϵ )
j − 10ϵ )M − д(x⃗ (0) )

)
do

8: c⃗i ← ∇iд((1 + ϵ )x⃗
(t ) )

= (1 − z⃗i )∇i f ( (⃗1 − z⃗) ◦ (1 + ϵ )x⃗
(t ) + z⃗)

9: Let T (x⃗ ) for x⃗ ∈ ϵ
1+ϵ P be the maximal set S such that

x⃗ (S ) = ϵ
1+ϵ r (S ).

10: Letv1 = maxi<T (x⃗ (t ) ) c⃗i andv2 be the maximum power

of 1 + ϵ such that v2 ≤ v1.
11: y⃗ ← 0

12: for i from 1 to n do
13: if c⃗i ≥ v2 then
14: Let y⃗i be the maximum value such that

y⃗i ≤ ϵx⃗
(t )
i and (1 + ϵ ) (x⃗ (t ) + y⃗) ∈ ϵP.

15: end if
16: end for
17: x⃗ (t+1) ← x⃗ (t ) + y⃗
18: t ← t + 1
19: end while
20: z⃗ ← z⃗ + (⃗1 − z⃗)◦x⃗ (t )

21: end for
22: return z⃗

Analysis of the approximation guarantee. We show that

the algorithm achieves a 1/e −O (ϵ ) approximation guarantee. We
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consider each iteration of the algorithm and we analyze the increase

in value when updating x⃗ (t ) to x⃗ (t+1) . Similarly to the case of non-

monotone maximization, we use Lemma 7 to show that we can

define a sequence of vectors o⃗(t ) based on x⃗ (t ) and the optimal

solution that allows us to relate the gain of the algorithm to the

optimum value. Use use the same properties of the vector o⃗(t ) as
those given in Section 3.

For the analysis, we employ a simple bound on ∥z⃗ (j ) ∥∞, which
is used to bound the approximation.

Lemma 27. ∥z⃗ (j ) ∥∞ ≤ 1 − (1 − ϵ/(1 + ϵ )) j .

We now relate the gain in our solution in every iteration to the

change in o⃗. The proof is similar to the one in the monotone case.

Lemma 28 (cf Lemma 9). We have

д(x⃗ (t+1) ) − д(x⃗ (t ) )

≥
ϵ (1 − ϵ )

1 + ϵ

〈
∇д((1 + ϵ )x⃗ (t ) ) ∨ 0⃗, (1 − z⃗) ◦ (o⃗(t ) − o⃗(t+1) )

〉
.

By repeatedly applying Lemma 28, we obtain the following

lemma.

Lemma 29 (cf Lemma 10). We have

д(x⃗ (t+1) ) − д(x⃗ (0) ) ≥
ϵ (1 − ϵ )

1 + ϵ

〈
∇д((1 + ϵ )x⃗ (t ) ) ∨ 0⃗, o⃗(0) − o⃗(t+1)

〉
.

This implies that every iteration of the while loop increases at

least one coordinate, and thus the while loop eventually terminates.

Lemma 30. In every iteration t , we have T (x⃗ (t ) ) , V , i.e., some
coordinate increases in each iteration.

Thus the algorithm terminates. Finally, we show that the solution

returned is a 1/e −O (ϵ ) approximation:

Lemma 31. The solution z⃗ returned by Algorithm 4 is feasible and
it satisfies f (z⃗) ≥ (1/e −O (ϵ ))M ≥ (1/e −O (ϵ )) f (x⃗∗).

Analysis of the number of iterations. The following lemma

upper bounds the total number of iterations of Algorithm 4, and

thus the number of rounds of adaptivity.

Lemma 32. The total number of iterations and rounds of adaptivity
is O (log2 n/ϵ3).
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