Towards Nearly-Linear Time Algorithms for
Submodular Maximization with a Matroid
Constraint

Alina Ene

Department of Computer Science, Boston University, MA, USA

aene@bu.edu

Huy L. Nguyen

College of Computer and Information Science, Northeastern University, Boston, MA, USA
hlnguyen@cs.princeton.edu

—— Abstract

We consider fast algorithms for monotone submodular maximization subject to a matroid constraint.
We assume that the matroid is given as input in an explicit form, and the goal is to obtain the best
possible running times for important matroids. We develop a new algorithm for a general matroid
constraint with a 1 — 1/e — € approximation that achieves a fast running time provided we have a
fast data structure for maintaining an approximately maximum weight base in the matroid through
a sequence of decrease weight operations. We construct such data structures for graphic matroids
and partition matroids, and we obtain the first algorithms for these classes of matroids that achieve
a nearly-optimal, 1 — 1/e — € approximation, using a nearly-linear number of function evaluations
and arithmetic operations.

2012 ACM Subject Classification Theory of computation — Submodular optimization and poly-
matroids

Keywords and phrases submodular maximization, matroid constraints, fast running times
Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.54

Category Track A: Algorithms, Complexity and Games

Related Version https://arxiv.org/abs/1811.07464

Funding Alina Ene: Partially supported by NSF CAREER grant CCF-1750333 and NSF grant
CCF-1718342.
Huy L. Nguyen: Partially supported by NSF CAREER grant CCF-1750716.

Acknowledgements This work was done in part while the authors were visiting the Simons Institute

for the Theory of Computing.

1 Introduction

In this paper, we consider fast algorithms for monotone submodular maximization subject
to a matroid constraint. Submodular maximization is a central problem in combinatorial
optimization that captures several problems of interest, such as maximum coverage, facility
location, and welfare maximization. The study of this problem dates back to the seminal work
of Nemhauser, Wolsey and Fisher from the 1970’s [20, 21, 12]. Nemhauser et al. introduced a
very natural Greedy algorithm for the problem that iteratively builds a solution by selecting
the item with the largest marginal gain on top of previously selected items, and they showed
that this algorithm achieves a 1 — 1/e approximation for a cardinality constraint and a 1/2
approximation for a general matroid constraint. The maximum coverage problem is a special
case of monotone submodular maximization with a cardinality constraint and it is 1 —1/e

© Alina Ene and Huy L. Nguyen;
oY licensed under Creative Commons License CC-BY
46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).

Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 54; pp. 54:1-54:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:aene@bu.edu
mailto:hlnguyen@cs.princeton.edu
https://doi.org/10.4230/LIPIcs.ICALP.2019.54
https://arxiv.org/abs/1811.07464
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

54:2

Fast Submodular Maximization with Matroid Constraints

hard to approximate [10], and thus the former result is optimal. Therefore the main question
that was left open by the work of Nemhauser et al. is whether one can obtain an optimal,
1 — 1/e approximation, for a general matroid constraint.

In a celebrated line of work [6, 24], Calinescu et al. developed a framework based on
continuous optimization and rounding that led to an optimal 1 — 1/e approximation for
the problem. The approach is to turn the discrete optimization problem of maximizing
a submodular function f subject to a matroid constraint into a continuous optimization
problem where the goal is to maximize the multilinear extension F' of f (a continuous
function that extends f) subject to the matroid polytope (a convex polytope whose vertices
are the feasible integral solutions). The continuous optimization problem can be solved
approximately within a 1 — 1/e factor using a continuous Greedy algorithm [24] and the
resulting fractional solution can be rounded to an integral solution without any loss [1, 6, 8.
The resulting algorithm achieves the optimal 1 — 1/e approximation in polynomial time.

Unfortunately, a significant drawback of this approach is that it leads to very high running
times. Obtaining fast running times is a fundamental direction both in theory and in practice,
due to the numerous applications of submodular maximization in machine learning, data
mining, and economics [18, 17, 14, 16, 9]. This direction has received considerable attention [2,
11, 3, 19, 5, 7], but it remains a significant challenge for almost all matroid constraints.

Before discussing these challenges, let us first address the important questions on how
the input is represented and how we measure running time. The algorithms in this paper as
well as prior work assume that the submodular function is represented as a value oracle that
takes as input a set S and returns f(S). For all these algorithms, the number of calls to the
value oracle for f dominates the running time of the algorithm (up to a logarithmic factor),
and thus we assume for simplicity that each call takes constant time.

The algorithms fall into two categories with respect to how the matroid is represented:
the independence oracle algorithms assume that the matroid is represented using an oracle
that takes as input a set .S and returns whether S is feasible (independent); the representable
matroid algorithms assume that the matroid is given as input in an explicit form. The
representable matroid algorithms can be used for only a subclass of matroids, namely those
that can be represented as a linear matroid over vectors in some field!, but this class includes
practically-relevant matroids such as the uniform, partition, laminar, graphical, and general
linear matroids. The oracle algorithms apply to all matroids, but they are unlikely to lead to
the fastest possible running times: even an ideal algorithm that makes only O(k) independence
calls has a running time that is Q(k?) in the independence oracle model (each oracle call
needs to read its input, which takes ©(k) time in the worst case), even if the matroid is a
representable matroid such as a partition or a graphic matroid. This is because Thus there
have always been parallel lines of research for representable matroids and general matroids.

This work falls in the first category, i.e., we assume that the matroid is given as input
in an explicit form, and the goal is to obtain the best possible running times. Note that,
although all the representable matroids are linear matroids, it is necessary to consider each
class separately, since they have very different running times to even verify if a given solution
is feasible: for simple explicit matroids such as a partition or a graphic matroid, checking
whether a solution is feasible takes O(n) time, where n is the size of the ground set of
the matroid; for general explicit matroids represented using vectors in some field, checking
whether a solution is feasible takes O(k“) time, where k is the rank of the matroid and w is
the exponent for fast matrix multiplication.

! In a linear matroid, the ground set is a collection of n vectors and a subset of the vectors is feasible
(independent) if the vectors are linearly independent.

A. Ene and H. L. Nguyen

Since in many practical settings only nearly-linear running times are feasible, an important
question to address is:

For which matroid constraints can we obtain
a nearly-optimal 1 — 1/e — € approzimation in nearly-linear time?

Prior to this work, the only example of such a constraint was a cardinality constraint. For
a partition matroid constraint, the fastest running time is Q(n3/2) in the worst case when
k = Q(n) [5]. For a graphical matroid constraint, no faster algorithms are known than
a general matroid, and the running time is Q(n?) in the worst case when k = Q(n) [3].
Obtaining a best-possible, nearly-linear running time has been very challenging even for
these classes of matroids for the following reasons:

The continuous optimization is a significant time bottleneck. The continuous optimiza-
tion problem of maximizing the multilinear extension subject to the matroid polytope is an
integral component in all algorithms that achieve a nearly-optimal approximation guarantee.
However, the multilinear extension is expensive to evaluate even approximately. To achieve
the nearly-optimal approximation guarantees, the evaluation error needs to be very small
and in a lot of cases, the error needs to be O(n~!) times the function value. As a result, a
single evaluation of the multilinear extension requires (n) evaluations of f. Thus, even a
very efficient algorithm with O(n) queries to the multilinear extension would require (n?)
running time.

Rounding the fractional solution is a significant time bottleneck as well. Consider a
matroid constraint of rank k. The fastest known rounding algorithm is the swap rounding,
which requires k& swap operations: in each operation, the algorithm has two bases By and Bs
and needs to find € By,y € Bs such that By \ {z} U{y} and By \ {y} U{z} are bases. The
typical implementation is to pick some x € By and try all y in Bs, which requires us to check
independence for k solutions. Thus, overall, the rounding algorithm checks independence for
Q(k?) solutions. Furthermore, each feasibility check takes (k) time just to read the input.
Thus a generic rounding for a matroid takes Q(k?®) time.

Thus, in order to achieve a fast overall running time, one needs fast algorithms for both
the continuous optimization and the rounding. In this work, we provide such algorithms
for partition and graphic matroids, and we obtain the first algorithms with nearly-linear
running times. At the heart of our approach is a general, nearly-linear time reduction that
reduces the submodular maximization problem to two data structure problems: maintain an
approximately maximum weight base in the matroid through a sequence of decrease-weight
operations, and maintain an independent set in the matroid that allows us to check whether
an element can be feasibly added. This reduction applies to any representable matroid, and
thus it opens the possibility of obtaining faster running times for other classes of matroids.

1.1 OQur contributions

We now give a more precise description of our contributions. We develop a new algorithm
for maximizing the multilinear extension subject to a general matroid constraint with a
1 —1/e — € approximation that achieves a fast running time provided we have fast data
structures with the following functionality:

A mazimum weight base data structure: each element has a weight, and the goal is to
maintain an approximately maximum weight base in the matroid through a sequence of
operations, where each operation can only decrease the weight of a single element;

54:3

ICALP 2019

54:4

Fast Submodular Maximization with Matroid Constraints

An independent set data structure that maintains an independent set in the matroid and
supports two operations: add an element to the independent set, and check whether an
element can be added to the independent set while maintaining independence.

» Theorem 1. Let f be a monotone submodular function and let M be a matroid on a ground
set of size n. Let F be the multilinear extension of f and P(M) be the matroid polytope
of M. Suppose that we have a data structure for maintaining a maximum weight base and
independent set as described above. There is an algorithm for the problem max,epa) F(x)
that achieves a 1 —1/e — € approximation using O(n poly(logn,1/€)) calls to the value oracle
for f, data structure operations, and additional arithmetic operations.

Using our continuous optimization algorithm and additional results that are included
in the full version of this paper, we obtain the first nearly-linear time algorithms for both
the discrete and continuous problem with a graphic and a partition matroid constraint. In
the graphic matroid case, the maximum weight base data structure is a dynamic maximum
weight spanning tree (MST) data structure and the independent data structure is a dynamic
connectivity data structure (e.g., union-find), and we can use existing data structures that
guarantee a poly-logarithmic amortized time per operation [15, 13, 23]. For a partition
matroid, we provide data structures with a constant amortized time per operation. We
also address the rounding step and provide a nearly-linear time algorithm for rounding a
fractional solution in a graphic matroid. A nearly-linear time rounding algorithm for a
partition matroid was provided in [5].

» Theorem 2. There is an algorithm for mazimizing a monotone submodular function subject
to a generalized partition matroid constraint that achieves a 1 — 1/e — € approzimation using
O(n poly(1/e,logn)) function evaluations and arithmetic operations.

» Theorem 3. There is an algorithm for mazimizing a monotone submodular function
subject to a graphic matroid constraint that achieves a 1 — 1/e — € approximation using
O(n poly(1/e,logn)) function evaluations and arithmetic operations.

Previously, the best running time for a partition matroid was Q(n3/2 poly(1/e,logn)) in

the worst case when k = Q(n) [5]. The previous best running time for a graphic matroid is
the same as the general matroid case, which is Q(n? poly(1/e,logn)) in the worst case when
k=Q(n) [3].

As shown by Vondrak [24], there is an efficient reduction from the submodular welfare
maximization problem to the submodular maximization problem with a partition matroid
constraint. Using this reduction and our algorithm for a partition matroid, we obtain a
nearly-linear time algorithm for welfare maximization as well.

» Theorem 4. There is a 1 — 1/e — € approxzimation algorithm for submodular welfare
maximization using O(npoly(1/e,logn)) function evaluations and arithmetic operations.

We conclude with a formal statement of the contributions made in this paper on which
the results above are based.

» Theorem 5. There is a dynamic data structure for maintaining a mazximum weight base in
a partition matroid through a sequence of decrease weight operations with an O(1) amortized
time per operation.

» Theorem 6. There is a randomized algorithm based on swap rounding for the graphic
matroid polytope that takes as input a point x represented as a convexr combination of bases
and rounds it to an integral solution S such that E[f(S)] > F(x). The running time of the
algorithm is O(nt log? n), where t is the number of bases in the conver combination of x.

A. Ene and H. L. Nguyen

1.2 Technical overview

The starting point of our approach is the work [5]. They observed that the running time
of the continuous algorithm using the multilinear extension of [3] depends on the value
of the maximum weight base when the value is measured in the modular approximation
J'(S) = > .cs fe). It is clear that this approximation is at least the original function
and it can be much larger. They observed that the running time is proportional to the
ratio between the maximum weight base when weights are measured using the modular
approximation compared with the optimal solution when weights are measured using the
original function. On the other hand, in the greedy algorithm, the gain in every greedy step
is proportional to the maximum weight base when weights are measured using the modular
approximation. Thus, the discrete greedy algorithm makes fast progress precisely when the
continuous algorithm is slow and vice versa. Therefore, one can start with the discrete greedy
algorithm and switch to the continuous algorithm when the maximum weight solution is
small even when weights are measured using the modular approximation.

Our algorithm consists of two key components: (1) a fast dynamic data structure for
maintaining an approximate maximum weight base through a sequence of greedy steps, and
(2) an algorithm that makes only a small number of queries to the data structure. Even if
fast dynamic data structures are available, previous algorithms including that of [5] cannot
achieve a fast time, since they require)(nk) queries to the data structure: the algorithm of
[6] maintains the marginal gain for every element in the current base and it updates them
after each greedy step; since each greedy step changes the marginal gain of every element in
the base, this approach necessitates (k) data structure queries per greedy step.

Our new approach uses random sampling to ensure that the number of queries to the
data structure is nearly-linear. After each greedy step, our algorithm randomly samples
elements from the base to check and update the marginal gains. Because of sampling, it can
only ensure that at least 1/2 of the elements in every value range have good estimates of
their values. However, this is sufficient for maintaining an approximate maximum weight
base. The benefit is that the running time becomes much faster: the number of checks
that do not result in updates is small and if we make sure that an update only happens
when the marginal gain change by a factor 1 — e then the total number of updates is at
most O(nlogn/e). Thus we obtain an algorithm with only a nearly-linear number of data
structure queries and additional running time for any matroid constraint.

Our approach reduces the algorithmic problem to the data structure problem of main-
taining an approximate maximum weight base through a sequence of value updates. In fact,
the updates are only decrement in the values and thus can utilize even the decremental data
structures as opposed to fully dynamic ones. In the case of a partition matroid constraint,
one can develop a simple ad-hoc solution. In the case of a graphic matroid, one can use
classical data structures for maintaining minimum spanning trees [15].

In both cases, fast rounding algorithms are also needed. The work [5] gives an algorithm
for the partition matroid. We give an algorithm for the graphic matroid based on swap
rounding and classical dynamic graph data structures. To obtain fast running time, in each
rounding step, instead of swapping a generic pair, we choose a pair involving a leaf of the
spanning tree.

1.3 Basic definitions and notation

Submodular functions. Let f:2" — R, be a set function on a finite ground set V of size
n := |V|]. The function is submodular if f(A)+ f(B) > f(AN B) + f(AU B) for all subsets
A, B C V. The function is monotone if f(A) < f(B) for all subsets A C B C V. We assume

54:5

ICALP 2019

54:6

Fast Submodular Maximization with Matroid Constraints

that the function f is given as a value oracle that takes as input any set S C V and returns
f(S). Welet F :[0,1]V — R, denote the multilinear extension f. For every x € [0,1]V,
we have

Fe) =Y f(S) [z [[(1 = z) = E[R(2)],

SCV ecsS e¢sS

where R(z) is a random set that includes each element e € V' independently with probabil-
ity ..

Matroids. A matroid M = (V,Z) on a ground set V is a collection Z of subsets of V, called
independent sets, that satisfy certain properties (see e.g., [22], Chapter 39). In this paper, we
consider matroids that are given to the input to the algorithm. Of particular interest are the
partition and graphic matroids. A generalized partition matroid is defined as follows. We are
given a partition Vq, V5, ..., V, of V into disjoint subsets and budgets k1, ko, ..., kn. A set S
is independent (S € Z) if |[SNV;| < k; for all ¢ € [h]. We let k = Z?Zl k; denote the rank of
the matroid. A graphic matroid is defined as follows. We are given a connected graph on
k 4+ 1 vertices and n edges. The independent sets of the matroid are the forests of this graph.

Additional notation. Given a set S € Z, we let fg denote the function fg : 2V\5 — R>o
such that fg(S’) = f(S"US)— f(S) forall S’ CV\S. Welet M/S = (V\S,Z') denote the
matroid obtained by contracting S in M, i.e., S’ € T/ iff S"US € Z. We let P(M) denote
the matroid polytope of M: P(M) is the convex hull of the indicator vectors of the bases of
M, where a base is an independent set of maximum size.

Constant factor approximation to f(OPT). Our algorithm needs a O(1) approximation
to f(OPT). Such an approximation can be computed very efficiently (see e.g. [5], Lemma 3.2).

1.4 Paper organization

In Section 2, we describe our algorithm for the continuous optimization problem of maximizing
the multilinear extension subject to a general matroid constraint, with the properties stated
in Theorem 1. As discussed in the introduction, our algorithm uses certain data structures
to achieve a fast running time. In the full version of the paper, we show how to obtain these
data structures for partition and graphic matroids. By combining these data structures
with the results of Section 2, we obtain nearly-linear time algorithms for the continuous
problem of maximizing the multilinear extension subject to a partition and graphic matroid
constraint. To obtain a fast algorithm for the discrete problem, we also need a fast algorithm
to round the fractional solution. Buchbinder et al. [5] give a nearly-linear time rounding
algorithm for a partition matroid. In the full version of the paper, we give a nearly-linear
time rounding algorithm for a graphic matroid, and prove Theorem 6. These results together
give Theorems 2 and 3.

2 The algorithm for the continuous optimization problem

In this section, we describe and analyze our algorithm for the problem max,ep(aq) F'() for
a general matroid M, and prove Theorem 1. The algorithm is given in Algorithm 1 and it
combines the continuous Greedy algorithm of [3] with a discrete Greedy algorithm that we
provide in this paper, building on [5].

A. Ene and H. L. Nguyen

Algorithm 1 Algorithm for the continuous problem max,c p(rq) F(7).

1: procedure CONTINUOUSMATROID(f, M, ¢)

2 ¢ = ©(1/e), where the O hides a sufficiently large absolute constant

3 S = LAZYSAMPLINGGREEDY(f, M, €)

4: = CONTINUOUSGREEDY (fg, M /S, ¢, ¢€)

5 return 1svVz ((zVy is the vector (zVy); = max{z;,y;} for all i))
6: end procedure

The continuous Greedy algorithm. The algorithm used on line 4 is the algorithm of [3].
To obtain a fast running time, we use an independent set data structure to maintain the
independent sets constructed by the algorithm. The data structure needs to support two
operations: add an element to the independent set, and check whether an element can be
added to the independent set while maintaining independence. For a partition matroid, such
a data structure with O(1) time per operation is trivial to obtain. For a graphic matroid, we
can use a union-find data structure [13, 23] with a O(log* k) amortized time per operation.

» Lemma 7 (Corollary 3.1 in [5]; [3]). When run with values ¢ and § as input, CON-
TINUOUSGREEDY uses O(nln(n/d)/§?) independent set data structure operations, and
O(cenln®(n/8)/6%) queries to the value oracle of f and additional arithmetic operations.
Moreover, if maxsez) ,cgq f(e) < c- f(OPT), where OPT € argmaxgc7f(S), the solution
@ returned by the algorithm satisfies F(z) > (1 — 1 —§) f(OPT).

The discrete Greedy algorithm is given in Algorithm 2. The algorithm works for any
matroid constraint for which we can provide a fast data structure for maintaining a maximum
weight base (note that the base is only an approximate maximum weight base, and we drop
the word approximate for simplicity). We now describe the properties we require from this
data structure. As discussed in the introduction, we give such data structures for a graphic
matroid and a partition matroid in the full version of this paper.

The dynamic maximum weight base data structure. Algorithm 2 makes use of a data
structure for maintaining the maximum weight base in the matroid, where each element has
a weight and the weights are updated through a sequence of updates that can only decrease
the weights. The data structure needs to support the following operation: UPDATEBASE
decreases the weight of an element and it updates the base to a maximum weight base for
the updated weights. The data structures that we provide in the full version of the paper for
a graphic and a partition matroid support this operation in O(poly(log k)) amortized time.

We note here that the data structure maintains a maximum weight base of the original
matroid M, and not the contracted matroid M /S obtained after picking a set S of elements.
This suffices for us, since the discrete Greedy algorithm that we use will not change the
weight of an element after it was added to the solution .S. Due to this invariant, we can show
that the maximum weight base B of M that the data structure maintains has the property
that S C B at all times, and B\ S is a maximum weight base in M/S. This follows from
the observation that, if an element e is in the maximum weight base B and the only changes
to the weights are such that the weight of e remains unchanged and the weights of elements
other than e are decreased, then e remains in the new maximum weight base.

The discrete Greedy algorithm. The algorithm (Algorithm 2) is based on the random
residual Greedy algorithm of [4]. The latter algorithm constructs a solution S over k iterations.

54:7

ICALP 2019

54:8 Fast Submodular Maximization with Matroid Constraints

Algorithm 2 LAzZYSAMPLINGGREEDY(f, M, €).
1. M =0(f(OPT)), c=0(1/e), N =2In(k/e)/e
2: ((maintain cached (rounded) marginal values))
3: For each e € V, let w(e) = (1 —)V M if f({e}) < (1—€)NM and w(e) = (1 — €)1 M if
f({e}) € (1 — €)M, (1 —) ~'M]
4: ((maintain a base B of maximum w(-) value in a data structure that

supports the UPDATEBASE operation))

5 B =argmaxger » .o w(e)

6: ((maintain a partition of B into buckets))

7. BU) = {e € B: w(e) = (1 — €)' M} for each j € [N]

8 W =5 cpwle)

9: ((main loop))
10: S=10
11: fort=1,2,...,k do
12: Call REFRESHVALUES
13: if W <4cM then
14: return S
15: end if
16: Sample an element e uniformly at random from B
17: S+ Su{e}
18: Remove e from the buckets of B for refreshing purpose so that w(e) is now fixed
19: end for

1: procedure REFRESHVALUES ({ Spot check and update values))
2 for j =1to N do

3 T=0

4 while T' < 4log, n do

5: if BY) is empty then

6 Exit the while loop and continue to iteration j + 1
7 end if

8 Sample e uniformly at random from BU)

9: Let v(e) = f(SU{e}) — f(S) be the current marginal value of e
10: if v(e) < (1 — €)M then

11: T=0

12: UPDATEBASE(e, j,v(e))

13: else

14: T+T+1

15: end if

16: end while

17: end for
18: end procedure

In each iteration, the algorithm assigns a linear weight to each element that is equal to the
marginal gain f(S U {e}) — f(S) on top of the current solution, and it finds a maximum
weight base B in M /S. The algorithm then samples an element of B uniformly at random
and adds it to the solution. As discussed in Section 1.2, the key difficulty for obtaining a fast
running time is maintaining the maximum weight base. Our algorithm uses the following
approach for maintaining an approximate maximum weight base. The algorithm maintains

A. Ene and H. L. Nguyen

the marginal value of each element (rounded to the next highest power of (1 —¢€)), and it
updates it in a lazy manner; at every point, w(e) denotes the cached (rounded) marginal
value of the element, and it may be stale.

The algorithm maintains the base B using the data structure discussed above that
supports the UPDATEBASE operation. Additionally, the elements of B\ S are stored into
buckets corresponding to geometrically decreasing marginal values. More precisely, there
are N = O(log(k/e¢)/¢) buckets BN B ... BW). The j-th bucket BY) contains all of
the elements of B with marginal values in the range ((1 — €)/M, (1 — €)~*M], where M
is a value such that f(OPT) < M < O(1)f(OPT) (we assume that the algorithm knows
such a value M, as it can be obtained in nearly-linear time, see e.g. Lemma 3.2 in [5]). The
remaining elements of B that do not appear in any of the IV buckets have marginal values
at most (1 — €)N M; these elements have negligible total marginal gain, and they can be
safely ignored.

In order to achieve a fast running time, after each Greedy step, the algorithm uses
sampling to (partially) update the base B, the cached marginal values, and the buckets. This
is achieved by the procedure REFRESHVALUES, which works as follows. REFRESHVALUES
considers each of the buckets in turn. The algorithm updates the bucket BU) by spot checking
O(logn) elements sampled uniformly at random from the bucket. For each sampled element
e, the algorithm computes its current marginal value and, if it has decreased below the range
of its bucket, it moves the element to the correct buckets and call UPDATEBASE to maintain
the invariant that B is a maximum weight base.

When the algorithm finds an element whose bucket has changed, it resets to 0 the count
for the number of samples taken from the bucket. Thus the algorithm keeps sampling from
the bucket until O(logn) consecutive sampled elements do not change their bucket. The
sampling step ensures that, with high probability, in each bucket at least half of the elements
are in the correct bucket. (We remark that, instead of resetting the sample count to 0, it
suffices to decrease the count by 1, i.e., the count is the total number of samples whose
bucket was correct minus the number of samples whose bucket was incorrect. The algorithm
then stops when this tally reaches ©(logn). This leads to an improvement in the running
time, but we omit it in favor of a simpler analysis.)

After running REFRESHVALUES, the algorithm samples an element e uniformly at random
from B\ S and adds it to S. The algorithm then removes e from the buckets; this ensures
that the weight of e will remain unchanged for the remainder of the algorithm.

2.1 Analysis of the approximation guarantee

Here we show that Algorithm 1 achieves a 1 — 1/e — ¢ approximation. We first analyze the
LAzZYSAMPLINGGREEDY algorithm. We start with some convenient definitions. Consider
some point in the execution of the LAZYSAMPLINGGREEDY algorithm. Consider a bucket
BU . At this point, each element e € BU) is in the correct bucket iff its current marginal
value f(S U {e}) — f(9) lies in the interval ((1 — €)?M, (1 — €)?~1M] (its cached marginal
value w(e) lies in that interval, but it might be stale). We say that the bucket BY) is good if
at least half of the elements in BY) are in the correct bucket, and we say that the bucket is
bad otherwise.

The following lemma shows that, with high probability over the random choices of
REFRESHVALUES, each run of REFRESHVALUES ensures that every bucket BU) with j € [N]
is good.

» Lemma 8. Consider an iteration in which LAZYSAMPLINGGREEDY calls REFRESHVALUES.
When REFRESHVALUES terminates, the probability that the buckets {BY): j € [N]} are all
good is at least 1 — 1/n?.

54:9

ICALP 2019

54:10

Fast Submodular Maximization with Matroid Constraints

Proof. We will show that the probability that a given bucket is bad is at most 5logn/n?; the
claim then follows by the union bound, since there are N < n/(5logn) buckets. Consider a
bucket BY), where j € [N], and suppose that the bucket is bad at the end of REFRESHVALUES.
We analyze the probability the bucket is bad because the algorithm runs until iteration
t, which is the last time the algorithm finds an element in B\) in the wrong bucket, and
for 4logn iterations after ¢, it always find elements in the right bucket even though only
1/2 of BY) are in the right bucket. Since at most half of the elements of BU) are in the
correct bucket and the samples are independent, this event happens with probability at most
(1/2)*1°e2m = 1/n*. By the union bound over all choices of t = 1,2,...,5nlogn, the failure
probability for bucket B\ is at most 5logn/n®. |

Since LAZYSAMPLINGGREEDY performs at most k < n iterations, it follows by the union
bound that all of the buckets {BW): j € [N]} are all good throughout the algorithm with
probability at least 1 — 1/n. For the remainder of the analysis, we condition on this event.
Additionally, we fix an event specifying the random choices made by REFRESHVALUES and
we implicitly condition all probabilities and expectations on this event.

Let us now show that B is a suitable approximation for the maximum weight base in
M/ S with weights given by the current marginal values f(SU {e}) — f(9).

» Lemma 9. Suppose that every bucket of B is good throughout the algorithm. Let v(e) =
f(SuU{e}) — f(S) denote the current marginal values. We have

(1) w(S") > v(S") for every S" CV;

(2) w(B) > (") for every S CV;

(3) v(B) > L5 - w(B) - % - M.

Proof. The first property follows from the fact that, by submodularity, the weights w(-) are
upper bounds on the marginal values.

The second property follows from the fact that the algorithm maintains the invariant
that B is the maximum weight base in M /S with respect to the weights w(-).

Let us now show the third property. Consider the following partition of B into sets Bj,
By, and Bs, where: B is the set of all elements e € B such that e is in one of the buckets
{BUY: j € [N]} and moreover e is in the correct bucket (note that (1 —e)w(e) < v(e) < w(e)
for every e € By); Bs is the set of all elements e € B such that e is in one of the buckets
{BW: j € [N]} but e is not in the correct bucket (i.e., (1 —)N M < w(e) but v(e) <
(1 — €)w(e)); B is the set of all elements e € B such that w(e) < (1 —)N M < (¢/k)2M

Since | Bs| < k, we have w(Bs) < |Bs| - (£)* M < < M.

Since all of the buckets are good, it follows that the total w(-) weight of the elements
that are in the correct bucket is at least 3 - w(B \ Bs). Indeed, we have

N N N |BW)| B\ B
_) 1) 1 _w(\ B3)
_;meBJ ;1 €)’~*M|B;,NBY)| ;1 €)i~ ! 5 = T

Finally, since v(e) > (1 — e)w(e) for every e € By, we have

1—c¢ 1—c¢ €2
> — —M.
5 w(B\ Bs) > 5 w(B) 3 <

v(B) >v(By) > (1 —e)w(By) >

Now we turn to the analysis of the main for loop of LAZYSAMPLINGGREEDY (lines
11-19). Let Z be a random variable equal to the number of iterations where the algorithm
executes line 17. We define sets {S;: t € {0,1,...,k}} and {OPT;: t € {0,1,...,k}} as
follows. Let Sy = 0 and OPTy = OPT. Consider an iteration ¢ < Z and suppose that

A. Ene and H. L. Nguyen

S;_1 and OPT;_; have already been defined and they satisfy S;_1 U OPT;_; € T and
|Si—1]| + |OPT;_1| = k. Consider a bijection 7 : B — OPT;_; so that OPT;_1 \ {m(e)} U{e}
is a base of M/S;_ for all e € B (such a bijection always exists, see e.g., Corollary 39.12a in
[22]). Let e; be the element sampled on line 17 and o; = 7(e;). We define S; = S;—1 U {e;}
and OPT; = OPT;_1 \ {o:}. Note that S; UOPT; € Z. For each t > Z, we define S; = Sz
and OPT; = OPT.

In each iteration ¢, the gain in the Greedy solution value is f(S¢) — f(S¢—1), and the loss
in the optimal solution value is f(OPT,_;) — f(OPT;) (when we add an element to S;_1,
we remove an element from OPT;_; so that S; U OPT; remains a feasible solution). The
following lemma relates the two values in expectation.

» Lemma 10. For every t € [k|, if all of the buckets BY) are good, we have
E[f(St) = f(Si-1)] = ¢+ E[f(OPT,—1) — f(OPT,)].

Proof. Consider ¢ € [k]. Recall that Z is the number of iterations where the algorithm
executes line 17. If t > Z, the inequality is trivially satisfied, since both expectations
are equal to 0. Therefore we may assume that ¢t < Z and thus S; = S;—; U {e;} and
OPT; = OPT;_1 \ {o:}.

Let us now fix an event R;_; specifying the random choices for the first ¢ — 1 iterations,
i.e., the random elements eq,...,e;—1 and 01,...,0;_1. In the following, all the probabilities
and expectations are implicitly conditioned on R;_1. Note that, once R;_1 is fixed, S;_; and
OPT;_1 are deterministic.

Let us first lower bound E[f(S;—1 U {e:}) — f(Si—1)]. Let wy, By, and W, denote w, B,
and W right after executing REFRESHVALUES in iteration ¢. Note that, since R;_; and the
random choices of REFRESHVALUES are fixed, w;, By, and W; are deterministic.

Recall that all of the buckets of B; are good, i.e., at least half of the elements of B,gj) are
in the correct bucket, for every j € [N]. Let B; be the subset of B; consisting of all of the
elements that are in the correct bucket, and let B} be the subset of B; consisting of all of
the elements that are not in any bucket.

For every e € Bj, we have f(S:;—1 U{e}) — f(Si—1) > (1 — €)w:(e). For every e € By ; we
have f(S;—1U{e})—f(Si—1) < wi(e) = (1—€e)N M < (¢/k)?*M, and therefore wy(B}') < ¢ M
(the

Since all of the buckets are good and W; > 4cM algorithm did not terminate on hne 14),

we have
/ j) al 1 ’ (J = 1 IB(J)|
> wie) ZmeB Z €)’"'M|B} N B} Z S LAV et :
e€B; Jj=1 Jj=1 Jj=1
wt(Bt\Bé’) W 62 2
S A S Vet A A - — - — .
3 2 2kM 2¢ o M > |{2c o f(OPT)

By combining these observations, we obtain

E[f(Si-1U{ed}) = f(Si-1)] Z EB[f (Si-1 U{e}) = f(Se-1)ler € Bi] Prle, € BY]

— E[f(S;—1 U {e:}) — f(Si_1)|es € Bl - :gtl > (1 — e)Efws(es)|es € B - :gzl
) 1o -9 (- g) c
= (1 - ew(By) - B 1B > 5] f(OPT) > Ef(OPT)

Let us now upper bound E[f(OPT;_;) — f(OPT})]. Recall that e; is chosen randomly from

54:11

ICALP 2019

54:12

Fast Submodular Maximization with Matroid Constraints

B and thus, o, is chosen uniformly at random from OPT,_; (since 7 is a bijection). Hence

B/ (OPTi—) = OPT\fo)] = 3> (FOPTio1) = FOPTi \{0}) T5r—

0€eOPTy_4

By submodularity, we have
f(OPT;y) Z F(OPT;—1) — f(OPTy—1 \ {0;}).

Therefore

E[f(OPT:—1) — f(OPT,_1 \ {o})] <

J(OPT\1) _ [(OPT)
|OPT,_1| — [OPT, 4|

To recap, we have shown that:

E[f(Si_1 Ufer}) — F(Si_1)] 2 fl(BOPT)
f(OPT)
E[f(OPT;_1) — f(OPT;_1 \ {o:})] < 10PT, 4|’

Since |B;| = |OPT;_1]|, we have
E[f(Si—1 U{e}) = f(Si-1)] = ¢ E[f(OPT;—1) — f(OPT;—1 \ {o:})]-

Since the above inequality holds conditioned on every given event R;_1, it holds uncondi-
tionally, and the lemma follows. <

The following lemma follows from Lemmas 9 and 10.

» Lemma 11. If all of the buckets BY) are good, the LAZYSAMPLINGGREEDY algorithm

(Algorithm 2) returns a set S € T with the following properties.

(1) maxgsr. srusez D ecg fs(e) <4eM = O(1/€) f(OPT).

(2) There is a random subset OPT' C OPT depending on S with the following properties:
SUOPT’ € Z and E[f(OPT")] > f(OPT) — % -E[f(S)] > (1 — %) f(OPT).

By combining Lemmas 7 and 11, we obtain:

» Lemma 12. The CONTINUOUSMATROID algorithm (Algorithm 1) returns a solution
1sVa € P(M) such that F(1sVx) > (1 —1/e — O(¢)) f(OPT) with constant probability.

Proof. Note that, in order to apply Lemma 7, we need the following condition to hold:
maxg: suser 2 eeg Js(€) < ¢ fs(OPT”), where OPT” € argmaxg, . gusezfs(S”).

Using Lemma 11, we can show that the above condition holds with constant probability
as follows. Let OPT' be the set guaranteed by Lemma 11. We have fs(OPT') < fs(OPT")
and f(SUOPT’) > f(OPT’). Therefore fs(OPT") > fs(OPT’) > f(OPT') — f(9).

By Lemma 11, we have E[f(OPT) — f(OPT’)] < f(OPT)/c. Therefore, by the Markov
inequality, with probability at least 2/3, we have f(OPT)— f(OPT’) < 3f(OPT)/c. Consider
two cases. First, if f(S) > (1—1/e)f(OPT) then the algorithm can simply return S. Second,
if f(S) < (1 —1/e)f(OPT) then fs(OPT”) > f(OPT') — f(S) > (1/e — 3/c)f(OPT).
Therefore, maxs:. siusez Y g fs(e) < O(cfs(OPT")) < ¢/ fs(OPT"). Thus the conditions
of Lemma 7 are satisfied and thus the continuous Greedy algorithm returns a solution
x € P(M/S) such that

Plsva) = 1(5) 2 (1= 1 =) (OPT) - £(5)

e

> (1 _ % - e) <1 - i) F(OPT) — f(S) > (1 L 2e> F(OPT) — £(S). «

e

A. Ene and H. L. Nguyen

—— References

1

10
11

12

13

14

15

16

17

18

19

20

Alexander Ageev and Maxim Sviridenko. Pipage Rounding: A New Method of Constructing
Algorithms with Proven Performance Guarantee. Journal of Combinatorial Optimization,
8(3):307-328, 2004.

Yossi Azar and Iftah Gamzu. Efficient Submodular Function Maximization under Linear
Packing Constraints. In International Colloquium on Automata, Languages and Programming
(ICALP), 2012.

Ashwinkumar Badanidiyuru and Jan Vondrék. Fast algorithms for maximizing submodular
functions. In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2014.

Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. Submodular Maximization
with Cardinality Constraints. In ACM-SIAM Symposium on Discrete Algorithms (SODA),
2014.

Niv Buchbinder, Moran Feldman, and Roy Schwartz. Comparing Apples and Oranges: Query
Trade-off in Submodular Maximization. Math. Oper. Res., 42(2):308-329, 2017.

Gruia Calinescu, Chandra Chekuri, Martin P4l, and Jan Vondrak. Maximizing a Submodular
Set Function Subject to a Matroid Constraint. SIAM Journal on Computing, 40(6):1740-1766,
2011.

Chandra Chekuri, T. S. Jayram, and Jan Vondrak. On Multiplicative Weight Updates for
Concave and Submodular Function Maximization. In Conference on Innovations in Theoretical
Computer Science (ITCS), 2015. doi:10.1145/2688073.2688086.

Chandra Chekuri, Jan Vondrék, and Rico Zenklusen. Dependent Randomized Rounding via
Exchange Properties of Combinatorial Structures. In IEEE Foundations of Computer Science
(FOCS), pages 575-584. IEEE Computer Society, 2010.

Shaddin Dughmi, Tim Roughgarden, and Mukund Sundararajan. Revenue Submodularity.
Theory of Computing, 8(1):95-119, 2012.

Uriel Feige. A threshold of In n for approximating set cover. jacm, 45:634-652, 1998.

Yuval Filmus and Justin Ward. Monotone Submodular Maximization over a Matroid via
Non-Oblivious Local Search. SIAM Journal on Computing, 43(2):514-542, 2014.

M L Fisher, G L Nemhauser, and L. A Wolsey. An analysis of approximations for maximizing
submodular set functions—II. Mathematical Programming Studies, 8:73-87, 1978.

Bernard A Galler and Michael J Fisher. An improved equivalence algorithm. Communications
of the ACM, 7(5):301-303, 1964.

Ryan Gomes and Andreas Krause. Budgeted Nonparametric Learning from Data Streams. In
International Conference on Machine Learning (ICML), pages 391-398, 2010.

Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
Journal of the ACM (JACM), 48(4):723-760, 2001.

David Kempe, Jon M. Kleinberg, and Eva Tardos. Maximizing the spread of influence through
a social network. In ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), pages 137-146, 2003.

Andreas Krause, Ajit Paul Singh, and Carlos Guestrin. Near-Optimal Sensor Placements in
Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies. Journal of Machine
Learning Research, 9:235—-284, 2008.

Hui Lin and Jeff A. Bilmes. Multi-document Summarization via Budgeted Maximization of
Submodular Functions. In Human Language Technologies: Conference of the North American
Chapter of the Association of Computational Linguistics, pages 912-920, 2010.

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrak, and
Andreas Krause. Lazier Than Lazy Greedy. In AAAI Conference on Artificial Intelligence
(AAAI), 2015.

G L Nemhauser and L. A Wolsey. Best Algorithms for Approximating the Maximum of a
Submodular Set Function. Mathematics of Operations Research, 3(3):177-188, 1978.

54:13

ICALP 2019

http://dx.doi.org/10.1145/2688073.2688086

54:14

Fast Submodular Maximization with Matroid Constraints

21

22
23

24

G L Nemhauser, . A Wolsey, and M L Fisher. An analysis of approximations for maximizing
submodular set functions—I. Mathematical Programming, 14(1):265-294, 1978.

Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003.
Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the
ACM (JACM), 22(2):215-225, 1975.

Jan Vondrak. Optimal approximation for the submodular welfare problem in the value oracle
model. In ACM Symposium on Theory of Computing (STOC), 2008.

	Introduction
	Our contributions
	Technical overview
	Basic definitions and notation
	Paper organization

	The algorithm for the continuous optimization problem
	Analysis of the approximation guarantee

