Phys: Probabilistic Physical Unit Assignment
and Inconsistency Detection

Sayali Kate John-Paul Ore Xiangyu Zhang
Purdue University, USA University of Nebraska-Lincoln, USA Purdue University, USA
skate@cs.purdue.edu jore@cse.unl.edu xyzhang@cs.purdue.edu

Sebastian Elbaum

University of Nebraska-Lincoln, USA

elbaum@cse.unl.edu

ABSTRACT

Program variables used in robotic and cyber-physical systems often
have implicit physical units that cannot be determined from their
variable types. Inferring an abstract physical unit type for variables
and checking their physical unit type consistency is of particular
importance for validating the correctness of such systems. For in-
stance, a variable with the unit of ‘meter’ should not be assigned
to another variable with the unit of ‘degree-per-second’. Existing
solutions have various limitations such as requiring developers to
annotate variables with physical units and only handling variables
that are directly or transitively used in popular robotic libraries
with known physical unit information. We observe that there are a
lot of physical unit hints in these softwares such as variable names
and specific forms of expressions. These hints have uncertainty
as developers may not respect conventions. We propose to model
them with probability distributions and conduct probabilistic in-
ference. At the end, our technique produces a unit distribution
for each variable. Unit inconsistencies can then be detected using
the highly probable unit assignments. Experimental results on 30
programs show that our technique can infer units for 159.3% more
variables compared to the state-of-the-art with more than 88.7%
true positives, and inconsistencies detection on 90 programs shows
that our technique reports 103.3% more inconsistencies with 85.3%
true positives.

CCS CONCEPTS

« Software and its engineering — Abstract data types; Soft-
ware defect analysis; « Mathematics of computing — Factor
graphs;

KEYWORDS

abstract type inference; physical units; static analysis; unit consis-
tency; dimensional analysis; probabilistic inference; robotic systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5573-5/18/11...$15.00
https://doi.org/10.1145/3236024.3236035

563

Zhaogui Xu
Nanjing University, China
zhaoguixu@outlook.com

ACM Reference Format:

Sayali Kate, John-Paul Ore, Xiangyu Zhang, Sebastian Elbaum, and Zhaogui
Xu. 2018. Phys: Probabilistic Physical Unit Assignment and Inconsistency
Detection. In Proceedings of the 26th ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE ’18), November 4-9, 2018, Lake Buena Vista, FL, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3236024.3236035

1 INTRODUCTION

Program variables representing physical units like meter or radian
are common in robotic and cyber-physical systems. However, the
types of these variables (e.g., float and double) can hardly denote
such physical information. While compilers and many analysis
techniques ensure variables are manipulated according to the typ-
ing rules, ensuring variables with physical units are manipulated
according to the semantics of the physical world, however, is less
common and yet as crucial for these kinds of systems. For example,
a recent study found hundreds of faulty manipulations in robots
using the ROS middleware [22]. Those systems built correctly but
presented inconsistent unit manipulations such as assigning linear
(meter-per-second) and angular (radian-per-second) units to
a variable, or adding variables representing velocity (meter-per-
second) and distance (meter).

Automated approaches to aid in the detection of inconsistent
usage of variables representing physical units include unit-aware
programming languages [1, 31], unit-aware libraries [9, 30], and
unit type annotations [10]. These approaches, however, have not
been broadly adopted in part because of their associated cost in
modifying existing systems or changing entrenched development
practices. Approaches that require no additional development in-
vestment are desirable but rare. One of such approaches, Unify,
can detect unit usage discrepancies across versions [7], but it can-
not detect unit inconsistencies when a variable is first introduced.
Another approach is taken by Ayudante [8], which infers abstract
type inconsistencies by contrasting clusters of variables based on
dataflow versus clusters based on the meaning of variable names
as per a large lexical database [18]. This approach, however, misses
much of the unique constructive semantics of physical units (like
meter? = meter * meter) and assumes that all these variable and
name associations are certain, when in practice they are probabilis-
tic. A more broadly applicable approach that requires no additional
developer investment is Phriky-Units (Phriky), which relies on one-
time mapping of physical attributes in shared-libraries to units [23]
to infer the units of variables, and uses a lightweight dataflow anal-
ysis and unit propagation to facilitate inconsistency detection using

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3236024.3236035
https://doi.org/10.1145/3236024.3236035

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

dimensional analysis. The one-time mapping and lightweight analy-
sis that make Phriky cost-effective at detecting inconsistencies, also
limit its power. In particular, we noticed that Phriky only assigns
units to a small fraction of the variables of non shared-library data
types that hold physical units (in this paper we quantify that space
to be under 31.56%).

To address that limitation, we propose an approach that can tap
on new sources of information to assign units to a larger portion of
the variable space, facilitating the detection of more inconsistencies.
The approach builds on two key insights. First, variables represent-
ing physical entities are often named and operated on to reflect
those entities, giving hints about variables’ units. For example, in
the statement: v = angSpeed * wheel_diam/2, names ‘angSpeed’ and
‘wheel_diam’ suggest that they represent angular speed and length
respectively, and a multiplication operation on them indicates that
variable v is intended to represent linear velocity. Second, since
the correctness of these hints is not certain (developers can violate
naming conventions or inappropriately operate on units) we must
deal with them probabilistically. For example, since name ‘“wheel_-
diam’ does not use the entity term ‘diameter’ completely, we can
only say that it is likely to have unit ‘meter’ with some probability.

Put together, these insights indicate that there are hints to be
leveraged but to do so we need to model the sources of uncertainty
in terms of probabilities. More specifically, our approach: 1) col-
lects initial observations (or beliefs) based on various evidences
such as variable names and expression forms that suggest physical
unit (e.g., expression x > x indicates x has unit ‘radian’), and
encodes them as initial probabilities to model uncertainty; 2) an-
alyzes the code to generate five kinds of probability constraints
that denote dependencies between variable units; 3) generates a
graph where the nodes are the initial observations and constraints
transformed into functions on the variables, and the edges connect
the functions with their corresponding variables; and 4) performs
belief propagation [25] along the edges to determine the posterior
probabilities denoting the likelihood that a variable would have
an associated physical unit. Once the variables have a physical
unit assigned, detection of inconsistency is performed following
established dimensional analysis rules [3].

The contributions of our work are:

e A probabilistic approach for physical unit inference and
inconsistency detection that takes advantage of variables’
names, expression forms, and associated operations to make
probabilistic inferences of unit types.

o A prototype of the approach implemented in a tool, Phys, that
assigns units and detects inconsistencies on C++ programs.

e An evaluation on 90 sample ROS-based project files. The
assessment shows that Phys can infer units for 159.27% more
variables of non shared-library data types in 30 sample files
(with more than 88.7% true positives), and detect 103.31%
more inconsistencies in 90 sample files (with 85.3% true pos-
itives), when compared with the state-of-the-art.

2 BACKGROUND

In this section, we introduce the basic notations of physical units
and unit-inconsistencies, and provide a brief overview of proba-
bilistic inference based on graphical models.

564

S. Kate, J. Ore, X. Zhang, S. Elbaum, Z. Xu

2.1 Physical-units and Unit-inconsistency
Detection

In robotic software, some variables represent the physical dimen-
sions such as length, velocity, and acceleration. Each of these vari-
ables carries a physical-unit, e.g., a variable representing length
stores a value of unit ‘meter’. Operations on such variables need
to follow certain dimensional rules, e.g., a length value cannot be
added to a velocity value. Violation of such a rule, we refer to
as unit-inconsistency. In order to detect a unit-inconsistency, we
first need to collect the physical-unit information of each variable.
However, physical-unit information is not explicitly declared for
variables unlike type information. For example, while length and
velocity carry different physical-units, ‘meter’ and ‘meter-per-
second’, respectively, they may be represented by variables of the
same type, e.g., ‘float’. Therefore, traditional type checking of a
software program cannot detect unit-inconsistencies. A new kind of
analysis is required to detect unit-inconsistencies. These analyses
focus on inferring the physical-units of variables. There have been
a number of previous works that aim to address this challenge such
as the tools Phriky [23, 24] and Osprey [10].

In particular, Phriky performs unit consistency analysis on pro-
grams that use a robotic shared-library containing data-types for
various physical quantities. These shared-library data-types pro-
vide the basic unit information for a subset of variables as a starting
point for the analysis. Such initial unit information is propagated
to other variables through a set of inference rules similar to typing
rules. Specifically, the tool Phriky implements a lookup table, called
a ‘mapping, from attributes of shared libraries to physical units
for software written for the Robot Operating System (ROS). ROS
is a publisher-subscriber middleware that defines commonly used
messages in shared libraries. These shared messages have attributes
with physical meanings like lengths, velocities, and accelerations.

Our tool Phys leverages this one-time ‘mapping’ during analysis
as one way to find variables with units. Also, it uses the same
notation for physical-units and unit-inconsistencies as defined by
Phriky. The notation is described below.

Physical-units. The physical-unit representation contains a stan-
dard set of units from the specification of International System of
Units (SI) [2], plus some units officially accepted to be used with
the SI system. Following [10], units are defined as:
u := meter | second | kilogram | quaternion | radian |
degree_360 | amp | candela | degree_celsius |
unknown | dimensionless | u1 * uz | u™*

(1)

Unit unknown means that the unit of a variable is not known. The
unit dimensionless means a variable does not have a unit, such
as a scaling factor or the ratio ‘meter-per-meter’. The product
u1 * u represents a multiplication of two units and u~! represents
the inverse of a unit. Together, product and inverse form vari-
ous derived units like ‘meter * second™!’, i.e., a unit of velocity,
‘meter-per-second’. Further, note that we use the same unit to
represent variables of the same dimension. So, two variables of the
length dimension with different units in practice, ‘centimeter’ and
‘meter’ respectively, are assumed to have the same unit, ‘meter’.

Phys: Probabilistic Physical Unit Assignment...

Unit-inconsistency Detection. The violation of dimensional rules,
such as one can only add or compare values of the same dimen-
sion, are translated to unit-inconsistencies over program constructs.
They are listed below. Let u; and uy be two different units.
(1) Addition/subtraction of inconsistent units: an inconsistency is
detected when there is an addition/subtraction of two different units.
Note that multiplication and division of inconsistent units may be
legitimate, such as ‘meter-per-second * second, and hence not a
good standard for inconsistency detection [23].
up (+,-) u

(2) Comparison of inconsistent units: an inconsistency is detected
when two different units are compared to each other.

u (<, <,=,%,2,>) uy
(3) Assignment of inconsistent units. This category includes two
cases: a) the left-side and the right-side of an assignment have
different units; b) the right-side of an assignment has two different
units, e.g., a right-side variable may have different units in the two
branches of a conditional statement. Note that we union the units.

uy — uz, x — {ug,uz)
(4) Function with different unit arguments: an inconsistency is de-
tected when a function’s i*" argument receives values with different
units in two different function calls.

fw), f(uz)

Detection of unit-inconsistencies serves two purposes: 1) the incon-
sistent use of units may be intentional as per the developer. In such
a case, it is always recommended to document a suspicious use of
units, especially when the code is meant to be reused. This makes it
easier to maintain the code; 2) the inconsistent use of units exposes
the source of a potential unintended system behavior, or a bug.

2.2 Probabilistic Inference with Graphical
Models

Often while solving real-world problems, we need to draw conclu-
sions based on incomplete or uncertain information. Uncertainty
is usually modeled in the form of a probability distribution. The
process of performing inference based on such models is called
probabilistic inference. One type of probabilistic inference is the
computation of a marginal probability of the event or property. For
example, in our case, we need to compute the marginal probability
that a variable x has unit u from the probability distribution of
all variables in the program being of unit u. The probability that
x has unit u is conditioned on how x is used in the program and
depends on what is assigned to x and how x is used in mathematical
expressions. Factor graphs [14] are used to represent the structure
of this conditional dependence.

In factor graphs, a random variable (or a boolean variable with
probability, “r is 0.7 chance true”) is used to denote a predicate
(e.g., program variable x has unit u, or P(x, u)). Inter-dependent
random variables are denoted as a propositional logic formula with
probabilities. For instance, the information that a variable vel likely
has the unit of ‘meter-per-second’ with probability 0.7 is denoted

by N(‘vel’,meter-per-second) 27, P(vel, meter-per-second).
Intuitively, it means from the naming convention N (think of it as a
dictionary that maps a name to its unit) we know that a name ‘vel’
has the ‘meter-per-second’ unit, we then have 0.7 confidence that
variable vel is really of that unit, with probability 0.7 modeling
the uncertainty of naming conventions (i.e., programmers may not

565

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

1 void UpdateControl() {] ;|
2 if (active_kinematic_mode_ == SKID_STEERING) {
5 Inference|
4 v_right_mps = ((joint_state_.velocity[brw_vel_] + joint_state_.velocity[frw_vel_]) / 2.0) *
(summit_xI_wheel_diameter_/2.0);
5 . e
6 epv =‘v_ref_x_‘-‘IinearSpeedXMps_L;
7 epw = w_ref_ - angularSpeedRads_;
8
9 1}
10 if (active_kinematic_mode_ == MECANUM_STEERING) {
11
12 double L = summit_xI_wheelbase_; double x1 = L/2.0;
13 double W = summit_xI_trackwidth_; double y1 = -W/2.0; JUPPEEEE N
14 double @=' w_ref_"y1; "/Subtraction of\\‘.
15 double w f_y_ +w_ref_*x1; '_inconsistent units
16 double sqrt(+wy1 *wyl); e
17 .
18 frw_ref_vel_msg.data = saturation(-1.0 * (joint_state_.velocity[frw_vel_] - -limit, limit);
19 .
20 } meter * second™!
21 (inferred)
22}

void setCommand(const geometry_msgs::Twist &cmd_vel) {

24 = saturatio-10.0, 10.0);
25 v_refly aturation(cmgj;\'/él.linear.y, -10.0, 10.0);
26 w_ref_ lura,tjonggm"diveI.angular.z, -10.0, 10.0);
S

27}

28 double saturation(double u, double min,double max) {
29 if (u>max) u = max;

30 if (u<min) u =min;

w

1 returnu;}

(a) Code snippet showing several constraints related to variable q1.
source: https://git.io/vAAAI

linearSpeedXMps

cmd_vel.linear.x

(b) Inference resulting in meter-per-second units for g1.

Figure 1: Example unit inconsistency detected using proba-
bilistic constraints.

respect naming conventions). A random variable may be involved
in multiple propositional logic formulas denoting its dependencies.
For instance, if the program has an assignment statement x = y, we

have P(y, U) 2%, P(x,U). The factor graph engine will take these
formulas, derive the corresponding joint probability distribution,
and perform probabilistic inference. There are various inference
algorithms, both exact and approximate, defined for these graphical
models. The approximate algorithms allow us to find solutions
where the exact inference is infeasible. After inference, the post-
distribution denotes the fusion of all the (uncertain) evidences and
hence our analysis results. A detailed description of probabilistic
graphical models representation and inference can be found in [13].

Phys uses a factor graph model to represent the joint probability
distribution of variables being of unit u. And, since there can be a
large number of variables in the program, it uses an approximate
algorithm for the unit inference.

3 MOTIVATING EXAMPLE

Figure 1a shows a code-snippet from a ROS-based project file avail-
able on GitHub, ‘summit_x1_robot_control.cpp’. Phys reports

https://git.io/vAAAI

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

an inconsistency on line 18. The nature of the inconsistency is that
the robot’s low-level wheel controllers are commanded an incorrect
reference velocity. This inconsistency is difficult to detect statically
or at run-time because it is syntactically and semantically correct as
per the programming language, and the wheel turns in the correct
direction but the velocity is incorrect in proportion to the radius of
the robot’s wheel (it is not apparent for smaller wheels). As a result,
under some scenarios, the robot can move undesirably slow. In such
cases, control engineers often blame the low-level controller and try
to compensate by tuning control gains, i.e., changing parameters
to make the motors more sensitive to the (faulty) signal, leading to
potential instabilities.

We are motivated by these kinds of stealthy, difficult-to-detect
bugs that require combining multiple information sources each with
a different degree of certainty—from less certain variable name hints
to more certain dataflow hints.

Going back to our example in Figure 1a, to detect the ‘subtraction
of inconsistent units’ in line 18, we need to infer units of joint_state -
.velocity and q1 ([frw_vel_] omitted for brevity). Inferring units for
variables like joint_state_.velocity, which instantiate shared ROS
libraries attributes with known unit types, is already done success-
fully by Phriky using predefined maps so we reuse that approach.
More specifically, variable joint_state_.velocity is an attribute of
class sensor_msgs::JointState, and the mapping determines that the
attribute JointState::velocity have units ‘per-second’.

Variable g1, however, does not instantiate anything with a known
unit. Inferring units for such variables requires a new and more
sophisticated approach for unit inference, as used by our tool Phys.
We note that variable qI on line 16 is assigned units computed
from the units of wxI (and wyI; description for wyI omitted for
simplicity). wx1 is assigned units on line 14, providing a dataflow
constraint from v_ref x_because v_ref x_is part of an addition, and
we assume all units within an addition are the same. For inferring
the units of v_ref x_ we have two hints: 1) a dataflow constraint
on line 6 from linearSpeedXMps_ along with a naming hint because
linearSpeedXMps_ contains the substring ‘Speed’; and 2) assignment
of units resulting from the procedure saturation on line 24. Inter-
estingly, saturation uses its first parameter as the return variable
and thus provides a hint that its returned units may be the same as
its first argument’s units. Therefore, on line 24, v_ref x_ is likely to
have the same units as argument cmd_vel.linear.x that has a known
unit associated as part of the map.

All these hints together form a set of probabilistic constraints,
partially shown in Figure 1b as an inference graph. Phys then calcu-
lates the likelihood of possible unit assignments for g1 and assigns
the most likely unit, which turns out to be ‘meter-per-second’
with the highest probability of 0.81, reporting that:

Addition of inconsistent units on line 18.
Attempting to add [{'second': -1.0}] to
[{'second': -1.0, 'meter': 1.03}].

4 APPROACH

In this section, we first provide a high-level overview of Phys, then
give a detailed description of the probabilistic constraints gener-
ated by Phys, and finally discuss how the probabilistic inference
engine transforms probabilistic constraints into a factor graph and
conducts graph inference.

566

S. Kate, J. Ore, X. Zhang, S. Elbaum, Z. Xu

\m‘ Variables with
Code 3
Probabilistic Associated
Unit B
Predefined Infern?nce Unit Units
. Known Engine
Unit Maps Inconsistency .
R Inconsistency
Detection
Probabilistic
Constraint Apply Units
Collector and Iterate
Stage 1 Stage 2
Phys
Figure 2: Overview of Phys framework.
Table 1: Constraint Predicate Definitions
TYPE SYMBOL DEFINITION
Dataflow D(var, u) var has unit u based-on dataflow
dependency of var on ROS-TYPED variable.
Naming N(var, u) var has unit u based-on its name.
Computed-Unit C(var, u) unit u of var is computed from the right
side of assignment statement, ‘var = expr’.
Known-Symbol K(var, u) var has unit u based-on known symbols.
Conversion F(var, u) var has unit u based-on unit-conversion
expression.
Prior- pred =1(q) pred is true with probability q.
Probability
P
Implication predl— pred2 predlimplies pred2 with probability p.

Table 2: Collected constraints for example in Figure 1.

‘ LN# Probabilistic Constraint Tter#
0.95
(1) | 24 C(v_ref x_, ms™!) — P(v_ref x_, ms™}) 1
()| 25 C(v_ref_y_, ms™) %, P(v_ref_y_, ms™}) 1
0.95

(3)| 6 P(v_ref x_, ms™') & P(linearSpeedXMps_, ms~?) 1

(4) | - N(linearSpeedXMps_, ms~') 7, P(linearSpeedXMps_, ms™?) 1
0.95

(5) | 14 P(wxl, ms™!) < P(v_ref x_, ms™!) 1
0.95

6) | 15 P(wyl, ms™') < P(v_ref_y_, ms™") 1

(7| 16 C(q1, ms™) 2, P(q1, ms™1) 2

0.7
(8) | - N(summit_xl_wheelbase_, m) — P(summit_x]_wheelbase_, m) 1
(9) | - N(summit_x|_trackwidth_, m) ﬂ» P(summit_xI_trackwidth_, m) 1
0.95
(10)| 12 P(L, m) «— P(summit_xl_wheelbase_, m) 1
0.95

(11)| 13 P(W, m) «— P(summit_xl_trackwidth_, m) 1

2)| 26 Cow ref, s71) 22 P(w ref , s71) 1
0.95

(13)| 7 P(w_ref_, s7!) «— P(angularSpeedRads_, s~') 1

(14) - N(angularSpeedRads_, s~1) L, P(angularSpeedRads_, s~*) 1

(15)| 12 C(x1, m) 2%, P(x1, m) 2

0.95

(16)] 13 C(yl, m) — P(y1, m) 2

(17)| 14 C(wx1l, ms™) 2%, P(wx1, ms™1) 3
0.95

18)[15 wyl, ms™') — P(wyl, ms~ 3

(18) C(b) P(b

Figure 2 shows an overview of the Phys framework. It is divided
into two stages: Stage 1 infers units with the help of a probabilistic
inference engine, and Stage 2 uses the inferred units to detect unit
inconsistencies.

Stage 1: Probabilistic Unit Inference. There are two main com-
ponents for unit inference as shown in Figure 2 Stage 1: probabilistic
constraint collector and probabilistic inference engine. The con-
straint collector first preprocesses the code to generate a list of
functions and then scans each function to identify variables that
instantiate ROS shared library data types. Using a predefined map

Phys: Probabilistic Physical Unit Assignment...

from ROS attributes to units [24], these variables can be directly as-
signed a physical unit. The mapping is a one-time effort and consists
of 98 data structures, each having 2-5 fields. For example, variables
instantiating the ROS attribute geometry_msgs::Twist.linear.x are
mapped to ‘meter-per-second. The mapping provides a subset of
variables with known units and allows us to transfer this known
unit information to variables of non-shared library type and then
fuse it with other unit hints.

Next, the constraint collector traverses through the code to
gather unit hints called observations and to derive constraints that
denote relations between variables. Table 1 defines five types of ob-
servations (dataflow, naming, computed-unit, known-symbol, and
conversion) denoted as predicates asserting a variable var has a unit
u. These observations are associated with some prior probabilities
to express the initial confidence in those observations to be true,
which is captured by the constraint type defined in the sixth row of
Table 1. The collector also constructs implication constraints, as per
the seventh row of Table 1, which capture the inter-dependences of
the predicates based on program semantics, allowing probabilities
to be propagated and fused. Last, the constraint collector records
composite units such as ‘meter-per-second-squared’, the result
of combining units in mathematical expressions. The observed and
composite units are added to the set UNIT_SET.

After all constraints have been collected, the probabilistic infer-

ence engine transforms the constraints into a factor graph. The
engine performs belief propagation in the graph for each unit in
UNIT_SET. This yields a posterior marginal probability for each
variable, var, having a unit, u, denoted as P(var, u). If there is some
evidence for u (i.e., with probability p > 0.5, where 0.5 is no knowl-
edge), and u is more likely than any other unit, then var is assigned
the unit u. As shown in Figure 2, Stage 1 includes an iterative
process of gathering constraints, running the probabilistic infer-
ence engine, inferring units, and again gathering constraints. The
iterative part is repeated until a fixed point is reached.
Stage 2: Unit-inconsistency Detection. The unit inconsistency
detector scans the annotated abstract syntax tree (AST) for unit
inconsistencies as defined in Section 2.1. That is, inconsistent addi-
tion/subtraction, comparison, assignment, or function arguments.
To mitigate false positives, the detector is conservatively configured
by default to report an inconsistency only if the three most likely
unit assignments to the variables involved in an expression all yield
an inconsistency. Phys then emits a list of variable unit assignment
and any detected inconsistencies.

4.1 Probabilistic Constraints

Phys has two forms of constraints: the prior-probability constraints,
and the implication constraints.

As shown in Table 1, a prior-probability constraint encodes that
an initial observation pred is true with some confidence ¢, and is
denoted pred = 1(q). This constraint encodes belief from prior hu-
man domain knowledge and distributions of known types inferred
solely from ROS libraries. The inherent uncertainty in this con-
straint can be substantially suppressed when the inference engine
fuses information from many sources.

Implication constraints are used to relate two predicates/random-

variables together, and take the form pred1 2, pred2 with confi-
dence p, and can also be bidirectional. Table 2 shows implication

567

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

constraints collected from the code snippet in Figure 1a. Notice
how every constraint in the table is formulated as an implication
constraint, from an observation predicate to a posterior predicate
such as (1) and (2), or from a posterior predicate to another pos-
terior predicate such as (10) and (11). Next, we discuss how to
collect the constraints from the data flow, naming, computed-unit,
known-symbol and conversion perspectives.

Dataflow Constraints. Dataflow constraints are collected for vari-
able pairs that can have the same unit due to program dataflow. For
example, Figure 1a has a dataflow constraint on line 14: wx1 and
v_ref_x, and the generated constraint is shown in Table 2 (5). In this
example, the dataflow constraint encodes the dimensional rule that
the units resulting from addition/subtraction are likely the same
as the units of the operands. As shown in the table, this constraint
has a probability of 0.95. It is a standard to use 0.95 to represent
high confidence in the inference [32].

More generally, various program expressions such as addition,
comparison, min(), max() function calls, and copy provide unit
hints about their operands according to the dimensional rules. The
operands of such expressions or statements potentially represent
quantities with the same unit. If a dataflow relation for the same
unit is detected for variables a and b, we add an implication con-

straint between the two predicates: P(a, u) &% P(b,u), where
u € UNIT_SET and confidence is propagated in both directions.
For variables with unit hints from the ROS mapping, we for-
mulate the following constraints: 1) a prior probability constraint,
D(b,K) = 1(0.95) with D asserting the unit of a ROS variable; and

2) an implication constraint, D(b, K) 2%, P(b,K).

Naming Constraints. Developers tend to use variable names that
hint at the physical quantities they represent. For example, linear-
SpeedXMps_ contains ‘Speed’ that suggests a linear velocity. Phys
uses a hand-coded lookup table between common strings (called
‘suffixes’) and units. For example, ‘length’ and ‘distance’ are mapped
to ‘meter’. Generating the table is a one-time effort. The current
version contains only 41 entries.

To find the best suffix match, Phys uses a similarity metric:

max len(LCS(var, s, k))
se{(su)) MAX_LEN_SUFFIX

sim(var,u) = (2)
Here, sim(var, u) computes the maximum similarity between vari-
able var over all suffixes s, where {(s : u)} is the set of all suffixes
with the same unit u. The term len(LCS(var, s, k)) represents the
length of a longest common substring between a variable var and a
suffix s such that the length is at least k and the substring starts with
the first k characters of a suffix s (k = 3 in our implementation).The
longest hand-coded suffix, MAX_LEN_SUFFIX = 12.

The maximum similarity score sim(var, u) is then converted to
a naming constraint:

N(var,u) = 1(p = 0.5+ 0.5 = sim(var, u)) (3)

The confidence p is scaled so that a similarity of 0 is a confidence
of 0.5, meaning ‘no evidence’. An implication constraint is also
generated. For linearSpeedXMps_, it is:

N(linearSpeedXMps_,ms_l) 2, P(linearSpeedXMps_,ms_l) (4)
The predicate N(linearSpeedXMps_, ms™') has an initial confidence

0.5+0.5*sim(var, ms~!) that is propagated to P(linearSpeedXMps_,
ms~1) with probability 0.7.

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

S. Kate, J. Ore, X. Zhang, S. Elbaum, Z. Xu

Table 3: Probabilistic constraints.

Type | Expression | Condition | Probabilistic Constraints
0.95
Dataflow aop;b, c?a:b a € ROS-TYPED-VARS A D(b, u) = 1 (0.95); D(b, u) — P(b, u)
Op1 € {4, 4=, =, =, <, <=, ==, 1=, >, >=) b ¢ ROS-TYPED-VARS;
ROS-VAR(a, u)
0.95
min(a, b) a ¢ ROS-TYPED-VARS A D(a, u) = 1 (0.95); D(a, u) — P(a, u)
max(a, b) b € ROS-TYPED-VARS;
ROS-VAR(b, u)
a=b opy cos(x),a=b opy sin(x), opz € { %,/ } a ¢ ROS-TYPED-VARS A P(a, U) &5 P(b, U)
b ¢ ROS-TYPED-VARS
Function definition: f(type a, ...), Function call: f(b, ...)
0.7
Naming var_name p=05+ % * sim(var_name, U) | N(var_name, U) = 1 (p); N(var_name, U) — P(var_name, U)
Computed- | a=expr YV v:v € vars(expr) A C(a, cu) =1 (1.0); C(a, cu) 25, P(a, cu)
unit v € ROS-TYPED-VARS;
cu = unit(expr)
A v:v € vars(expr) A C(a, cu) =1 (0.8); C(a, cu) 2%, P(a, cu)
v & ROS-TYPED-VARS;
cu = unit(expr)
0.95
Known- cos(a), sin(a) K(a, radian) = 1 (0.95); K(a, radian) — P(a, radian)
symbol
Conversion | a=b* /180 F(a, radian) = 1 (0.9); F(a, radian) 2%, P(a, radian),
0.95
F(b, degree_360) = 1 (0.9); F(b, degree_360) — P(b, degree_360)
0.95
a=b*180/ F(a, degree_360) = 1 (0.9); F(a, degree_360) — P(a, degree_360),
F(b, radian) = 1 (0.9); F(b, radian) —— P(b, radian)
0.95
aopnum,op € { +, -, +=,-=,=, <, <=,==,!=, >, >=} num: numerical value > 27r; F(a, degree_360) = 1 (0.9); F(a, degree_360) — P(a, degree_360)
unit(a) == radian
aopm,op €{+,-+=-==<,<===1=> >=} F(a, radian) = 1 (0.95); F(a, radian) 2%, P(a, radian)

The confidence 0.7 for all naming constraints reflects that vari-
able names are uncertain and can cause false unit inconsistencies if
not augmented with other evidence. This confidence is the lowest
among all confidence probabilities configured in Phys, as naming
usually provides the weakest hint about a variable’s unit. The value
0.7 was empirically identified, yielding a sufficiently high TP rate
(> 80%) while retaining enough detection power to find signifi-
cantly more unit inconsistencies than other methods.
Computed-Unit Constraints. Computed-unit constraints are col-
lected for the assignment resulting from mathematical expressions,
which may compose/compute new units from the operands’ units.
To generate a computed-unit constraint for a mathematical expres-
sion, we first need unit derivation rules. For example, for a division
expression x/y, the unit derivation rule is:

P(x,u)
unit(x) = u

unit(x) = meter, unit(y) = second

unit(x/y) = meter-per-second

Where unit(x) yields the unit of x based on the current unit assign-
ment of x, and hence the units of x and y are ‘meter’ and ‘second’,
respectively. Therefore the computed unit for x/y is ‘meter-per-
second’. Other derivation rules can be similarly defined.

Once we have computed the resulting units, we generate two
constraints: 1) a prior probability constraint C(var, cu) = 1(p), indi-
cating that we observe var has a computed unit cu with probability

0.95
p; and, 2) C(var,cu) — P(var, cu), that propagates the initial
confidence to the unit assertion of variable var. An example of a

568

computed-unit constraint is shown in Table 2 (7). This constraint
is generated once the units for the expression sqrt(wx1 * wx1 +
wy1 * wy1) is computed to be ms™!, resulting in a computed-unit
predicate C(q1, ms™!) with confidence p.

The value of probability p depends on which variables contribute
to a computed unit cu. If expr has only ROS variables, then a gets
unit cu with probability 1.0, otherwise 0.8. After empirically ex-
ploring a range of values, the value of 0.8 is set higher than the
naming hint confidence (0.7) and lower than the later discussed
unit conversion hint confidence (0.9).

Known-Symbol Constraints. Software dealing with physical quan-
tities often uses mathematical functions from some math library.
For example, we observed a lot of usage of two such functions:
sin(a) and cos(a). Both functions accept an argument that repre-
sents an angle expressed in ‘radian’. We formulate this unit hint
into two known-symbol constraints: 1) K(a, radian) = 1(0.95); and,

2) an implication constraint K(a, radian) 2%, P(a,radian). The
0.95 probability models the uncertainty arising from a possible use
of a variable with an incorrect unit assignment.
Conversion Constraints. Many robotic and cyber-physical pro-
grams reason about spatial relationships with angles, and devel-
opers use both ‘radian’ or ‘degree_360’. Conversion constraints
capture common expressions that convert between ‘radian’ and
‘degree_360’ and provide hints about units.

So, in the angle conversion expression a b * /180, vari-
able b should be of unit ‘degree_360’ and variable a should be

Phys: Probabilistic Physical Unit Assignment...

of unit ‘radian’. The generated conversion constraints would be:
1) F(a, radian) = 1(0.9), F(b, degree_360) = 1(0.9); and, 2) implica-

0.95
tion constraints: F(a, radian) — P(a, radian), F(b, degree_360)

0.95
—— P(b,degree_360). If a variable with unit ‘radian’ from the

previous iteration is added or compared with 180, then we infer
‘degree_360’, as shown in Table 3. The observational confidence
of 0.9 informs the prior probability constraints for these hints.

In addition, if a variable is added or compared with 7, then we
infer ‘radian’. This hint is formulated as a conversion constraint
in Table 3, with the high probability of 0.95.

4.2 Probabilistic Inference Engine

Factor. Here, we discuss how the probabilistic constraints are trans-
lated into probabilistic functions. The functions serve as nodes in
a factor graph. All the predicates present in constraints are repre-

. . - . p
sented as boolean variables. An implication constraint, predl —
pred2, is translated into a factor F(pred1, pred2) as:

P, if (pred1 — pred2) is true

1—p, otherwise

F(pred1,pred2) = { (5)

and, a bidirectional constraint, pred1 <> pred2, is divided into two

constraints: pred1 2, pred2 and pred1 L pred2, which are then
translated. A prior probability constraint pred1 = 1(q), is translated
into a factor F(pred1) as:

i N
F(predl) = {q, if (pred1) is true

otherwise

a ©)

We denote a factor with a corresponding probabilistic constraint
formulation, e.g. F(pred1) : predl = 1(q).

The boolean variables in Figure 3a together with the probabilistic
constraints in Table 2 (1-7) can be translated into the factors shown
in Figure 3b.

Factor-graph. A factor graph is a bipartite graph with two kinds
of nodes: variable nodes and factor nodes. The edges join each
factor with its variables, i.e., the variables over which a probabilistic
function corresponding to the factor is defined. Figure 3¢ shows
a factor-graph for the variables and factors from Figures 3a-3b.
Factors Fig, F13 and Fi4 are omitted for simplicity.

Belief Propagation. We use the sum-product belief propagation
algorithm [14] for probabilistic inference. It is an iterative algorithm
that passes belief messages between adjacent nodes and updates
the probability for each node based on the received messages. An
updated probability is propagated to adjacent nodes in the next it-
eration. The algorithm terminates when the probabilities converge.
Iteration. Phys iterates during Stage 1, as shown in Figure 2. This
iteration is critical to pick up additional constraints. For example,
Table 2 on the right side lists the iteration number in which each
probabilistic constraint was collected. As shown in the table, con-
straints (17) and (18) were only inferred after most of the other units
in the program had been determined. In general, it is important to
consider whether an iteration will reach a fixed point and terminate.
Unlike a traditional dataflow analysis, units do not fit well into a
lattice-based approach, and therefore we cannot use the Ascending
Chain Condition [21] to guarantee a fixed point. Therefore we man-
ually bound the iterations to 4, and observe that most programs we
have analyzed reach a fixed point within this bound.

569

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

p1:P(v_ref x_, ms™?) pe 1 P(ql, ms™h)

p2 :P_ref y_, ms™) c1 : C(v_ref_x_, ms™1)

p3 : P(linearSpeedXMps_, ms™') ¢, : C(v_ref y_, ms™})

pa : P(wx1, ms™1) cs : C(ql, ms™1)

ps : P(wyl, ms™1) n3 : N(linearSpeedXMps_, ms™1)

(a) Boolean variables representing the predicates

‘ Factors

(1) F] H

F, :

F3:
F4:

F5 :
FIZ :

Fg :
Fy:

Fg

@
G

©

ny — ps,

ns = 1(0.7083334)
0.95
PP — P,

0.95
Fis:p1 «— ps

&)

0.95

(6) | Fo:ps — p2,
0.95

Fiq:pa «— ps
0.95

Fio : ¢c6 — pe,

F]] 1 Ce = 1(0.8)

@

(b) Factors (c) Factor Graph

Figure 3: Factors and factor-graph for the probabilistic con-
straints (1)-(7) of our example in Table 2.

4.3 Complexity and Termination

Preprocessing builds a context-insensitive call graph, and topolog-
ically sorting this graph is O(|V| + |E|), worst case O(|E?|) when
removing cycles. Collecting probabilistic constraints involves at
most h loops over each statement where h is the height of the
statement’s AST. The probabilistic inference engine implements
an approximate solution to the sum-product message passing al-
gorithm [14] that is quadratic. Collecting probabilistic constraints
and the sum-product are run within a loop bounded by a constant
(four times). After the loop, detecting inconsistencies involves a
linear scan of program variables and the program’s AST. Overall,
complexity is quadratic in time and space. This approach terminates
because we bound the loops to collect probabilistic constraints and
run sum-product.

5 EVALUATION

Our main goal is to evaluate the effectiveness of Phys in both unit in-
ference as well as unit-inconsistency detection. For that, we address
the following research questions:
e RQ;. How effective is our approach in physical unit type
inference compared to the state of the art?
e RQ;. Can our approach detect more unit-inconsistencies
compared to the state of the art?
e RQs3. How useful are various types of constraints defined in
our approach?
We have implemented Phys in Python. It relies on a few third-
party components: Cppcheck [17] is used to obtain an intermediate

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

form of a C++ program including a list of tokens, an AST for each
statement and symbol tables for variables, functions, and scopes;
libDAI [20] is used as the probabilistic inference engine. Moreover,
as mentioned before, Phys utilizes a one-time ‘mapping’ of ROS
data structures to physical units provided by Phriky. Our code is
available for download at https://zenodo.org/record/1310129.

The experimental evaluation is conducted on sample C++ files
picked from a large number of ROS-based projects (i.e., robotic
software) publicly available on GitHub. We used 90 files for unit
inconsistency detection in Section 5.2, and 30 files for type inference
in Section 5.1 because of the manual annotation effort. The list
of public software is at http://www.ros.org/browse/list.php. The
execution time of Phys ranges from 1 to 28 seconds for a file with
details elided.

For the comparison of Phys with the state of the art, we use
Phriky. The robotics programs that we use for experiments do not
come with any physical unit information. In order to determine
whether a variable can have a unit and whether an inferred unit is
correct, we manually collect the ground truth for all the reported
variables in the sample test-suite files. For determining true positive
(TP) cases of the reported inconsistencies, we manually examine
each inconsistency by reviewing the corresponding source code.

5.1 Physical-Unit Type Inference

In the first experiment, we want to evaluate the ability of Phys
to infer physical unit types for variables. Note that, we consider
only those variables that can have physical units (some variables in
robotics software do not represent any physical quantity, e.g., for
loop index variable). Plus, variables of integer type are assumed
to be dimensionless. Since Phys reports a ranked list of units for a
variable, we consider only the top unit in this experiment.

Experiment Setup. We compute results for three categories of
variables: 1) variables that Phriky could not assign any unit to, 2)
variables that Phriky assigned an incorrect unit to, and 3) variables
that Phriky assigned a correct unit to. Note that, Phriky sometimes
assigns more than one unit to a variable due to the unit-resolution
rule of performing union on an addition expression. In that case, if
a unioned set contains a correct unit, then the unit assignment is
considered as correct for Phriky. Also, variables of ROS data type,
that obtain units from the ‘mapping’, are not included in the result
computation. The experiment is performed on a sample test suite
of 30 C++ files randomly picked from ROS-based projects.

RQ; Results: Unit Inference. Table 4 summarizes the results.
Column ‘Total Vars (#)’ shows the total number of variables of
non ROS data types for which Phys could infer units. Further, the
table presents the count of variables in each category that Phys
could infer units for in Columns ‘Var (#)’. Columns ‘Var (%)’ show
the percentage of a total number of variables in a sample file that
the corresponding “Var (#)’ accounts for. The accuracy of the unit
assignments is shown in Columns “TP (%)’. The TP rate is computed
as ‘TP%’=TP/‘Var(#)’, where TP represents the count of true positive
unit assignments (not shown in the table for brevity). Observe that,
we achieve an overall TP rate of greater than 88% in each category.
Also, it can be observed that Phys is able to infer units for a lot of
variables that Phriky cannot. In particular, Phys infers units for 783
variables, whereas Phriky could assign units to only 302 variables.

570

S. Kate, J. Ore, X. Zhang, S. Elbaum, Z. Xu

Effect of Constraint Probabilities. As seen in Section 4.1, Phys
is configured with the following parameters for constraints: 0.7
for naming, 0.8 for computed-unit and 0.9 for conversion. We per-
formed a couple of additional experiments to study the effect of
using different parameters values: 1) Naming probability: Phys was
evaluated with four values, namely, 0.6, 0.7, 0.8 and 0.9. It was ob-
served that it had negligible impact on unit-inference for the 30-files
set; 2) Combination of computed-unit and conversion probabilities:
as mentioned before, computed-unit probability is purposely chosen
to be lower than conversion probability. Therefore, we evaluated
Phys with three combinations of values for (computed-unit, conver-
sion), namely, (0.8, 0.9), (0.8, 0.8) and (0.9, 0.8), i.e., lower than, equal
to and higher than. It was observed that the TP rate was decreased
for the last two combinations in one of the categories of variables
(i.e., variables with incorrect units by Phriky). The decrease was due
to incorrect unit inference for some of the angle variables, which
were inferred to be ‘radian’ instead of ‘degree_360’.

5.2 Unit-inconsistency Detection

In this experiment, we evaluate the ability of Phys to detect unit-
inconsistencies. Note that we consider only high-confidence incon-
sistencies. An inconsistency is considered high-confidence only if
all the units in the inconsistent expression are known (no unknown
units for variables, and no constants that may or may not bear an
implicit unit). Both Phriky and Phys can be configured to report
only high-confidence cases.

Experiment Setup. We compute the TP rate of the reported incon-
sistencies for both Phys and Phriky. Due to the substantial manual
efforts entailed in identifying the ground truth for variables’ units,
we selected only a subset (30 files) of a large number of ROS-based
C++ projects as our sample test-suite for the previous experiment.
However, it would be interesting to see how Phys performs on other
files as well. Therefore, we divide the experiment into two parts. In
part one, we compute the results for our sample test suite of 30 files
used in the previous experiment. We call it the 30-files set. In part
two, we compute results for an expanded set of randomly selected
sample files. For the selection of the expanded set, we ran Phys on
28,484 ROS-based projects’ files available on GitHub. Phys reported
inconsistencies in 990 files (i.e. 3.5% of files with units). We then
randomly selected 60 files for which inconsistencies were reported
by Phys to form the expanded set.

RQ; Results: 30-Files Set Inconsistencies. Table 5 presents the
TP and FP counts for each of the sample files in the 30-files set. The
table does not show entries for files that are found to have zero
inconsistencies by both Phys and Phriky. Columns 2-4 show the
results for Phriky, whereas Columns 5-7 show the results for Phys.
It can be observed that, though Phys has lower TP rate (96.43%) than
that of Phriky (100%), it has a capability to uncover more inconsis-
tencies. The highlighted rows indicate the cases of inconsistencies
missed by Phriky, but detected by Phys. In particular, the result for
the file summit_x1_robot_control.cpp demonstrates the detec-
tion of the addition unit-inconsistency described in the motivation
section (Section 3). Also, observe that for the file action.cpp, the
number of TP inconsistencies by Phys is less than that by Phriky.
However, though less, we found that the root cause of all those
captured inconsistencies is same, and thus, we do not actually miss
the case of an incorrect usage of units in this file.

https://zenodo.org/record/1310129
http://www.ros.org/browse/list.php

Phys: Probabilistic Physical Unit Assignment...

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

Table 4: Physical unit type inference by Phys compared with Phriky.

30-files set Inferred | Variables with no units by Variables with incorrect Variables with correct
units Phriky units by Phriky units by Phriky
‘ Vars (#) ‘ Vars (#) Vars (%) TP (%) ‘ Vars (#) Vars (%) TP (%) ‘ Vars (#) Vars (%) TP (%)
Perception.cpp 94 67 77.91 95.52 1 100.0 100.0 26 100.0 100.0
labbot_teleoperation_twist.cpp 3 1 50.0 100.0 0 - - 2 100.0 100.0
QuadScripts.cpp 48 22 78.57 100.0 0 0.0 0.0 26 96.30 100.0
ard_node.cpp 20 4 66.67 100.0 0 - - 16 100.0 100.0
traj_builder.cpp 105 48 81.36 87.50 6 100.0 100.0 51 100.0 100.0
motor_and_sensors_controller.cpp 10 7 100.0 57.14 0 - - 3 100.0 100.0
simulation_functions.cpp 2 1 33.33 100.0 0 - - 1 100.0 100.0
follow.cpp 9 4 50.0 75.0 2 100.0 100.0 3 100.0 100.0
motor_control_hc.cpp 16 5 83.33 80.0 0 0.0 0.0 11 100.0 100.0
placement_wrt_workspace_action_server.cpp | 5 5 71.43 100.0 0 - - 0 - -
interpolater.cpp 11 2 15.38 100.0 6 100.0 100.0 3 100.0 100.0
collvoid_local_planner.cpp 55 42 75.0 88.10 2 50.0 0.0 11 100.0 100.0
vel_scheduler.cpp 31 14 93.33 71.43 1 100.0 100.0 16 100.0 100.0
simple_pose.cpp 21 13 81.25 100.0 2 100.0 100.0 6 100.0 100.0
base_driver.cpp 32 25 96.15 92.0 5 100.0 60.00 2 100.0 100.0
channel_controller.cpp 65 49 87.50 73.47 2 100.0 100.0 14 100.0 100.0
odometry.cpp 7 2 50.0 100.0 0 - - 5 100.0 100.0
viconxbee.cpp 5 4 100.0 100.0 0 - - 1 100.0 100.0
base_controller.cpp 22 19 86.36 73.68 0 - - 3 75.0 100.0
trajectory_planner_ros.cpp 49 41 51.25 90.24 2 50.0 0.0 6 100.0 100.0
summitfxlfrobotfcontrol.cpp 104 68 93.15 100.0 23 85.19 100.0 13 92.86 100.0
summit_xl_waypoints.cpp 7 7 87.50 100.0 0 - - 0 - -
summit_xI_joint_state.cpp 0 0 0.0 0.0 0 - - 0 - -
summit_xI_joystick.cpp 3 3 100.0 0.0 0 - - 0 - -
action.cpp 30 24 68.57 87.50 0 - - 6 100.0 100.0
twist_marker.cpp 2 2 50.0 100.0 0 - - 0 - -
twist_mux.cpp 2 2 40.0 100.0 0 - - 0 - -
twist_mux_diagnostics.cpp 4 4 100.0 100.0 0 - - 0 - -
navigating_jockey.cpp 8 5 71.43 100.0 1 100.0 100.0 2 100.0 100.0
turtlebot_example_node.cpp 13 10 90.91 100.0 0 - - 3 100.0 100.0
Total | 783 | 500 76.34 89.40 | 53 76.81 88.68 | 230 98.71 100.0
Table 5: Inconsistencies for the 30-files set. Table 6: Inconsistencies for the expanded set.
Sample Test-Suitel ‘ Phriky ‘ Phys | Phriky Inconsistencies | Phys Inconsistencies
Inconsistencies Inconsistencies Total TP P | Total TP P
‘ Total TP FP | Total TP FP (#) #) # | # (#) (#)
®»_®) #) Unit-inconsistencies | 78 75 [96.2%) 3 190 156 [82.1%) 34
labbot_teleoperation_twist.cpp 2 2 0 2 2 0 Files 25 24 1 60 45 16
QuadScripts.cpp 4 4 0 4 4 0
ard_node.cpp 6 6 0 6 6 0
traj_builder.cpp 1 1 0o |1 1 0 RQ; Results: Inconsistencies for the Expanded File Set. Table
motor_and_sensors_controller.cpp | 2 2 0 |4 4 0 6 shows the summarized results for the expanded sample set. The
simulation_functions.cpp 1 1 0 1 1 0 . .
follow.cpp 9 2 o | 2 2 0 overall TP rate for Phys is 82.1%. Phys detects 103.3% more incon-
motor_control_hc.cpp 7 7 0 |7 7 0 sistencies compared to Phriky, including every inconsistency that
placement_wrt...action_server.cpp | 1 1 0 13 1 2 Phriky detects. Phys finds 156 true positive inconsistencies in 45
collvoid_local_planner.cpp 2 2 0 2 2 0 . K
base_driver.cpp 3 3 0o |3 3 0 files, whereas Phriky was able to find only 75 in 24 files.
odometry.cpp 2 2 0 |2 2 0 Also, a number of FPs (34) are reported by Phys. They are gener-
viconxbee.cpp 3 3 0 3 3 0 all db . t unit inf £ iables. due t
trajectory_planner_ros.cpp 3 3 0 3 3 0 y cause Yy an mcorrect unit mierence or some variables, due to
summit_xI_robot_control.cpp 0 = = 8 8 0 the inherent uncertainty modeled into the probabilistic inference
action.cpp 3 3 0 2 2 0 approach. Majority of these FPs are caused by variables that are
twist_marker.cpp 1 1 0 1 1 0 j .
i et o) el @D 0 i} I 2 0 intentionally used to represent two different quantities (i.e. units) in
Total s 1 o |56 4 5 a program, e.g., variable run_vel is used as both linear velocity and
[100.0%] [96.43%] angular velocity. Other causes for FPs include: a) variable with a

There is one file, placement_wrt_workspace_action_server.cpp,
for which Phys reported two FPs. Both are reported because of
incorrect unit assignment of a variable max_velocity. The naming
convention component of Phys identifies it as unit ‘meter-per-
second’. However, in the program, this variable has been used as a
maximum velocity value for both linear and angular velocities and
thus can have either ‘meter-per-second’ or ‘per-second’ unit.

571

name reflecting a physical quantity, but used as a scalar (e.g. width);
b) controller gain variables, which are used only in the controller
equation and may carry implicit time quantity (i.e., it may have any
of the ‘second’ or ‘per-second’ units or no unit).

5.3 Constraint Distribution

RQs3 Results: Constraint Usage. Here, we present a study on the
types of constraints collected by Phys in our sample test suites.
Table 7 presents a count of files for which a particular type of

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

Table 7: Usage of various constraint types.

‘ Files (#)
Dataflow Naming Computed- Known- Conversion
unit symbol
30-Files Set 27 27 28 14 10
Expanded Set | 57 56 52 35 20

constraint was collected. It can be observed that dataflow, nam-
ing, and computed-unit constraints play a major role in the unit-
inference. Also, the other two types, known-symbol and conversion
constraints, have been found in a number of files and thus are useful
in strengthening the unit-inference.

6 THREATS AND LIMITATIONS

6.1 Threats

Self-labeling. One threat is that this effort uses self-labeled data
to evaluate both physical unit type inference and inconsistency
detection. To mitigate this threat when labeling physical unit types,
we had multiple authors review the type assignments and also used
Phys to show inconsistencies when a physical unit type needed
correction. To mitigate this threat with inconsistencies, the authors
evaluated inconsistencies independently and compared results.
Overfitting. By assuming English and encoding priors for suffixes
like ‘speed’ that could mean either linear or angular velocity (dif-
ferent abstract types) there is a threat of overfitting. We mitigate
this threat by using a small but general set of suffixes (41 entries)
as described in Section 4.1 and observing that we evaluated Phys
on 60 random files drawn from 28, 484 files with inconsistencies,
and observed only few FPs caused by incorrect suffix assumptions.
“Magic" Numbers. We use three predefined confidence values for
naming, computed-unit and conversion constraints, respectively.
Their values are determined empirically and hence pose threats
to our results. Our experiments show that the results are not that
sensitive to the values.

6.2 Limitations

False Negatives. The number of false negatives in the dataset is
unknown, so we cannot calculate recall. To address this limitation,
we will examine evaluating the approach after seeding faults.
Generality. This approach relies on having some initial abstract
type information for physical units, in our case the ROS shared
message libraries. However, this approach could also leverage some
gradual type information from developer annotations. While our
evaluation focuses on ROS C++ software for impact, the technique
is general for other robotic systems.

7 RELATED WORK

Abstract Type Inference. Guo et al. [6] proposed a dynamic,
unification-based analysis for abstract type inference in Java pro-
grams to aid program comprehension. Likewise, we infer abstract
types based on program interactions, but our work is static and we
infer inconsistencies. Ayudante [8] uses dataflow to cluster variables
into abstract data types,then leverages a WordNet [18] similarity
metric to cluster by variable name; differences between the cluster-
ings are reported as abstract type inconsistencies. Like Phys, Ayu-
dante uses dataflow and variable names, but Phys uses probabilistic
reasoning to account for the uncertainty present in using variable
names in isolation. Also, we found poor results using WordNet

572

S. Kate, J. Ore, X. Zhang, S. Elbaum, Z. Xu

in the physical units type domain without context, since physical
units types are highly dependent on a combination of local clues
(like ‘speed’ meaning either linear and angular velocity). Ayudante
more aligns with a traditional unification-based type systems.
Probabilistic Inference in Software. Dietz et al. used probabilis-
tic inference to localize bugs [5] and we also seek to find bugs. How-
ever, our work collects evidence during static analysis while their
work collects evidence from program traces. Probabilistic inference
is used for type inference [27], specification extraction [4, 16], secu-
rity [15], and reasoning about approximate computations [19]. We
take an inspiration for our approach’s design, in particular, from the
work on probabilistic type inference for Python [32]. The difference
lies in that we detect physical unit inconsistencies and model hints
specific to the problem, such as expression forms and ROS data
types. Furthermore, units are not a predefined set and they can be
composed by the code. Our technique is hence iterative.

Physical Units in Software. Many efforts have proposed sup-
port for physical units with language extensions [1, 11, 12], unit-
annotation libraries [30], or dynamic techniques [29]. The tool
Osprey [10] detects unit inconsistencies with static analysis by us-
ing developer annotations and propagating units through data-flow
and constraints, but only works on Java programs. Our work is
different from theirs in that we use information available in variable
names and apply probabilistic constraints.

We target C++ code written for the Robot Operating System
(ROS) [26], a popular open-source middleware. Robot software
and ROS programs are used increasingly in both academic and
industrial robots [28] and contain many variables measured in
physical units. We build on Phriky Units ‘mapping’ [23, 24], a lookup
table from shared library attributes to physical units, but assign
more units to variables by adding additional constraints, allowing
our approach to detect more inconsistencies. Further, our approach
makes more variable assignments because it applies units after
collecting constraints from the whole program, rather than Phriky
that only makes a linear scan and cannot go backwards.

8 CONCLUSION

We have presented a novel probabilistic approach for abstract type
inference of physical units and inconsistency detection in robotic
systems. The approach leverages uncertain hints about variables’
units such as variables’ names, expression forms, and associated
operations to make probabilistic inferences of unit types. We have
implemented this approach as a tool Phys. Phys can infer units for
159% more variables than state-of-the-art, leading to the detection of
more than 103% inconsistencies without additional developer effort,
and with a true positive rate of 85%. In the future, we would like to
address the causes for the reported false positives and incorporate
more unit hints such as those present in equations that form a
robot’s sensing, planning, and control components.

ACKNOWLEDGEMENTS

We thank our insightful reviewers. This research was supported
by ONR contracts N000141410468 and N000141712947, NSF awards
1638099, 1526652, 1718040, 1748764, and 1409668. Any opinions,
findings, and conclusions in this paper are those of the authors only
and do not necessarily reflect the views of our sponsors.

Phys: Probabilistic Physical Unit Assignment...

REFERENCES

(1]

(6

=

[10]

[11]

[12

[13

[14]

(15

Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem Maessen,
Sukyoung Ryu, Guy L Steele Jr, Sam Tobin-Hochstadt, Joao Dias, Carl Eastlund,
et al. 2005. The Fortress language specification. Sun Microsystems 139 (2005),
140.

BIPM. 2006. Le Systéme international d’unités / The International System of Units
(‘The SI Brochure’) (eighth ed.). Bureau international des poids et mesures. http:
//www.bipm.org/en/si/si_brochure/

Percy Williams Bridgman. 1922. Dimensional Analysis. Yale University Press.
Anthony Cozzie, Frank Stratton, Hui Xue, and Samuel T. King. 2008. Digging
for Data Structures. In 8th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2008, December 8-10, 2008, San Diego, California, USA,
Proceedings, Richard Draves and Robbert van Renesse (Eds.). USENIX Association,
255-266. http://www.usenix.org/events/osdi08/tech/full_papers/cozzie/cozzie.
pdf

Laura Dietz, Valentin Dallmeier, Andreas Zeller, and Tobias Scheffer. 2009.
Localizing Bugs in Program Executions with Graphical Models. In Advances
in Neural Information Processing Systems 22: 23rd Annual Conference on Neu-
ral Information Processing Systems 2009. Proceedings of a meeting held 7-10
December 2009, Vancouver, British Columbia, Canada., Yoshua Bengio, Dale
Schuurmans, John D. Lafferty, Christopher K. I. Williams, and Aron Cu-
lotta (Eds.). Curran Associates, Inc., 468-476. http://papers.nips.cc/paper/
3792-localizing-bugs-in-program-executions-with- graphical-models

Philip J. Guo, Jeff H. Perkins, Stephen McCamant, and Michael D. Ernst. 2006.
Dynamic Inference of Abstract Types. In Proceedings of the 2006 International
Symposium on Software Testing and Analysis (ISSTA °06). ACM, New York, NY,
USA, 255-265. https://doi.org/10.1145/1146238.1146268

S. Hangal and M. S. Lam. 2009. Automatic dimension inference and checking for
object-oriented programs. In 2009 IEEE 31st International Conference on Software
Engineering. 155-165. https://doi.org/10.1109/ICSE.2009.5070517

Irfan Ul Hagq, Juan Caballero, and Michael D. Ernst. 2015. Ayudante: identifying
undesired variable interactions. In Proceedings of the 13th International Workshop
on Dynamic Analysis, WODA@SPLASH 2015, Pittsburgh, PA, USA, October 26, 2015,
Harry Xu and Walter Binder (Eds.). ACM, 8-13. https://doi.org/10.1145/2823363.
2823366

Paul N. Hilfinger. 1988. An Ada Package for Dimensional Analysis. ACM Trans.
Program. Lang. Syst. 10, 2 (April 1988), 189-203. https://doi.org/10.1145/42190.
42346

Lingxiao Jiang and Zhendong Su. 2006. Osprey: a practical type system for
validating dimensional unit correctness of C programs. In 28th International
Conference on Software Engineering (ICSE 2006), Shanghai, China, May 20-28, 2006.
262-271. https://doi.org/10.1145/1134323

Michael Karr and David B. Loveman, III. 1978. Incorporation of Units into
Programming Languages. Commun. ACM 21, 5 (May 1978), 385-391. https:
//doi.org/10.1145/359488.359501

Andrew Kennedy. 2009. Types for Units-of-Measure: Theory and Practice. In
Central European Functional Programming School - Third Summer School, CEFP
2009, Budapest, Hungary, May 21-23, 2009 and Komarno, Slovakia, May 25-30, 2009,
Revised Selected Lectures. 268-305. https://doi.org/10.1007/978-3-642-17685-2_8
Daphne Koller and Nir Friedman. 2009. Probabilistic Graphical Models - Principles
and Techniques. MIT Press. http://mitpress.mit.edu/catalog/item/default.asp?
ttype=2&tid=11886

Frank R. Kschischang, Brendan J. Frey, and Hans-Andrea Loeliger. 2001. Factor
graphs and the sum-product algorithm. IEEE Trans. Information Theory 47, 2
(2001), 498-519. https://doi.org/10.1109/18.910572

Zhiqiang Lin, Junghwan Rhee, Chao Wu, Xiangyu Zhang, and Dongyan
Xu. 2012. Discovering Semantic Data of Interest from Un-mappable Mem-
ory with Confidence. In 19th Annual Network and Distributed System Se-
curity Symposium, NDSS 2012, San Diego, California, USA, February 5-8,
2012. The Internet Society. https://www.ndss-symposium.org/ndss2012/

573

[16

[17

[18

[20

[21

[22

[23

[24

[25

[26

[27

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

]

]

]

discovering-semantic-data-interest-un-mappable-memory-confidence

V. Benjamin Livshits, Aditya V. Nori, Sriram K. Rajamani, and Anindya Banerjee.
2009. Merlin: specification inference for explicit information flow problems. In
Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009, Michael
Hind and Amer Diwan (Eds.). ACM, 75-86. https://doi.org/10.1145/1542476.
1542485

Daniel Marjamaeki. 2013. Cppcheck - A tool for static C/C++ code analysis.
http://cppcheck.sourceforge.net/

George A. Miller. 1995. WordNet: A Lexical Database for English. Commun. ACM
38, 11 (Nov. 1995), 39-41. https://doi.org/10.1145/219717.219748

Sasa Misailovic. 2017. Probabilistic reasoning for analysis of approximate com-
putations. In Proceedings of the 2017 International Conference on Compilers, Ar-
chitectures and Synthesis for Embedded Systems, CASES 2017, Seoul, Republic of
Korea, October 15-20, 2017. 4:1. https://doi.org/10.1145/3125501.3125524

Joris Mooij. 2010. 1ibDAI - A free and open source C++ library for Discrete
iﬁggg)l);imate Inference in graphical models. https://staff.fnwi.uva.nl/j.m.mooij/
i

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. 1999. Principles of
program analysis. Springer. https://doi.org/10.1007/978-3-662-03811-6
John-Paul Ore, Sebastian G. Elbaum, and Carrick Detweiler. 2017. Dimensional
inconsistencies in code and ROS messages: A study of 5.9M lines of code. In 2017
IEEE/RS7 International Conference on Intelligent Robots and Systems, IROS 2017,
Vancouver, BC, Canada, September 24-28, 2017. IEEE, 712-718. https://doi.org/10.
1109/IR0OS.2017.8202229

John-Paul Ore, Carrick Detweiler, and Sebastian Elbaum. 2017. Lightweight
Detection of Physical Unit Inconsistencies Without Program Annotations. In
Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2017). ACM, New York, NY, USA, 341-351. https://doi.org/
10.1145/3092703.3092722

John-Paul Ore, Carrick Detweiler, and Sebastian Elbaum. 2017. Phriky-Units:
A Lightweight, Annotation-free Physical Unit Inconsistency Detection Tool.
In Proceedings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA 2017). ACM, New York, NY, USA, 352-355. https:
//doi.org/10.1145/3092703.3098219

Judea Pearl. 1986. Fusion, Propagation, and Structuring in Belief Networks. Artif.
Intell. 29, 3 (1986), 241-288. https://doi.org/10.1016/0004-3702(86)90072-X
Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. 2009. ROS: an open-source Robot Operating
System. In ICRA workshop on open source software, Vol. 3.2. Kobe, Japan, 5.
Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Predicting Program
Properties from "Big Code". In Proceedings of the 42Nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’15). ACM,
New York, NY, USA, 111-124. https://doi.org/10.1145/2676726.2677009
ROS Industrial Consortium. 2016. Current Members - ROS Industrial.
//rosindustrial.org/ric/current-members

G. Rosu and Feng Chen. 2003. Certifying measurement unit safety policy. In
18th IEEE International Conference on Automated Software Engineering, 2003.
Proceedings. 304-309. https://doi.org/10.1109/ASE.2003.1240326

Matthias Schabel and Steven Watanabe. 2010. Boost Units. http://www.boost.
org/doc/libs/1_66_0/doc/html/boost_units.html

Don Syme, Luke Hoban, Tao Liu, Dmitry Lomov, James Margetson, Brian McNa-
mara, Joe Pamer, Penny Orwick, Daniel Quirk, Chris Smith, et al. 2010. The F#
2.0 language specification. Microsoft, August (2010).

Zhaogui Xu, Xiangyu Zhang, Lin Chen, Kexin Pei, and Baowen Xu. 2016. Python
Probabilistic Type Inference with Natural Language Support. In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE 2016). ACM, New York, NY, USA, 607-618. https://doi.org/10.
1145/2950290.2950343

http:

http://www.bipm.org/en/si/si_brochure/
http://www.bipm.org/en/si/si_brochure/
http://www.usenix.org/events/osdi08/tech/full_papers/cozzie/cozzie.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cozzie/cozzie.pdf
http://papers.nips.cc/paper/3792-localizing-bugs-in-program-executions-with-graphical-models
http://papers.nips.cc/paper/3792-localizing-bugs-in-program-executions-with-graphical-models
https://doi.org/10.1145/1146238.1146268
https://doi.org/10.1109/ICSE.2009.5070517
https://doi.org/10.1145/2823363.2823366
https://doi.org/10.1145/2823363.2823366
https://doi.org/10.1145/42190.42346
https://doi.org/10.1145/42190.42346
https://doi.org/10.1145/1134323
https://doi.org/10.1145/359488.359501
https://doi.org/10.1145/359488.359501
https://doi.org/10.1007/978-3-642-17685-2_8
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11886
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11886
https://doi.org/10.1109/18.910572
https://www.ndss-symposium.org/ndss2012/discovering-semantic-data-interest-un-mappable-memory-confidence
https://www.ndss-symposium.org/ndss2012/discovering-semantic-data-interest-un-mappable-memory-confidence
https://doi.org/10.1145/1542476.1542485
https://doi.org/10.1145/1542476.1542485
http://cppcheck.sourceforge.net/
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/3125501.3125524
https://staff.fnwi.uva.nl/j.m.mooij/libDAI/
https://staff.fnwi.uva.nl/j.m.mooij/libDAI/
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1109/IROS.2017.8202229
https://doi.org/10.1109/IROS.2017.8202229
https://doi.org/10.1145/3092703.3092722
https://doi.org/10.1145/3092703.3092722
https://doi.org/10.1145/3092703.3098219
https://doi.org/10.1145/3092703.3098219
https://doi.org/10.1016/0004-3702(86)90072-X
https://doi.org/10.1145/2676726.2677009
http://rosindustrial.org/ric/current-members
http://rosindustrial.org/ric/current-members
https://doi.org/10.1109/ASE.2003.1240326
http://www.boost.org/doc/libs/1_66_0/doc/html/boost_units.html
http://www.boost.org/doc/libs/1_66_0/doc/html/boost_units.html
https://doi.org/10.1145/2950290.2950343
https://doi.org/10.1145/2950290.2950343

	Abstract
	1 Introduction
	2 Background
	2.1 Physical-units and Unit-inconsistency Detection
	2.2 Probabilistic Inference with Graphical Models

	3 Motivating Example
	4 Approach
	4.1 Probabilistic Constraints
	4.2 Probabilistic Inference Engine
	4.3 Complexity and Termination

	5 Evaluation
	5.1 Physical-Unit Type Inference
	5.2 Unit-inconsistency Detection
	5.3 Constraint Distribution

	6 Threats and Limitations
	6.1 Threats
	6.2 Limitations

	7 Related Work
	8 Conclusion
	References

