
Phys: Probabilistic Physical Unit Assignment
and Inconsistency Detection

Sayali Kate
Purdue University, USA
skate@cs.purdue.edu

John-Paul Ore
University of NebraskaśLincoln, USA

jore@cse.unl.edu

Xiangyu Zhang
Purdue University, USA
xyzhang@cs.purdue.edu

Sebastian Elbaum
University of NebraskaśLincoln, USA

elbaum@cse.unl.edu

Zhaogui Xu
Nanjing University, China
zhaogui.xu@outlook.com

ABSTRACT

Program variables used in robotic and cyber-physical systems often

have implicit physical units that cannot be determined from their

variable types. Inferring an abstract physical unit type for variables

and checking their physical unit type consistency is of particular

importance for validating the correctness of such systems. For in-

stance, a variable with the unit of ‘meter’ should not be assigned

to another variable with the unit of ‘degree-per-second’. Existing

solutions have various limitations such as requiring developers to

annotate variables with physical units and only handling variables

that are directly or transitively used in popular robotic libraries

with known physical unit information. We observe that there are a

lot of physical unit hints in these softwares such as variable names

and specific forms of expressions. These hints have uncertainty

as developers may not respect conventions. We propose to model

them with probability distributions and conduct probabilistic in-

ference. At the end, our technique produces a unit distribution

for each variable. Unit inconsistencies can then be detected using

the highly probable unit assignments. Experimental results on 30

programs show that our technique can infer units for 159.3% more

variables compared to the state-of-the-art with more than 88.7%

true positives, and inconsistencies detection on 90 programs shows

that our technique reports 103.3% more inconsistencies with 85.3%

true positives.

CCS CONCEPTS

· Software and its engineering → Abstract data types; Soft-

ware defect analysis; ·Mathematics of computing→ Factor

graphs;

KEYWORDS

abstract type inference; physical units; static analysis; unit consis-

tency; dimensional analysis; probabilistic inference; robotic systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’18, November 4ś9, 2018, Lake Buena Vista, FL, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3236035

ACM Reference Format:

Sayali Kate, John-Paul Ore, Xiangyu Zhang, Sebastian Elbaum, and Zhaogui

Xu. 2018. Phys: Probabilistic Physical Unit Assignment and Inconsistency

Detection. In Proceedings of the 26th ACM Joint European Software Engineer-

ing Conference and Symposium on the Foundations of Software Engineering

(ESEC/FSE ’18), November 4ś9, 2018, Lake Buena Vista, FL, USA. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3236024.3236035

1 INTRODUCTION

Program variables representing physical units like meter or radian

are common in robotic and cyber-physical systems. However, the

types of these variables (e.g., float and double) can hardly denote

such physical information. While compilers and many analysis

techniques ensure variables are manipulated according to the typ-

ing rules, ensuring variables with physical units are manipulated

according to the semantics of the physical world, however, is less

common and yet as crucial for these kinds of systems. For example,

a recent study found hundreds of faulty manipulations in robots

using the ROS middleware [22]. Those systems built correctly but

presented inconsistent unit manipulations such as assigning linear

(meter-per-second) and angular (radian-per-second) units to

a variable, or adding variables representing velocity (meter-per-

second) and distance (meter).

Automated approaches to aid in the detection of inconsistent

usage of variables representing physical units include unit-aware

programming languages [1, 31], unit-aware libraries [9, 30], and

unit type annotations [10]. These approaches, however, have not

been broadly adopted in part because of their associated cost in

modifying existing systems or changing entrenched development

practices. Approaches that require no additional development in-

vestment are desirable but rare. One of such approaches, Unify,

can detect unit usage discrepancies across versions [7], but it can-

not detect unit inconsistencies when a variable is first introduced.

Another approach is taken by Ayudante [8], which infers abstract

type inconsistencies by contrasting clusters of variables based on

dataflow versus clusters based on the meaning of variable names

as per a large lexical database [18]. This approach, however, misses

much of the unique constructive semantics of physical units (like

meter2 = meter * meter) and assumes that all these variable and

name associations are certain, when in practice they are probabilis-

tic. A more broadly applicable approach that requires no additional

developer investment is Phriky-Units (Phriky), which relies on one-

time mapping of physical attributes in shared-libraries to units [23]

to infer the units of variables, and uses a lightweight dataflow anal-

ysis and unit propagation to facilitate inconsistency detection using

563

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3236024.3236035
https://doi.org/10.1145/3236024.3236035

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA S. Kate, J. Ore, X. Zhang, S. Elbaum, Z. Xu

dimensional analysis. The one-time mapping and lightweight analy-

sis that make Phriky cost-effective at detecting inconsistencies, also

limit its power. In particular, we noticed that Phriky only assigns

units to a small fraction of the variables of non shared-library data

types that hold physical units (in this paper we quantify that space

to be under 31.56%).

To address that limitation, we propose an approach that can tap

on new sources of information to assign units to a larger portion of

the variable space, facilitating the detection of more inconsistencies.

The approach builds on two key insights. First, variables represent-

ing physical entities are often named and operated on to reflect

those entities, giving hints about variables’ units. For example, in

the statement: v = angSpeed * wheel_diam/2, names ‘angSpeed’ and

‘wheel_diam’ suggest that they represent angular speed and length

respectively, and a multiplication operation on them indicates that

variable v is intended to represent linear velocity. Second, since

the correctness of these hints is not certain (developers can violate

naming conventions or inappropriately operate on units) we must

deal with them probabilistically. For example, since name ‘wheel_-

diam’ does not use the entity term ‘diameter’ completely, we can

only say that it is likely to have unit ‘meter’ with some probability.

Put together, these insights indicate that there are hints to be

leveraged but to do so we need to model the sources of uncertainty

in terms of probabilities. More specifically, our approach: 1) col-

lects initial observations (or beliefs) based on various evidences

such as variable names and expression forms that suggest physical

unit (e.g., expression x > π indicates x has unit ‘radian’), and

encodes them as initial probabilities to model uncertainty; 2) an-

alyzes the code to generate five kinds of probability constraints

that denote dependencies between variable units; 3) generates a

graph where the nodes are the initial observations and constraints

transformed into functions on the variables, and the edges connect

the functions with their corresponding variables; and 4) performs

belief propagation [25] along the edges to determine the posterior

probabilities denoting the likelihood that a variable would have

an associated physical unit. Once the variables have a physical

unit assigned, detection of inconsistency is performed following

established dimensional analysis rules [3].

The contributions of our work are:

• A probabilistic approach for physical unit inference and

inconsistency detection that takes advantage of variables’

names, expression forms, and associated operations to make

probabilistic inferences of unit types.

• Aprototype of the approach implemented in a tool, Phys, that

assigns units and detects inconsistencies on C++ programs.

• An evaluation on 90 sample ROS-based project files. The

assessment shows that Phys can infer units for 159.27% more

variables of non shared-library data types in 30 sample files

(with more than 88.7% true positives), and detect 103.31%

more inconsistencies in 90 sample files (with 85.3% true pos-

itives), when compared with the state-of-the-art.

2 BACKGROUND
In this section, we introduce the basic notations of physical units

and unit-inconsistencies, and provide a brief overview of proba-

bilistic inference based on graphical models.

2.1 Physical-units and Unit-inconsistency
Detection

In robotic software, some variables represent the physical dimen-

sions such as length, velocity, and acceleration. Each of these vari-

ables carries a physical-unit, e.g., a variable representing length

stores a value of unit ‘meter’. Operations on such variables need

to follow certain dimensional rules, e.g., a length value cannot be

added to a velocity value. Violation of such a rule, we refer to

as unit-inconsistency. In order to detect a unit-inconsistency, we

first need to collect the physical-unit information of each variable.

However, physical-unit information is not explicitly declared for

variables unlike type information. For example, while length and

velocity carry different physical-units, ‘meter’ and ‘meter-per-

second’, respectively, they may be represented by variables of the

same type, e.g., ‘float’. Therefore, traditional type checking of a

software program cannot detect unit-inconsistencies. A new kind of

analysis is required to detect unit-inconsistencies. These analyses

focus on inferring the physical-units of variables. There have been

a number of previous works that aim to address this challenge such

as the tools Phriky [23, 24] and Osprey [10].

In particular, Phriky performs unit consistency analysis on pro-

grams that use a robotic shared-library containing data-types for

various physical quantities. These shared-library data-types pro-

vide the basic unit information for a subset of variables as a starting

point for the analysis. Such initial unit information is propagated

to other variables through a set of inference rules similar to typing

rules. Specifically, the tool Phriky implements a lookup table, called

a ‘mapping,’ from attributes of shared libraries to physical units

for software written for the Robot Operating System (ROS). ROS

is a publisher-subscriber middleware that defines commonly used

messages in shared libraries. These shared messages have attributes

with physical meanings like lengths, velocities, and accelerations.

Our tool Phys leverages this one-time ‘mapping’ during analysis

as one way to find variables with units. Also, it uses the same

notation for physical-units and unit-inconsistencies as defined by

Phriky. The notation is described below.

Physical-units. The physical-unit representation contains a stan-

dard set of units from the specification of International System of

Units (SI) [2], plus some units officially accepted to be used with

the SI system. Following [10], units are defined as:

u := meter | second | kiloдram | quaternion | radian |

deдree_360 | amp | candela | deдree_celsius |

unknown | dimensionless | u1 ∗ u2 | u
−1

(1)

Unit unknown means that the unit of a variable is not known. The

unit dimensionless means a variable does not have a unit, such

as a scaling factor or the ratio ‘meter-per-meter’. The product

u1 ∗ u2 represents a multiplication of two units and u−1 represents

the inverse of a unit. Together, product and inverse form vari-

ous derived units like ‘meter * second−1’, i.e., a unit of velocity,

‘meter-per-second’. Further, note that we use the same unit to

represent variables of the same dimension. So, two variables of the

length dimension with different units in practice, ‘centimeter’ and

‘meter’ respectively, are assumed to have the same unit, ‘meter’.

564

Phys: Probabilistic Physical Unit Assignment. . . ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Unit-inconsistencyDetection.The violation of dimensional rules,

such as one can only add or compare values of the same dimen-

sion, are translated to unit-inconsistencies over program constructs.

They are listed below. Let u1 and u2 be two different units.

(1) Addition/subtraction of inconsistent units: an inconsistency is

detectedwhen there is an addition/subtraction of two different units.

Note that multiplication and division of inconsistent units may be

legitimate, such as ‘meter-per-second * second,’ and hence not a

good standard for inconsistency detection [23].
u1 (+,−) u2

(2) Comparison of inconsistent units: an inconsistency is detected

when two different units are compared to each other.
u1 (<, ≤,=,,, ≥, >) u2

(3) Assignment of inconsistent units. This category includes two

cases: a) the left-side and the right-side of an assignment have

different units; b) the right-side of an assignment has two different

units, e.g., a right-side variable may have different units in the two

branches of a conditional statement. Note that we union the units.
u1 ← u2, x ← {u1,u2}

(4) Function with different unit arguments: an inconsistency is de-

tectedwhen a function’s ith argument receives values with different

units in two different function calls.
f (u1), f (u2)

Detection of unit-inconsistencies serves two purposes: 1) the incon-

sistent use of units may be intentional as per the developer. In such

a case, it is always recommended to document a suspicious use of

units, especially when the code is meant to be reused. This makes it

easier to maintain the code; 2) the inconsistent use of units exposes

the source of a potential unintended system behavior, or a bug.

2.2 Probabilistic Inference with Graphical
Models

Often while solving real-world problems, we need to draw conclu-

sions based on incomplete or uncertain information. Uncertainty

is usually modeled in the form of a probability distribution. The

process of performing inference based on such models is called

probabilistic inference. One type of probabilistic inference is the

computation of a marginal probability of the event or property. For

example, in our case, we need to compute the marginal probability

that a variable x has unit u from the probability distribution of

all variables in the program being of unit u. The probability that

x has unit u is conditioned on how x is used in the program and

depends on what is assigned to x and how x is used in mathematical

expressions. Factor graphs [14] are used to represent the structure

of this conditional dependence.

In factor graphs, a random variable (or a boolean variable with

probability, łr is 0.7 chance truež) is used to denote a predicate

(e.g., program variable x has unit u, or P (x ,u)). Inter-dependent

random variables are denoted as a propositional logic formula with

probabilities. For instance, the information that a variablevel likely

has the unit of ‘meter-per-second’ with probability 0.7 is denoted

by N (‘vel ’, meter-per-second)
0.7
−−−→ P (vel , meter-per-second).

Intuitively, it means from the naming convention N (think of it as a

dictionary that maps a name to its unit) we know that a name ‘vel ’

has the ‘meter-per-second’ unit, we then have 0.7 confidence that

variable vel is really of that unit, with probability 0.7 modeling

the uncertainty of naming conventions (i.e., programmers may not

(a) Code snippet showing several constraints related to variable q1.

source: https://git.io/vAAAI

(b) Inference resulting in meter-per-second units for q1.

Figure 1: Example unit inconsistency detected using proba-

bilistic constraints.

respect naming conventions). A random variable may be involved

in multiple propositional logic formulas denoting its dependencies.

For instance, if the program has an assignment statement x = y, we

have P (y,U)
0.95
−−−→ P (x ,U). The factor graph engine will take these

formulas, derive the corresponding joint probability distribution,

and perform probabilistic inference. There are various inference

algorithms, both exact and approximate, defined for these graphical

models. The approximate algorithms allow us to find solutions

where the exact inference is infeasible. After inference, the post-

distribution denotes the fusion of all the (uncertain) evidences and

hence our analysis results. A detailed description of probabilistic

graphical models representation and inference can be found in [13].

Phys uses a factor graph model to represent the joint probability

distribution of variables being of unit u. And, since there can be a

large number of variables in the program, it uses an approximate

algorithm for the unit inference.

3 MOTIVATING EXAMPLE

Figure 1a shows a code-snippet from a ROS-based project file avail-

able on GitHub, ‘summit_xl_robot_control.cpp’. Phys reports

565

https://git.io/vAAAI

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA S. Kate, J. Ore, X. Zhang, S. Elbaum, Z. Xu

an inconsistency on line 18. The nature of the inconsistency is that

the robot’s low-level wheel controllers are commanded an incorrect

reference velocity. This inconsistency is difficult to detect statically

or at run-time because it is syntactically and semantically correct as

per the programming language, and the wheel turns in the correct

direction but the velocity is incorrect in proportion to the radius of

the robot’s wheel (it is not apparent for smaller wheels). As a result,

under some scenarios, the robot can move undesirably slow. In such

cases, control engineers often blame the low-level controller and try

to compensate by tuning control gains, i.e., changing parameters

to make the motors more sensitive to the (faulty) signal, leading to

potential instabilities.

We are motivated by these kinds of stealthy, difficult-to-detect

bugs that require combiningmultiple information sources eachwith

a different degree of certaintyÐfrom less certain variable name hints

to more certain dataflow hints.

Going back to our example in Figure 1a, to detect the ‘subtraction

of inconsistent units’ in line 18, we need to infer units of joint_state_-

.velocity and q1 ([frw_vel_] omitted for brevity). Inferring units for

variables like joint_state_.velocity, which instantiate shared ROS

libraries attributes with known unit types, is already done success-

fully by Phriky using predefined maps so we reuse that approach.

More specifically, variable joint_state_.velocity is an attribute of

class sensor_msgs::JointState, and the mapping determines that the

attribute JointState::velocity have units ‘per-second’.

Variable q1, however, does not instantiate anythingwith a known

unit. Inferring units for such variables requires a new and more

sophisticated approach for unit inference, as used by our tool Phys.

We note that variable q1 on line 16 is assigned units computed

from the units of wx1 (and wy1; description for wy1 omitted for

simplicity). wx1 is assigned units on line 14, providing a dataflow

constraint from v_ref_x_ because v_ref_x_ is part of an addition, and

we assume all units within an addition are the same. For inferring

the units of v_ref_x_ we have two hints: 1) a dataflow constraint

on line 6 from linearSpeedXMps_ along with a naming hint because

linearSpeedXMps_ contains the substring ‘Speed’; and 2) assignment

of units resulting from the procedure saturation on line 24. Inter-

estingly, saturation uses its first parameter as the return variable

and thus provides a hint that its returned units may be the same as

its first argument’s units. Therefore, on line 24, v_ref_x_ is likely to

have the same units as argument cmd_vel.linear.x that has a known

unit associated as part of the map.

All these hints together form a set of probabilistic constraints,

partially shown in Figure 1b as an inference graph. Phys then calcu-

lates the likelihood of possible unit assignments for q1 and assigns

the most likely unit, which turns out to be ‘meter-per-second’

with the highest probability of 0.81, reporting that:

Addition of inconsistent units on line 18.

Attempting to add [{'second ': -1.0}] to

[{'second ': -1.0, 'meter ': 1.0}].

4 APPROACH

In this section, we first provide a high-level overview of Phys, then

give a detailed description of the probabilistic constraints gener-

ated by Phys, and finally discuss how the probabilistic inference

engine transforms probabilistic constraints into a factor graph and

conducts graph inference.

Variables	with	

Associated	

Units		

Inconsistency	

Reports	

Unit		

Inconsistency	

Detection	

Probabilistic	

Inference	

Engine	

	

	

	

	

	

	

	

	

	

	

Probabilistic	

Constraint	

Collector	

	

Dataflow	

Naming	

Computed	

Unit	

Known	

Symbol	

Conversion	

Code	

Predefined	

Unit	Maps	

Stage	1		 Stage	2		

Phys	

Apply	Units	

and	Iterate	

Figure 2: Overview of Phys framework.

Table 1: Constraint Predicate Definitions

TYPE SYMBOL DEFINITION

Dataflow D(var, u) var has unit u based-on dataflow
dependency of var on ROS-TYPED variable.

Naming N(var, u) var has unit u based-on its name.
Computed-Unit C(var, u) unit u of var is computed from the right

side of assignment statement, ‘var = expr’.
Known-Symbol K(var, u) var has unit u based-on known symbols.
Conversion F(var, u) var has unit u based-on unit-conversion

expression.
Prior-
Probability

pred = 1 (q) pred is true with probability q .

Implication pred1
p
−→ pred2 pred1 implies pred2 with probability p .

Table 2: Collected constraints for example in Figure 1.

LN# Probabilistic Constraint Iter#

(1) 24 C(v_ref_x_,ms−1)
0.95
−−−→ P(v_ref_x_,ms−1) 1

(2) 25 C(v_ref_y_,ms−1)
0.95
−−−→ P(v_ref_y_,ms−1) 1

(3) 6 P(v_ref_x_,ms−1)
0.95
←−→ P(linearSpeedXMps_,ms−1) 1

(4) - N(linearSpeedXMps_,ms−1)
0.7
−−→ P(linearSpeedXMps_,ms−1) 1

(5) 14 P(wx1,ms−1)
0.95
←−→ P(v_ref_x_,ms−1) 1

(6) 15 P(wy1,ms−1)
0.95
←−→ P(v_ref_y_,ms−1) 1

(7) 16 C(q1,ms−1)
0.95
−−−→ P(q1,ms−1) 2

(8) - N(summit_xl_wheelbase_,m)
0.7
−−→ P(summit_xl_wheelbase_,m) 1

(9) - N(summit_xl_trackwidth_,m)
0.7
−−→ P(summit_xl_trackwidth_,m) 1

(10) 12 P(L,m)
0.95
←−→ P(summit_xl_wheelbase_,m) 1

(11) 13 P(W,m)
0.95
←−→ P(summit_xl_trackwidth_,m) 1

(12) 26 C(w_ref_, s−1)
0.95
−−−→ P(w_ref_, s−1) 1

(13) 7 P(w_ref_, s−1)
0.95
←−→ P(angularSpeedRads_, s−1) 1

(14) - N(angularSpeedRads_, s−1)
0.7
−−→ P(angularSpeedRads_, s−1) 1

(15) 12 C(x1,m)
0.95
−−−→ P(x1,m) 2

(16) 13 C(y1,m)
0.95
−−−→ P(y1,m) 2

(17) 14 C(wx1,ms−1)
0.95
−−−→ P(wx1,ms−1) 3

(18) 15 C(wy1,ms−1)
0.95
−−−→ P(wy1,ms−1) 3

Figure 2 shows an overview of the Phys framework. It is divided

into two stages: Stage 1 infers units with the help of a probabilistic

inference engine, and Stage 2 uses the inferred units to detect unit

inconsistencies.

Stage 1: Probabilistic Unit Inference. There are two main com-

ponents for unit inference as shown in Figure 2 Stage 1: probabilistic

constraint collector and probabilistic inference engine. The con-

straint collector first preprocesses the code to generate a list of

functions and then scans each function to identify variables that

instantiate ROS shared library data types. Using a predefined map

566

Phys: Probabilistic Physical Unit Assignment. . . ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

from ROS attributes to units [24], these variables can be directly as-

signed a physical unit. Themapping is a one-time effort and consists

of 98 data structures, each having 2-5 fields. For example, variables

instantiating the ROS attribute geometry_msgs::Twist.linear.x are

mapped to ‘meter-per-second.’ The mapping provides a subset of

variables with known units and allows us to transfer this known

unit information to variables of non-shared library type and then

fuse it with other unit hints.

Next, the constraint collector traverses through the code to

gather unit hints called observations and to derive constraints that

denote relations between variables. Table 1 defines five types of ob-

servations (dataflow, naming, computed-unit, known-symbol, and

conversion) denoted as predicates asserting a variablevar has a unit

u. These observations are associated with some prior probabilities

to express the initial confidence in those observations to be true,

which is captured by the constraint type defined in the sixth row of

Table 1. The collector also constructs implication constraints, as per

the seventh row of Table 1, which capture the inter-dependences of

the predicates based on program semantics, allowing probabilities

to be propagated and fused. Last, the constraint collector records

composite units such as ‘meter-per-second-squared’, the result

of combining units in mathematical expressions. The observed and

composite units are added to the setUNIT_SET .

After all constraints have been collected, the probabilistic infer-

ence engine transforms the constraints into a factor graph. The

engine performs belief propagation in the graph for each unit in

UNIT_SET . This yields a posterior marginal probability for each

variable, var, having a unit, u, denoted as P (var ,u). If there is some

evidence for u (i.e., with probability p > 0.5, where 0.5 is no knowl-

edge), and u is more likely than any other unit, then var is assigned

the unit u. As shown in Figure 2, Stage 1 includes an iterative

process of gathering constraints, running the probabilistic infer-

ence engine, inferring units, and again gathering constraints. The

iterative part is repeated until a fixed point is reached.

Stage 2: Unit-inconsistency Detection. The unit inconsistency

detector scans the annotated abstract syntax tree (AST) for unit

inconsistencies as defined in Section 2.1. That is, inconsistent addi-

tion/subtraction, comparison, assignment, or function arguments.

To mitigate false positives, the detector is conservatively configured

by default to report an inconsistency only if the three most likely

unit assignments to the variables involved in an expression all yield

an inconsistency. Phys then emits a list of variable unit assignment

and any detected inconsistencies.

4.1 Probabilistic Constraints

Phys has two forms of constraints: the prior-probability constraints,

and the implication constraints.

As shown in Table 1, a prior-probability constraint encodes that

an initial observation pred is true with some confidence q, and is

denoted pred = 1(q). This constraint encodes belief from prior hu-

man domain knowledge and distributions of known types inferred

solely from ROS libraries. The inherent uncertainty in this con-

straint can be substantially suppressed when the inference engine

fuses information from many sources.

Implication constraints are used to relate two predicates/random-

variables together, and take the form pred1
p
−→ pred2 with confi-

dence p, and can also be bidirectional. Table 2 shows implication

constraints collected from the code snippet in Figure 1a. Notice

how every constraint in the table is formulated as an implication

constraint, from an observation predicate to a posterior predicate

such as (1) and (2), or from a posterior predicate to another pos-

terior predicate such as (10) and (11). Next, we discuss how to

collect the constraints from the data flow, naming, computed-unit,

known-symbol and conversion perspectives.

DataflowConstraints.Dataflow constraints are collected for vari-

able pairs that can have the same unit due to program dataflow. For

example, Figure 1a has a dataflow constraint on line 14: wx1 and

v_ref_x, and the generated constraint is shown in Table 2 (5). In this

example, the dataflow constraint encodes the dimensional rule that

the units resulting from addition/subtraction are likely the same

as the units of the operands. As shown in the table, this constraint

has a probability of 0.95. It is a standard to use 0.95 to represent

high confidence in the inference [32].

More generally, various program expressions such as addition,

comparison, min(),max () function calls, and copy provide unit

hints about their operands according to the dimensional rules. The

operands of such expressions or statements potentially represent

quantities with the same unit. If a dataflow relation for the same

unit is detected for variables a and b, we add an implication con-

straint between the two predicates: P (a,u)
0.95
←−→ P (b,u), where

u ∈ UNIT_SET and confidence is propagated in both directions.

For variables with unit hints from the ROS mapping, we for-

mulate the following constraints: 1) a prior probability constraint,

D (b,K) = 1(0.95) with D asserting the unit of a ROS variable; and

2) an implication constraint, D (b,K)
0.95
−−−→ P (b,K).

Naming Constraints. Developers tend to use variable names that

hint at the physical quantities they represent. For example, linear-

SpeedXMps_ contains ‘Speed’ that suggests a linear velocity. Phys

uses a hand-coded lookup table between common strings (called

‘suffixes’) and units. For example, ‘length’ and ‘distance’ are mapped

to ‘meter’. Generating the table is a one-time effort. The current

version contains only 41 entries.

To find the best suffix match, Phys uses a similarity metric:

sim(var ,u) = max
s ∈{(s :u) }

len(LCS (var , s,k))

MAX_LEN_SU FFIX
(2)

Here, sim(var ,u) computes the maximum similarity between vari-

able var over all suffixes s , where {(s : u)} is the set of all suffixes

with the same unit u. The term len(LCS (var , s,k)) represents the

length of a longest common substring between a variablevar and a

suffix s such that the length is at least k and the substring starts with

the first k characters of a suffix s (k = 3 in our implementation).The

longest hand-coded suffix,MAX_LEN_SU FFIX = 12.

The maximum similarity score sim(var ,u) is then converted to

a naming constraint:
N (var ,u) = 1(p = 0.5 + 0.5 ∗ sim(var ,u)) (3)

The confidence p is scaled so that a similarity of 0 is a confidence

of 0.5, meaning ‘no evidence’. An implication constraint is also

generated. For linearSpeedXMps_, it is:

N(linearSpeedXMps_,ms−1)
0.7
−−→ P(linearSpeedXMps_,ms−1) (4)

The predicate N(linearSpeedXMps_,ms−1) has an initial confidence

0.5+0.5∗sim(var ,ms−1) that is propagated to P(linearSpeedXMps_,

ms−1) with probability 0.7.

567

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA S. Kate, J. Ore, X. Zhang, S. Elbaum, Z. Xu

Table 3: Probabilistic constraints.

Type Expression Condition Probabilistic Constraints

Dataflow a op1 b, c ? a : b
op1 ∈ { +, -, +=, -=, =, <, <=, ==, !=, >, >= }

a ∈ ROS-TYPED-VARS ∧
b < ROS-TYPED-VARS;
ROS-VAR(a, u)

D(b, u) = 1 (0.95); D(b, u)
0.95
−−−→ P(b, u)

min(a, b)
max(a, b)

a < ROS-TYPED-VARS ∧
b ∈ ROS-TYPED-VARS;
ROS-VAR(b, u)

D(a, u) = 1 (0.95); D(a, u)
0.95
−−−→ P(a, u)

a = b op2 cos(x), a = b op2 sin(x), op2 ∈ { *, / } a < ROS-TYPED-VARS ∧
b < ROS-TYPED-VARS

P(a, U)
0.95
←−→ P(b, U)

Function definition: f(type a, . . .), Function call: f(b, . . .)

Naming var_name p = 0.5 + 1
2 * sim(var_name, U) N(var_name, U) = 1 (p); N(var_name, U)

0.7
−−→ P(var_name, U)

Computed-
unit

a = expr ∀ v: v ∈ vars(expr) ∧
v ∈ ROS-TYPED-VARS;
cu = unit(expr)

C(a, cu) = 1 (1.0); C(a, cu)
0.95
−−−→ P(a, cu)

∃ v: v ∈ vars(expr) ∧
v < ROS-TYPED-VARS;
cu = unit(expr)

C(a, cu) = 1 (0.8); C(a, cu)
0.95
−−−→ P(a, cu)

Known-
symbol

cos(a), sin(a) K(a, radian) = 1 (0.95); K(a, radian)
0.95
−−−→ P(a, radian)

Conversion a = b * π / 180 F(a, radian) = 1 (0.9); F(a, radian)
0.95
−−−→ P(a, radian),

F(b, degree_360) = 1 (0.9); F(b, degree_360)
0.95
−−−→ P(b, degree_360)

a = b * 180 / π F(a, degree_360) = 1 (0.9); F(a, degree_360)
0.95
−−−→ P(a, degree_360),

F(b, radian) = 1 (0.9); F(b, radian)
0.95
−−−→ P(b, radian)

a op num, op ∈ { +, -, +=, -=, =, <, <=, ==, !=, >, >= } num: numerical value > 2π ;
unit(a) == radian

F(a, degree_360) = 1 (0.9); F(a, degree_360)
0.95
−−−→ P(a, degree_360)

a op π , op ∈ { +, -, +=, -=, =, <, <=, ==, !=, >, >= } F(a, radian) = 1 (0.95); F(a, radian)
0.95
−−−→ P(a, radian)

The confidence 0.7 for all naming constraints reflects that vari-

able names are uncertain and can cause false unit inconsistencies if

not augmented with other evidence. This confidence is the lowest

among all confidence probabilities configured in Phys, as naming

usually provides the weakest hint about a variable’s unit. The value

0.7 was empirically identified, yielding a sufficiently high TP rate

(> 80%) while retaining enough detection power to find signifi-

cantly more unit inconsistencies than other methods.

Computed-Unit Constraints.Computed-unit constraints are col-

lected for the assignment resulting from mathematical expressions,

which may compose/compute new units from the operands’ units.

To generate a computed-unit constraint for a mathematical expres-

sion, we first need unit derivation rules. For example, for a division

expression x/y, the unit derivation rule is:

P (x ,u)

unit (x) = u

unit (x) = meter, unit (y) = second

unit (x/y) = meter-per-second

Where unit (x) yields the unit of x based on the current unit assign-

ment of x , and hence the units of x and y are ‘meter’ and ‘second’,

respectively. Therefore the computed unit for x/y is ‘meter-per-

second’. Other derivation rules can be similarly defined.

Once we have computed the resulting units, we generate two

constraints: 1) a prior probability constraintC (var , cu) = 1(p), indi-

cating that we observe var has a computed unit cu with probability

p; and, 2) C (var , cu)
0.95
−−−→ P (var , cu), that propagates the initial

confidence to the unit assertion of variable var . An example of a

computed-unit constraint is shown in Table 2 (7). This constraint

is generated once the units for the expression sqrt (wx1 ∗wx1 +

wy1 ∗wy1) is computed to bems−1, resulting in a computed-unit

predicate C (q1,ms−1) with confidence p.

The value of probability p depends on which variables contribute

to a computed unit cu. If expr has only ROS variables, then a gets

unit cu with probability 1.0, otherwise 0.8. After empirically ex-

ploring a range of values, the value of 0.8 is set higher than the

naming hint confidence (0.7) and lower than the later discussed

unit conversion hint confidence (0.9).

Known-SymbolConstraints. Software dealingwith physical quan-

tities often uses mathematical functions from some math library.

For example, we observed a lot of usage of two such functions:

sin(a) and cos (a). Both functions accept an argument that repre-

sents an angle expressed in ‘radian’. We formulate this unit hint

into two known-symbol constraints: 1) K (a, radian) = 1(0.95); and,

2) an implication constraint K (a, radian)
0.95
−−−→ P (a, radian). The

0.95 probability models the uncertainty arising from a possible use

of a variable with an incorrect unit assignment.

Conversion Constraints.Many robotic and cyber-physical pro-

grams reason about spatial relationships with angles, and devel-

opers use both ‘radian’ or ‘degree_360’. Conversion constraints

capture common expressions that convert between ‘radian’ and

‘degree_360’ and provide hints about units.

So, in the angle conversion expression a = b ∗ π/180, vari-

able b should be of unit ‘degree_360’ and variable a should be

568

Phys: Probabilistic Physical Unit Assignment. . . ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

of unit ‘radian’. The generated conversion constraints would be:

1) F (a, radian) = 1(0.9), F (b,deдree_360) = 1(0.9); and, 2) implica-

tion constraints: F (a, radian)
0.95
−−−→ P (a, radian), F (b,deдree_360)

0.95
−−−→ P (b,deдree_360). If a variable with unit ‘radian’ from the

previous iteration is added or compared with 180, then we infer

‘degree_360’, as shown in Table 3. The observational confidence

of 0.9 informs the prior probability constraints for these hints.

In addition, if a variable is added or compared with π , then we

infer ‘radian’. This hint is formulated as a conversion constraint

in Table 3, with the high probability of 0.95.

4.2 Probabilistic Inference Engine

Factor.Here, we discuss how the probabilistic constraints are trans-

lated into probabilistic functions. The functions serve as nodes in

a factor graph. All the predicates present in constraints are repre-

sented as boolean variables. An implication constraint, pred1
p
−→

pred2, is translated into a factor F (pred1,pred2) as:

F (pred1,pred2) =




p, if (pred1 −→ pred2) is true

1 − p, otherwise
(5)

and, a bidirectional constraint, pred1
p
←→ pred2, is divided into two

constraints: pred1
p
−→ pred2 and pred1

p
←− pred2, which are then

translated. A prior probability constraint pred1 = 1(q), is translated

into a factor F (pred1) as:

F (pred1) =




q, if (pred1) is true

1 − q, otherwise
(6)

We denote a factor with a corresponding probabilistic constraint

formulation, e.g. F (pred1) : pred1 = 1(q).

The boolean variables in Figure 3a together with the probabilistic

constraints in Table 2 (1ś7) can be translated into the factors shown

in Figure 3b.

Factor-graph. A factor graph is a bipartite graph with two kinds

of nodes: variable nodes and factor nodes. The edges join each

factor with its variables, i.e., the variables over which a probabilistic

function corresponding to the factor is defined. Figure 3c shows

a factor-graph for the variables and factors from Figures 3a-3b.

Factors F12, F13 and F14 are omitted for simplicity.

Belief Propagation. We use the sum-product belief propagation

algorithm [14] for probabilistic inference. It is an iterative algorithm

that passes belief messages between adjacent nodes and updates

the probability for each node based on the received messages. An

updated probability is propagated to adjacent nodes in the next it-

eration. The algorithm terminates when the probabilities converge.

Iteration. Phys iterates during Stage 1, as shown in Figure 2. This

iteration is critical to pick up additional constraints. For example,

Table 2 on the right side lists the iteration number in which each

probabilistic constraint was collected. As shown in the table, con-

straints (17) and (18) were only inferred after most of the other units

in the program had been determined. In general, it is important to

consider whether an iteration will reach a fixed point and terminate.

Unlike a traditional dataflow analysis, units do not fit well into a

lattice-based approach, and therefore we cannot use the Ascending

Chain Condition [21] to guarantee a fixed point. Therefore we man-

ually bound the iterations to 4, and observe that most programs we

have analyzed reach a fixed point within this bound.

p1 : P(v_ref_x_,ms−1)

p2 : P(v_ref_y_,ms−1)

p3 : P(linearSpeedXMps_,ms−1)

p4 : P(wx1,ms−1)

p5 : P(wy1,ms−1)

p6 : P(q1,ms−1)

c1 : C(v_ref_x_,ms−1)

c2 : C(v_ref_y_,ms−1)

c6 : C(q1,ms−1)

n3 : N(linearSpeedXMps_,ms−1)

(a) Boolean variables representing the predicates

Factors

(1) F1 : c1
0.95
−−−→ p1,

F2 : c1 = 1(1.0)

(2) F3 : c2
0.95
−−−→ p2,

F4 : c2 = 1(1.0)

(3) F5 : p1
0.95
−−−→ p3,

F12 : p3
0.95
←−−− p1

(4) F6 : n3
0.95
−−−→ p3,

F7 : n3 = 1(0.7083334)

(5) F8 : p4
0.95
−−−→ p1,

F13 : p1
0.95
←−−− p4

(6) F9 : p5
0.95
−−−→ p2,

F14 : p2
0.95
←−−− p5

(7) F10 : c6
0.95
−−−→ p6,

F11 : c6 = 1(0.8)

(b) Factors (c) Factor Graph

Figure 3: Factors and factor-graph for the probabilistic con-

straints (1)-(7) of our example in Table 2.

4.3 Complexity and Termination

Preprocessing builds a context-insensitive call graph, and topolog-

ically sorting this graph is O (|V | + |E |), worst case O (|E2 |) when

removing cycles. Collecting probabilistic constraints involves at

most h loops over each statement where h is the height of the

statement’s AST. The probabilistic inference engine implements

an approximate solution to the sum-product message passing al-

gorithm [14] that is quadratic. Collecting probabilistic constraints

and the sum-product are run within a loop bounded by a constant

(four times). After the loop, detecting inconsistencies involves a

linear scan of program variables and the program’s AST. Overall,

complexity is quadratic in time and space. This approach terminates

because we bound the loops to collect probabilistic constraints and

run sum-product.

5 EVALUATION

Our main goal is to evaluate the effectiveness of Phys in both unit in-

ference as well as unit-inconsistency detection. For that, we address

the following research questions:

• RQ1. How effective is our approach in physical unit type

inference compared to the state of the art?

• RQ2. Can our approach detect more unit-inconsistencies

compared to the state of the art?

• RQ3. How useful are various types of constraints defined in

our approach?

We have implemented Phys in Python. It relies on a few third-

party components: Cppcheck [17] is used to obtain an intermediate

569

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA S. Kate, J. Ore, X. Zhang, S. Elbaum, Z. Xu

form of a C++ program including a list of tokens, an AST for each

statement and symbol tables for variables, functions, and scopes;

libDAI [20] is used as the probabilistic inference engine. Moreover,

as mentioned before, Phys utilizes a one-time ‘mapping’ of ROS

data structures to physical units provided by Phriky. Our code is

available for download at https://zenodo.org/record/1310129.

The experimental evaluation is conducted on sample C++ files

picked from a large number of ROS-based projects (i.e., robotic

software) publicly available on GitHub. We used 90 files for unit

inconsistency detection in Section 5.2, and 30 files for type inference

in Section 5.1 because of the manual annotation effort. The list

of public software is at http://www.ros.org/browse/list.php. The

execution time of Phys ranges from 1 to 28 seconds for a file with

details elided.

For the comparison of Phys with the state of the art, we use

Phriky. The robotics programs that we use for experiments do not

come with any physical unit information. In order to determine

whether a variable can have a unit and whether an inferred unit is

correct, we manually collect the ground truth for all the reported

variables in the sample test-suite files. For determining true positive

(TP) cases of the reported inconsistencies, we manually examine

each inconsistency by reviewing the corresponding source code.

5.1 Physical-Unit Type Inference

In the first experiment, we want to evaluate the ability of Phys

to infer physical unit types for variables. Note that, we consider

only those variables that can have physical units (some variables in

robotics software do not represent any physical quantity, e.g., for

loop index variable). Plus, variables of integer type are assumed

to be dimensionless. Since Phys reports a ranked list of units for a

variable, we consider only the top unit in this experiment.

Experiment Setup. We compute results for three categories of

variables: 1) variables that Phriky could not assign any unit to, 2)

variables that Phriky assigned an incorrect unit to, and 3) variables

that Phriky assigned a correct unit to. Note that, Phriky sometimes

assigns more than one unit to a variable due to the unit-resolution

rule of performing union on an addition expression. In that case, if

a unioned set contains a correct unit, then the unit assignment is

considered as correct for Phriky. Also, variables of ROS data type,

that obtain units from the ‘mapping’, are not included in the result

computation. The experiment is performed on a sample test suite

of 30 C++ files randomly picked from ROS-based projects.

RQ1 Results: Unit Inference. Table 4 summarizes the results.

Column ‘Total Vars (#)’ shows the total number of variables of

non ROS data types for which Phys could infer units. Further, the

table presents the count of variables in each category that Phys

could infer units for in Columns ‘Var (#)’. Columns ‘Var (%)’ show

the percentage of a total number of variables in a sample file that

the corresponding ‘Var (#)’ accounts for. The accuracy of the unit

assignments is shown in Columns ‘TP (%)’. The TP rate is computed

as ‘TP%’=TP/‘Var(#)’, where TP represents the count of true positive

unit assignments (not shown in the table for brevity). Observe that,

we achieve an overall TP rate of greater than 88% in each category.

Also, it can be observed that Phys is able to infer units for a lot of

variables that Phriky cannot. In particular, Phys infers units for 783

variables, whereas Phriky could assign units to only 302 variables.

Effect of Constraint Probabilities. As seen in Section 4.1, Phys

is configured with the following parameters for constraints: 0.7

for naming, 0.8 for computed-unit and 0.9 for conversion. We per-

formed a couple of additional experiments to study the effect of

using different parameters values: 1) Naming probability: Phys was

evaluated with four values, namely, 0.6, 0.7, 0.8 and 0.9. It was ob-

served that it had negligible impact on unit-inference for the 30-files

set; 2) Combination of computed-unit and conversion probabilities:

as mentioned before, computed-unit probability is purposely chosen

to be lower than conversion probability. Therefore, we evaluated

Phys with three combinations of values for (computed-unit, conver-

sion), namely, (0.8, 0.9), (0.8, 0.8) and (0.9, 0.8), i.e., lower than, equal

to and higher than. It was observed that the TP rate was decreased

for the last two combinations in one of the categories of variables

(i.e., variables with incorrect units by Phriky). The decrease was due

to incorrect unit inference for some of the angle variables, which

were inferred to be ‘radian’ instead of ‘degree_360’.

5.2 Unit-inconsistency Detection

In this experiment, we evaluate the ability of Phys to detect unit-

inconsistencies. Note that we consider only high-confidence incon-

sistencies. An inconsistency is considered high-confidence only if

all the units in the inconsistent expression are known (no unknown

units for variables, and no constants that may or may not bear an

implicit unit). Both Phriky and Phys can be configured to report

only high-confidence cases.

Experiment Setup.We compute the TP rate of the reported incon-

sistencies for both Phys and Phriky. Due to the substantial manual

efforts entailed in identifying the ground truth for variables’ units,

we selected only a subset (30 files) of a large number of ROS-based

C++ projects as our sample test-suite for the previous experiment.

However, it would be interesting to see how Phys performs on other

files as well. Therefore, we divide the experiment into two parts. In

part one, we compute the results for our sample test suite of 30 files

used in the previous experiment. We call it the 30-files set. In part

two, we compute results for an expanded set of randomly selected

sample files. For the selection of the expanded set, we ran Phys on

28,484 ROS-based projects’ files available on GitHub. Phys reported

inconsistencies in 990 files (i.e. 3.5% of files with units). We then

randomly selected 60 files for which inconsistencies were reported

by Phys to form the expanded set.

RQ2 Results: 30-Files Set Inconsistencies. Table 5 presents the

TP and FP counts for each of the sample files in the 30-files set. The

table does not show entries for files that are found to have zero

inconsistencies by both Phys and Phriky. Columns 2-4 show the

results for Phriky, whereas Columns 5-7 show the results for Phys.

It can be observed that, though Phys has lower TP rate (96.43%) than

that of Phriky (100%), it has a capability to uncover more inconsis-

tencies. The highlighted rows indicate the cases of inconsistencies

missed by Phriky, but detected by Phys. In particular, the result for

the file summit_xl_robot_control.cpp demonstrates the detec-

tion of the addition unit-inconsistency described in the motivation

section (Section 3). Also, observe that for the file action.cpp, the

number of TP inconsistencies by Phys is less than that by Phriky.

However, though less, we found that the root cause of all those

captured inconsistencies is same, and thus, we do not actually miss

the case of an incorrect usage of units in this file.

570

https://zenodo.org/record/1310129
http://www.ros.org/browse/list.php

Phys: Probabilistic Physical Unit Assignment. . . ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Table 4: Physical unit type inference by Phys compared with Phriky.

30-files set Inferred
units

Variables with no units by
Phriky

Variables with incorrect
units by Phriky

Variables with correct
units by Phriky

Vars (#) Vars (#) Vars (%) TP (%) Vars (#) Vars (%) TP (%) Vars (#) Vars (%) TP (%)

Perception.cpp 94 67 77.91 95.52 1 100.0 100.0 26 100.0 100.0
labbot_teleoperation_twist.cpp 3 1 50.0 100.0 0 - - 2 100.0 100.0
QuadScripts.cpp 48 22 78.57 100.0 0 0.0 0.0 26 96.30 100.0
ard_node.cpp 20 4 66.67 100.0 0 - - 16 100.0 100.0
traj_builder.cpp 105 48 81.36 87.50 6 100.0 100.0 51 100.0 100.0
motor_and_sensors_controller.cpp 10 7 100.0 57.14 0 - - 3 100.0 100.0
simulation_functions.cpp 2 1 33.33 100.0 0 - - 1 100.0 100.0
follow.cpp 9 4 50.0 75.0 2 100.0 100.0 3 100.0 100.0
motor_control_hc.cpp 16 5 83.33 80.0 0 0.0 0.0 11 100.0 100.0
placement_wrt_workspace_action_server.cpp 5 5 71.43 100.0 0 - - 0 - -
interpolater.cpp 11 2 15.38 100.0 6 100.0 100.0 3 100.0 100.0
collvoid_local_planner.cpp 55 42 75.0 88.10 2 50.0 0.0 11 100.0 100.0
vel_scheduler.cpp 31 14 93.33 71.43 1 100.0 100.0 16 100.0 100.0
simple_pose.cpp 21 13 81.25 100.0 2 100.0 100.0 6 100.0 100.0
base_driver.cpp 32 25 96.15 92.0 5 100.0 60.00 2 100.0 100.0
channel_controller.cpp 65 49 87.50 73.47 2 100.0 100.0 14 100.0 100.0
odometry.cpp 7 2 50.0 100.0 0 - - 5 100.0 100.0
viconxbee.cpp 5 4 100.0 100.0 0 - - 1 100.0 100.0
base_controller.cpp 22 19 86.36 73.68 0 - - 3 75.0 100.0
trajectory_planner_ros.cpp 49 41 51.25 90.24 2 50.0 0.0 6 100.0 100.0
summit_xl_robot_control.cpp 104 68 93.15 100.0 23 85.19 100.0 13 92.86 100.0
summit_xl_waypoints.cpp 7 7 87.50 100.0 0 - - 0 - -
summit_xl_joint_state.cpp 0 0 0.0 0.0 0 - - 0 - -
summit_xl_joystick.cpp 3 3 100.0 0.0 0 - - 0 - -
action.cpp 30 24 68.57 87.50 0 - - 6 100.0 100.0
twist_marker.cpp 2 2 50.0 100.0 0 - - 0 - -
twist_mux.cpp 2 2 40.0 100.0 0 - - 0 - -
twist_mux_diagnostics.cpp 4 4 100.0 100.0 0 - - 0 - -
navigating_jockey.cpp 8 5 71.43 100.0 1 100.0 100.0 2 100.0 100.0
turtlebot_example_node.cpp 13 10 90.91 100.0 0 - - 3 100.0 100.0

Total 783 500 76.34 89.40 53 76.81 88.68 230 98.71 100.0

Table 5: Inconsistencies for the 30-files set.

Sample Test-Suite1 Phriky
Inconsistencies

Phys
Inconsistencies

Total
(#)

TP
(#)

FP
(#)

Total
(#)

TP
(#)

FP
(#)

labbot_teleoperation_twist.cpp 2 2 0 2 2 0
QuadScripts.cpp 4 4 0 4 4 0
ard_node.cpp 6 6 0 6 6 0
traj_builder.cpp 1 1 0 1 1 0
motor_and_sensors_controller.cpp 2 2 0 4 4 0
simulation_functions.cpp 1 1 0 1 1 0
follow.cpp 2 2 0 2 2 0
motor_control_hc.cpp 7 7 0 7 7 0
placement_wrt...action_server.cpp 1 1 0 3 1 2
collvoid_local_planner.cpp 2 2 0 2 2 0
base_driver.cpp 3 3 0 3 3 0
odometry.cpp 2 2 0 2 2 0
viconxbee.cpp 3 3 0 3 3 0
trajectory_planner_ros.cpp 3 3 0 3 3 0
summit_xl_robot_control.cpp 0 - - 8 8 0
action.cpp 3 3 0 2 2 0
twist_marker.cpp 1 1 0 1 1 0
turtlebot_example_node.cpp 0 - - 2 2 0

Total 43 43
[100.0%]

0 56 54
[96.43%]

2

There is one file, placement_wrt_workspace_action_server.cpp,

for which Phys reported two FPs. Both are reported because of

incorrect unit assignment of a variable max_velocity. The naming

convention component of Phys identifies it as unit ‘meter-per-

second’. However, in the program, this variable has been used as a

maximum velocity value for both linear and angular velocities and

thus can have either ‘meter-per-second’ or ‘per-second’ unit.

Table 6: Inconsistencies for the expanded set.

Phriky Inconsistencies Phys Inconsistencies

Total
(#)

TP
(#)

FP
(#)

Total
(#)

TP
(#)

FP
(#)

Unit-inconsistencies 78 75 [96.2%] 3 190 156 [82.1%] 34
Files 25 24 1 60 45 16

RQ2 Results: Inconsistencies for the Expanded File Set. Table

6 shows the summarized results for the expanded sample set. The

overall TP rate for Phys is 82.1%. Phys detects 103.3% more incon-

sistencies compared to Phriky, including every inconsistency that

Phriky detects. Phys finds 156 true positive inconsistencies in 45

files, whereas Phriky was able to find only 75 in 24 files.

Also, a number of FPs (34) are reported by Phys. They are gener-

ally caused by an incorrect unit inference of some variables, due to

the inherent uncertainty modeled into the probabilistic inference

approach. Majority of these FPs are caused by variables that are

intentionally used to represent two different quantities (i.e. units) in

a program, e.g., variable run_vel is used as both linear velocity and

angular velocity. Other causes for FPs include: a) variable with a

name reflecting a physical quantity, but used as a scalar (e.g. width);

b) controller gain variables, which are used only in the controller

equation and may carry implicit time quantity (i.e., it may have any

of the ‘second’ or ‘per-second’ units or no unit).

5.3 Constraint Distribution

RQ3 Results: Constraint Usage. Here, we present a study on the

types of constraints collected by Phys in our sample test suites.

Table 7 presents a count of files for which a particular type of

571

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA S. Kate, J. Ore, X. Zhang, S. Elbaum, Z. Xu

Table 7: Usage of various constraint types.

Files (#)

Dataflow Naming Computed-
unit

Known-
symbol

Conversion

30-Files Set 27 27 28 14 10
Expanded Set 57 56 52 35 20

constraint was collected. It can be observed that dataflow, nam-

ing, and computed-unit constraints play a major role in the unit-

inference. Also, the other two types, known-symbol and conversion

constraints, have been found in a number of files and thus are useful

in strengthening the unit-inference.

6 THREATS AND LIMITATIONS

6.1 Threats

Self-labeling. One threat is that this effort uses self-labeled data

to evaluate both physical unit type inference and inconsistency

detection. To mitigate this threat when labeling physical unit types,

we had multiple authors review the type assignments and also used

Phys to show inconsistencies when a physical unit type needed

correction. To mitigate this threat with inconsistencies, the authors

evaluated inconsistencies independently and compared results.

Overfitting. By assuming English and encoding priors for suffixes

like ‘speed’ that could mean either linear or angular velocity (dif-

ferent abstract types) there is a threat of overfitting. We mitigate

this threat by using a small but general set of suffixes (41 entries)

as described in Section 4.1 and observing that we evaluated Phys

on 60 random files drawn from 28, 484 files with inconsistencies,

and observed only few FPs caused by incorrect suffix assumptions.

łMagic" Numbers. We use three predefined confidence values for

naming, computed-unit and conversion constraints, respectively.

Their values are determined empirically and hence pose threats

to our results. Our experiments show that the results are not that

sensitive to the values.

6.2 Limitations

False Negatives. The number of false negatives in the dataset is

unknown, so we cannot calculate recall. To address this limitation,

we will examine evaluating the approach after seeding faults.

Generality. This approach relies on having some initial abstract

type information for physical units, in our case the ROS shared

message libraries. However, this approach could also leverage some

gradual type information from developer annotations. While our

evaluation focuses on ROS C++ software for impact, the technique

is general for other robotic systems.

7 RELATED WORK

Abstract Type Inference. Guo et al. [6] proposed a dynamic,

unification-based analysis for abstract type inference in Java pro-

grams to aid program comprehension. Likewise, we infer abstract

types based on program interactions, but our work is static and we

infer inconsistencies.Ayudante [8] uses dataflow to cluster variables

into abstract data types,then leverages a WordNet [18] similarity

metric to cluster by variable name; differences between the cluster-

ings are reported as abstract type inconsistencies. Like Phys, Ayu-

dante uses dataflow and variable names, but Phys uses probabilistic

reasoning to account for the uncertainty present in using variable

names in isolation. Also, we found poor results using WordNet

in the physical units type domain without context, since physical

units types are highly dependent on a combination of local clues

(like ‘speed’ meaning either linear and angular velocity). Ayudante

more aligns with a traditional unification-based type systems.

Probabilistic Inference in Software. Dietz et al. used probabilis-

tic inference to localize bugs [5] and we also seek to find bugs. How-

ever, our work collects evidence during static analysis while their

work collects evidence from program traces. Probabilistic inference

is used for type inference [27], specification extraction [4, 16], secu-

rity [15], and reasoning about approximate computations [19]. We

take an inspiration for our approach’s design, in particular, from the

work on probabilistic type inference for Python [32]. The difference

lies in that we detect physical unit inconsistencies and model hints

specific to the problem, such as expression forms and ROS data

types. Furthermore, units are not a predefined set and they can be

composed by the code. Our technique is hence iterative.

Physical Units in Software. Many efforts have proposed sup-

port for physical units with language extensions [1, 11, 12], unit-

annotation libraries [30], or dynamic techniques [29]. The tool

Osprey [10] detects unit inconsistencies with static analysis by us-

ing developer annotations and propagating units through data-flow

and constraints, but only works on Java programs. Our work is

different from theirs in that we use information available in variable

names and apply probabilistic constraints.

We target C++ code written for the Robot Operating System

(ROS) [26], a popular open-source middleware. Robot software

and ROS programs are used increasingly in both academic and

industrial robots [28] and contain many variables measured in

physical units.We build on Phriky Units ‘mapping’ [23, 24], a lookup

table from shared library attributes to physical units, but assign

more units to variables by adding additional constraints, allowing

our approach to detect more inconsistencies. Further, our approach

makes more variable assignments because it applies units after

collecting constraints from the whole program, rather than Phriky

that only makes a linear scan and cannot go backwards.

8 CONCLUSION

We have presented a novel probabilistic approach for abstract type

inference of physical units and inconsistency detection in robotic

systems. The approach leverages uncertain hints about variables’

units such as variables’ names, expression forms, and associated

operations to make probabilistic inferences of unit types. We have

implemented this approach as a tool Phys. Phys can infer units for

159%more variables than state-of-the-art, leading to the detection of

more than 103% inconsistencies without additional developer effort,

and with a true positive rate of 85%. In the future, we would like to

address the causes for the reported false positives and incorporate

more unit hints such as those present in equations that form a

robot’s sensing, planning, and control components.

ACKNOWLEDGEMENTS

We thank our insightful reviewers. This research was supported

by ONR contracts N000141410468 and N000141712947, NSF awards

1638099, 1526652, 1718040, 1748764, and 1409668. Any opinions,

findings, and conclusions in this paper are those of the authors only

and do not necessarily reflect the views of our sponsors.

572

Phys: Probabilistic Physical Unit Assignment. . . ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

REFERENCES
[1] Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem Maessen,

Sukyoung Ryu, Guy L Steele Jr, Sam Tobin-Hochstadt, Joao Dias, Carl Eastlund,
et al. 2005. The Fortress language specification. Sun Microsystems 139 (2005),
140.

[2] BIPM. 2006. Le Système international d’unités / The International System of Units
(‘The SI Brochure’) (eighth ed.). Bureau international des poids et mesures. http:
//www.bipm.org/en/si/si_brochure/

[3] Percy Williams Bridgman. 1922. Dimensional Analysis. Yale University Press.
[4] Anthony Cozzie, Frank Stratton, Hui Xue, and Samuel T. King. 2008. Digging

for Data Structures. In 8th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2008, December 8-10, 2008, San Diego, California, USA,
Proceedings, Richard Draves and Robbert van Renesse (Eds.). USENIX Association,
255ś266. http://www.usenix.org/events/osdi08/tech/full_papers/cozzie/cozzie.
pdf

[5] Laura Dietz, Valentin Dallmeier, Andreas Zeller, and Tobias Scheffer. 2009.
Localizing Bugs in Program Executions with Graphical Models. In Advances
in Neural Information Processing Systems 22: 23rd Annual Conference on Neu-
ral Information Processing Systems 2009. Proceedings of a meeting held 7-10
December 2009, Vancouver, British Columbia, Canada., Yoshua Bengio, Dale
Schuurmans, John D. Lafferty, Christopher K. I. Williams, and Aron Cu-
lotta (Eds.). Curran Associates, Inc., 468ś476. http://papers.nips.cc/paper/
3792-localizing-bugs-in-program-executions-with-graphical-models

[6] Philip J. Guo, Jeff H. Perkins, Stephen McCamant, and Michael D. Ernst. 2006.
Dynamic Inference of Abstract Types. In Proceedings of the 2006 International
Symposium on Software Testing and Analysis (ISSTA ’06). ACM, New York, NY,
USA, 255ś265. https://doi.org/10.1145/1146238.1146268

[7] S. Hangal and M. S. Lam. 2009. Automatic dimension inference and checking for
object-oriented programs. In 2009 IEEE 31st International Conference on Software
Engineering. 155ś165. https://doi.org/10.1109/ICSE.2009.5070517

[8] Irfan Ul Haq, Juan Caballero, and Michael D. Ernst. 2015. Ayudante: identifying
undesired variable interactions. In Proceedings of the 13th International Workshop
on Dynamic Analysis, WODA@SPLASH 2015, Pittsburgh, PA, USA, October 26, 2015,
Harry Xu and Walter Binder (Eds.). ACM, 8ś13. https://doi.org/10.1145/2823363.
2823366

[9] Paul N. Hilfinger. 1988. An Ada Package for Dimensional Analysis. ACM Trans.
Program. Lang. Syst. 10, 2 (April 1988), 189ś203. https://doi.org/10.1145/42190.
42346

[10] Lingxiao Jiang and Zhendong Su. 2006. Osprey: a practical type system for
validating dimensional unit correctness of C programs. In 28th International
Conference on Software Engineering (ICSE 2006), Shanghai, China, May 20-28, 2006.
262ś271. https://doi.org/10.1145/1134323

[11] Michael Karr and David B. Loveman, III. 1978. Incorporation of Units into
Programming Languages. Commun. ACM 21, 5 (May 1978), 385ś391. https:
//doi.org/10.1145/359488.359501

[12] Andrew Kennedy. 2009. Types for Units-of-Measure: Theory and Practice. In
Central European Functional Programming School - Third Summer School, CEFP
2009, Budapest, Hungary, May 21-23, 2009 and Komárno, Slovakia, May 25-30, 2009,
Revised Selected Lectures. 268ś305. https://doi.org/10.1007/978-3-642-17685-2_8

[13] Daphne Koller and Nir Friedman. 2009. Probabilistic Graphical Models - Principles
and Techniques. MIT Press. http://mitpress.mit.edu/catalog/item/default.asp?
ttype=2&tid=11886

[14] Frank R. Kschischang, Brendan J. Frey, and Hans-Andrea Loeliger. 2001. Factor
graphs and the sum-product algorithm. IEEE Trans. Information Theory 47, 2
(2001), 498ś519. https://doi.org/10.1109/18.910572

[15] Zhiqiang Lin, Junghwan Rhee, Chao Wu, Xiangyu Zhang, and Dongyan
Xu. 2012. Discovering Semantic Data of Interest from Un-mappable Mem-
ory with Confidence. In 19th Annual Network and Distributed System Se-
curity Symposium, NDSS 2012, San Diego, California, USA, February 5-8,
2012. The Internet Society. https://www.ndss-symposium.org/ndss2012/

discovering-semantic-data-interest-un-mappable-memory-confidence
[16] V. Benjamin Livshits, Aditya V. Nori, Sriram K. Rajamani, and Anindya Banerjee.

2009. Merlin: specification inference for explicit information flow problems. In
Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009, Michael
Hind and Amer Diwan (Eds.). ACM, 75ś86. https://doi.org/10.1145/1542476.
1542485

[17] Daniel Marjamaeki. 2013. Cppcheck - A tool for static C/C++ code analysis.
http://cppcheck.sourceforge.net/

[18] George A. Miller. 1995. WordNet: A Lexical Database for English. Commun. ACM
38, 11 (Nov. 1995), 39ś41. https://doi.org/10.1145/219717.219748

[19] Sasa Misailovic. 2017. Probabilistic reasoning for analysis of approximate com-
putations. In Proceedings of the 2017 International Conference on Compilers, Ar-
chitectures and Synthesis for Embedded Systems, CASES 2017, Seoul, Republic of
Korea, October 15-20, 2017. 4:1. https://doi.org/10.1145/3125501.3125524

[20] Joris Mooij. 2010. libDAI - A free and open source C++ library for Discrete
Approximate Inference in graphical models. https://staff.fnwi.uva.nl/j.m.mooij/
libDAI/

[21] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. 1999. Principles of
program analysis. Springer. https://doi.org/10.1007/978-3-662-03811-6

[22] John-Paul Ore, Sebastian G. Elbaum, and Carrick Detweiler. 2017. Dimensional
inconsistencies in code and ROS messages: A study of 5.9M lines of code. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2017,
Vancouver, BC, Canada, September 24-28, 2017. IEEE, 712ś718. https://doi.org/10.
1109/IROS.2017.8202229

[23] John-Paul Ore, Carrick Detweiler, and Sebastian Elbaum. 2017. Lightweight
Detection of Physical Unit Inconsistencies Without Program Annotations. In
Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2017). ACM, New York, NY, USA, 341ś351. https://doi.org/
10.1145/3092703.3092722

[24] John-Paul Ore, Carrick Detweiler, and Sebastian Elbaum. 2017. Phriky-Units:
A Lightweight, Annotation-free Physical Unit Inconsistency Detection Tool.
In Proceedings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA 2017). ACM, New York, NY, USA, 352ś355. https:
//doi.org/10.1145/3092703.3098219

[25] Judea Pearl. 1986. Fusion, Propagation, and Structuring in Belief Networks. Artif.
Intell. 29, 3 (1986), 241ś288. https://doi.org/10.1016/0004-3702(86)90072-X

[26] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. 2009. ROS: an open-source Robot Operating
System. In ICRA workshop on open source software, Vol. 3.2. Kobe, Japan, 5.

[27] Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Predicting Program
Properties from "Big Code". In Proceedings of the 42Nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’15). ACM,
New York, NY, USA, 111ś124. https://doi.org/10.1145/2676726.2677009

[28] ROS Industrial Consortium. 2016. Current Members - ROS Industrial. http:
//rosindustrial.org/ric/current-members

[29] G. Rosu and Feng Chen. 2003. Certifying measurement unit safety policy. In
18th IEEE International Conference on Automated Software Engineering, 2003.
Proceedings. 304ś309. https://doi.org/10.1109/ASE.2003.1240326

[30] Matthias Schabel and Steven Watanabe. 2010. Boost Units. http://www.boost.
org/doc/libs/1_66_0/doc/html/boost_units.html

[31] Don Syme, Luke Hoban, Tao Liu, Dmitry Lomov, James Margetson, Brian McNa-
mara, Joe Pamer, Penny Orwick, Daniel Quirk, Chris Smith, et al. 2010. The F#
2.0 language specification. Microsoft, August (2010).

[32] Zhaogui Xu, Xiangyu Zhang, Lin Chen, Kexin Pei, and Baowen Xu. 2016. Python
Probabilistic Type Inference with Natural Language Support. In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE 2016). ACM, New York, NY, USA, 607ś618. https://doi.org/10.
1145/2950290.2950343

573

http://www.bipm.org/en/si/si_brochure/
http://www.bipm.org/en/si/si_brochure/
http://www.usenix.org/events/osdi08/tech/full_papers/cozzie/cozzie.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cozzie/cozzie.pdf
http://papers.nips.cc/paper/3792-localizing-bugs-in-program-executions-with-graphical-models
http://papers.nips.cc/paper/3792-localizing-bugs-in-program-executions-with-graphical-models
https://doi.org/10.1145/1146238.1146268
https://doi.org/10.1109/ICSE.2009.5070517
https://doi.org/10.1145/2823363.2823366
https://doi.org/10.1145/2823363.2823366
https://doi.org/10.1145/42190.42346
https://doi.org/10.1145/42190.42346
https://doi.org/10.1145/1134323
https://doi.org/10.1145/359488.359501
https://doi.org/10.1145/359488.359501
https://doi.org/10.1007/978-3-642-17685-2_8
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11886
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11886
https://doi.org/10.1109/18.910572
https://www.ndss-symposium.org/ndss2012/discovering-semantic-data-interest-un-mappable-memory-confidence
https://www.ndss-symposium.org/ndss2012/discovering-semantic-data-interest-un-mappable-memory-confidence
https://doi.org/10.1145/1542476.1542485
https://doi.org/10.1145/1542476.1542485
http://cppcheck.sourceforge.net/
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/3125501.3125524
https://staff.fnwi.uva.nl/j.m.mooij/libDAI/
https://staff.fnwi.uva.nl/j.m.mooij/libDAI/
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1109/IROS.2017.8202229
https://doi.org/10.1109/IROS.2017.8202229
https://doi.org/10.1145/3092703.3092722
https://doi.org/10.1145/3092703.3092722
https://doi.org/10.1145/3092703.3098219
https://doi.org/10.1145/3092703.3098219
https://doi.org/10.1016/0004-3702(86)90072-X
https://doi.org/10.1145/2676726.2677009
http://rosindustrial.org/ric/current-members
http://rosindustrial.org/ric/current-members
https://doi.org/10.1109/ASE.2003.1240326
http://www.boost.org/doc/libs/1_66_0/doc/html/boost_units.html
http://www.boost.org/doc/libs/1_66_0/doc/html/boost_units.html
https://doi.org/10.1145/2950290.2950343
https://doi.org/10.1145/2950290.2950343

	Abstract
	1 Introduction
	2 Background
	2.1 Physical-units and Unit-inconsistency Detection
	2.2 Probabilistic Inference with Graphical Models

	3 Motivating Example
	4 Approach
	4.1 Probabilistic Constraints
	4.2 Probabilistic Inference Engine
	4.3 Complexity and Termination

	5 Evaluation
	5.1 Physical-Unit Type Inference
	5.2 Unit-inconsistency Detection
	5.3 Constraint Distribution

	6 Threats and Limitations
	6.1 Threats
	6.2 Limitations

	7 Related Work
	8 Conclusion
	References

