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ABSTRACT

Type annotations provide a link between program variables and
domain-specific types. When combined with a type system, these
annotations can enable early fault detection. For type annotations
to be cost-effective in practice, they need to be both accurate and
affordable for developers. We lack, however, an understanding of
how burdensome type annotation is for developers. Hence, this
work explores three fundamental questions: 1) how accurately do
developers make type annotations; 2) how long does a single anno-
tation take; and, 3) if a system could automatically suggest a type
annotation, how beneficial to accuracy are correct suggestions and
how detrimental are incorrect suggestions? We present results of
a study of 71 programmers using 20 random code artifacts that
contain variables with physical unit types that must be annotated.
Subjects choose a correct type annotation only 51% of the time and
take an average of 136 seconds to make a single correct annotation.
Our qualitative analysis reveals that variable names and reasoning
over mathematical operations are the leading clues for type selec-
tion. We find that suggesting the correct type boosts accuracy to
73%, while making a poor suggestion decreases accuracy to 28%. We
also explore what state-of-the-art automated type annotation sys-
tems can and cannot do to help developers with type annotations,
and identify implications for tool developers.
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1 INTRODUCTION

Type checking is one of the most successful and enduring ap-
proaches for ensuring desirable program properties [6, 29, 35, 39,
40]. Indeed, many empirical studies confirm the benefits of type
systems [13, 27, 36, 43, 46]. For example, Prechelt et al. [36] demon-
strated that type checking introduces fewer defects and allows
programmers to remove those defects faster, Hannenberg et al. [13]
claimed static types improve maintainability, and Spiza et al. [43]
showed that type names alone even without static type checking
improves the usability of APIs.

Conceptually, type checking consists of three elements: 1) a type
system to define the abstract theory that can ensure the desired
property; 2) a type mechanism to enforce type consistency; and, 3) a
type association to link program variables to their corresponding
types. Type association can occur through different means. For
common types such as int, float, or string the association is
often supported by the programming language and occurs when a
variable is declared or is assigned some data of a known type.

For more domain-specific types [12, 18, 31, 53], however, devel-
opers must typically incorporate type annotations' [6] into the code
to link a variable with a type, thereby making the type association.
Several efforts have explored the benefits of such type annotations.
For example, in the context of JavaScript, Gao et al. [12] found
that type annotations help find 15% of bugs in open-source projects.
In Java, Xiang et al. [53] showed the fault detection potential of
annotating with real-world types, where variables represent mea-
surable quantities in the real world. For C++, Ore et al. [31] check
the physical unit type consistency of files written for the Robot
Operating System (ROS) [37] using type associations in a built-in
map from class attributes of ROS libraries to physical unit types.
For C, Jiang and Su [18] checked programs for dimensional unit
correctness using lightweight type annotations.

Just like other kinds of code annotation, creating type annota-
tions is a burden for developers, in part because they must first
evaluate what program variables need annotation and then choose

1“Type annotations’ are sometimes also called ‘type hints’ [41].
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a correct type annotation, hence the name annotation burden [7].
But...how burdensome? Although many refer to the annotation
burden as a given, we lack an understanding of how accurately
and quickly developers create type annotations and therefore have
difficulty quantifying the benefits to developers.

This work presents an empirical study of 71 subjects to first
answer these foundational questions about type annotations:

e RQ;: How accurately do developers make type annotations?
e RQy: How long does a single correct annotation take?

To answer these questions, we design a study where we randomly
select code snippets from artifacts in the robotic/cyber-physical
domain. We then ask developers to annotate a variable by choosing
a physical unit type from a list of common domain types, and to
explain why they make the annotation. To our knowledge, this is
the first work to quantify the burden in making type annotations,
and in general this work contributes to the limited body of data on
code annotation.

We instantiate the type annotation task within the domain of
physical unit types as identified by Xiang et al’s work on real-
world types [53]. For example, a variable that represents a spring
constant in the real-world would be annotated with the physical
unit type newtons-per-meter (N m~!). The type system then checks,
for example, that variables of this type are only added or assigned
to other variables of this type. We choose this domain because
physical unit types are ubiquitous in robotic and cyber-physical
software, yet they are nearly always implicit, and the lack of explicit
typing causes many type inconsistencies [31, 33].

Because of the benefits of annotations, researchers have explored
automating the annotation process, including with automated an-
notation assistants. Vakilian et al. [50] found that annotation works
best when developers and automated tools work together. We imag-
ine that automatic tools to suggest annotations will continue to
improve but occasionally make an incorrect suggestion. Therefore
this work also explores the impact of suggesting a type annotation:

e RQs3: How beneficial to accuracy are correct suggestions and
how detrimental are incorrect suggestions?

To address this question, we apply to the study annotation ques-
tions one of three treatments: with no suggestion, with a correct
suggestion, and with an incorrect suggestion.

The key findings of this work are:

e Developers assign type annotations correctly only 51.4% of
the time.

o A developer takes on average 136.0 s to correctly annotate a
single variable.

e A correct suggestion reduces the risk of assigning a wrong
type by a factor of 0.40, while an incorrect suggestion in-
creases the risk of annotating incorrectly by a factor of 2.66.

e Most subjects cite variable names alone as the clue to ex-
plain their annotation, while other subjects reference how
reasoning over code operations informs their decisions.

e State-of-the-art tools suggest few correct type annotations,
and identifying what variables need to be typed is valuable
to developers.
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2 BACKGROUND: PHYSICAL UNIT TYPES

This work is instantiated in the type domain of physical units of
measure and based on the SI unit system [5]. The SI units system
has seven base units each of which can itself be a type. Additionally,
the seven base units can be combined through multiplication and
division to make compound units, like kilogram-meter-squared-per-
second-squared (kg m? s~2), more commonly known as torque.

Physical units types have been explored in myriad efforts [14,
18, 20, 21, 42, 49, 52]. Not all variables belong to the type domain.
For example, boolean type variables do not have a physical units
type, while float variables can and often do represent a measured
quantity with real-world meaning, and therefore have a physical
unit type in addition to their data type (like float). Determining
whether a variable belongs in the physical unit type domain is part
of the annotation burden.

The type annotation process in the physical unit domain involves
extracting clues from variable names, comments, and mathematical
constraints. For example, a developer could infer that variable r in:

dist_meters = r » time_seconds;

probably has the type meters-per-second (ms™!). A competent de-
veloper would note that the variables dist_meters and time_sec-
onds probably have physical units types because of their names,
although the name r provides little help. Then a developer could
solve for the physical unit type of r using simple algebra, and per-
haps rename r to rate_meters_per_second. However, sometimes
the name does not help, for example, the variable x in:

x = 0.01; // 1 cm
does not hint a type but it likely has the type meters (m) because of
the comment.

Developers must choose a physical unit type from a large set
of possible types, but in practice, some units are more common
than others. Table 1 shows the most common unit types ordered
by decreasing frequency found in a large corpus of open source
robotic code [33].

For our empirical study, we use Table 1 as the list of possible
type annotations, with two additions: 1) NO UNITS, for scalars and
quantities that are not part of the type domain; and 2) OTHER, for
uncommon types like kilogram-meter-squared-per-second-cubed-
per-ampere (one of our answers, also known as voltage) and to
allow subjects to think beyond the choices provided. Including NO
UNITS is essential because deciding what should be typed is the
first part of the annotation burden.

3 METHODOLOGY

In this section, we first describe the type annotation task and re-
iterate our research questions. We then present our experimental
design and discuss how we constructed a test instrument with code
artifacts, and how we selected those artifacts. We then describe the
target population and how we recruited and pre-screened subjects
for the experiment. Next, we explain the experimental phases and
finally discuss the tools used during the experiment and analysis.
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Table 1: Common physical unit types from [33], in decreas-
ing order of frequency. COVERED denotes whether any
question’s correct answer on the study was the type listed.

PHYSICAL UNIT TYPE SISYMBOL | COVERED
meters m v
second 8
quaternion q v
radians-per-second rads™! v
meters-per-second ms~!

radians rad v
meters-per-second-squared ms~? v
kilogram-meters-squared-per-second-squared kgm? s~2 v
meters-squared m?

degrees (360) deg
radians-per-second-squared rad s v
meters-squared-per-second-squared m? 52 v
kilogram-meter-per-second-squared kgms™?
kilogram-per-second-squared-per-ampere kgs2 A7 v
Celsius °C
kilogram-per-second-squared kgs™? v
kilogram-per-meter-per-second-squared kgm™!s7?

lux Ix
kilogram-squared-per-meter-squared-per-second- | kg?m=2 s
to-the-fourth

3.1 Type Annotation Task & Research
Questions

The type annotation task requires developers to make a type associ-
ation between a variable and a type. We assess the type annotation
task through an online test where we show code snippets to subjects
and ask them to choose a physical type annotation for a specified
variable. As shown in Figure 1, a test question consists of a code
snippet, a highlighted variable, a text question, a suggestion (for
some questions), and a drop-down menu of physical unit types.
The drop-down box contains 21 type annotations from Table 1 in
random order from which subjects must select one. The code snip-
pets used in this study vary in length from 4-57 lines, averaging
17.9LOC and 2.9 comments as measured by cloc [9]. Of the test
questions, 14/20 show an entire function while six are truncated
so the code snippets fit onto one page. Test questions like the one
shown in Figure 1 are instances of the type annotation task that we
use to answer three RQs:

e RQ;: How accurately do developers make type annotations?
To answer this question we calculate the percentage of cor-
rect responses to a battery of type annotation tasks.

e RQ;: How long does a single annotation take? To answer
this question we measure the time to complete the type
annotation task.

e RQ3: How beneficial are correct suggestions to accuracy and
how detrimental are incorrect suggestions? To answer this
question we provide a single correct or incorrect suggestion
to some questions and measure the change in the percentage
of correct responses between questions without suggestions
and questions with suggestions.
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After the subjects finalize their type annotation through the unit
selection, they are asked to provide an open-ended explanation for
their choice. We later use the explanations to help us understand
how subjects reason about type annotations, both when the type
annotation is correct and when incorrect.

3.2 Experimental Design

void msgCallback(const boost::shared_ptr<const geometry_msgs::WrenchStamped>
&wrench_ptr) // FIXME Add the torques!!!
{

geometry_msgs: :WrenchStamped wrench_out;
geometry_msgs::PointStamped tmp_point_in;
geometry_msgs::PointStamped tmp_point_out;

try {
tmp_point_in.
tmp_point_in.
tmp_point_in.
tmp_point_in.

header = wrench_ptr->header;

point.x = wrench_ptr->wrench.force.x;
point.y = wrench_ptr->wrench.force.y;
point.z = wrench_ptr->wrench.force.z;

tf_.transformPoint(target_frame_, tmp_point_in,

wrench_out.header = tmp_point_out.header;

wrench_out.wrench.force.x tmp_point_out.point.x;
wrench_out.wrench.force.y tmp_point_out.point.y;
wrench_out.wrench.force.z int_out.point.z;

VISUAL INDICATOR OF
VARIABLE TO BE ANNOTATED

publisher_.publish(wrench_out);

~

catch (tf::TransformException &ex) {
printf("Failure %s\n", ex.what()); // Print exception which was caught

QUESTION

What are the units for wrench_out.wrench. force.y on line #55?

/ SUGGESTION

1. kilogram-meter-per-second-squared (kg m s-2) , DROP-DOWN
7 .
v

Figure 1: Sample test question. The yellow box on line 55 in-
dicates the variable to be annotated. The test question shows
treatment T, a correct suggestion.

SUGGESTION (Might not be correct):

To address our research questions simultaneously, we design an
experiment involving instances of the annotation task described
earlier. In our experiment, we measure both response accuracy and
the time it takes the subject to select and submit an annotation.
Each test question, like the example shown in Figure 1, has one of
three treatments:

e Ty: No suggestion (control). A question with the suggestion
section not included.

e T,: Correct suggestion. A question with a correct suggestion
immediately above the drop-down box, where the text of the
suggestion exactly matches one option in the drop-down.
The suggestion is accompanied by the caveat: “SUGGESTION
(Might not be correct).”

e T3: Incorrect suggestion. This treatment is identical to T, ex-
cept the suggestion is incorrect. The incorrect suggestion has
the same caveat as in T, and matches one option in the drop-
down box. This incorrect suggestion is chosen randomly
from Table 1 (excluding the correct answer and OTHER).

The measurements of accuracy and timing in response to Tq an-
swer both RQ; and RQ2 and also are the control for RQs. To address
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RQs3, we compare the accuracy and time for test questions treated
with Tq to questions treated with T, and T3. In this experiment,
the independent variable is the suggestion, and the dependent
variables are annotation accuracy and time.

Our study uses a completely randomized design [22]. We group
ten questions into an annotation test (‘the main test’), and randomly
assign subjects to tests. We randomly apply a treatment to each
question and randomize question order for each subject. We ensure
that each test includes at least three questions of each treatment
type, to spread the treatments across subjects.

3.3 Test Instrument Details

Question Timing, Explanations, and Code Artifacts. Ques-
tions include a snippet of a code artifact as shown in Figure 1.
Each annotation question is instrumented to collect timing infor-
mation, specifically the duration from when the question is loaded
to when the subjects finalize their answer.

As explained earlier, after the subjects finalize their answer to
a type annotation test question, we ask them to explain why they
chose that type in an open-ended question. We want to record
explanations to understand how subjects reason about choosing
an annotation type and what differentiates correct from incorrect
responses. The time to write the explanation is not included in the
time to annotate.

The code artifacts come from a corpus of open-source robotic
and cyber-physical code repositories identified in [33] encompass-
ing a wide variety of applications. The corpus contains 797,410 C++
files from 3, 484 GitHub repositories that build against the Robot
Operating System (ROS) [37], a robotic middleware with many ‘real
world types’ From those files, we ran the tool PHRIKY [32] to iden-
tify 31, 928 files with physical unit type variables. After excluding
test files and those that did not compile, we randomly select a file,
and starting from the top, we manually identify the first function
with unit types and make a judgement about whether the function
is sufficiently complex, meaning that it contains either interaction
between physical units or compound physical unit types (see Sec-
tion 2). Within such functions, we randomly select a single variable
with a physical unit type. We repeat this process until we have
20 artifacts, and each artifact was reviewed by at least two of the
authors. Finally, we cross-check the annotations one more time
before the test and one more time during the test instrument eval-
uation phase. Table 1 shows the resulting distribution of physical
unit types within the code artifacts we study.

Suggestions. For treatment Ty, the 21 types in the drop-down menu
are the 19 most common physical units found in a corpus of robotic
code plus NO UNITS and OTHER (see Section 2). For treatment T3,
the incorrect suggestion is randomly selected from Table 1 minus
the correct answer and OTHER. Suggestions are randomized per test,
so each question has a variety of incorrect suggestions across tests.
Type Annotation Options. At the bottom of Figure 1 is a drop-
down menu with annotation type choices. Every question, regard-
less of treatment, had the same type annotation options in a drop-
down menu, with the order randomized for every question to miti-
gate the threat of response order bias [16].

Tests. We have a pool of 20 artifacts, each with a unique code
snippet and correct answer. We compose 20 tests with a different
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random subset of 10 questions randomly selected from the initial
pool of 20. We randomize question order per subject, and randomly
assign treatments T1-T3 to questions, retaining a balanced number
of treatments per test.

A version of the test instrument with all 20 test questions can
be found at https://doi.org/10.5281/zenodo.1311901.

3.4 Subject Sample Population

The sample population is users with programming experience re-
cruited using Amazon’s Mechanical Turk (MTurk). MTurk is an
online marketplace for labor that is increasingly popular for behav-
ior research [25] and has an extensive usage in software engineering
[10, 24, 44]. Finding subjects on MTurk is not without risks (espe-
cially in demographics) [19] but has been shown to be ‘appropriate’
for research requiring diverse cognition [17]. The MTurk mecha-
nism allows for ‘exclusion criterion’ to pre-screen subjects based
on a demonstrated ability to complete MTurk tasks successfully.

Following recommended practices [47], we pre-screen subjects
by requiring them to have completed >500 tasks with >90% ap-
proval in their MTurk history, and further screen subjects by re-
quiring them to pass a pretest of type annotations. We pay subjects
a fixed amount for the pretest ($2 USD) and main test ($10 USD)
regardless of accuracy, since this has been shown to have little
impact on quality among MTurk workers [26]. We tell the subjects
not to rush, that they would be judged based on the accuracy of
their responses, to provide good explanations, and to watch for
random ‘attention checks’ [15] because this has been shown to
increase performance.

Table 2: Demographics for 71 Subjects.

YEARS PROGRAMMING EMBEDDED SYSTEMS,
EXPERIENCE  C, C++ C#, Java  CYBER-PHYSICAL, ROBOTICS
<1 17 (24%) 53 (75%)

1-5 37 (52%) 15 (21%)

5+ 17 (24%) 3 (4%)

At the beginning of the pretest, we ask three demographic ques-
tions about experience with programming languages, robotics, and
type annotations. We want to determine if subject demographics
would influence responses and to get a sense of who was partic-
ipating in the study. The first question relates to programming
languages: “How many years of programming experience in lan-
guages like C, C++, C#, Java?” The second asks about embedded
system programming: “Years of experience programming embedded
systems or robotic systems or cyber-physical systems (Things that
move or sense)?” Table 2 shows a summary of the responses for the
71 subjects who completed the main test. As shown in the table,
37/71 (52%) of subjects indicate 1-5 years experience with (mostly)
statically typed languages, and 18/71 (25%) have more than one
year of experience with robotic or embedded programming. The
third question (Yes/No) asks: “Have you used any code annotation
frameworks?” 13/71 subjects (17%) indicate the previous usage of
annotation frameworks and name tools such as ‘SAL/MSDN’, ‘Re-
sharper/Jetbrains’, and ‘JSR 308’. We revisit the impact of
these demographic factors in Section 4.
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3.5 Tools

In conducting these experiments, we use several off-the-shelf tools:
Amazon’s Mechanical Turk (MTurk)[1] is used to recruit and
pay subjects both for the pretest and the main tests. We ensure
subjects anonymity as required by our Institutional Review Board
(IRB# 20170817412EX) by tracking only the MTurk worker ID.
Qualtrics [3] is used to create and deploy the test instruments, ran-
domize test question order per subject, instrument the questions to
record timing information, record responses, and generate a unique
completion code used to pay subjects. We configure Qualtrics to
prevent the same IP address from submitting multiple responses.
R (Statistical Programming Language)[38] is used for data anal-
ysis, including the multinom function from the nnet package [51]
to build binomial log-linear response models, and the binom pack-
age [11] to calculate binomial confidence intervals. We perform
ANOVA on timing questions using R’s aov function.
Clang-format [2] is used to standardize the code formatting of
the snippets shown to subjects.

3.6 Study Phases

We conducted the study in two phases:
Phase 1: Test Instrument Evaluation and Refinement. In this
phase, we iteratively evaluate the test instruments on 27 subjects,
each test with ten questions without suggestions. Based on this
evaluation, we: 1) replaced two trivially easy questions; 2) refined
the suggestion wording (“Might not be correct”) and pretest demo-
graphic instructions (“NOT GRADED OR SCORED,” as recommended
by best practices for MTurk in [19]); 3) verified our annotations; 4)
added visual highlights to the variables to be annotated; 5) random-
ized the question order per test; and, 6) added a required explanation
textbox field for every annotation. None of the data acquired in this
phase is included in our results, and the 27 evaluation subjects are
not eligible to take the main test.
// Send a velocity command
void Stopper::moveForward() {
geometry_msgs::Twist
msg; // The default constructor will set all commands to @
msg.linear.x = FORWARD_SPEED_MPS;

commandPub.publish(msg);
}

Figure 2: Code snippet used in the pretest.

Phase 2: Test Instrument Deployment of Pretest & Main Test.
We require subjects to pass a pretest. In the pretest, all subjects
read two practice questions that serve as a tutorial and then must
correctly answer two annotation questions. Figure 2 shows a screen-
shot of a question from the pretest. The correct type assignment,
meters-per-second, can be inferred from the variable name or the
name of the variable assigned to it. In total 1431 subjects started
the pretest, but only 487 finished it, indicating that many subjects
opted out of the task. Of those that finished the pretest, 30.7% of
subjects (145/472) passed the pretest.

After passing the pretest, 49.0% of subjects (71/145) took the
main test, which they had to start within 4 hours of the pretest and
then had 2 hours to complete. We paid each main-test subject $10
(USD). We received 417 total responses to the main test.”
2The eagle-eyed reader will notice we have 71 subjects who took a 10 question test, yet

have only 417 responses. We had to exclude 293 responses because the test question
order was accidentally not randomized early in this phase.
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4 RESULTS

We first address the accuracy of responses with no suggestions (Tj,
the control treatment) and examine how subjects’ demographics
impact accuracy, then examine T+’s timing and compare correct
responses to incorrect responses. Next, we explore the impact of
suggestions on accuracy (treatments T, and T3, respectively) and
then examine annotation timing by question difficulty. Finally, we
summarize the clues subjects reported using to choose a type.

4.1 RQ; Results: Accuracy

For test questions under treatment T1, with no suggestions, subjects
correctly annotate 71/138 (51%), as shown in Figure 3. The figure
shows the mean and a 95% binomial proportion confidence interval
of +8.5% (Agresti-Coull) [4].

L , = , ]
0.00 0.25 0.50 0.75 1.00
ACCURACY

Figure 3: Annotation accuracy for control treatment T;.

Table 3 shows detailed statistics for accuracy under treatment Tj.
As shown in the table, there is a wide range of accuracy based on
the question. Based on the accuracy of test questions that received
treatment Ty, we grouped questions into three difficulty levels: Easy
100 — 75%, MEDIUM 75 — 25%, HARD 25 — 0%.

Figure 5 shows the range of accuracy for each difficulty group

of T1 (no suggestion). We make this grouping primarily to see if
question difficulty correlates to the time necessary to assign a type.
Previous Experience Has Little Impact On Accuracy. Subject’s
previous experience with programming languages, robotics/cyber-
physical systems, and experience with annotations (described in
Section 3.4) does not have a significant impact on accuracy. Subjects
with 5+ years of programming experience (N = 17) have a slightly
higher mean accuracy (56%) than other subjects (50% for 1 — 5
years N = 37, 50% for < 1 years N = 17), but without significance
(p = 0.554). Surprisingly, subjects with the least experience with
robotics/cyber-physical have the highest accuracy (53%, N = 53)
compared other subjects (45% for 1 — 5 years N = 15, 50% for 5+
years N = 3), but that is within the noise (p = 0.829).
Physical Unit Complexity Has Little Impact On Accuracy.
Physical unit types in the SI System have both base unit types
(like meters) and compound units types (like kilogram-meters-per-
second-squared), described in Section 2. The increasing complexity
of compound types did not appear to correlate to inaccuracy. For
example, the correct answer to Q19 and Qy is the simple physical
unit type radian, yet subjects incorrectly annotate this question
more than any other, 10/12 times, while the slightly more com-
plex quaternion on Qq2 is never incorrectly annotated, likely be-
cause the variable in Q3 is assigned from the well-named function
convertPlanarPhi2Quaternion(). Similarly, compound physical
units like kilogram-meter-squared-per-second-squared on Q17 is in-
correct 5/6 times, while the similar compound units kilogram-per-
second-squared is answered incorrectly 4/10 times in Q5. Overall, the
complexity inherent in the physical unit type seems less important
than the surrounding clues, especially good variable names.

RQ; Accuracy Results: Manually assigning type annotations is
error-prone (51% accurate, +8.5%).
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4.2 RQ; Results: Timing

The timing data includes outliers, because our test mechanism has
a long time-bound (2 hours). We cap the value of 8/147 timing out-
liers using Tukey’s interquartile ‘gate’ range method [48]. Tukey’s
method identifies outliers using a scaling factor k times the in-
terquartile range plus the third quartile, and suggests k = 3 [28].
We use an even more conservative k = 6 to identify outliers to
cap (for upper and lower quartiles Q1 and Q3, we cap values above
Q3 +k(Q3 - Q1) with k = 6). In total, we cap question times greater
than 961.6 s to the sample mean’s 95% value, 529.1s.

ALL L ] oe
L]
- RESPONSE
BASY 1 ——(C 13~ E= CORRECT
L] L]
MEDIUM{ — «| FE3INCORRECT
HARD { A f—F———F
0 100 200 300 400 500
SECONDS

Figure 4: Time to complete a single annotation, separated by
question difficulty and correctness annotation.
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Subjects take an average of 136.0 s (median=108.6 s) to make a
single correct type annotation. The results for annotation times
are shown in Figure 4, grouped by question difficulty and cor-
rectness. Correct annotations are slightly faster than incorrect
ones (mean=169.2s) but not significantly faster (p = 0.184). As
shown in the figure, the average time to assign a type annota-
tion (for ArL) is nearly the same whether correct or incorrect,
with slightly more variance for incorrect answers. HARD ques-
tions (mean=219.7 s) tend to take longer to answer correctly than
EAsy questions (mean=112.3 s), but without statistical significance
(p = 0.282), likely because few HARD questions were answered
correctly (we would have needed several more hard questions to
have enough statistical power).

RQ; Timing Results: assigning type annotations is time-
intensive (mean=136.0 s, median=108.6 s per variable).

Table 3: Accuracy and time for questions by treatment.

CONTROL TREATMENTS
Qs | DIFFICULTY T1 NO SUGGESTION T, CORRECT SUGGESTION T3 INCORRECT SUGGESTION
Correct Time (s) Correct Time (s) Correct Time (s)

%  Fraction Mean Median %  Fraction Mean Median || % Fraction Mean Median
12 100 % 76 70 83 % 111 36 33 % 162 121
9 Easy 90 %o 113 90 80 Ho 112 70 67 % 93 68
5 83 % 144 82 83 % 237 155 17 % 116 49
15 83 % 169 141 83 % 122 103 40 Yo 125 102
ALL EAsy 89 s 124 88 82 s 141 70 36 %8 124 74
67 % 153 102 80 Ho 151 105 20 Yo 223 146
6 67 % 134 130 75 % 156 103 50 % 146 76
16 67 % 64 65 90 Yo 200 72 33 % 104 77
8 64 Ve 130 141 90 Yo 98 79 33 % 163 103
2 60 %o 120 105 33 % 75 54 20 %o 72 58
3 MEDIUM 60 %o 302 233 83 % 202 139 17 % 150 123
7 50 % 226 103 80 Ho 155 153 17 % 86 69
10 43 % 87 105 83 % 97 100 33 % 184 184
11 33 % 151 128 83 % 175 78 67 % 107 99
14 33 % 106 101 67 % 75 42 0 % 75 53
18 33 % 167 50 100 % 126 125 33 % 264 218
ArLL MEDIUM 51 Yo 153 112 77 %4 140 90 28 W4 143 108
1 17 % 245 188 67 % 56 52 40 Yo 258 175
13 17 % 130 90 50 % 99 67 0 % 156 146
17 HARrD 17 % 54 32 33 % 198 126 57 % 233 111
19 17 % 213 201 50 % 90 85 17 Y% 174 83
20 17 % 234 196 50 % 231 168 0 % 111 84
ALL HARD 17 Yo 175 118 50 %o 135 91 23 s 196 99
ALL Q}JESTIONS H 51 Yiss 152 109 H 73 1942 139 86 H 28 3Nsr 153 98
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Table 4: Accuracy by treatment. ‘Risk Ratio’ lines show a multiplication factor indicating the likelihood
of an incorrect type annotation with a 95% confidence interval. A Risk Ratio of 2 means twice as likely.

TREATMENT % CORRECT  RESPONSES  SUBJECTS RISK RATIO OF INCORRECT TYPE ANNOTATION p-VALUE
T1 No Suggestion (Control) 51 138 71 —— -
T, Correct Suggestion 73 142 69 —-— 0.0003
T; Incorrect Suggestion 28 137 58 0.0001

T T T T T 1

0 0.5 1 2 3 4 5

4.3 RQs; Results: Impact of Suggestions on
Accuracy

RQs3 considers the impact of a single suggestion on the accuracy
and timing of type annotations.

As discussed in Section 3.2, subjects are supplied with a type an-
notation suggestion immediately below the question text as shown
in Figure 1, either correct (T,) or incorrect (T3). To measure the
significance of the impact of suggestions we fit a binomial log-
linear response model (‘the model’). We use a binomial response
model because the test question responses are either correct = 1
or incorrect = 0. The output of the model includes the risk ratio
by treatment. The risk ratio is used in log-linear models to quan-
tify the likelihood of a binomial response. A risk ratio >1 in our
study means an increased risk of assigning an incorrect type when
compared to the control (T).

As shown in Table 4, a correct suggestion T, decreases the risk
of annotating incorrectly (p = 0.0001) compared to T;. The model
predicts that T, reduces the risk of assigning a wrong type by a 0.40
(0.24-0.66, 95% confidence). An incorrect suggestion T3 increases
the risk of annotating incorrectly (p = 0.0003) compared to Ty. The
model predicts that T3 increases the risk of assigning a wrong type
by 2.66 (1.62-4.39, 95% confidence).

These p-values indicate that treatments T, and T3 have a signifi-
cant impact on annotation accuracy. Treatments T, and T3 are also
significantly different from each other (p = 1.281e — 12).

For treatment T3 (incorrect suggestion), of the 71 subjects provid-
ing 137 responses, 98 responses are incorrect. Of these, 30/98 (31%)
responses ‘took the bait’ of using the provided incorrect suggestion.
Regarding subjects, this corresponds to 22/71 (31%) that used an
incorrect suggestion for an annotation.

The most common incorrect annotation for T, (14/39) and T3
(28/98) was NO UNITS, meaning users infer that the units canceled
out or that the correct answer was a scalar. The next most common
incorrect annotations are meters (T 4/39, T3 12/98) and OTHER (T,
3/39, T 7/98).

Figure 5 shows the range of accuracy for all treatments by ques-
tion difficulty. As shown in the figure, an incorrect suggestion T3
reduces accuracy for Easy (—53%) and MEDIUM (—49%) questions
with little impact on HARD questions. Correct suggestions T, ben-
efit all questions compared to Tq, with similar improvements for
HARD (+33%) and MEDIUM (+26%) questions, while only helping
EAsy questions by +7%.

RQ3 Accuracy Results: Incorrect suggestions increase the risk of
incorrect annotations by a factor of 2.66, while correct suggestions
reduce the risk of incorrect annotations by a factor of 0.40, an
approximately equal but opposite impact on annotation accuracy.

4.4 RQs; Results: Impact of Suggestions on Time

Figure 6 shows the impact of a suggestion on the time required to
provide a correct annotation. The three difficulty levels are shown
along with the category ArL. For the group ALL, correct annota-
tions are fastest in T (correct suggestion, mean=126.1s), compared
to 33% longer with T3 (incorrect suggestions, mean=168.5s)) and
8% longer with T (no suggestion, mean=136.0s). The difference
between the time between T and T3 is not significant (p = 0.220).

Correct suggestions have the least impact on the timing of Easy
questions. This small impact makes sense intuitively since EAsy
questions benefit less from a suggestion. Correct suggestions tend to

— e
NO SUGGESTION - — A

-® EASY
CORRECT SUGGESTION - s A MEDIUM

HARD

INCORRECT SUGGESTION - L —r !
0.00 0.25 0.50 0.75 1.00
ACCURACY

Figure 5: Accuracy by treatment and difficulty, showing 95% confidence interval.
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Figure 6: Timing by difficulty and treatment for correct responses.

reduce the time required for HARD questions, as shown in Figure 6,
although without statistical significance that we attribute to having
few correct HARD answers. Incorrect suggestions T3 tend to increase
the time to annotate both MEDTUM and HARD questions, but without
significance.

RQ3 Timing Results: Although a definitive answer requires fur-
ther study, correct suggestions appear to decrease the time for
correct annotations the most for HARD type annotations.

4.5 Clues for Choosing a Type

Sections 4.1-4.3 provided a quantitative analysis of the responses,
revealing an accuracy of 51% which was surprisingly low and which
led us to further explore the clues that led developers to choose
a particular type. We conducted this exploration by collecting all
the explanations provided by the developers on all their responses
and analyzing them using a Grounded Theory [45] approach. We
categorized the answers based on what we perceived were common
patterns, reorganizing the clusters during iterative phases as new
and better patterns emerged. During the first iteration, we applied
twelve labels. After three iterations, we converged to six clusters
and assigned them a label, as shown in Table 5, discriminated by
correctness and treatment.

The most common clue used by developers for both, correct and
incorrect answers, for T1 was variable ‘names only’, used for 71/138
(51%) of all annotations. The caveat is that although all variables
had a name, not all of the code snippets included comments or
mathematical operations (we discuss them next). But at least from
a qualitative point of view, we note that the explanations tended to
convey the value of meaningful identifiers:

Q17: At least I hope ‘torque’ is referring to torque.

Math reasoning and names were frequently used when explaining
the correct answers. For example, this is an explanation for a correct
answer to the question in Figure 1:

Q4:vx * cos(th) - vy * sin(th) will give a quantity in m /
s. Since dt is a quantity in seconds, multiplying by that
will yield meters.

Errors due to poor math reasoning were present but less frequent
than we expected. As an example, for the same question we find:

Q4: Meters per second times dt would cause the seconds
to cancel out and the meters to square

Where “cause...the meters to square” is incorrect.

Code comments were also used as effective clues, with more
correct (N = 11) than incorrect answers (N = 3). We note that only
two questions (Qg and Qg) contained clues in comments, which
may be representative of how common comments are in spite of
their value for inferring types. Incorrect answers for treatment Ty
were common for variables not in the type domain (NO UNITS) as
subjects did not seem able to gather enough clues to determine that
the type system even applied.

Five respondents explicitly stated that the suggestions from T,
helped, and 12 respondents stated that they were misguided by
Ts3. These values, however, constitute lower bounds as subjects
may not have confided us with the full extent to which they use
the suggestion. Still, the fact that for T3 30/98 (31%) of incorrect
answers matched the incorrect suggestion we provided illustrates
the large potential impact of suggestions on developers’ actions.

Qualitative Results: The main clues for type selection are vari-
able names and reasoning over mathematical operations.

Table 5: Summary of type annotation explanations for 417 answers.

EXPLANATION CATEGORY CORRECT RESPONSES INCORRECT RESPONSES
T T2 T3 T T T3
names only 36 54 17 35 20 44
math reasoning and names 20 24 18 5 4 12
code comments 11 9 2 3 - -
not in type domain (NO UNITS) 4 10 19 13 25
used suggestion - 5 - - - 12
type depends on input - - - 5 2 2
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5 THREATS TO VALIDITY

5.1 External Threats

Subjects Might Not Represent Developers. We mitigate this
hazard by requiring respondents to complete a pretest that at least
shows that respondents could understand the task, read code, and
correctly identify the physical units that should be assigned to pro-
gram variables during annotation. Since subjects were not specifi-
cally trained to make type annotations, our accuracy measurements
likely under-approximates the performance of trained developers.

Annotation Task Fidelity. The annotation task defined in Sec-
tion 3 with physical unit types in C++ might not generalize other
type annotations. First, type systems vary in complexity, and phys-
ical unit types might be more or less complicated/time-consuming
than all type systems in general. We observe that type annota-
tion requires developer time and involves reasoning about both
the type system and how types interact with the code. Second,
our study examines type annotations made by non-authors, likely
under-approximating our accuracy measurements. Observing code
authors could improve fidelity in follow-on work.

Unrepresentative Code Artifacts. The code artifacts might not
represent code that needs type annotation more generally. We
mitigate this threat by selecting artifacts randomly from a large
corpus (5.9 M LOC), although all our samples are for a strongly-
typed language (C++). We limited the scope of analysis to a function,
the accuracy and time might be different for bigger scopes.

5.2 Internal Threats

Subjects Recruited Through MTurk. We recruited subjects through

MTurk, and [19] indicates MTurk subjects might falsify demo-
graphic information to participate in online tests. We mitigate this
threat by clearly stating on the pretest that demographic question
are “NOT GRADED OR SCORED.” We also filtered subjects and
provided incentives for them to take the task seriously.

Code Context Bias. Bias introduced by our artifacts, including
the amount of context or the variety of physical unit types. We
mitigate this threat by showing the entire function when feasible
and testing the questions during an evaluation phase to make sure
it was possible to choose the correct type annotation with the
available information.

Test Instrument Format. The question and suggestion format,
as provided, does not reflect the full context on how a developer
operates in reality and may have affected the subjects in ways we
did not anticipate. The test instrumentation and refinement phase
helped mitigate this threat.

Physical Unit Type Common Names. Common names for phys-
ical unit types like force (instead of kilogram-meters-per-second-
squared) are not an option in the drop-down box. We mitigate this
threat by examining every explanation. If subjects identified an
equivalent common name for the physical unit type, and answered
OTHER or said they could not find the units in the drop-down box,
we consider the answer as correct. We considered 7/417 answers
as correct because of a common name.
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Test Time Window. We measure the time to complete annotation
questions but allow a large time window (2 hours) to complete the
whole test, during which subjects might take breaks or do other
tasks, or take the entire allotted time to find the correct answer
(‘ceiling effect’), resulting in longer times to answer annotation
questions. Therefore our timing values might over-approximate the
time to assign a type annotation. We mitigate this threat by identi-
fying and capping timing outliers. More importantly, our timing
only captures annotation time, but we recognize that developer’s
time may be spent in, for example, pursuing leads generated by
incorrect annotations.

5.3 Conclusion Threats

Statistical Significance. We do not have enough subjects (N = 71)
to find statistical significance for some of our hypotheses that have
clear trends, because we exhausted the resources available to get
more subjects at this time and unanticipated data distribution across
some of the factors we considered. For example, the time consumed
by questions of different difficulty was not found to be statistically
significant because there were few HARD questions with correct
responses. Further, this data distribution does not have statistical
significance when segmenting responses by demographics. In the
future, we will address such limitations by deploying more tests
and by monitoring the results to reassign questions to subjects to
even out the desired distributions.

6 DISCUSSION AND IMPLICATIONS

Section 4.3 indicated that type annotation suggestions can have a
significant impact on accuracy. Building on that insight, we briefly
explore the performance of a type annotation tool for the same type
domain, physical units. More specifically, we select the open-source
tool PHRIKY [32] (version 1.0.0) that analyzes C++ written for the
Robot Operating System (ROS). We selected PHRIKY because it is
open-source, operates on ROS C++ code, is state-of-the-art, and can
automatically suggest physical unit types for some program vari-
ables. For example, in Figure 2, lines 18-19 define a structure msg of
type geometry_msgs: : Twist. PHRIKY has a lookup table mapping
the attributes of this message class to physical units. This mapping
enables PHRIKY to infer in line 20 that the attribute msg. linear.x
has the physical unit type meters-per-second.

Table 6 shows the tool PHRIKY’s physical unit type predictions
for each variable that was used in a test question. We obtained
these suggestions by running PHRIKY --debug-print-ast on each
file containing the code snippets used in the test, and recording
what physical unit type is assigned to the variable. As shown in
the Table, PHRIKY makes a suggestion for only 7/20 (35%) of the
variables, correct type suggestions for 5/20 (25%) of variables, and
incorrect suggestions for 2/20 (10%) of variables. Existing tools have
an opportunity to address some of the challenges.

The implications for tools developers include:

o As Figure 5 shows, correct suggestions are most beneficial
for HARD type annotations, and therefore tool developers
will have a greater impact making correct suggestions in
HARD cases.
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Table 6: Correct types for each question compared to PHRIKY
units annotations. Ordered by question difficulty.

Qs Difficulty Variable Name %‘j:;ea ng}gt{:slt(i‘;n

12 pose.orientation q v

9 E delta_d m v
ASY _

5 robotSpeed.angular.z rads™! X

15 X2 m?

4 delta_x m

6 w rads™!

16 av rads™!

8 path_move_tol_ m

2 springConstant kg s™?

3 MEDIUM  ratio_to_consume NO UNITS

7 X NO UNITS

10 wrench_out.wrench. force.y kgms’2 v

11 data->gyro_z; ms2 v

14 xi m

18 motor_.voltage[1] other

1 return m

13 angular_velocity_covariance rads~? X

17 HAaRD  torque kgm?s~2 v

19 anglesmsg.z rad

20 dyaw rad

o Finding variables that likely need type annotations is valu-
able because developers struggle to know what variables
belong to the type domain.

e Evidence that implies a type might also suggest a new vari-
able name with better type clues.

e Suggest a type only when >50% confident, because incorrect
suggestions hurt as much as correct suggestions help.

7 RELATED WORK

Empirical Studies of Types Systems. Several empirical studies
confirm the benefits of type systems. Prechelt and Tichy [36] com-
pared the impact of static type checking on student programmers
using ANSI C and K&R, where ANSI C’s compiler type checked
procedure arguments and found fewer defects in programs written
with static type checking. Like this work, we are interested in the
empirical measurement of types, but unlike this work, we use exist-
ing code artifacts instead of new ones. Various efforts [13, 23, 27, 46]
claimed static typing improves reliability, maintainability, and un-
derstandability of statically typed programs in comparison to dy-
namic types. While those works weighed the costs and benefits of
type systems, we focus on the costs of the type annotation process.
Type names, even without type checking, improve the usability of
APIs [43], and Rojas and Fraser [8] emphasized the importance of
semantically useful names. We likewise find that variable names
contain informative clues, but unlike their work, we also find that
a misunderstood name can lead to incorrect type annotations.

Type Annotations. Gao, Bird, and Barr [12] examined how type
annotations can detect bugs in JavaScript, and quantified the an-
notation burden in terms of a time tax and token tax. The authors
measured their own annotation effort and reported the time and
number of tokens to annotate to detect one bug. Using their token
tax (token-annotation-per-bug) and time tax (time-per-bug), we
infer their time per single annotation to be 127.8 s for TYPESCRIPT
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and 135.8 s for FLow. We measured an uncannily similar 136.0 s for
a single type annotation, even though the task, language, skill level,
and type domain are different. Like their work, we are interested
in the cost of type annotation, but unlike their work, we measure
the time for a population of 71 individuals and not the three au-
thors themselves. Xiang et al. propose a kind of program analysis
with 'Real-World Types’ [53]. This analysis requires that an analyst
examine all program tokens to decide what needs to be annotated.

Type Annotation Tools and Suggestions. Nimmer and Ernst
evaluated the factors that made an annotation assistant useful [30].
Like their work, we perform an empirical evaluation, and unlike
their work, we focus on type annotations instead of assertions.
The type qualifier tool Cascade shows better results by involving
programmers rather than by automatic inference alone [50]. Like
their work, we consider automatic inference mixed with developer
input to be a natural next step. Parnin and Orso’s work on automatic
suggestions in fault isolation [34] showed that when a tool makes
multiple suggestions to a developer, only the first suggestion is
likely to be used. We likewise make only one suggestion and leave
for future work a study of multiple suggestions.

8 CONCLUSION

This work contributes a rich characterization of type annotation
accuracy and cost. Our findings reveal that user annotations are
wrong almost half of the time and that correctly annotating a sin-
gle variable takes on average more than two minutes. Through a
qualitative analysis of the annotation explanations, we find that
variable naming and reasoning over the space of operations on
the types were the most common culprits of incorrect annotations.
Given the challenge of correctly annotating code, there is signifi-
cant potential for automated tools to reduce this burden; however,
they could misguide the developer if the suggestions are incorrect.
Further, existing tools that provide such automation only cover a
small portion of the annotation space.

In the future, we will broaden the context of this study to include
richer kinds of annotations over larger scopes to determine when
our findings generalize. This would help to further close the gap
in our understanding of the costs and benefits of annotations. We
would also like to consider the follow-up phase, when the anno-
tations are consumed by either the developer or another tool, to
more precisely understand the cost of incorrect annotations and
the number of correct annotations that are needed to receive tan-
gible benefits. Last, we would like to build on existing techniques
and tools for automating type suggestions, especially to cover a
greater portion of the annotation space and to explore hybrid anno-
tation mechanisms, all while taking into consideration the baseline
accuracy and cost identified in this paper.

ACKNOWLEDGMENT

We thank our subjects for taking part in the study. We would also
like to thank NIMBUS lab members Urja Acharya, Carl Hildebrandt,
Ajay Shankar, and Adam Plowcha for providing feedback on early
versions of the type annotation test instrument. This work is sup-
ported by NSF award #CCF-1718040.



Assessing the Type Annotation Burden

REFERENCES

[11]

[12]

[13]

[14

[15

[16]

[19]

[20]

[21]

[22]
[23]

[24]

2018. Amazon Mechanical Turk (MTurk). https://www.mturk.com

2018. Clang: a C language family frontend for LLVM. https://clang.llvm.org
2018. Qualtrics. https://www.qualtrics.com

Alan Agresti and Brent A Coull. 1998. Approximate is better than “exact” for
interval estimation of binomial proportions. The American Statistician 52, 2 (1998),
119-126.

BIPM. 2006. Le Systéme international d’unités / The International System of Units
(‘The SI Brochure’) (eighth ed.). Bureau international des poids et mesures. http:
//www.bipm.org/en/si/si_brochure/

Luca Cardelli. 1996. Type Systems. ACM Comput. Surv. 28, 1 (1996), 263-264.
https://doi.org/10.1145/234313.234418

Patrice Chalin and Perry R. James. 2007. Non-null References by Default in Java:
Alleviating the Nullity Annotation Burden. In ECOOP 2007 - Object-Oriented
Programming, 21st European Conference, Berlin, Germany, July 30 - August 3, 2007,
Proceedings. 227-247. https://doi.org/10.1007/978-3-540-73589-2_12

Ermira Daka, José Miguel Rojas, and Gordon Fraser. 2017. Generating unit tests
with descriptive names or: would you name your children thing1 and thing2?.
In Proceedings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis, Santa Barbara, CA, USA, July 10 - 14, 2017, Tevfik Bultan
and Koushik Sen (Eds.). ACM, 57-67. https://doi.org/10.1145/3092703.3092727
Al Danial. 2018. Count Lines Of Code. https://github.com/AlDanial/cloc
Rafael Maiani de Mello, Pedro Correa da Silva, Per Runeson, and Guilherme Horta
Travassos. 2014. Towards a Framework to Support Large Scale Sampling in
Software Engineering Surveys. In Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM '14). ACM,
New York, NY, USA, Article 48, 4 pages. https://doi.org/10.1145/2652524.2652567
Sundar Dorai-Raj. 2014. binom: Binomial Confidence Intervals For Several Param-
eterizations. https://CRAN.R-project.org/package=binom R package version
1.1-1.

Zheng Gao, Christian Bird, and Earl T. Barr. 2017. To type or not to type: quan-
tifying detectable bugs in JavaScript. In Proceedings of the 39th International
Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May
20-28, 2017, Sebastian Uchitel, Alessandro Orso, and Martin P. Robillard (Eds.).
IEEE / ACM, 758-769. https://doi.org/10.1109/ICSE.2017.75

Stefan Hanenberg, Sebastian Kleinschmager, Romain Robbes, Eric Tanter, and
Andreas Stefik. 2014. An empirical study on the impact of static typing on
software maintainability. Empirical Software Engineering 19, 5 (2014), 1335-1382.
https://doi.org/10.1007/s10664-013-9289-1

Sudheendra Hangal and Monica S. Lam. 2009. Automatic dimension inference
and checking for object-oriented programs. In 31st International Conference on
Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada, Proceedings.
IEEE, 155-165. https://doi.org/10.1109/ICSE.2009.5070517

David J Hauser and Norbert Schwarz. 2016. Attentive Turkers: MTurk partici-
pants perform better on online attention checks than do subject pool participants.
Behavior research methods 48, 1 (2016), 400—-407.

Allyson Holbrook. 2011.  Encyclopedia of Survey Research Methods. Sage
Publications, Inc., Chapter Response Order Effects. https://doi.org/10.4135/
9781412963947

Ronnie Jia, Zachary R. Steelman, and Blaize Horner Reich. 2017. Using Mechanical
Turk Data in IS Research: Risks, Rewards, and Recommendations. CAIS 41 (2017),
14. http://aisel.aisnet.org/cais/vol41/iss1/14

Lingxiao Jiang and Zhendong Su. 2006. Osprey: a practical type system for
validating dimensional unit correctness of C programs. In 28th International
Conference on Software Engineering, ICSE 2006), Shanghai, China, May 20-28, 2006.
262-271. https://doi.org/10.1145/1134323

Irene P. Kan and Anna Drummey. 2018. Do imposters threaten data quality?
An examination of worker misrepresentation and downstream consequences in
Amazon’s Mechanical Turk workforce. Computers in Human Behavior 83 (2018),
243-253. https://doi.org/10.1016/j.chb.2018.02.005

Michael Karr and David B. Loveman, III. 1978. Incorporation of Units into
Programming Languages. Commun. ACM 21, 5 (May 1978), 385-391. https:
//doi.org/10.1145/359488.359501

Andrew Kennedy. 2009. Types for Units-of-Measure: Theory and Practice. In
Central European Functional Programming School - Third Summer School, CEFP
2009, Budapest, Hungary, May 21-23, 2009 and Komarno, Slovakia, May 25-30, 2009,
Revised Selected Lectures. 268-305. https://doi.org/10.1007/978-3-642-17685-2_8
Roger E Kirk. 1982. Experimental design. Wiley Online Library.

Sebastian Kleinschmager, Stefan Hanenberg, Romain Robbes, Eric Tanter, and
Andreas Stefik. 2012. Do static type systems improve the maintainability of
software systems? An empirical study. In IEEE 20th International Conference on
Program Comprehension, ICPC 2012, Passau, Germany, June 11-13, 2012. 153-162.
https://doi.org/10.1109/ICPC.2012.6240483

Ke Mao, Licia Capra, Mark Harman, and Yue Jia. 2017. A survey of the use of
crowdsourcing in software engineering. Journal of Systems and Software 126
(2017), 57 - 84. https://doi.org/10.1016/j.jss.2016.09.015

200

[25]

[26

(27]

[28

[29

[30

[31

[32

[39

[40]

(41

[43

[44

ASE ’18, September 3-7, 2018, Montpellier, France

Winter Mason and Siddharth Suri. 2012. Conducting behavioral research on
AmazonaAZs Mechanical Turk. Behavior research methods 44, 1 (2012), 1-23.
Winter A. Mason and Duncan J. Watts. 2009. Financial incentives and the
“performance of crowds”. SIGKDD Explorations 11, 2 (2009), 100-108. https:
//doi.org/10.1145/1809400.1809422

Clemens Mayer, Stefan Hanenberg, Romain Robbes, Eric Tanter, and Andreas
Stefik. 2012. An empirical study of the influence of static type systems on the
usability of undocumented software. In Proceedings of the 27th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2012, Tucson, AZ, USA, October 21-25, 2012. 683-702. https:
//doi.org/10.1145/2384616.2384666

Robert McGill, John W Tukey, and Wayne A Larsen. 1978. Variations of box plots.
The American Statistician 32, 1 (1978), 12-16.

Robin Milner. 1978. A Theory of Type Polymorphism in Programming. J. Comput.
Syst. Sci. 17, 3 (1978), 348-375. https://doi.org/10.1016/0022-0000(78)90014-4
Jeremy W. Nimmer and Michael D. Ernst. 2002. Invariant Inference for Static
Checking: An Empirical Evaluation. SIGSOFT Softw. Eng. Notes 27, 6 (Nov. 2002),
11-20. https://doi.org/10.1145/605466.605469

John-Paul Ore, Carrick Detweiler, and Sebastian Elbaum. 2017. Lightweight
Detection of Physical Unit Inconsistencies Without Program Annotations. In
Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2017). ACM, New York, NY, USA, 341-351. https://doi.org/
10.1145/3092703.3092722

John-Paul Ore, Carrick Detweiler, and Sebastian Elbaum. 2017. Phriky-units:
A Lightweight, Annotation-free Physical Unit Inconsistency Detection Tool.
In Proceedings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA 2017). ACM, New York, NY, USA, 352-355. https:
//doi.org/10.1145/3092703.3098219

J. P. Ore, S. Elbaum, and C. Detweiler. 2017. Dimensional inconsistencies in code
and ROS messages: A study of 5.9M lines of code. In 2017 IEEE/RSY International
Conference on Intelligent Robots and Systems (IROS). 712-718. https://doi.org/10.
1109/IR0OS.2017.8202229

Chris Parnin and Alessandro Orso. 2011. Are automated debugging techniques
actually helping programmers?. In Proceedings of the 20th International Sympo-
sium on Software Testing and Analysis, ISSTA 2011, Toronto, ON, Canada, July
17-21, 2011. 199-209. https://doi.org/10.1145/2001420.2001445

Benjamin C. Pierce. 2002. Types and programming languages. MIT Press.

Lutz Prechelt and Walter F. Tichy. 1998. A Controlled Experiment to Assess the
Benefits of Procedure Argument Type Checking. IEEE Trans. Software Eng. 24, 4
(1998), 302-312. https://doi.org/10.1109/32.677186

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. 2009. ROS: an open-source Robot Operating
System. In ICRA workshop on open source software, Vol. 3.2. Kobe, Japan, 5.

R Core Team. 2013. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.
org/

Baishakhi Ray, Daryl Posnett, Premkumar T. Devanbu, and Vladimir Filkov.
2017. A large-scale study of programming languages and code quality in GitHub.
Commun. ACM 60, 10 (2017), 91-100. https://doi.org/10.1145/3126905

John C. Reynolds. 1974. Towards a theory of type structure. In Programming
Symposium, Proceedings Colloque sur la Programmation, Paris, France, April 9-11,
1974 (Lecture Notes in Computer Science), Bernard Robinet (Ed.), Vol. 19. Springer,
408-423. https://doi.org/10.1007/3-540-06859-7_148

Guido van Rossum, Jukka Lehtosalo, and Lukasz Langa. 2014. PEP484 - Type
Hints. https://www.python.org/dev/peps/pep-0484/. [Online; accessed 13-July-
2018].

G. Rosu and Feng Chen. 2003. Certifying measurement unit safety policy. In
18th IEEE International Conference on Automated Software Engineering, 2003.
Proceedings. 304-309. https://doi.org/10.1109/ASE.2003.1240326

Samuel Spiza and Stefan Hanenberg. 2014. Type names without static type
checking already improve the usability of APIs (as long as the type names
are correct): an empirical study. In 13th International Conference on Modular-
ity, MODULARITY ’14, Lugano, Switzerland, April 22-26, 2014. 99-108. https:
//doi.org/10.1145/2577080.2577098

Kathryn T. Stolee and Sebastian Elbaum. 2010. Exploring the Use of Crowd-
sourcing to Support Empirical Studies in Software Engineering. In Proceedings of
the 2010 ACM-IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM ’10). ACM, New York, NY, USA, Article 35, 4 pages.
https://doi.org/10.1145/1852786.1852832

Anselm Strauss and Juliet M Corbin. 1990. Basics of qualitative research: Grounded
theory procedures and techniques. Sage Publications, Inc.

Andreas Stuchlik and Stefan Hanenberg. 2011. Static vs. dynamic type systems:
an empirical study about the relationship between type casts and development
time. In Proceedings of the 7th Symposium on Dynamic Languages, DLS 2011,
October 24, 2011, Portland, OR, USA, Theo D’Hondt (Ed.). ACM, 97-106. https:
//doi.org/10.1145/2047849.2047861


https://www.mturk.com
https://clang.llvm.org
https://www.qualtrics.com
http://www.bipm.org/en/si/si_brochure/
http://www.bipm.org/en/si/si_brochure/
https://doi.org/10.1145/234313.234418
https://doi.org/10.1007/978-3-540-73589-2_12
https://doi.org/10.1145/3092703.3092727
https://github.com/AlDanial/cloc
https://doi.org/10.1145/2652524.2652567
https://CRAN.R-project.org/package=binom
https://doi.org/10.1109/ICSE.2017.75
https://doi.org/10.1007/s10664-013-9289-1
https://doi.org/10.1109/ICSE.2009.5070517
https://doi.org/10.4135/9781412963947
https://doi.org/10.4135/9781412963947
http://aisel.aisnet.org/cais/vol41/iss1/14
https://doi.org/10.1145/1134323
https://doi.org/10.1016/j.chb.2018.02.005
https://doi.org/10.1145/359488.359501
https://doi.org/10.1145/359488.359501
https://doi.org/10.1007/978-3-642-17685-2_8
https://doi.org/10.1109/ICPC.2012.6240483
https://doi.org/10.1016/j.jss.2016.09.015
https://doi.org/10.1145/1809400.1809422
https://doi.org/10.1145/1809400.1809422
https://doi.org/10.1145/2384616.2384666
https://doi.org/10.1145/2384616.2384666
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/605466.605469
https://doi.org/10.1145/3092703.3092722
https://doi.org/10.1145/3092703.3092722
https://doi.org/10.1145/3092703.3098219
https://doi.org/10.1145/3092703.3098219
https://doi.org/10.1109/IROS.2017.8202229
https://doi.org/10.1109/IROS.2017.8202229
https://doi.org/10.1145/2001420.2001445
https://doi.org/10.1109/32.677186
http://www.R-project.org/
http://www.R-project.org/
https://doi.org/10.1145/3126905
https://doi.org/10.1007/3-540-06859-7_148
https://www.python.org/dev/peps/pep-0484/
https://doi.org/10.1109/ASE.2003.1240326
https://doi.org/10.1145/2577080.2577098
https://doi.org/10.1145/2577080.2577098
https://doi.org/10.1145/1852786.1852832
https://doi.org/10.1145/2047849.2047861
https://doi.org/10.1145/2047849.2047861

ASE ’18, September 3-7, 2018, Montpellier, France

[47]

Kyle A. Thomas and Scott Clifford. 2017. Validity and Mechanical Turk: An
assessment of exclusion methods and interactive experiments. Computers in
Human Behavior 77 (2017), 184-197. https://doi.org/10.1016/j.chb.2017.08.038

[48] John W Tukey. 1977. Exploratory data analysis. Vol. 2. Reading, Mass.

[49

[50]

Zerksis D. Umrigar. 1994. Fully static dimensional analysis with C++. SIGPLAN
Notices 29, 9 (1994), 135-139. https://doi.org/10.1145/185009.185036

Mohsen Vakilian, Amarin Phaosawasdi, Michael D. Ernst, and Ralph E. Johnson.
2015. Cascade: A Universal Programmer-Assisted Type Qualifier Inference Tool.
In 37th IEEE/ACM International Conference on Software Engineering, ICSE 2015,
Florence, Italy, May 16-24, 2015, Volume 1. 234-245. https://doi.org/10.1109/ICSE.

201

[51

[52

[53

]

J. Ore, S. Elbaum, C. Detweiler, L. Karkazis

2015.44

W.N. Venables and B. D. Ripley. 2002. Modern Applied Statistics with S (fourth ed.).
Springer, New York. http://www.stats.ox.ac.uk/pub/MASS4 ISBN 0-387-95457-0.
Mitchell Wand and Patrick O’Keefe. 1991. Automatic Dimensional Inference. In
Computational Logic - Essays in Honor of Alan Robinson, Jean-Louis Lassez and
Gordon D. Plotkin (Eds.). The MIT Press, 479-483.

Jian Xiang, John Knight, and Kevin Sullivan. 2015. Real-World Types and Their
Application. In Proceedings of the 34th International Conference on Computer
Safety, Reliability, and Security - Volume 9337 (SAFECOMP 2015). Springer-Verlag
New York, Inc., New York, NY, USA, 471-484.


https://doi.org/10.1016/j.chb.2017.08.038
https://doi.org/10.1145/185009.185036
https://doi.org/10.1109/ICSE.2015.44
https://doi.org/10.1109/ICSE.2015.44
http://www.stats.ox.ac.uk/pub/MASS4

	Abstract
	1 Introduction
	2 Background: Physical Unit Types
	3 Methodology
	3.1 Type Annotation Task & Research Questions
	3.2 Experimental Design
	3.3 Test Instrument Details
	3.4 Subject Sample Population
	3.5 Tools
	3.6 Study Phases

	4 Results
	4.1 RQ1 Results: Accuracy
	4.2 RQ2 Results: Timing
	4.3 RQ3 Results: Impact of Suggestions on Accuracy
	4.4 RQ3 Results: Impact of Suggestions on Time
	4.5 Clues for Choosing a Type

	5 Threats to Validity
	5.1 External Threats
	5.2 Internal Threats
	5.3 Conclusion Threats

	6 Discussion and Implications
	7 Related Work
	8 Conclusion
	References

