Efficient systematic testing of network protocols
with temporal uncertain events

Minh Vu*, Lisong Xu*, Sebastian Elbaum®, Wei Sun*, Kevin Qiao*

* Computer Science and Engineering
University of Nebraska-Lincoln
Lincoln, NE 68588-0115
{mvu, xu, wsun}@cse.unl.edu

Abstract—The correctness of network protocol implementa-
tions is difficult to test mainly because of the temporal uncertain
nature of network events. In order to test the correctness of
a network protocol implementation using network simulators,
we need to systematically simulate the behavior of the network
protocol under all possible cases of temporal uncertain events,
which is very time consuming. The recently proposed Symbolic
Execution based Interval Branching (SEIB) simulates a group
of uncertain cases together in a single simulation branch, and
thus is more efficient than brute force testing. In this paper, we
argue that the efficiency of SEIB could be further exponentially
improved by eliminating unnecessary comparisons of the event
timestamps. Specifically, we summarize and present three general
types of unnecessary comparisons when SEIB is applied to a gen-
eral network simulator, and then correspondingly propose three
novel techniques to eliminate them. Our extensive simulations
show that our techniques can improve the efficiency of SEIB by
several orders of magnitude, such as from days to minutes.

Index Terms—Network protocol testing; symbolic execution;
temporal uncertainty; discrete event simulator.

[. INTRODUCTION

The correctness of network protocols is difficult to test
mainly because of the temporal uncertain nature of network
events. An event is called a temporal uncertain event (or just
uncertain event for short), if it may occur at anytime in an
interval instead of a single time instant. For example, the
arrival event of a packet at a node is an uncertain event, if the
packet may experience an uncertain delay in a network. Many
network protocol bugs are related to uncertain events and can
be detected only in corner cases with low probabilities. For
example, most of the recently found TCP bugs [6] are related
to low-probability uncertain events. As another example, many
bugs of wireless sensor networks [15] are related to low-
probability uncertain events, and they are hard to detect and
costly to fix once deployed in the fields.

In this paper, we consider the type of correctness testing
methods using network simulators, such as NS-3 [12], because
network simulators are popular tools for testing network proto-
col implementations before their deployment, and can be used
to detect not only the design bugs but also the implementation
bugs. In order to check the correctness of a network protocol
with uncertain events, we need to simulate and check the
behavior of the network protocol under all possible cases of
uncertain events, which is, however, very challenging. Let’s

f Dept of Computer Science
University of Virginia
Charlottesville, Virginia
selbaum @virginia.edu

! Dept of Computer Science
University of Maryland
College Park, MD
kgiao@umd.edu

consider a network protocol with n packets, each experiencing
k possible packet delays. For this example, we need to simulate
and check the behavior of the network protocol for all k"
possible uncertainty cases (i.e., packet delay combinations),
which is very time consuming as k is usually very large. For
instance, for a packet delay in (0, 1] second, & is 103 with a
millisecond resolution, and 10® with a microsecond resolution.

State of the art: There are two classes of testing meth-
ods using network simulators. 1) Random testing simulates
randomly selected uncertainty cases, such as random packet
delays according to a distribution. 2) Systematic testing aims to
enumerate and simulate all uncertainty cases. Random testing
is cost-effective at evaluating the performance of a network
protocol in cases that fit the utilized distribution, but it cannot
guarantee the correctness of the network protocol. In contrast,
systematic testing can be more cost-effective when checking
the correctness of a network protocol under all possible cases.

Systematic testing methods can be further classified into
two categories. 1) Brute force testing separately simulates and
checks a network protocol for each uncertainty case. It is
inefficient, but it is simple and can be used for any general
network simulator. 2) Interval branching [13] simulates mul-
tiple uncertainty cases together by associating the timestamp
of a simulation event with an interval. The interval of an event
indicates the set of all possible occurrence times of the event,
and two events overlap if the intersection of their intervals
is not empty. When overlapping, internal branching forks to
cover all possible occurrence orders of the events, and each
branch continues with updated timestamp intervals for the
involved events. Therefore, interval branching is more efficient
than brute force testing.

Interval branching can be implemented in two different
ways. 1) Direct interval branching: Interval branching was
originally implemented by directly modifying a simulator [13],
however, it requires substantial changes to the simulator,
especially nontrivial work for forking. This cumbersome im-
plementation has considerably slowed the adoption of interval
branching by the networking community. 2) Symbolic Exe-
cution based Interval Branching (SEIB): Interval branching
has been recently implemented [8], [17], [18] by leveraging
symbolic execution [4], a popular program analysis technique
in software testing and verification community. Conceptually,

604

a tester declares the timestamp variable of an event in a
simulator as a symbolic variable that can take multiple values,
and then executes the simulator using a symbolic execution
engine that automatically takes care of forking the simulator
when comparing overlapping symbolic variables. As SEIB
greatly simplifies the implementation, it is more likely to be
widely adopted than direct interval branching.

The efficiency of SEIB mainly depends on the total number
of generated SEIB branches, which in turn mainly depends on
the total number of comparisons of overlapping timestamps in
the simulation. Specifically, the number of branches is approx-
imately an exponential function of the number of comparisons
of overlapping timestamps, and thus it is still time-consuming
for SEIB to test the correctness of a network protocol.

Our work: In this paper, we argue that the efficiency
of SEIB could be significantly improved by eliminating un-
necessary comparisons of overlapping timestamps. By doing
so, we can potentially exponentially reduce the number of
generated branches and then the testing time. This is because
an unnecessary comparison, if not eliminated, generates a new
branch that may continuously fork and generate new branches.
Specifically, we summarize and present three general types of
unnecessary comparisons when SEIB is applied to a general
network simulator (e.g., NS-3), and then correspondingly
propose three techniques to modify the simulator in order to
eliminate these unnecessary comparisons.

First, unnecessary comparisons due to simultaneous events.
We find that a simulator may compare the timestamps of two
events for multiple times instead of once, in order to check the
special case where two events happen at exactly the same time
instant. These unnecessary comparisons can be eliminated by
reorganizing the comparison code of the simulator.

Second, unnecessary comparisons due to conditional inef-
fective events. We find that a simulator may have various types
of conditional ineffective events, which have no impact on the
simulation result under some conditions but their timestamps
are unnecessarily compared with other events. For example,
an uncertain event which might happen after the end of
a simulation, and a TCP retransmission timeout event that
might be canceled by an uncertain ACK. These unnecessary
comparisons can be eliminated by identifying when these
conditional ineffective events become ineffective and then
removing them from the simulation.

Third, unnecessary comparisons due to independent events.
Two events on different network nodes are independent, if they
do not have any impact on each other. As a result, two indepen-
dent events can be executed in any order in a simulation, and
it is not necessary to compare their timestamps. The general
idea of exploring independent events to speed up software
and network testing (e.g., model checking) is not new. The
novelty of our work is that we apply it to SEIB and propose to
eliminate unnecessary comparisons of independent events on
different nodes by decomposing the network simulation into
multiple synchronized node simulations. Our decomposition
technique is similar to and inspired by the traditional parallel
simulation methods. But different from a parallel simulator

Pseudocode 1 A discrete-event network simulator
1: variables for network state

2: array: list[]

3: variable: clock
4: function Main
5: repeat
6.
7
8

> global event list
> global clock

e « FindAnEvent()
ExecuteAnEvent(e)
until [ist is empty or e is a simulation end event

9: function F'ind AnFEvent

10: e < list[0] > The earliest one
11: Remove list[0] from list

12: return e

13: function Execute AnEvent(e)

14: clock < e.t > Advance the clock
15: Update related state variables

16: Insert newly generated events to list

that runs on multiple processors with the aim to speed up the
parallel simulation, our work still runs on a single processor
with the aim to reduce the number of branches.

Our contributions are threefold. First, we propose three
novel techniques to potentially exponentially improve the
efficiency of SEIB for testing the correctness of a network
protocol under all possible cases of temporal uncertain events.
For each proposed technique, its correctness and efficiency
can be formally proved. Second, we implement our proposed
techniques by modifying the popular general network simula-
tor, NS-3. To the best of our knowledge, this is the first time
that SEIB is applied to a large general network simulator that
has been widely used in the networking community. Third,
we evaluate the efficiency of our proposed techniques by
comparing the modified NS-3 with the original NS-3 using
various network topologies and protocols including TCP, UDP,
and IP routing. The results show that when executed by
SEIB, the modified NS-3 achieves several orders of magnitude
shorter testing times than the original NS-3, for example, from
days to minutes. Our evaluation also shows that our techniques
are several orders of magnitude more efficient than traditional
parallel simulation methods when executed by SEIB.

II. BACKGROUND
A. Network simulation

Network simulation is usually conducted using a discrete-
event network simulator, which simulates a network using a
sequence of discrete events in time, and updates the simulation
variables only when an event occurs.

Pseudocode 1 shows the major data structures and functions
of a discrete-event network simulator. It maintains three types
of data structures. 1) The network state variables, which
describe the current state of the whole network. 2) The
global list of pending events in the whole network, which
are sorted in the ascending order of their timestamps. 3) The
global clock, which is the current time in a simulation. The
simulator Main function repeatedly finds and executes an
event e in [ist until the last event or the end of the simulation.
Function FindAnFEvent finds the first event in list that is
the one with the earliest timestamp in order to avoid causal
violations, which happen when a future event affects a past

605

Execution branches
init: 1 < 2 < 1000,501 <y < 1500

Program code
line 1: sym 1 < 2 < 1000
line 2: sym 501 <y < 1500

| ! |
| ! 3
\ line 3:if (z < y) ! true false :
: line 4: ' !
| 1) ' branch 1 branch 2 |
1 line 5: else I 1< 2 <1000 1< <1000 !
' line 6: 1501 <y < 1500 501 <y < 1500 !
! line 7: end if L r<y T>y !

Fig. 1. A symbolic execution example with symbolic variables x and y.

event. Function Fxecute AnFEvent advances the global clock
to the timestamp e.t of event e, updates related network state
variables, and generates zero or more new events that will be
inserted into list.

In this paper, we consider NS-3 [12], which is a discrete-
event network simulator widely used in the networking com-
munity. It can simulate many networking protocols, and can
also run the original Linux networking stack.

B. Symbolic execution

Instead of running a program directly, symbolic execution
runs a program with symbolic variables using a symbolic
execution engine. Different from normal program variables
that take concrete values, a symbolic variable takes a symbolic
value represented as symbolic constraints. That is, a symbolic
variable can take all possible values satisfying the symbolic
constraints. Fig. 1 shows an example. The first two lines of
the program declare two symbolic variables z and y with
their initial constraints. For example, x can take any integer
values between 1 and 1000. Once the execution reaches an
if(cond) statement involving symbolic variables, the symbolic
execution engine queries a constraint solver to check the
feasibility of both possibilities (i.e., cond = true or false) under
the current constraints. For example, for cond = “z < y”
in line 3, because both possibilities are feasible, the current
execution forks into two branches. The true branch continues
with additional constraint x < vy, and the false branch
continues with additional constraint x > y.

Symbolic execution is a powerful technique widely used in
the software testing and verification community, because it can
automatically divide all possible combinations of the symbolic
variable values into equivalence classes. The combinations in
the same equivalence class have the same execution path, and
are executed together using the same branch. For Fig. 1, there
are a total of 1000 x 1000 = 10% combinations of z and y.
Without symbolic execution, we need to execute the program
for 108 times, one for each combination, in order to check all
possible behaviors of the program. With symbolic execution,
we execute the program using only two branches. For example,
all combinations satisfying constraints 1 < z < 1000, 501 <
y < 1500, and = < y have the same execution path (i.e., lines
1, 2, 3, 4, 7), and are executed together as branch 1.

In this paper, we use S?E [7], which is a powerful symbolic
execution platform that can symbolically execute NS-3 in
a virtual machine. The virtual machine is emulated using
the QEMU machine emulator, and the symbolic execution is
conducted using the KLEE symbolic execution engine [3].

€2
ep1 “— > €p3

)&
|

A Al
| |
0 500

& I

»

Ll
time

| I |
T T T
1000 1500 2000

Fig. 2. Example: Three uncertain packet arrival events at the destination node.
The double-headed arrows indicate their timestamp intervals.

III. SYMBOLIC EXECUTION BASED INTERVAL BRANCHING

This section introduces basic definitions, explains how SEIB
works, and discusses the advantage and limitation of SEIB

A. Definitions and notation

In this paper, we consider only temporal uncertain events
caused by uncertain network delays, which are the major
uncertainty source for network protocols. Below, let’s consider
an example, where two nodes are connected with a link, and
a node sends three packets p;, i € [1,3], to the other one.

For each packet p;, let d;,, denote its delay over the link, and
delay interval D,,, denote the discrete set of all possible values
of d,,. We say that delay d,,, is uncertain, if D,, contains
more than one value (i.e., |D,,| > 1). The delay space D of
a simulation is the cross product of all delay intervals in the
simulation, and a vector d € ID is called a delay vector. For the
example, D = D, x D,,, x D,,, is a three-dimensional space,
and d = (d,,,d,,,d,,). Suppose that each packet p; has the
same D,, = [1,1000] ms assuming a millisecond resolution,
then |D,,| = 1000 and |D| = 10°. That is, D has a total of
10° possible delay vectors.

For each event e in a simulation, let e.t denote its timestamp,
and rimestamp interval [e.t] denote the discrete set of all
possible values of e.t. We say that event e or timestamp e.t is
uncertain, if [e.t] contains more than one value. To simplify our
discussion in this section, let’s consider only the arrival events
of these packets in the example. For each packet p;, let e,
denote its arrival event at the destination node, and then e, .t
is the packet arrival time. Suppose that the three packets in the
example depart from their source node at 0, 500, and 1000 ms,
respectively, and have the same D), = [1,1000] ms. We have
ep, -t =04dp,, ep,.t =500+ dp,, and e,,.t = 1000 + d,,.
Therefore, [ep,.t] = [1,1000], [ep,.t] = [501,1500], and
[eps-t] = [1001,2000], as shown in Fig. 2.

We say that two timestamps overlap, if their timestamp
intervals overlaps (i.e., nonempty intersection). For example,
ep, -t and ey, .t overlap, because [e,, .t] N [ep,.t] = [1,1000] N
[501, 1500] = [501, 1000]. Intuitively, this means e,, and e,,
may occur in different orders. As another example, e, .t and
€p,-t do not overlap, and this means that e, and e,, may
occur in only one order.

Note that, the uncertain delay of a packet has an impact
not only on the packet itself but also on all the following
events triggered by the packet. For example, the uncertain
delay of a TCP data packet also affects the transmission event
and arrival event of the ACK packet triggered by the data
packet, and affects the simulation clock, the calculated round-
trip time, the calculated timeout period, and then the following
retransmission timeout events.

606

B. SEIB

We use Pseudocode 2 to explain how SEIB works, which
shows part of a possible simulation code for the three-packet
example. The Main function first (lines 10 to 12) declares
each delay d,, as a symbolic variable with the initial con-
straints defined according to its delay interval D, . As a result,
all other variables depending on these symbolic variables are
automatically handled as symbolic variables by the symbolic
execution engine of SEIB. For example, timestamp e, .t in
line 14 is also a symbolic variable, and its timestamp interval
[ep, -t] is implicitly defined by the constraints of d,,,. Lines 14
to 16 call function InsertEvent to insert the three events
to list. Functions FindAnFEvent and Ezecute AnEvent of
Pseudocode 1 are not shown here. Finally, line 18 checks the
correctness of the simulation.

Fig. 3 shows the execution of lines 15 and 16, when
Pseudocode 2 is executed by SEIB. Before executing line 15,
list = (ep,). When executing line 15, function InsertEvent
compares whether e, happens before ¢,,, at the ¢f statement
in line 4. SEIB finds out that both possibilities are feasible
according to the current constraints. As a result, SEIB forks the
current execution into two branches: the true branch continues
to line 5 and the false branch to line 7. Each branch then
continues with different /2st’s (shown in Fig. 3) and different
updated constraints (not shown in Fig. 3).

We can see that the total number of branches depends
on the number of comparisons of overlapping timestamps,
which are indicated by shaded diamonds in Fig. 3. Finally, a
total of three branches are generated due to two comparisons
of overlapping timestamps. This is because a comparison
of non-overlapping timestamps does not generate any new
branches. For example, [ep,.t] = [1,1000] does not overlap
with [ep,.t] = [1001,2000], and thus ep,.t < ep,.t is always
false. Note that when InsertEvent(e,,) is called in branch
1, [ep,.t] and [ep,.t] do not overlap anymore and specifically
epy-t < ep,.t is always false. This is because the constraints
of branch 1 have been updated with additional constraint
€p, .t < ep, .t after calling InsertEvent (e,).

C. Advantage and limitation of SEIB

SEIB is more efficient than brute force testing when check-
ing the correctness in all possible cases of uncertain events.
For the example, brute force testing needs to run the simulation
for a total of |D| = 10° times, one for each delay vector by
changing lines 10 to 12 of Pseudocode 2 to specific delays.
In contrast, SEIB only needs to execute the simulation once
with three generated branches, and the assertion at line 18
is checked for each branch. However, the number of SEIB
branches still increases quickly and is approximately an expo-
nential function of the number of comparisons of overlapping
timestamps, leading to poor efficiency.

IV. OUR METHOD

A. Overview

Current SEIB works [8], [17], [18] demonstrate promising
potential of SEIB, but they use only small and simple network

Pseudocode 2 Part of a simulation code for the three-packet
example in Section III

1: array: list[]

2: function InsertEvent(new_e)

3 for k < 0; k < list.size; k < k+ 1 do
4 if new_e.t < list[k].t then

5: Insert new_e to position k in list
6 return

7 end if

8 Append new_e to the end of list

9: function Main

10: sym 1 <dp, <1000

11: sym 1 < dp, <1000

12: sym 1 < d,, <1000

13:

14: ep, .t < 0+ dp,; InsertEvent(ep,)
15: €ps -t < 500 + dp,; InsertEvent(ep,)
16: €py .t < 1000 + dp,; InsertEvent(ep,)
17:

18: assert(checking correctness)

> symbolic variable
> symbolic variable
> symbolic variable

list: (epl)

InsertEvent(ep,)

false

list: (€p2,€p1) list: (€p1,€p2)
h 4

h 4

InsertEvent(eps)

epteeat =

InsertEvent(eps)

epg.t<ep2.t

false

true false

€p3.t<epr.t €p3.t<ep.t

false

branch 1
list: (epz,epl,epg)

branch 2 branch 3
list: (€p1,€p3,€p2) list: (€p1,€p2,€p3)

Fig. 3. Three branches generated when Pseudocode 2 is executed by SEIB,
due to two comparisons of overlapping timestamps (shaded).

simulators. For example, SPD [17] writes a toy simulator to
simulate only two nodes connected by a link. In this paper, for
the first time, we apply SEIB to a large, general, and widely-
used network simulator, NS-3. We find that the efficiency of
SEIB when applied to NS-3 can be significantly improved
by eliminating unnecessary comparisons of overlapping times-
tamps. We observe that these unnecessary comparisons are
due to three general types of events: simultaneous, conditional
ineffective, and independent events, which will be explained
below. Then we propose three novel techniques to modify NS-
3 in order to eliminate these unnecessary comparisons.

Our proposed techniques have the potential to exponen-
tially reduce the number of branches, because an unnecessary
comparison, if not eliminated, forks the current branch into
two branches, each of which continuously forks for all the
remaining comparisons of overlapping timestamps. For each
proposed technique, we prove its correctness and efficiency.
First, a technique is correct, if the modified simulator always

607

Pseudocode 3 Original NS-3 code for comparing two events

1: function Before(e,es2)
2: if e1.t < es.t then
return True
else if e1.t = e>.t then
if e1.id < es.id then
return True
return False

Nnhw

Pseudocode 4 Modified NS-3 code for comparing two events
1: function Before(el,e2)
2: if e1.id < es.id then
if e1.t < es.t then
return True

else
if e1.t < es.t then
return True
return False

PRI AW

generates the same simulation result as the original one.
Second, a technique is efficient, if the SEIB branches of the
modified simulator is no more than that of the original one.
Note that we do not propose a new search algorithm
to insert a new event new_e into a sorted event list [ist,
because different search algorithms (e.g., sequential search in
Pseudocode 2, or binary search) generate the same number of
branches. Specifically, different search algorithms might have
different total numbers of comparisons of timestamps, but have
the same number of comparisons of overlapping timestamps.

B. Unnecessary comparisons due to simultaneous events

1) Simultaneous events: We say that two events are simul-
taneous, if they occur at the same time instant. Simultaneous
events are handled differently by different network simulators.
When comparing two simultaneous events, NS-3 puts the one
with a smaller event ID before the other one in the event list.
NS-3 uses a function the same as the InsertEvent function in
Pseudocode 2 to insert a new event to its event list, except that
the 7 f statement at line 4 uses the Before function defined
in Pseudocode 3 to compare two events.

2) Our technique: Pseudocode 3 compares timestamps e; .t
and es.t twice at lines 2 and 4. We propose Pseudocode 4 to
compare the timestamps only once at either line 3 or line 6.

3) Correctness: We prove the correctness below.

Theorem [: Pseudocode 4 and 3 always generate the same
simulation result.

Proof: There are four possible cases. Case 1: when e;.7 <
es.t, both return true. Case 2: When e;.t > es.t, both false.
Case 3: When e;.t = es.t and eq.id < es.id, both true. Case
4: When e1.t = es.t and e1.id > es.id, both false. [|

4) Efficiency: For non-overlapping e;.t and es.t, both
pseudocode generate only one branch. The following theorem
considers overlapping e;.t and es.t.

Theorem 2: Pseudocode 4 always generates no more
branches than Pseudocode 3 for overlapping timestamps.

Proof: In the general case of overlapping e;.t and es.t,
Pseudocode 3 forks twice and generates three branches. For
example, if [e;.t] = [1,1000] and [e2.t] = [501,1500],
Pseudocode 3 generates three branches corresponding to three

cases: e1 occurs before, at the same time, or after es. In this
case, Pseudocode 4 generates only two branches.

A special case for overlapping e;.t and es.t is when one
timestamp interval contains only one time instant and is the left
end or right end of another timestamp interval. For example, if
[e1.t] = [1,1000] and [e5.t] = [1000], Pseudocode 3 generates
two branches. In this special case, Pseudocode 4 generates one
or two branches depending on their event ids. []
As an example of the general case, if every branch calls
Before on two overlapping timestamps for ¢ times, Pseu-
docode 3 generates 3° branches whereas our Pseudocode 4
generates 2¢ branches.

C. Unnecessary comparisons due to cond. ineffective events

1) Conditional ineffective events: A simulator may have
various types of conditional ineffective events, which have
no impact on the simulation results under some conditions.
We have identified two major types of conditional ineffective
events. First, an uncertain event which might happen after
the end of a simulation. NS-3 function Simulator :: Stop(t)
creates a special simulation end event with timestamp ¢ so that
the simulation stops at time ¢ (see line 8 in Pseudocode 1).
If the timestamp interval of an event is sufficiently long and
contains ¢, it might happen after ¢ and thus has no impact on
simulation result. Second, a TCP retransmission timeout event
that might be canceled by an uncertain ACK. If canceled, NS-
3 only sets a flag of the event to indicate that it is canceled,
but does not remove it from list.

2) Our technique: These unnecessary comparisons can be
eliminated by identifying when these conditional ineffective
events become ineffective, and then removing them from the
simulation. Pseudocode 5 shows the pseudocode to identify
(line 6) and discard the first type of conditional ineffective
events when inserting a new event to list. The second type is
handled in a similar manner.

3) Correctness: The correctness of Pseudocode 5 can be
proved by the fact that a conditional ineffective event is
removed only when it becomes ineffective.

4) Efficiency: Pseudocode 5 reduces the number of
branches, because a conditional ineffective event once re-
moved will not be compared with any other events. The
reduction could be significant, when there are a large number
of uncertain events overlapping with a simulation end event
(often for long uncertain delay ranges), or when there are a
large number of canceled timeout events (often for TCP).

D. Unnecessary comparisons due to independent events

1) Independent events: We first define the node associated
with an event e. There are two general types of events: link
events and node events. First, a link event e simulates the
propagation of a packet over a link from a source node e.src
to one (or more) destination node e.dst. Event e is usually
called a packet arrival event at node e.dst, and we say that it
is associated with node e.node = e.dst. Second, a node event
e simulates an event at a node ¢, and we say it is associated
with node e.node = 1. For example, a timeout event at a node,
and an application event at a node.

608

Pseudocode 5 Handling conditional ineffective events
1: function InsertEvent(new_e)

2: for k < 0; k < list.size; k< k+ 1 do

3: if Before(new_e,list[k]) then

4 Insert new_e to position k in list

5: return

6: else if list[k] is a simulation end event then
7: return

8: end if

9:

Append new_e to the end of list

We use a general event dependency model [10] for general
networking protocols. We say that two event ¢; and e; are
independent of each other, if neither e; — e; nor e; — ¢;
holds, where — is a relation defined by the following three
cases. 1) e; — ¢, if e¢;.node = e;.node and Before(e;,e;).
2) e; — e; for a link event e;, if e; generates e; (then
e;.node = ej.src). 3) e; — e;, if there exists an event ey, such
that e; — ey, and ey — e;. Intuitively, e; — e; means that e;
has an impact on ¢;. If ¢; and e; are independent, they do not
have any impact on each other. Therefore, two independent
events can be executed in any order in a simulation, and it is
not necessary to compare their timestamps.

2) Overview: NS-3 sorts all events using relation Before,
which is a strict total order (i.e., irreflexive, antisymmetric,
transitive, and connex). When NS-3 is executed by SEIB, the
number of branches is in the order of the number of different
total orders of the events with respect to relation Be fore.

We propose to modify NS-3 to sort all events using relation
—, which is a strict partial order (i.e., irreflexive, antisym-
metric, and transitive). As result, when the modified NS-3 is
executed by SEIB, the number of branches is in the order of
the number of different partial orders of the events with respect
to relation —.

The general idea of exploring partial ordering of event
dependency to speed up software and network testing (e.g.,
in model checking) is not new. The novelty of our work is
that we apply it to SEIB and we propose to achieve partial
ordering for SEIB by decomposing the network simulation
into multiple synchronized node simulations.

3) Differences from traditional parallel simulation: Our
decomposition technique is similar to and inspired by the tradi-
tional parallel simulation methods [9]. Both our decomposition
technique and parallel simulation decompose the simulation of
a network into multiple simulations of the nodes. But different
from a parallel simulator which runs on multiple parallel
processors with the aim to speed up the simulation, our work
still runs on a single processor with the aim to reduce the
number of branches. Thus, they have different design choices.

First about the synchronization among multiple node simu-
lations. Parallel simulation considers how to reduce the com-
munication overhead of the synchronization among different
processors. Our decomposition technique considers how to
eliminate unnecessary comparisons of independent events in
the synchronization, but not about communication overhead
(none as it runs on a single processor).

Second about the lookahead that is the minimum latency
for an event on a node to have an impact on another node

and is usually the propagation delay from the first node to the
second one. Lookahead is widely used in many parallel sim-
ulation methods to improve the parallelism of different node
simulations. For example, event e; on a node can be executed
before e; on a different node, if e;.t < e;.t + lookahead
(i.e., e; has no impact on e;). However, two non-overlapping
timestamps e;.t and e;.t might become overlap, due to the
lookahead. Thus lookahead is not always helpful, and is not
used in our decomposition technique.

4) Our technique: Pseudocode 6 shows our decomposed
simulator corresponding to the original NS-3 simulator illus-
trated in Pseudocode 1. By comparing the first three lines of
these two simulators, we can see that we still keep the original
network state variables, but we change the one-dimensional
array list to an two-dimensional array [ocal_list and change
the variable clock to an one-dimensional array local_clock so
that each node ¢ has its own event list local_list[i] and its own
clock local_clock[i]. Below we use local_list to refer to the
set of all the events in a network, and local_list[i] to refer to
the sorted list of all the events at node ¢. The two simulators
have the same M ain function, but different FindAnFEvent
and ExecuteAnFEvent functions, which are explained below.

Function FindAnFvent needs to find an event e that is
safe to execute, in order to avoid causal violations. An event
e in local_list is safe, if there does not exist any event ¢’
in local_list such that ¢/ — e. Because relation — is a
strict partial order, there may exist multiple safe events. But
for a node i, its local earliest event local_list[i][0] may not
be safe. There are two general ways to determine whether
local_list[i][0] is safe: global synchronization using the global
time information of all the nodes, and local synchronization
using only the local time information of the neighbors of node
1. In order to reduce the unnecessarily timestamp comparisons
among different nodes, we choose local synchronization.

Function Local Synchronization implements our local
synchronization method, which is motivated by the local
causal constraint [9] in the traditional parallel simulation. The
basic idea is that the local earliest event local_list[][0] at
node 4 is safe, if local_list[i] contains at least one packet
arrival event from each neighbor and the nondecreasing arrival
condition is met. The nondecreasing arrival condition requires
that the packet arrival events from a source node j to a
destination node ¢ must be added into local_list[i] in the
nondecreasing order of their timestamps. Note that, because
of the uncertain delay, the timestamp order of packet arrival
events to node ¢ may not be the same as the order that they
are generated at source node j. To achieve the nondecreasing
arrival condition, a newly generated packet arrival event is first
inserted into local_list[j] of source node j (line 40). When
this event becomes the local earliest event in local_list[j], it
is moved to local_list[i] of destination node i (line 21).

However, deadlock may occur in Local Synchronization,
which happens when each node is waiting for a packet
arrival event from one or more of its neighbors. In this case,
Local Synchronization could not find any safe event and
returns null. The deadlock can be recovered in two general

609

Pseudocode 6 Decomposition to multiple node simulations

1: variables for network state
. array: local_list[node][|
array: local_clock[node]
: function Main
repeat
e «+ FindAnEvent()
ExecuteAnEvent(e)
until list is empty or e is a simulation end event

9: function FindAnEvent

> local event lists
> local clocks

A U ol

10: e + Local Synchronization()

11: if e = null then

12: e < Global Deadlock Recovery()

13: return e

14: function LocalSynchronization

15: repeat

16: for each node i do

17: while local_list[i] contains at least one arrival event
from each neighbor do

18: e + local_list[i][0]

19: Remove local_list[i][0] from local_list[i]

20: if (e is arrival event) and (i # e.dst) then

21: Insert e to local_list[e.dst]

22: else

23: return e

24: until no more moving of arrival events

25: return null

26: function Global Deadlock Recovery()

27: for each node 7 do

28: for each node 7 # i do

29: safe < True

30: if not Be fore(local_list[i][0], local_list[][0]) then

31: safe < False

32: break;

33: if safe then

34: e < local_list[i][0]

35: Remove local_list[i][0] from local_list[i]

36: return e

37: function Ezecute AnEvent(e)

38: local_clock[e.node] + t(e)

39: Update related network state variables

40: Insert newly generated events to local_list[e.node]

ways: global recovery using global time information of all the
nodes, and local recovery using the local time information
of the neighboring nodes. However, a limitation of local
recovery (such as the null message method [9]) is the time-
creeping problem, where the local clock of each node advances
iteratively but slowly when comparing with the timestamps
of its events, and leads to multiple unnecessary timestamp
comparisons. Thus, we choose global recovery.

Function Global Deadlock Recovery implements our global
recovery method. If the local earliest event local_list[i][0]
of node ¢ happens before the local earliest event at every
other node, it is a safe event. As explained before, we do
not use the lookahead information when determining whether
local_list[i][0] is safe or not.

Finally, function Execute AnFvent updates the local clock
of node e.node, updates related state variables, and inserts any
newly generated events to its local event list.

5) Correctness: We prove the correctness of the proposed
decomposition technique by proving that the events returned

by LocalSynchronization and Deadlock Recovery are safe.
That is, they do not violate the causal constraints and thus do
not change the simulation results.

Theorem 3: The event e returned by function
LocalSynchronization is a safe event.

Proof: We prove that there does not exist any event ¢’ in
local_list such that ¢/ — e. Let ¢ denote the node of event e.
That is, e = local_list[i][0].

First, consider all the events at node i. Because e =
local_list[i][0], e has the earliest timestamp among all the
events in local_list[i]. Thus, there does not exist any event e’
in local_list[i] such that ¢’ — e.

Second, consider all the events on other node j # . Because
local_list[i] contains at least one arrival event from each
neighbor and the nondecreasing arrival condition is met, there
does not exist any event ¢’ in local_list[j] such that ¢/ — e.

|

Theorem 4: The event e returned by function
Deadlock Recovery is a safe event.

Proof: Let i denote the node of event e. That is, e =
local_list[i][0]. Because e happens before the local earliest
event at every other node j (line 30), e is the globally earliest
event in local_list and is safe. [|

6) Efficiency: We consider two extreme cases of the pro-
posed emulated parallel simulation. First, in the best case
when Local Synchronization never returns null. That is,
deadlock never occurs. Second, in the worst case when
LocalSynchronization always returns null. That is, deadlock
always occurs. We prove that in both cases, Pseudocode 6
generates no more branches than Pseudocode 1.

Theorem 5: In the best case, Pseudocode 6 is more efficient
than Pseudocode 1.

Proof: In the best case, Pseudocode 6 only compares an
event e with other events at the same node (line 40), or if e
is a packet arrival event, compares it with other events at the
destination node (line 21). Thus Pseudocode 6 does not have
any unnecessary comparisons of events on different nodes as
in Pseudocode 1. []

Theorem 6. In the worst case, Pseudocode 6 has the same
efficiency as Pseudocode 1.

Proof: In the worst case, Pseudocode 6 compares the
events on different nodes (line 30) or same node (line 40)
using relation Before. As a result, Pseudocode 6 and 1 might
have different total numbers of comparisons, but they have the
same number of comparisons of overlapping timestamps. M

Overall, the number of branches generated by Pseudocode 6
is in the order of the number of different partial orders of the
events with respect to relation — in the best case, and is in
the order of the number of different total orders of the events
with respect to relation Before in the worst case which is the
same as Pseudocode 1.

V. EVALUATION

We evaluate the efficiency of our proposed techniques using
NS3 with various protocols and network topologies.

610

1x108 : : T : 10000 . . :
rute —+— Brute —+—
100000 ¢ riginal —%— 3 £ ool Original —%— |
10000 F scl] E SCI
1000 E E E 100 ¢
100 +
10 F 3

1 ! ! ! I 1 ! ! ! |
1 2 3 4 1 2 3 4

Number of uncertain delays Number of uncertain delays

Number of branches
Testing time (min)

Fig. 4. Number of branches in the Fig. 5. Testing time of the UDP
UDP experiments. experiments
TABLE I
NUMBER OF BRANCHES OF THE UDP EXPERIMENTS
n=1|n=2|n=3|n=4
Original 11 215 6013 O
S 8 109 2098)
C 8 130 3184 O
I 5 41 677 13591
SC 5 53 858 18677
SCI 4 30 337 5065
SCP, 15 310 9179 O
SCPy, 260 O O O

A. Simulation setup

We evaluate the following systematic testing methods. 1)
We directly run the original NS-3 for each delay vector in the
delay space (referred to as Brute). 2) We use S?E to execute
the original NS-3 (referred to as Original). 3) We use SE to
execute modified NS-3 by eliminating unnecessary compar-
isons due to Simultaneous events (Referred to as technique
S). 4) We use SE to execute modified NS-3 by eliminating
unnecessary comparisons due to Conditional ineffective events
(Referred to as technigue C). 5) We use S’E to execute
modified NS-3 by eliminating unnecessary comparisons due to
Independent events (Referred to as technique I). 6) Different
combinations of techniques S, C, and I. For example, SCI
means that all three techniques are used. 7) We use S?E to
execute NS-3 using parallel simulation methods. NS3 itself
supports both sequential and parallel simulation methods.
However, we find that the parallel simulation methods of
NS-3 do not work under S2E, because the communication
messages sent by their synchronization mechanisms do not
support symbolic variables. Therefore, we have implemented
two popular parallel simulation methods using shared variables
instead of communication messages for synchronization: the
global safe window method (referred to as technique P,) and
the null message method (referred to as technique P,) [9].

We run each testing method for each experiment for at
most one day on virtual machines configured with a 2.3GHz
4-Core processor, 64 GByte RAM, and Ubuntu 14.04. The
simulation scripts used in the experiments are selected from
the example scripts provided in the NS-3. We keep all the
network topologies and parameter settings in the original
simulation scripts, and we add uncertain packet delay to a
group of selected packets.

B. UDP experiments: Multiple nodes

This group of experiments use the simple-error-model.cc
script of NS-3. There are a total of four nodes generating a

100000 F——————
3 Org. —+—
§ 10000 | 8 —— .
c
£ qo00f I -
5 SCI
= 100 ¢ E
8 ‘/ E
§ 0 = 3
z 1 L n | L L Lo L 1

1 4 16 64 256 1024 4096 16384
Maximum uncertain delay (ms)

Fig. 6. Number of branches in the TCP experiments.

total of about 2000 packets in the simulation. We introduce
uncertain delays for n = 1,2,3,4 packets from node 0 to
node 2. Each of these n packets has an uncertain delay in
D = [1,1024] ms with a millisecond resolution, and all other
packets still have their delays specified in the script.

Fig. 4 shows the number of branches generated by methods
Brute, Original, and SCI, and Fig. 5 shows their total testing
times. For Brute, the number of branches is the number of
individual NS-3 simulations. For example, with n = 1, Brute
runs 1024 simulations, and takes 25 minutes. With n = 2,
Brute needs to run about 10° simulations, and takes about 17
days. We can see that Original has several orders of magnitude
less numbers of branches and shorter testing times than Brute,
and SCI has even several orders of magnitude less numbers of
branches and shorter testing times than Original. For example,
with n = 4, Original takes several days (thus not shown in
the figures), and SCI takes only 94 minutes.

To understand the efficiency of each technique, Table I
shows the number of branches generated by each technique
and different combinations. Symbol & means that the test
could not finish in one day. We can see that each of our
techniques is more efficient than Original. Especially, tech-
nique I is more efficient than techniques S and C in the UDP
experiments, because there are four nodes and then many
independent events on different nodes.

By comparing the results of SCI with SCP, and SCP,, in
Table I, we can also see that our technique I has several orders
of magnitude less number of branches than the two popular
parallel simulation methods P, and P,,. This is because they
are designed for speeding up parallel simulation and have a
large number of comparisons of timestamps.

C. TCP experiments: Timeout events

This group of experiments use the tcp-bulk-send.cc script
of NS-3. There are two nodes connected over a link. There
is a TCP connection between two nodes, and a total of about
1500 packets are generated in the simulation. We introduce
uncertain delays for three packets. Each of these three packets
has an uncertain delay in D = [1, d™%*] ms with a millisecond
resolution, and all other packets still have the delays specified
in the script. We vary the maximum uncertain delay d"*%*
from 4 ms to 16,384 ms.

Fig. 6 shows the number of branches generated by each
testing method. We can see that each of our techniques is more
efficient than Original. But technique C is more efficient than
techniques S and I. This is because there are a large number

611

l Router B }—' Router D l—| Node 1 I
[Node 0 }—[Router A }—{ Router C]

Fig. 7. Network topology of the IP routing experiments.

1000 T ‘ T 120 ‘ ‘
— Original —+— S 115 | Original —+—
£ SCI —— 3 SCI ——
£ o 110 | 1
o 100 2 105 g
£ £ 100 .
Q
_ig"" 10 5 95 B
7 3 90 4
(o} =]
= = 8 B
I (] I
=

80 L
2048 4096 8192 16384
Maximum uncertain delay (ms)

1 L
2048 4096 8192 16384
Maximum uncertain delay (ms)

Fig. 8. Testing time of the IP routing
experiments.

Fig. 9. Longest update time of the
routing tables in the IP experiments.

of TCP retransmission timeout events, which are canceled by
ACK and become ineffective events. Again we see that SCI
is several orders of magnitude more efficient than Original.

D. IP routing experiments: A use case

This group of experiments demonstrates correctness testing
and worst-case performance evaluation of a routing protocol
under uncertain events. We use the rip-simple-network.cc
script of NS-3. There are six nodes including four routers
interconnected over a network shown in Fig. 7. The routers
communicate with one another to run the RIP routing pro-
tocols. A total of about 100 IP packets are generated in the
simulation. The link between routers B and D is broken at 40
seconds. All the packets from routers C to A after 40 seconds
have uncertain delays in D = [1,d™%*] ms, and all other
packets still have the delays specified in the script. We vary
the maximum uncertain delay d™** from 2,048 to 16,384 ms.

First, if the routing protocol works correctly, all the routing
tables will be correctly updated. Fig. 8 shows the testing times
for Original and SCI. After the test, every Original’s branch
and every SCI’s branch report that all the routing tables have
been correctly updated. That is, the routing protocol works
correctly under all possible cases of these uncertain events.

Second, for each d™%", we measure the longest time for
correctly updating all routing tables among all possible cases
of these uncertain events. Fig. 9 shows the results of Original
and SCI. We can see that Original and SCI report the same
result. This is expected and implies that SCI generates the
same simulation result as Original. Overall, we can see that
SCI can be used to test the correctness and evaluate the
worst-case performance of a network protocol, while it takes
significantly shorter time than Original as shown in Fig. 8.

VI. RELATED WORK

The related work on simulator-based testing methods has
been discussed in the Introduction section. In addition to
those, we note that implementation-level model checking of a
network protocol [11] recursively explores the protocol states
by attempting all possible events at each state. The efficiency
of SEIB can be further improved by combining [5] with model
checking. Existing work on SEIB, such as SPD [17], [18] and
SymTime [8], [14] also consider the efficiency of SEIB. But
SPD focuses on prioritizing different branches, and SymTime

focuses on compressed representation of node states among
different branches. In contrast, we focus on reducing the total
number of branches. There are also various techniques [1],
[16], [2] to improve the efficiency by modifying symbolic
execution engines (e.g., S?E). These techniques are comple-
mentary to our work that modifies the network simulators.

VII. CONCLUSIONS

In this paper, we propose three general techniques to modify
a discrete-event network simulator, which can significantly
improve the efficiency of SEIB for testing network protocol
implementations.

ACKNOWLEDGMENT

The work presented in this paper was supported in part by
NSF CNS-1526253 and NSF SHF-1718040.

REFERENCES

[1] T. Avgerinos, A. Rebert, S. Cha, and D. Brumley. Enhancing symbolic
execution with veritesting. In Proceedings of International Conference
on Software Engineering, Hyderabad, India, June 2014.

[2] S. Bugrara and D. Engler. Redundant state detection for dynamic

symbolic execution. In Proceedings of USENIX ATC, San Jose, CA,

June 2013.

C. Cadar, D. Dunbar, and D. Engler. KLEE: unassisted and automatic

generation of high-coverage tests for complex systems programs. In
Proceedings of USENIX OSDI, San Diego, CA, December 2008.
[4] C. Cadar and K. Sen. Symbolic execution for software testing: three
decades later. Communications of the ACM, 56(2):82-90, February 2013.

[5] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford. A NICE
way to test OpenFlow applications. In Proceedings of USENIX NSDI,
San Jose, CA, April 2012.

[6] N. Cardwell, Y. Cheng, L. Brakmo, M. Mathis, B. Raghavan,

N. Dukkipati, H. Chu, A. Terzis, and T. Herbert. PacketDrill: Scriptable

network stack testing, from sockets to packets. In Proceedings of

USENIX ATC, San Jose, CA, June 2013.

V. Chipounov, V. Kuznetsov, and G. Candea. The S2E platform: design,

implementation, and applications. ACM Transactions on Computer

Systems, 30(1), February 2012.

[8] O. Dustmann. Symbolic execution of discrete event systems with
uncertain time. Lecture Notes in Informatics, S-12:19-22, 2013.

[9] R. Fujimoto. Parallel discrete event simulation. Communications of the
ACM, 33(10):30-53, October 1990.

[10] P. Li and J. Regehr. T-Check: Bug finding for sensor networks. In
Proceedings of ACM/IEEE IPSN, Stockholm, Sweden, April 2010.

[11] M. Musuvathi and D. Engler. Model checking large network protocol
implementations. In Proceedings of USENIX NSDI, San Francisco, CA,
March 2004.

[12] Network Simulator 3. https://www.nsnam.org/.

[13] P. Peschlow, P. Martini, and J. Liu. Interval branching. In Proceedings of

ACM Workshops on Principles of Advanced and Distributed Simulation,

Rome, Italy, June 2008.

R. Sasnauskas, O. Dustmann, B. Kaminski, K. Wehrle, C. Weise, and

S. Kowalewski. Scalable symbolic execution of distributed systems. In

Proceedings of ICDCS, Minneapolis, MN, June 2011.

R. Sasnauskas, O. Landsiedel, M. Alizai, C. Weise, S. Kowalewski, and

K. Wehrle. KleeNet: discovering insidious interaction bugs in wireless

sensor networks before deployment. In Proceedings of ACM/IEEE IPSN,

Stockholm, Sweden, April 2010.

K. Sen, G. Necula, L. Gong, and W. Choi. MultiSE: Multi-path symbolic

execution using value summaries. In Proceedings of ESEC/FSE, Italy,

October 2015.

[17] W. Sun, L. Xu, and S. Elbaum. SPD: Automatically test unmodified
network programs with symbolic packet dynamics. In Proceedings of
IEEE Globecom, San Diego, CA, December 2015.

[18] W. Sun, L. Xu, and S. Elbaum. Improving the cost-effectiveness
of symbolic testing techniques for transport protocol implementations
under packet dynamics. In Proceedings of ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA), Santa Barbara,
CA, July 2017.

[3

—_

[7

—

[14]

[15]

[16]

612

