
Efficient systematic testing of network protocols

with temporal uncertain events

Minh Vu∗, Lisong Xu∗, Sebastian Elbaum†, Wei Sun∗, Kevin Qiao‡

∗ Computer Science and Engineering † Dept of Computer Science ‡ Dept of Computer Science

University of Nebraska-Lincoln University of Virginia University of Maryland

Lincoln, NE 68588-0115 Charlottesville, Virginia College Park, MD

{mvu, xu, wsun}@cse.unl.edu selbaum@virginia.edu kqiao@umd.edu

Abstract—The correctness of network protocol implementa-
tions is difficult to test mainly because of the temporal uncertain
nature of network events. In order to test the correctness of
a network protocol implementation using network simulators,
we need to systematically simulate the behavior of the network
protocol under all possible cases of temporal uncertain events,
which is very time consuming. The recently proposed Symbolic
Execution based Interval Branching (SEIB) simulates a group
of uncertain cases together in a single simulation branch, and
thus is more efficient than brute force testing. In this paper, we
argue that the efficiency of SEIB could be further exponentially
improved by eliminating unnecessary comparisons of the event
timestamps. Specifically, we summarize and present three general
types of unnecessary comparisons when SEIB is applied to a gen-
eral network simulator, and then correspondingly propose three
novel techniques to eliminate them. Our extensive simulations
show that our techniques can improve the efficiency of SEIB by
several orders of magnitude, such as from days to minutes.

Index Terms—Network protocol testing; symbolic execution;
temporal uncertainty; discrete event simulator.

I. INTRODUCTION

The correctness of network protocols is difficult to test

mainly because of the temporal uncertain nature of network

events. An event is called a temporal uncertain event (or just

uncertain event for short), if it may occur at anytime in an

interval instead of a single time instant. For example, the

arrival event of a packet at a node is an uncertain event, if the

packet may experience an uncertain delay in a network. Many

network protocol bugs are related to uncertain events and can

be detected only in corner cases with low probabilities. For

example, most of the recently found TCP bugs [6] are related

to low-probability uncertain events. As another example, many

bugs of wireless sensor networks [15] are related to low-

probability uncertain events, and they are hard to detect and

costly to fix once deployed in the fields.
In this paper, we consider the type of correctness testing

methods using network simulators, such as NS-3 [12], because

network simulators are popular tools for testing network proto-

col implementations before their deployment, and can be used

to detect not only the design bugs but also the implementation

bugs. In order to check the correctness of a network protocol

with uncertain events, we need to simulate and check the

behavior of the network protocol under all possible cases of

uncertain events, which is, however, very challenging. Let’s

consider a network protocol with n packets, each experiencing

k possible packet delays. For this example, we need to simulate

and check the behavior of the network protocol for all kn

possible uncertainty cases (i.e., packet delay combinations),

which is very time consuming as k is usually very large. For

instance, for a packet delay in (0, 1] second, k is 103 with a

millisecond resolution, and 106 with a microsecond resolution.

State of the art: There are two classes of testing meth-

ods using network simulators. 1) Random testing simulates

randomly selected uncertainty cases, such as random packet

delays according to a distribution. 2) Systematic testing aims to

enumerate and simulate all uncertainty cases. Random testing

is cost-effective at evaluating the performance of a network

protocol in cases that fit the utilized distribution, but it cannot

guarantee the correctness of the network protocol. In contrast,

systematic testing can be more cost-effective when checking

the correctness of a network protocol under all possible cases.

Systematic testing methods can be further classified into

two categories. 1) Brute force testing separately simulates and

checks a network protocol for each uncertainty case. It is

inefficient, but it is simple and can be used for any general

network simulator. 2) Interval branching [13] simulates mul-

tiple uncertainty cases together by associating the timestamp

of a simulation event with an interval. The interval of an event

indicates the set of all possible occurrence times of the event,

and two events overlap if the intersection of their intervals

is not empty. When overlapping, internal branching forks to

cover all possible occurrence orders of the events, and each

branch continues with updated timestamp intervals for the

involved events. Therefore, interval branching is more efficient

than brute force testing.

Interval branching can be implemented in two different

ways. 1) Direct interval branching: Interval branching was

originally implemented by directly modifying a simulator [13],

however, it requires substantial changes to the simulator,

especially nontrivial work for forking. This cumbersome im-

plementation has considerably slowed the adoption of interval

branching by the networking community. 2) Symbolic Exe-

cution based Interval Branching (SEIB): Interval branching

has been recently implemented [8], [17], [18] by leveraging

symbolic execution [4], a popular program analysis technique

in software testing and verification community. Conceptually,

604

a tester declares the timestamp variable of an event in a

simulator as a symbolic variable that can take multiple values,

and then executes the simulator using a symbolic execution

engine that automatically takes care of forking the simulator

when comparing overlapping symbolic variables. As SEIB

greatly simplifies the implementation, it is more likely to be

widely adopted than direct interval branching.

The efficiency of SEIB mainly depends on the total number

of generated SEIB branches, which in turn mainly depends on

the total number of comparisons of overlapping timestamps in

the simulation. Specifically, the number of branches is approx-

imately an exponential function of the number of comparisons

of overlapping timestamps, and thus it is still time-consuming

for SEIB to test the correctness of a network protocol.

Our work: In this paper, we argue that the efficiency

of SEIB could be significantly improved by eliminating un-

necessary comparisons of overlapping timestamps. By doing

so, we can potentially exponentially reduce the number of

generated branches and then the testing time. This is because

an unnecessary comparison, if not eliminated, generates a new

branch that may continuously fork and generate new branches.

Specifically, we summarize and present three general types of

unnecessary comparisons when SEIB is applied to a general

network simulator (e.g., NS-3), and then correspondingly

propose three techniques to modify the simulator in order to

eliminate these unnecessary comparisons.

First, unnecessary comparisons due to simultaneous events.

We find that a simulator may compare the timestamps of two

events for multiple times instead of once, in order to check the

special case where two events happen at exactly the same time

instant. These unnecessary comparisons can be eliminated by

reorganizing the comparison code of the simulator.

Second, unnecessary comparisons due to conditional inef-

fective events. We find that a simulator may have various types

of conditional ineffective events, which have no impact on the

simulation result under some conditions but their timestamps

are unnecessarily compared with other events. For example,

an uncertain event which might happen after the end of

a simulation, and a TCP retransmission timeout event that

might be canceled by an uncertain ACK. These unnecessary

comparisons can be eliminated by identifying when these

conditional ineffective events become ineffective and then

removing them from the simulation.

Third, unnecessary comparisons due to independent events.

Two events on different network nodes are independent, if they

do not have any impact on each other. As a result, two indepen-

dent events can be executed in any order in a simulation, and

it is not necessary to compare their timestamps. The general

idea of exploring independent events to speed up software

and network testing (e.g., model checking) is not new. The

novelty of our work is that we apply it to SEIB and propose to

eliminate unnecessary comparisons of independent events on

different nodes by decomposing the network simulation into

multiple synchronized node simulations. Our decomposition

technique is similar to and inspired by the traditional parallel

simulation methods. But different from a parallel simulator

Pseudocode 1 A discrete-event network simulator
1: variables for network state
2: array: list[] � global event list
3: variable: clock � global clock
4: function Main
5: repeat
6: e ← FindAnEvent()
7: ExecuteAnEvent(e)
8: until list is empty or e is a simulation end event

9: function FindAnEvent
10: e ← list[0] � The earliest one
11: Remove list[0] from list
12: return e
13: function ExecuteAnEvent(e)
14: clock ← e.t � Advance the clock
15: Update related state variables
16: Insert newly generated events to list

that runs on multiple processors with the aim to speed up the

parallel simulation, our work still runs on a single processor

with the aim to reduce the number of branches.
Our contributions are threefold. First, we propose three

novel techniques to potentially exponentially improve the

efficiency of SEIB for testing the correctness of a network

protocol under all possible cases of temporal uncertain events.

For each proposed technique, its correctness and efficiency

can be formally proved. Second, we implement our proposed

techniques by modifying the popular general network simula-

tor, NS-3. To the best of our knowledge, this is the first time

that SEIB is applied to a large general network simulator that

has been widely used in the networking community. Third,

we evaluate the efficiency of our proposed techniques by

comparing the modified NS-3 with the original NS-3 using

various network topologies and protocols including TCP, UDP,

and IP routing. The results show that when executed by

SEIB, the modified NS-3 achieves several orders of magnitude

shorter testing times than the original NS-3, for example, from

days to minutes. Our evaluation also shows that our techniques

are several orders of magnitude more efficient than traditional

parallel simulation methods when executed by SEIB.

II. BACKGROUND

A. Network simulation

Network simulation is usually conducted using a discrete-

event network simulator, which simulates a network using a

sequence of discrete events in time, and updates the simulation

variables only when an event occurs.
Pseudocode 1 shows the major data structures and functions

of a discrete-event network simulator. It maintains three types

of data structures. 1) The network state variables, which

describe the current state of the whole network. 2) The

global list of pending events in the whole network, which

are sorted in the ascending order of their timestamps. 3) The

global clock, which is the current time in a simulation. The

simulator Main function repeatedly finds and executes an

event e in list until the last event or the end of the simulation.

Function FindAnEvent finds the first event in list that is

the one with the earliest timestamp in order to avoid causal

violations, which happen when a future event affects a past

605

Program code

line 1: sym 1 ≤ x ≤ 1000

line 2: sym 501 ≤ y ≤ 1500

line 3: if (x < y)

line 4: . . .

line 5: else

line 6: . . .

line 7: end if

Execution branches

init: 1 ≤ x ≤ 1000, 501 ≤ y ≤ 1500

x < y ?
true false

branch 1
1 ≤ x ≤ 1000

501 ≤ y ≤ 1500
x < y

branch 2
1 ≤ x ≤ 1000

501 ≤ y ≤ 1500
x ≥ y

Fig. 1. A symbolic execution example with symbolic variables x and y.

event. Function ExecuteAnEvent advances the global clock

to the timestamp e.t of event e, updates related network state

variables, and generates zero or more new events that will be

inserted into list.
In this paper, we consider NS-3 [12], which is a discrete-

event network simulator widely used in the networking com-

munity. It can simulate many networking protocols, and can

also run the original Linux networking stack.

B. Symbolic execution

Instead of running a program directly, symbolic execution

runs a program with symbolic variables using a symbolic

execution engine. Different from normal program variables

that take concrete values, a symbolic variable takes a symbolic

value represented as symbolic constraints. That is, a symbolic

variable can take all possible values satisfying the symbolic

constraints. Fig. 1 shows an example. The first two lines of

the program declare two symbolic variables x and y with

their initial constraints. For example, x can take any integer

values between 1 and 1000. Once the execution reaches an

if(cond) statement involving symbolic variables, the symbolic

execution engine queries a constraint solver to check the

feasibility of both possibilities (i.e., cond = true or false) under

the current constraints. For example, for cond = “x < y”

in line 3, because both possibilities are feasible, the current

execution forks into two branches. The true branch continues

with additional constraint x < y, and the false branch

continues with additional constraint x ≥ y.
Symbolic execution is a powerful technique widely used in

the software testing and verification community, because it can

automatically divide all possible combinations of the symbolic

variable values into equivalence classes. The combinations in

the same equivalence class have the same execution path, and

are executed together using the same branch. For Fig. 1, there

are a total of 1000 × 1000 = 106 combinations of x and y.

Without symbolic execution, we need to execute the program

for 106 times, one for each combination, in order to check all

possible behaviors of the program. With symbolic execution,

we execute the program using only two branches. For example,

all combinations satisfying constraints 1 ≤ x ≤ 1000, 501 ≤
y ≤ 1500, and x < y have the same execution path (i.e., lines

1, 2, 3, 4, 7), and are executed together as branch 1.
In this paper, we use S2E [7], which is a powerful symbolic

execution platform that can symbolically execute NS-3 in

a virtual machine. The virtual machine is emulated using

the QEMU machine emulator, and the symbolic execution is

conducted using the KLEE symbolic execution engine [3].

Fig. 2. Example: Three uncertain packet arrival events at the destination node.
The double-headed arrows indicate their timestamp intervals.

III. SYMBOLIC EXECUTION BASED INTERVAL BRANCHING

This section introduces basic definitions, explains how SEIB

works, and discusses the advantage and limitation of SEIB

A. Definitions and notation

In this paper, we consider only temporal uncertain events

caused by uncertain network delays, which are the major

uncertainty source for network protocols. Below, let’s consider

an example, where two nodes are connected with a link, and

a node sends three packets pi, i ∈ [1, 3], to the other one.

For each packet pi, let dpi
denote its delay over the link, and

delay interval Dpi
denote the discrete set of all possible values

of dpi
. We say that delay dpi

is uncertain, if Dpi
contains

more than one value (i.e., |Dpi
| > 1). The delay space D of

a simulation is the cross product of all delay intervals in the

simulation, and a vector �d ∈ D is called a delay vector. For the

example, D = Dp1
×Dp2

×Dp3
is a three-dimensional space,

and �d = (dp1
, dp2

, dp3
). Suppose that each packet pi has the

same Dpi
= [1, 1000] ms assuming a millisecond resolution,

then |Dpi
| = 1000 and |D| = 109. That is, D has a total of

109 possible delay vectors.

For each event e in a simulation, let e.t denote its timestamp,

and timestamp interval [e.t] denote the discrete set of all

possible values of e.t. We say that event e or timestamp e.t is

uncertain, if [e.t] contains more than one value. To simplify our

discussion in this section, let’s consider only the arrival events

of these packets in the example. For each packet pi, let epi

denote its arrival event at the destination node, and then epi
.t

is the packet arrival time. Suppose that the three packets in the

example depart from their source node at 0, 500, and 1000 ms,

respectively, and have the same Dpi
= [1, 1000] ms. We have

ep1
.t = 0 + dp1

, ep2
.t = 500 + dp2

, and ep3
.t = 1000 + dp3

.

Therefore, [ep1
.t] = [1, 1000], [ep2

.t] = [501, 1500], and

[ep3
.t] = [1001, 2000], as shown in Fig. 2.

We say that two timestamps overlap, if their timestamp

intervals overlaps (i.e., nonempty intersection). For example,

ep1
.t and ep2

.t overlap, because [ep1
.t]∩ [ep2

.t] = [1, 1000]∩
[501, 1500] = [501, 1000]. Intuitively, this means ep1

and ep2

may occur in different orders. As another example, ep1
.t and

ep3
.t do not overlap, and this means that ep1

and ep3
may

occur in only one order.

Note that, the uncertain delay of a packet has an impact

not only on the packet itself but also on all the following

events triggered by the packet. For example, the uncertain

delay of a TCP data packet also affects the transmission event

and arrival event of the ACK packet triggered by the data

packet, and affects the simulation clock, the calculated round-

trip time, the calculated timeout period, and then the following

retransmission timeout events.

606

B. SEIB

We use Pseudocode 2 to explain how SEIB works, which

shows part of a possible simulation code for the three-packet

example. The Main function first (lines 10 to 12) declares

each delay dpi
as a symbolic variable with the initial con-

straints defined according to its delay interval Dpi
. As a result,

all other variables depending on these symbolic variables are

automatically handled as symbolic variables by the symbolic

execution engine of SEIB. For example, timestamp ep1
.t in

line 14 is also a symbolic variable, and its timestamp interval

[ep1
.t] is implicitly defined by the constraints of dp1

. Lines 14

to 16 call function InsertEvent to insert the three events

to list. Functions FindAnEvent and ExecuteAnEvent of

Pseudocode 1 are not shown here. Finally, line 18 checks the

correctness of the simulation.
Fig. 3 shows the execution of lines 15 and 16, when

Pseudocode 2 is executed by SEIB. Before executing line 15,

list = (ep1
). When executing line 15, function InsertEvent

compares whether ep2
happens before ep1

at the if statement

in line 4. SEIB finds out that both possibilities are feasible

according to the current constraints. As a result, SEIB forks the

current execution into two branches: the true branch continues

to line 5 and the false branch to line 7. Each branch then

continues with different list’s (shown in Fig. 3) and different

updated constraints (not shown in Fig. 3).
We can see that the total number of branches depends

on the number of comparisons of overlapping timestamps,

which are indicated by shaded diamonds in Fig. 3. Finally, a

total of three branches are generated due to two comparisons

of overlapping timestamps. This is because a comparison

of non-overlapping timestamps does not generate any new

branches. For example, [ep1
.t] = [1, 1000] does not overlap

with [ep3
.t] = [1001, 2000], and thus ep3

.t < ep1
.t is always

false. Note that when InsertEvent(ep3
) is called in branch

1, [ep3
.t] and [ep2

.t] do not overlap anymore and specifically

ep3
.t < ep2

.t is always false. This is because the constraints

of branch 1 have been updated with additional constraint

ep2
.t < ep1

.t after calling InsertEvent(ep2
).

C. Advantage and limitation of SEIB

SEIB is more efficient than brute force testing when check-

ing the correctness in all possible cases of uncertain events.

For the example, brute force testing needs to run the simulation

for a total of |D| = 109 times, one for each delay vector by

changing lines 10 to 12 of Pseudocode 2 to specific delays.

In contrast, SEIB only needs to execute the simulation once

with three generated branches, and the assertion at line 18

is checked for each branch. However, the number of SEIB

branches still increases quickly and is approximately an expo-

nential function of the number of comparisons of overlapping

timestamps, leading to poor efficiency.

IV. OUR METHOD

A. Overview

Current SEIB works [8], [17], [18] demonstrate promising

potential of SEIB, but they use only small and simple network

Pseudocode 2 Part of a simulation code for the three-packet

example in Section III

1: array: list[]
2: function InsertEvent(new e)
3: for k ← 0; k < list.size; k ← k + 1 do
4: if new e.t < list[k].t then
5: Insert new e to position k in list
6: return

7: end if

8: Append new e to the end of list

9: function Main
10: sym 1 ≤ dp1 ≤ 1000 � symbolic variable
11: sym 1 ≤ dp2 ≤ 1000 � symbolic variable
12: sym 1 ≤ dp3 ≤ 1000 � symbolic variable
13: ...
14: ep1 .t ← 0 + dp1 ; InsertEvent(ep1)
15: ep2 .t ← 500 + dp2 ; InsertEvent(ep2)
16: ep3 .t ← 1000 + dp3 ; InsertEvent(ep3)
17: ...
18: assert(checking correctness)

Fig. 3. Three branches generated when Pseudocode 2 is executed by SEIB,
due to two comparisons of overlapping timestamps (shaded).

simulators. For example, SPD [17] writes a toy simulator to

simulate only two nodes connected by a link. In this paper, for

the first time, we apply SEIB to a large, general, and widely-

used network simulator, NS-3. We find that the efficiency of

SEIB when applied to NS-3 can be significantly improved

by eliminating unnecessary comparisons of overlapping times-

tamps. We observe that these unnecessary comparisons are

due to three general types of events: simultaneous, conditional

ineffective, and independent events, which will be explained

below. Then we propose three novel techniques to modify NS-

3 in order to eliminate these unnecessary comparisons.

Our proposed techniques have the potential to exponen-

tially reduce the number of branches, because an unnecessary

comparison, if not eliminated, forks the current branch into

two branches, each of which continuously forks for all the

remaining comparisons of overlapping timestamps. For each

proposed technique, we prove its correctness and efficiency.

First, a technique is correct, if the modified simulator always

607

Pseudocode 3 Original NS-3 code for comparing two events

1: function Before(e1, e2)
2: if e1.t < e2.t then
3: return True
4: else if e1.t = e2.t then
5: if e1.id < e2.id then
6: return True
7: return False

Pseudocode 4 Modified NS-3 code for comparing two events

1: function Before(e1, e2)
2: if e1.id < e2.id then
3: if e1.t ≤ e2.t then
4: return True
5: else
6: if e1.t < e2.t then
7: return True
8: return False

generates the same simulation result as the original one.

Second, a technique is efficient, if the SEIB branches of the

modified simulator is no more than that of the original one.
Note that we do not propose a new search algorithm

to insert a new event new e into a sorted event list list,

because different search algorithms (e.g., sequential search in

Pseudocode 2, or binary search) generate the same number of

branches. Specifically, different search algorithms might have

different total numbers of comparisons of timestamps, but have

the same number of comparisons of overlapping timestamps.

B. Unnecessary comparisons due to simultaneous events

1) Simultaneous events: We say that two events are simul-

taneous, if they occur at the same time instant. Simultaneous

events are handled differently by different network simulators.

When comparing two simultaneous events, NS-3 puts the one

with a smaller event ID before the other one in the event list.

NS-3 uses a function the same as the InsertEvent function in

Pseudocode 2 to insert a new event to its event list, except that

the if statement at line 4 uses the Before function defined

in Pseudocode 3 to compare two events.
2) Our technique: Pseudocode 3 compares timestamps e1.t

and e2.t twice at lines 2 and 4. We propose Pseudocode 4 to

compare the timestamps only once at either line 3 or line 6.
3) Correctness: We prove the correctness below.

Theorem 1: Pseudocode 4 and 3 always generate the same

simulation result.
Proof: There are four possible cases. Case 1: when e1.t <

e2.t, both return true. Case 2: When e1.t > e2.t, both false.

Case 3: When e1.t = e2.t and e1.id < e2.id, both true. Case

4: When e1.t = e2.t and e1.id > e2.id, both false.
4) Efficiency: For non-overlapping e1.t and e2.t, both

pseudocode generate only one branch. The following theorem

considers overlapping e1.t and e2.t.

Theorem 2: Pseudocode 4 always generates no more

branches than Pseudocode 3 for overlapping timestamps.
Proof: In the general case of overlapping e1.t and e2.t,

Pseudocode 3 forks twice and generates three branches. For

example, if [e1.t] = [1, 1000] and [e2.t] = [501, 1500],
Pseudocode 3 generates three branches corresponding to three

cases: e1 occurs before, at the same time, or after e2. In this

case, Pseudocode 4 generates only two branches.
A special case for overlapping e1.t and e2.t is when one

timestamp interval contains only one time instant and is the left

end or right end of another timestamp interval. For example, if

[e1.t] = [1, 1000] and [e2.t] = [1000], Pseudocode 3 generates

two branches. In this special case, Pseudocode 4 generates one

or two branches depending on their event ids.
As an example of the general case, if every branch calls

Before on two overlapping timestamps for c times, Pseu-

docode 3 generates 3c branches whereas our Pseudocode 4

generates 2c branches.

C. Unnecessary comparisons due to cond. ineffective events

1) Conditional ineffective events: A simulator may have

various types of conditional ineffective events, which have

no impact on the simulation results under some conditions.

We have identified two major types of conditional ineffective

events. First, an uncertain event which might happen after

the end of a simulation. NS-3 function Simulator :: Stop(t)
creates a special simulation end event with timestamp t so that

the simulation stops at time t (see line 8 in Pseudocode 1).

If the timestamp interval of an event is sufficiently long and

contains t, it might happen after t and thus has no impact on

simulation result. Second, a TCP retransmission timeout event

that might be canceled by an uncertain ACK. If canceled, NS-

3 only sets a flag of the event to indicate that it is canceled,

but does not remove it from list.
2) Our technique: These unnecessary comparisons can be

eliminated by identifying when these conditional ineffective

events become ineffective, and then removing them from the

simulation. Pseudocode 5 shows the pseudocode to identify

(line 6) and discard the first type of conditional ineffective

events when inserting a new event to list. The second type is

handled in a similar manner.
3) Correctness: The correctness of Pseudocode 5 can be

proved by the fact that a conditional ineffective event is

removed only when it becomes ineffective.
4) Efficiency: Pseudocode 5 reduces the number of

branches, because a conditional ineffective event once re-

moved will not be compared with any other events. The

reduction could be significant, when there are a large number

of uncertain events overlapping with a simulation end event

(often for long uncertain delay ranges), or when there are a

large number of canceled timeout events (often for TCP).

D. Unnecessary comparisons due to independent events

1) Independent events: We first define the node associated

with an event e. There are two general types of events: link

events and node events. First, a link event e simulates the

propagation of a packet over a link from a source node e.src

to one (or more) destination node e.dst. Event e is usually

called a packet arrival event at node e.dst, and we say that it

is associated with node e.node = e.dst. Second, a node event

e simulates an event at a node i, and we say it is associated

with node e.node = i. For example, a timeout event at a node,

and an application event at a node.

608

Pseudocode 5 Handling conditional ineffective events

1: function InsertEvent(new e)
2: for k ← 0; k < list.size; k ← k + 1 do
3: if Before(new e, list[k]) then
4: Insert new e to position k in list
5: return
6: else if list[k] is a simulation end event then
7: return

8: end if

9: Append new e to the end of list

We use a general event dependency model [10] for general

networking protocols. We say that two event ei and ej are

independent of each other, if neither ei → ej nor ej → ei
holds, where → is a relation defined by the following three

cases. 1) ei → ej , if ei.node = ej .node and Before(ei, ej).
2) ei → ej for a link event ej , if ei generates ej (then

ei.node = ej .src). 3) ei → ej , if there exists an event ek such

that ei → ek and ek → ej . Intuitively, ei → ej means that ei
has an impact on ej . If ei and ej are independent, they do not

have any impact on each other. Therefore, two independent

events can be executed in any order in a simulation, and it is

not necessary to compare their timestamps.
2) Overview: NS-3 sorts all events using relation Before,

which is a strict total order (i.e., irreflexive, antisymmetric,

transitive, and connex). When NS-3 is executed by SEIB, the

number of branches is in the order of the number of different

total orders of the events with respect to relation Before.
We propose to modify NS-3 to sort all events using relation

→, which is a strict partial order (i.e., irreflexive, antisym-

metric, and transitive). As result, when the modified NS-3 is

executed by SEIB, the number of branches is in the order of

the number of different partial orders of the events with respect

to relation →.
The general idea of exploring partial ordering of event

dependency to speed up software and network testing (e.g.,

in model checking) is not new. The novelty of our work is

that we apply it to SEIB and we propose to achieve partial

ordering for SEIB by decomposing the network simulation

into multiple synchronized node simulations.
3) Differences from traditional parallel simulation: Our

decomposition technique is similar to and inspired by the tradi-

tional parallel simulation methods [9]. Both our decomposition

technique and parallel simulation decompose the simulation of

a network into multiple simulations of the nodes. But different

from a parallel simulator which runs on multiple parallel

processors with the aim to speed up the simulation, our work

still runs on a single processor with the aim to reduce the

number of branches. Thus, they have different design choices.
First about the synchronization among multiple node simu-

lations. Parallel simulation considers how to reduce the com-

munication overhead of the synchronization among different

processors. Our decomposition technique considers how to

eliminate unnecessary comparisons of independent events in

the synchronization, but not about communication overhead

(none as it runs on a single processor).
Second about the lookahead that is the minimum latency

for an event on a node to have an impact on another node

and is usually the propagation delay from the first node to the

second one. Lookahead is widely used in many parallel sim-

ulation methods to improve the parallelism of different node

simulations. For example, event ei on a node can be executed

before ej on a different node, if ei.t < ej .t + lookahead

(i.e., ej has no impact on ei). However, two non-overlapping

timestamps ei.t and ej .t might become overlap, due to the

lookahead. Thus lookahead is not always helpful, and is not

used in our decomposition technique.

4) Our technique: Pseudocode 6 shows our decomposed

simulator corresponding to the original NS-3 simulator illus-

trated in Pseudocode 1. By comparing the first three lines of

these two simulators, we can see that we still keep the original

network state variables, but we change the one-dimensional

array list to an two-dimensional array local list and change

the variable clock to an one-dimensional array local clock so

that each node i has its own event list local list[i] and its own

clock local clock[i]. Below we use local list to refer to the

set of all the events in a network, and local list[i] to refer to

the sorted list of all the events at node i. The two simulators

have the same Main function, but different FindAnEvent

and ExecuteAnEvent functions, which are explained below.

Function FindAnEvent needs to find an event e that is

safe to execute, in order to avoid causal violations. An event

e in local list is safe, if there does not exist any event e′

in local list such that e′ → e. Because relation → is a

strict partial order, there may exist multiple safe events. But

for a node i, its local earliest event local list[i][0] may not

be safe. There are two general ways to determine whether

local list[i][0] is safe: global synchronization using the global

time information of all the nodes, and local synchronization

using only the local time information of the neighbors of node

i. In order to reduce the unnecessarily timestamp comparisons

among different nodes, we choose local synchronization.

Function LocalSynchronization implements our local

synchronization method, which is motivated by the local

causal constraint [9] in the traditional parallel simulation. The

basic idea is that the local earliest event local list[i][0] at

node i is safe, if local list[i] contains at least one packet

arrival event from each neighbor and the nondecreasing arrival

condition is met. The nondecreasing arrival condition requires

that the packet arrival events from a source node j to a

destination node i must be added into local list[i] in the

nondecreasing order of their timestamps. Note that, because

of the uncertain delay, the timestamp order of packet arrival

events to node i may not be the same as the order that they

are generated at source node j. To achieve the nondecreasing

arrival condition, a newly generated packet arrival event is first

inserted into local list[j] of source node j (line 40). When

this event becomes the local earliest event in local list[j], it

is moved to local list[i] of destination node i (line 21).

However, deadlock may occur in LocalSynchronization,

which happens when each node is waiting for a packet

arrival event from one or more of its neighbors. In this case,

LocalSynchronization could not find any safe event and

returns null. The deadlock can be recovered in two general

609

Pseudocode 6 Decomposition to multiple node simulations

1: variables for network state
2: array: local list[node][] � local event lists
3: array: local clock[node] � local clocks
4: function Main
5: repeat
6: e ← FindAnEvent()
7: ExecuteAnEvent(e)
8: until list is empty or e is a simulation end event

9: function FindAnEvent
10: e ← LocalSynchronization()
11: if e = null then
12: e ← GlobalDeadlockRecovery()

13: return e
14: function LocalSynchronization
15: repeat
16: for each node i do
17: while local list[i] contains at least one arrival event

from each neighbor do
18: e ← local list[i][0]
19: Remove local list[i][0] from local list[i]
20: if (e is arrival event) and (i �= e.dst) then
21: Insert e to local list[e.dst]
22: else
23: return e
24: until no more moving of arrival events
25: return null
26: function GlobalDeadlockRecovery()
27: for each node i do
28: for each node j �= i do
29: safe ← True
30: if not Before(local list[i][0], local list[j][0]) then
31: safe ← False
32: break;

33: if safe then
34: e ← local list[i][0]
35: Remove local list[i][0] from local list[i]
36: return e
37: function ExecuteAnEvent(e)
38: local clock[e.node] ← t(e)
39: Update related network state variables
40: Insert newly generated events to local list[e.node]

ways: global recovery using global time information of all the

nodes, and local recovery using the local time information

of the neighboring nodes. However, a limitation of local

recovery (such as the null message method [9]) is the time-

creeping problem, where the local clock of each node advances

iteratively but slowly when comparing with the timestamps

of its events, and leads to multiple unnecessary timestamp

comparisons. Thus, we choose global recovery.

Function GlobalDeadlockRecovery implements our global

recovery method. If the local earliest event local list[i][0]
of node i happens before the local earliest event at every

other node, it is a safe event. As explained before, we do

not use the lookahead information when determining whether

local list[i][0] is safe or not.

Finally, function ExecuteAnEvent updates the local clock

of node e.node, updates related state variables, and inserts any

newly generated events to its local event list.

5) Correctness: We prove the correctness of the proposed

decomposition technique by proving that the events returned

by LocalSynchronization and DeadlockRecovery are safe.

That is, they do not violate the causal constraints and thus do

not change the simulation results.

Theorem 3: The event e returned by function

LocalSynchronization is a safe event.

Proof: We prove that there does not exist any event e′ in

local list such that e′ → e. Let i denote the node of event e.

That is, e = local list[i][0].
First, consider all the events at node i. Because e =

local list[i][0], e has the earliest timestamp among all the

events in local list[i]. Thus, there does not exist any event e′

in local list[i] such that e′ → e.

Second, consider all the events on other node j �= i. Because

local list[i] contains at least one arrival event from each

neighbor and the nondecreasing arrival condition is met, there

does not exist any event e′ in local list[j] such that e′ → e.

Theorem 4: The event e returned by function

DeadlockRecovery is a safe event.

Proof: Let i denote the node of event e. That is, e =
local list[i][0]. Because e happens before the local earliest

event at every other node j (line 30), e is the globally earliest

event in local list and is safe.

6) Efficiency: We consider two extreme cases of the pro-

posed emulated parallel simulation. First, in the best case

when LocalSynchronization never returns null. That is,

deadlock never occurs. Second, in the worst case when

LocalSynchronization always returns null. That is, deadlock

always occurs. We prove that in both cases, Pseudocode 6

generates no more branches than Pseudocode 1.

Theorem 5: In the best case, Pseudocode 6 is more efficient

than Pseudocode 1.

Proof: In the best case, Pseudocode 6 only compares an

event e with other events at the same node (line 40), or if e

is a packet arrival event, compares it with other events at the

destination node (line 21). Thus Pseudocode 6 does not have

any unnecessary comparisons of events on different nodes as

in Pseudocode 1.

Theorem 6: In the worst case, Pseudocode 6 has the same

efficiency as Pseudocode 1.

Proof: In the worst case, Pseudocode 6 compares the

events on different nodes (line 30) or same node (line 40)

using relation Before. As a result, Pseudocode 6 and 1 might

have different total numbers of comparisons, but they have the

same number of comparisons of overlapping timestamps.

Overall, the number of branches generated by Pseudocode 6

is in the order of the number of different partial orders of the

events with respect to relation → in the best case, and is in

the order of the number of different total orders of the events

with respect to relation Before in the worst case which is the

same as Pseudocode 1.

V. EVALUATION

We evaluate the efficiency of our proposed techniques using

NS3 with various protocols and network topologies.

610

 1

 10

 100

 1000

 10000

 100000

 1×106

 1 2 3 4

N
um

be
r

of
 b

ra
nc

he
s

Number of uncertain delays

Brute
Original

SCI

Fig. 4. Number of branches in the
UDP experiments.

 1

 10

 100

 1000

 10000

 1 2 3 4

T
es

tin
g

tim
e

(m
in

)

Number of uncertain delays

Brute
Original

SCI

Fig. 5. Testing time of the UDP
experiments

TABLE I
NUMBER OF BRANCHES OF THE UDP EXPERIMENTS

n = 1 n = 2 n = 3 n = 4

Original 11 215 6013 �

S 8 109 2098 �

C 8 130 3184 �

I 5 41 677 13591

SC 5 53 858 18677

SCI 4 30 337 5065

SCPg 15 310 9179 �

SCPn 260 � � �

A. Simulation setup

We evaluate the following systematic testing methods. 1)

We directly run the original NS-3 for each delay vector in the

delay space (referred to as Brute). 2) We use S2E to execute

the original NS-3 (referred to as Original). 3) We use S2E to

execute modified NS-3 by eliminating unnecessary compar-

isons due to Simultaneous events (Referred to as technique

S). 4) We use S2E to execute modified NS-3 by eliminating

unnecessary comparisons due to Conditional ineffective events

(Referred to as technique C). 5) We use S2E to execute

modified NS-3 by eliminating unnecessary comparisons due to

Independent events (Referred to as technique I). 6) Different

combinations of techniques S, C, and I. For example, SCI

means that all three techniques are used. 7) We use S2E to

execute NS-3 using parallel simulation methods. NS3 itself

supports both sequential and parallel simulation methods.

However, we find that the parallel simulation methods of

NS-3 do not work under S2E, because the communication

messages sent by their synchronization mechanisms do not

support symbolic variables. Therefore, we have implemented

two popular parallel simulation methods using shared variables

instead of communication messages for synchronization: the

global safe window method (referred to as technique Pg) and

the null message method (referred to as technique Pn) [9].
We run each testing method for each experiment for at

most one day on virtual machines configured with a 2.3GHz

4-Core processor, 64 GByte RAM, and Ubuntu 14.04. The

simulation scripts used in the experiments are selected from

the example scripts provided in the NS-3. We keep all the

network topologies and parameter settings in the original

simulation scripts, and we add uncertain packet delay to a

group of selected packets.

B. UDP experiments: Multiple nodes

This group of experiments use the simple-error-model.cc

script of NS-3. There are a total of four nodes generating a

 1

 10

 100

 1000

 10000

 100000

 1 4 16 64 256 1024 4096 16384

N
um

be
r

of
 b

ra
nc

he
s

Maximum uncertain delay (ms)

Org.
S
C
I

SCI

Fig. 6. Number of branches in the TCP experiments.

total of about 2000 packets in the simulation. We introduce

uncertain delays for n = 1, 2, 3, 4 packets from node 0 to

node 2. Each of these n packets has an uncertain delay in

D = [1, 1024] ms with a millisecond resolution, and all other

packets still have their delays specified in the script.
Fig. 4 shows the number of branches generated by methods

Brute, Original, and SCI, and Fig. 5 shows their total testing

times. For Brute, the number of branches is the number of

individual NS-3 simulations. For example, with n = 1, Brute

runs 1024 simulations, and takes 25 minutes. With n = 2,

Brute needs to run about 106 simulations, and takes about 17

days. We can see that Original has several orders of magnitude

less numbers of branches and shorter testing times than Brute,

and SCI has even several orders of magnitude less numbers of

branches and shorter testing times than Original. For example,

with n = 4, Original takes several days (thus not shown in

the figures), and SCI takes only 94 minutes.
To understand the efficiency of each technique, Table I

shows the number of branches generated by each technique

and different combinations. Symbol � means that the test

could not finish in one day. We can see that each of our

techniques is more efficient than Original. Especially, tech-

nique I is more efficient than techniques S and C in the UDP

experiments, because there are four nodes and then many

independent events on different nodes.
By comparing the results of SCI with SCPg and SCPn in

Table I, we can also see that our technique I has several orders

of magnitude less number of branches than the two popular

parallel simulation methods Pg and Pn. This is because they

are designed for speeding up parallel simulation and have a

large number of comparisons of timestamps.

C. TCP experiments: Timeout events

This group of experiments use the tcp-bulk-send.cc script

of NS-3. There are two nodes connected over a link. There

is a TCP connection between two nodes, and a total of about

1500 packets are generated in the simulation. We introduce

uncertain delays for three packets. Each of these three packets

has an uncertain delay in D = [1, dmax] ms with a millisecond

resolution, and all other packets still have the delays specified

in the script. We vary the maximum uncertain delay dmax

from 4 ms to 16,384 ms.
Fig. 6 shows the number of branches generated by each

testing method. We can see that each of our techniques is more

efficient than Original. But technique C is more efficient than

techniques S and I. This is because there are a large number

611

Node 0 Router A

Router B

Router C

Router D Node 1

Fig. 7. Network topology of the IP routing experiments.

 1

 10

 100

 1000

 2048 4096 8192 16384

T
es

tin
g

tim
e

(m
in

)

Maximum uncertain delay (ms)

Original
SCI

Fig. 8. Testing time of the IP routing
experiments.

 80
 85
 90
 95

 100
 105
 110
 115
 120

 2048 4096 8192 16384

M
ax

 u
pd

at
e

tim
e

(s
ec

on
d)

Maximum uncertain delay (ms)

Original
SCI

Fig. 9. Longest update time of the
routing tables in the IP experiments.

of TCP retransmission timeout events, which are canceled by

ACK and become ineffective events. Again we see that SCI

is several orders of magnitude more efficient than Original.

D. IP routing experiments: A use case

This group of experiments demonstrates correctness testing

and worst-case performance evaluation of a routing protocol

under uncertain events. We use the rip-simple-network.cc

script of NS-3. There are six nodes including four routers

interconnected over a network shown in Fig. 7. The routers

communicate with one another to run the RIP routing pro-

tocols. A total of about 100 IP packets are generated in the

simulation. The link between routers B and D is broken at 40

seconds. All the packets from routers C to A after 40 seconds

have uncertain delays in D = [1, dmax] ms, and all other

packets still have the delays specified in the script. We vary

the maximum uncertain delay dmax from 2,048 to 16,384 ms.
First, if the routing protocol works correctly, all the routing

tables will be correctly updated. Fig. 8 shows the testing times

for Original and SCI. After the test, every Original’s branch

and every SCI’s branch report that all the routing tables have

been correctly updated. That is, the routing protocol works

correctly under all possible cases of these uncertain events.
Second, for each dmax, we measure the longest time for

correctly updating all routing tables among all possible cases

of these uncertain events. Fig. 9 shows the results of Original

and SCI. We can see that Original and SCI report the same

result. This is expected and implies that SCI generates the

same simulation result as Original. Overall, we can see that

SCI can be used to test the correctness and evaluate the

worst-case performance of a network protocol, while it takes

significantly shorter time than Original as shown in Fig. 8.

VI. RELATED WORK

The related work on simulator-based testing methods has

been discussed in the Introduction section. In addition to

those, we note that implementation-level model checking of a

network protocol [11] recursively explores the protocol states

by attempting all possible events at each state. The efficiency

of SEIB can be further improved by combining [5] with model

checking. Existing work on SEIB, such as SPD [17], [18] and

SymTime [8], [14] also consider the efficiency of SEIB. But

SPD focuses on prioritizing different branches, and SymTime

focuses on compressed representation of node states among

different branches. In contrast, we focus on reducing the total

number of branches. There are also various techniques [1],

[16], [2] to improve the efficiency by modifying symbolic

execution engines (e.g., S2E). These techniques are comple-

mentary to our work that modifies the network simulators.

VII. CONCLUSIONS

In this paper, we propose three general techniques to modify

a discrete-event network simulator, which can significantly

improve the efficiency of SEIB for testing network protocol

implementations.

ACKNOWLEDGMENT

The work presented in this paper was supported in part by

NSF CNS-1526253 and NSF SHF-1718040.

REFERENCES

[1] T. Avgerinos, A. Rebert, S. Cha, and D. Brumley. Enhancing symbolic
execution with veritesting. In Proceedings of International Conference

on Software Engineering, Hyderabad, India, June 2014.
[2] S. Bugrara and D. Engler. Redundant state detection for dynamic

symbolic execution. In Proceedings of USENIX ATC, San Jose, CA,
June 2013.

[3] C. Cadar, D. Dunbar, and D. Engler. KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs. In
Proceedings of USENIX OSDI, San Diego, CA, December 2008.

[4] C. Cadar and K. Sen. Symbolic execution for software testing: three
decades later. Communications of the ACM, 56(2):82–90, February 2013.

[5] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford. A NICE
way to test OpenFlow applications. In Proceedings of USENIX NSDI,
San Jose, CA, April 2012.

[6] N. Cardwell, Y. Cheng, L. Brakmo, M. Mathis, B. Raghavan,
N. Dukkipati, H. Chu, A. Terzis, and T. Herbert. PacketDrill: Scriptable
network stack testing, from sockets to packets. In Proceedings of

USENIX ATC, San Jose, CA, June 2013.
[7] V. Chipounov, V. Kuznetsov, and G. Candea. The S2E platform: design,

implementation, and applications. ACM Transactions on Computer

Systems, 30(1), February 2012.
[8] O. Dustmann. Symbolic execution of discrete event systems with

uncertain time. Lecture Notes in Informatics, S-12:19–22, 2013.
[9] R. Fujimoto. Parallel discrete event simulation. Communications of the

ACM, 33(10):30–53, October 1990.
[10] P. Li and J. Regehr. T-Check: Bug finding for sensor networks. In

Proceedings of ACM/IEEE IPSN, Stockholm, Sweden, April 2010.
[11] M. Musuvathi and D. Engler. Model checking large network protocol

implementations. In Proceedings of USENIX NSDI, San Francisco, CA,
March 2004.

[12] Network Simulator 3. https://www.nsnam.org/.
[13] P. Peschlow, P. Martini, and J. Liu. Interval branching. In Proceedings of

ACM Workshops on Principles of Advanced and Distributed Simulation,
Rome, Italy, June 2008.

[14] R. Sasnauskas, O. Dustmann, B. Kaminski, K. Wehrle, C. Weise, and
S. Kowalewski. Scalable symbolic execution of distributed systems. In
Proceedings of ICDCS, Minneapolis, MN, June 2011.

[15] R. Sasnauskas, O. Landsiedel, M. Alizai, C. Weise, S. Kowalewski, and
K. Wehrle. KleeNet: discovering insidious interaction bugs in wireless
sensor networks before deployment. In Proceedings of ACM/IEEE IPSN,
Stockholm, Sweden, April 2010.

[16] K. Sen, G. Necula, L. Gong, and W. Choi. MultiSE: Multi-path symbolic
execution using value summaries. In Proceedings of ESEC/FSE, Italy,
October 2015.

[17] W. Sun, L. Xu, and S. Elbaum. SPD: Automatically test unmodified
network programs with symbolic packet dynamics. In Proceedings of

IEEE Globecom, San Diego, CA, December 2015.
[18] W. Sun, L. Xu, and S. Elbaum. Improving the cost-effectiveness

of symbolic testing techniques for transport protocol implementations
under packet dynamics. In Proceedings of ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA), Santa Barbara,
CA, July 2017.

612

