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Abstract—Existing visual instance retrieval (VIR) approaches attempt to learn a faithful global matching metric or discriminative feature
embedding offline to cover enormous visual appearance variations, so as to directly use it online on various unseen probes for retrieval.
However, their requirement for a huge set of positive training pairs is very demanding in practice and the performance is largely
constrained for the unseen testing samples due to the severe data shifting issue. In contrast, this paper advocates a different paradigm:
part of the learning can be performed online but with nominal costs, so as to achieve online metric adaptation for different query
probes. By exploiting easily-available negative samples, we propose a novel solution to achieve the optimal local metric adaptation
effectively and efficiently. The insight of our method is the local hard negative samples can actually provide tight constraints to fine tune
the metric locally. Our local metric adaptation method is generally applicable to be used on top of any offline-learned baselines. In
addition, this paper gives in-depth theoretical analyses of the proposed method to guarantee the reduction of the classification error
both asymptotically and practically. Extensive experiments on various VIR tasks have confirmed our effectiveness and superiority.

Index Terms—Visual Instance Retrieval, Online Metric Adaptation, Hard Negative Samples.
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1 INTRODUCTION

Visual Instance Retrieval (VIR) generally refers to retrieving
the same-instance images for the query instance image from a
large, unordered image collection, gallery set, based on the visual
similarities between the query probe and the gallery images.
The gallery images may be obtained from different cameras at
a different time against the query probe so that the difficulties of
VIR are mainly caused by the large and complex visual appearance
variations under various views, poses, illumination and occlusion
conditions. Owing to these challenges, VIR remains a critical yet
very challenging task in computer vision community which plays
an important role in various research topics, e.g., image retrieval
(Img-R) [1], [2], [3], [4], person re-identification (P-RID) [5], [6],
[7], and vehicle re-identification (V-RID) [8], [9] etc.

Most attempts to VIR focus on facilitating the retrieval by
learning a discriminative matching metric [5], [6], [10], [11], [12]
or feature embedding [3], [4], [8], [9], [13], [14], [15], [16], [17],
[18] to better capture the visual similarities. In this paper, we
use the same term metric to represent both the matching metric
and feature embedding for convenience since they are indeed
interchangeable. These offline metric learning methods typically
attempt to train a faithful global metric offline, hoping to cover
the enormous visual appearance variations so as to directly use
it online for all testing probes. The training data for such offline
learning are generally sample pairs: a positive pair refers to two
images of the same identity, and a negative pair otherwise. These
methods usually demand a huge set of positive/negative training
pairs to facilitate learning. In practice, although it is relatively easy
to collect negative pairs, it is in general difficult to obtain many
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positive pairs for a specific instance. Therefore, the metrics learned
from insufficient positive training data are likely to be biased. In
addition, most methods aim to learn a positive semi-definite (PSD)
Mahalanobis metric, but it is computationally intensive to learn
such a strictly PSD metric, while ignoring the PSD constraint
leads to unstable and noisy metrics [5].

In contrast to the aforementioned methods, this paper ad-
vocates a different paradigm: shifting part of the learning to
the online local metric adaptation. Specifically, for each online
probe at the testing time, our new approach learns a dedicated
local metric with a nominal computational cost. Combining a
global baseline with local metric adaptation achieves an adaptive
nonlinear metric. In our approach, its online learning is special,
because there are no positive training pairs available at all for the
testing probe, as its identity is unknown.

An attractive property of our proposed method is that it only
uses negative data from a negative sample database (NDB) for
adaptation learning. We call it OLMANS for short of Online Local
Metric Adaptation from Negative Samples. For a given testing
probe, a specific subset of samples from NDB are selected to
form informative negative pairs with this testing probe. These
utilized samples from NDB are visually similar to the probe,
but are guaranteed to have different identities from the probe
(at least with a very large probability). These negative samples
provide effective local discrimination for further constraining
the local metric tuning, by pushing away local false positives
(shown in Fig. 1). For each testing probe, our method learns
a strictly PSD local metric via solving a max-min optimization
problem efficiently. Comparing to offline learning schemes, the
computational cost of the proposed online adaptation is negligible.
Moreover, our method is generally applicable to be used on top of
any offline learned baselines without any modification to them.

Another significant property of our proposed OLMANS is that
it is justified and backed up with a theoretical guarantee to improve
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Fig. 1. The overall idea of our proposed online local metric adaptation algorithm illustrated in the context of P-RID. Unlike existing offline learning-
based methods that learn a single global metric or feature embedding for all probe and gallery samples, we exploit negative samples to learn a
dedicated local metric for each online probe to adapt the offline learned global feature space to an instance-specific discriminative local feature
space (called OLMANS feature space). The hard negatives in NDB around the local hypersphere of the query probe are pushed far away so the

final retrieval result in OLMANS feature space is improved.

the performance of the underlying VIR baseline. This paper gives
in-depth theoretical analyses to well justify our proposed method.
We first prove that the novel OLMANS guarantees the reduction
of classification error asymptotically when there are an infinite
number of learning data. Then we pursue the best approximation
of the asymptotic case by using a finite number of learning data,
since we can prove that the learning objective of the proposed
local metric adaptation is equivalent to the optimal approximation
of the asymptotic case. In addition, we also provide consistency
and sample complexity analysis to guarantee the generalization
ability of our proposed OLMANS. These theoretical analyses
indicate that the learned local metric is bound to improve the
VIR performance. These properties have been confirmed to be
significantly effective and practical by our extensive experiments
and comparative studies on different VIR benchmarks: P-RID
(VIPeR, GRID, CUHKO03, Market1501, DukeMTMC-reID and
MSMT17) and Img-R (Oxford, Paris, ROxford and RParis).

This paper is an extension of our previous conference pa-
per [19], while we have made a lot of extensions including: 1)
We extend our proposed OLMANS model to a more general
form to better fit the set-query scenario. The semantic and visual
similarity relationships of the given set-based queries from the
same instance are fully explored for a robust and discriminative
metric adaptation. 2) The theoretical analyses with a thorough
proof of our OLMANS are completely presented in Sec. 4, which
theoretically guarantee the correctness of our proposed method. 3)
We compare our method with the widely-used online re-ranking
technique since both our OLMANS and re-ranking methods are

applied to the offline learned VIR baselines on online stage for
further performance boosting, while our OLMANS outperforms
re-ranking in both the performance and efficiency. 4) We evaluate
our OLMANS on two generic VIR tasks: person re-identification
(P-RID) and image retrieval (Img-R). Compared with [19] which
only focuses on the specific P-RID problem, the evaluation on a
general image retrieval task verifies the generalization ability and
effectiveness of our method. 5) For the P-RID evaluation, more
ablation experiments are conducted in Sec. 5 to further investigate
our proposed method. In addition, unlike [19] that only uses the
handcrafted feature and small-scale P-RID datasets, we explore
more state-of-the-art deep learning-based models as our baselines
and evaluate three more challenging large-scale P-RID benchmark
datasets (CUHKO3 [20] with new protocol, DukeMTMC-relD [21]
and MSMT17 [22]) to challenge various data conditions.

The rest of our paper is organized as follows: Section. 2
summarizes the previous works on VIR. We describe our proposed
OLMANS algorithm in Section. 3, and illustrate its performance
on many benchmark datasets in Section. 5. In Section. 4, we
theoretically analyze some important properties of our proposed
algorithm.

2 RELATED WORK
2.1

In this work, we focus more on the local metric learning-based P-
RID approaches and convolutional neural network (CNN)-based
deep feature embedding P-RID models.

Person Re-identification
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Local Metric Learning: [23] formulated the P-RID problem
as a local distance comparison problem to handle the multi-modal
distributions of the visual appearances. [24] proposed the Locally-
Adaptive Decision Functions (LADF) which integrates a tradi-
tional distance metric with a local decision rule. [25] employed
the Local Fisher Discriminant Analysis (LFDA) which combines
the Fisher Discriminant Analysis (FDA) and Local Preserving
Projections (LPP) to exploit the local geometrical information
of samples. [26] developed a regularized local metric learning
(RLML) method to combine global and local metrics, so as to
utilize the local data distribution to alleviate over-fitting. [27]
proposed LSSCDL to learn a specific SVM classifier for each
training sample, then the weight parameters of a new sample
can be inferred. A novel multi-task maximally collapsing metric
learning (MtMCML) model was proposed by [28]. In order to
relax the large-number labeled image pair requirement in P-RID,
a novel one-shot learning approach is proposed by [10] which
only requires a single image from each camera for training, thus
the learning result is specific to the only sample. In contrast to the
local metric learning methods, our proposed approach is mainly
focused on learning local metrics specifically adaptive to individ-
ual testing probes. Different from RLML that requires clustering
in advance to obtain the local data distributions, our new approach
does not need clustering but is rather instance-based learning, and
thus avoiding the risk of inaccurate clustering results. Also note
that MtIMCML learning still follows the global manner although
it learns different metrics for different cameras. In contrast to
LADEF that needs a large number of positive sample pairs to drive
the local decision function learning, our new approach only uses
negative sample pairs which are much easier to obtain. LSSCDL
also requires a lot of positive training pairs for offline learning, but
ours performs online learning per probe without the requirement of
positive pairs. Although [10] performs one-shot learning to each
sample, but it needs extra camera network information for one-
shot learning.

Deep Feature Embedding: The convolutional neural network
(CNN)-based P-RID approaches aim to integrate the feature ex-
traction and metric learning into one end-to-end framework, in
which a neural network is built to extract from each pedestrian
image a feature that satisfies a certain ranking criterion. [20]
firstly utilized deep learning method to extract more effective and
discriminative features to facilitate P-RID. [29] proposed a scal-
able deep feature learning model for P-RID via relative distance
comparison based on triplet loss. [30] proposed a novel moderate
positive mining method to embed a robust deep metric for P-
RID. [31] suggested a new loss for learning deep embeddings and
demonstrate competitive results of the new loss on a number of
P-RID datasets. CNN-based feature extraction has achieved the
state-of-the-art performance in P-RID owning to a better spatial
alignment of local image parts. A novel Harmonious Attention
CNN (HA-CNN) proposed by [13] tries to jointly learn attention
selection and feature representation in a CNN by maximizing the
complementary information of different levels of visual attention
(soft attention and hard attention). [32] proposed a network called
CAN which combines attention methods with LSTM to obtain
discriminative attention feature of the whole image. [33] proposed
a novel deeply supervised fully attentional block that can be
plugged into any CNNss to solve P-RID problem, and a novel deep
network called Mancs is designed to learn stable features for P-
RID. Besides the aforementioned methods, the utilization of hard
negatives attracts more and more attention in deep metric learn-
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ing area. [34] proposed a framework of deep adversarial metric
learning (DAML) which can be generally applicable to various
supervised metric learning approaches. DAML aims to generate
synthetic hard negatives from the observed negative samples by
exploiting what to generate potential hard negatives adversarial to
the learned metric as complements. [35] proposed a novel appli-
cable framework named deep variational metric learning (DVML)
to disentangle intra-class variance via variational inference and
leverages the distribution to generate discriminative samples to
improve robustness. The generated negative samples could be
utilized to facilitate the learning and enhance the generalization
ability of the learned model. However, these well-trained networks
are directly applied to the testing data for deep feature extraction,
no local adaptation is in the loop. The data shifting between
training and testing samples definitely limits the performance
of the learned models. Therefore, our proposed OLMANS is
suitable for any CNNs for instance-specific local adaptation in
the inference stage, which can address the data shifting issue well
and gain further performance improvement.

2.2

A thorough survey of image retrieval researches is introduced in
[37]. In this work, we mainly focus on two main branches of image
retrieval, multiple local feature aggregation-based approaches and
deep learning-based models.

Local Descriptor Aggregation: Previous image retrieval
methods aim to aggregate a set of local feature descriptors into
a global one for robust retrieval. [38] designed a graph-based
ranking model to aggregate the retrieval results from multiple
features into one, then the retrieval scores are weighted to deter-
mine the final retrieval matching. [39] proposed a novel coupled
Multilndex(c-MI) framework to fuse both color feature and SIFT
feature in a product manner at indexing level. [40] proposed a
semantic-aware co-indexing scheme to fuse the SIFT feature and
semantic attributes for image retrieval. In [41], multiple visual
features are fused in the similarity score level based on the
shapes of ranking scores. By considering these local descriptor
aggregation methods as offline baselines, our proposed OLMANS
can be readily implemented on the top of the fused feature for
further local similarity adaptation.

CNN Fine-tuning: [42] demonstrated that the pre-trained
models from ImageNet for object classification is suitable for im-
age retrieval by fine-tuning them on an external set of Landmarks
images. [43] also confirmed the importance of fine-tuning the pre-
trained models to improve image retrieval, but argued that a good
image representation and a ranking loss should be used in learning,
instead of the classification loss. [4] addressed the unsupervised
fine-tuning of CNNs for image retrieval on a large collection of
unordered images in a fully automated manner. By considering the
fine-tuned CNN as a global deep feature extractor to the probe and
gallery samples, our proposed OLMANS method can be readily
applied on top of it to further boost the performance.

Image Retrieval

2.3 Online Re-Ranking

The online re-ranking technique is widely adopted for further
performance improvement in VIR. [44] revised the ranking list
by considering the nearest neighbors of both the global and local
features. An unsupervised re-ranking model proposed by [45]
takes advantage of the content and context information in the
ranking list. [46] proposed a k-reciprocal encoding approach for
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Fig. 2. The improvement of ranking result by our OLMANS on VIPeR [36]. BLUE boxes: input probes, RED: gallery targets. For each case, the top
row is the result from the baseline [5], and the bottom row is our result. (Best view in color and enlarged)

re-ranking, which relies on a hypothesis that if a gallery image
is similar to the probe in the k-reciprocal nearest neighbors, it is
more likely to be a true-match. [47] focused on how to make a
consensus-based decision for retrieval by aggregating the ranking
results from multiple algorithms, only the matching scores are
needed. Both our proposed OLMANS and re-ranking share the
same appealing online manner, but our algorithm outperforms
re-ranking by several unique merits which will be discussed in
Sec. 4.4.

3 LEARNING FROM FAILURE: ONLINE LOCAL
METRIC ADAPTATION FROM NEGATIVE SAMPLES
3.1 Problem Settings

On the online testing stage of VIR, two disjoint datasets, a probe
set P and a gallery set G are given as:

P ={(p:i, 1))}, G = {(9:, 1)}, (1)

that p;, g; € R are the extracted feature representations from a
baseline model, either handcraft features or learned deep features.
P17 € {1,2,...,c} are the labels from c instances which are
totally different from the training sample classes. The common-
used closed-set condition is adopted that both the P and G contain
samples from all the c instances respectively. VIR aims to rank
G for a query probe p; based on the pair-wise similarity distance
between a gallery image g;, D(pi,g;) = ||pi,g;]|>. Our goal
is to re-rank G for p; by refining D(p;, g;) to boost the rank
of true-matches for p; via utilizing an additional negative sample
database (NDB), denoted by ) = {yl}f:1 the details about )
will be discussed shortly in Sec. 3.2.

3.2 OLMANS for Single-Instance Query

The performance of VIR depends on the similarity matching
between one probe p; and one gallery image g;. Different methods
adopt different loss functions to learn the feature representations
p; and g; with the expectation that the similarity structure in
the learned feature space should be aligned, so as to pull the
samples from the same instance group closer and to make different
instances more discriminative. However, the offline learned feature
embedding from training samples does not aim to fit the local
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Fig. 3. The local metric M; for a single probe p; can push the closest
negative sample y; of p; away from its local hypersphere Q(p;)

distributions for all the testing samples specifically, it may lead to
large biases and distortions in some places in the feature space.
As illustrated in Fig. 1, our proposed approach puts an instance-
specific local metric adaptation on top of the global baselines in
an online manner.

To enhance the local discriminant of query probes, in this
paper, we propose OLMANS, an online local metric adaptation
algorithm by exploring only negative samples, to adaptively adjust
the metric dedicated to a specific query probe with minimum
online learning burden. Specifically, for a probe image p; in
the probe set P, we aim to learn a local Mahalanobis distance
M; only using the samples in a negative sample database )
as learning data. This negative sample database provides rather
faithful negative samples to the probes with a large probability.
There are many ways to collect ), e.g., data from a different
benchmark can be used, or false positive matches from images
that belong to different instance classes. The insight here is that all
such negative samples are “hard negatives” for the probes. In this
research, we have investigated how ) influences the performance
in Sec. 5.

We propose to pursue an optimal PSD Mahalanobis metric
M; for the local adaptation of p;, by maximizing the distance to
the closest (or “hardest” conceptually) negative sample of p;, as
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shown in Fig. 3:

M; = arg max (

max | min, (p; — ;)" M; (p; _y_j)) )

1<j<k

To pursue a stable solution to Eqn. 2, we need to regularize M.
This can be done via minimizing the norm under a fixed margin
constraint, instead of maximizing the margin under a fixed norm
constraint [48], so the alternative objective is:

1 2
M; = argnhldlipg\|Mi\\
3)

sub to: M; =0

(Pi*yj)TMi(Pi*yj) >2, V1<j<k

where the constant 2 is arbitrary only for manipulation conve-
nience. While this is a convex semi-definite programming prob-
lem, it can be very slow for high dimensional data, even for the
state-of-the-art PSD solvers.

In the proposed OLMANS approach, we relax the PSD con-
straint requiring M% > 0, but we prove below that the relaxed
objective is equivalent to a kernel SVM problem with a quadratic
kernel. And thus the solution is still a PSD metric. In addition,
it can be readily solved with off-the-shelf SVM solvers such as
LIBSVM [49]. More importantly, we also prove that this learning
objective is equivalent to the best approximation to the asymptotic
classification error, which is proved to be lower than the global
baseline (details see Sec. 4).

Theorem 1. The solution to2 Eqn. 3 is equivalent to a kernel SVM
with k(z,y) = (z,y)” on {%o, U1, Y2, ..., Jr} Where §; =
p; — y; (for j > 1), and go = p; — p; = 0.

Proof 1. Define auxiliary labels by:

;= X 4
“ { L j#0 @
so the objective Eqn. 3 can be rewritten as:
1 2
M; = arg min §||MZ||
M 4)

sub to: ¢ (g]]TMZg]]—l) >1L,V0<j<k

Eqn. 5 is exactly an SVM problem with quadratic kernel and
with bias fixed to one. Next we prove the solution to objective
Eqn. 5 is exactly the same as that to the original objective
Eqn. 3. Consider the dual of the SVM, the optimal solution
M; has the form:

k
M; = > (0], a; >0
i=0

(6)

Since ;¢ is PSD for j > 1 (§ogg = 0) and ¢; = 1 for
7 > 1, so we have:

k k
M; = > 0] = Y aggl =0 ()

=0 j=1

It is obvious that the positive semi-definiteness of M; is
guaranteed even if no PSD constraint is explicitly imposed in our
learning objective Eqn. 5.
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Fig. 4. The local metric M; for a set-based probe P; can pull the
same-instance samples together meanwhile push the closest negative
samples y; away from the local hypersphere Q(P;)

3.3 OLMANS for Instance-Set Query

In Sec. 3.2, we demonstrate our proposed OLMANS algorithm
in the context of single-instance query scenario. However, in
visual instance retrieval, there will be multiple images of the same
instance as the query probe, which is known as the multi-shot
query. Following our OLMANS algorithm in Sec. 3.2, for each
individual image of the same instance, a local metric will be
learned which is linear to the query number n. However, such
an individual-based learning manner ignores the visual similarity
relationships among the given set-based query which is neither
effective nor efficient. Therefore, for such an instance-set query,
we generalize our OLMANS algorithm to learn a set-specific
local Mahalanobis metric in order to collapse the same-instance
samples together meanwhile push the negative samples in ) far
away, as shown in Fig. 4. For the ¢-th instance with query set
P; = {pL}li,, the designed objective for learning its specific
Mahalanobis metric M; is:

1 2
M; = arg min o |[M||
M; =0
(=) My (p—y;) 22, VI<r<m, VI<j<k
(ph—p}) M, (pl —pl) =0, VI <r<m, V1<j<n,
(®)
Therefore the learned M; from Eqn. 8 is shared by all the
same-instance samples in ;. While there are total O(n?) con-

straints in Eqn. 8 which is difficult to deal with, so we aim to
reduce the constraint size in Eqn. 8 to facilitate optimization.

sub to:

Theorem 2. Eqn. 8 has an exactly equivalent form by only keeping
the constraints related to one anchor sample p* in the query set
P;, that p* can be any sample in P;. Therefore the equivalent
form is Eqn. 9:

1 2
M; = arg min o |[M||
M; =0
i T ; .
(P —y) Mi(p' —y;) 22, VI1<j<k
(P —pj) Mi(p'—pj) =0, V1<j<m

sub to:

€))

Proof 2. Revisit Eqn. 8, its equality constraints propose to collapse
all pi € P; together. Therefore keeping only the equality
constraints related to the anchor sample p® achieves the same
collapsing performance. So as to the inequality constraints
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in Eqn. 8. Finally, we can reduce the constraint size by
only keeping the constraints related to p’ as in Eqn. 9.
The re-written objective Eqn. 9 has only linear-scale O(n)
constraints, compared to the original quadratic-scale O(n?)
constraints in Eqn. 8.

An important merit of Eqn. 9 is that it can be efficiently

optimized by solving a much easier version [48]:

Theorem 3. All the vectors p’ — p;'- in Eqn. 9 form a spanning
space S = span(3_; A;j(p* — pj)). The Eqn. 9 is equivalent
to replace p’ — y; by t;, the projection of Pt — yj in S+, that
S+ is the orthogonal space of S.

Proof 3. Since M; is positive semi-definite, the constraint (pi —
P5) "M (p" —p') = 0 is equivalent to M; (p’ — pz) = 0 which
means the M;s = 0 for all s € S. Projecting p* — y; to S and
S generates two orthogonal bases s; and ¢; respectively, so
pl— y; = S; +1;. Replace the inequality constramts in Eqn. 9
by s; +t;:

(0 = 03) " Mi (0 =) = (55 +1)" Mi (s, 1)
=t;"Myt;
Now Eqn. 9 has an equivalent form as:
1 2
M; = arg min o |[M||
sub to: Miio (11)

t;TMt; > 2, V1<j<k
MiSZO, Vs €S

Finally, we prove that Eqn. 11 has the same solution to Eqn. 8
by eliminating its PSD and equality constraints.
Theorem 4. The solution to Eqn. 8 is exactly the same as solving
the Eqn. 11 by relaxing its equality and PSD constraints, since
they are indeed off-the-shelf.

Proof 4. If we get rid of the PSD and equality constraints in
Eqn. 11, the new form is:
1 2
M; = arg min — | M,||
M; 2 (12)
t;TMt; > 2, VI<j<k

Eqgn. 12 is exactly the same form of the objective in Eqn. 5
which can be efficiently solved via a kernel-SVM solver.
Thus the positive semi-definiteness of M; is guaranteed by
Theorem. 1. For the equality constraints in Eqn. 11, given a
member s of S, we have:

) s = Z a;t;

Ms-(Zat (13)

which proves that the solution to Eqn. 12 satisfies the equality
constraints as well.

sub to:

)=0

3.4 Visual Instance Retrieval via OLMANS

On the online testing stage, for a probe p; from P and one
gallery image g; from G, the similarity matching between p; and
g; is measured by combining the original baseline models (with
flexible choices) with our local metric adaptation M; to achieve
an adaptive nonlinear metric:

DMa‘, (pzag])
— 951>+ Alpi — g llxm, (14)
= (pi — g;)" T+ M) (ps — g5)

6

where M; is the learned local metric specific for p; and X is the
weighting parameter. In this paper, we set A by Eqn. 15 in all the
experiments which can be explained in Sec. 5.

gil?)/ max (|p;i —g;ll%,)  (15)

A = max (sz ax

1<j<m
We find that even simply using only the learned local metric
for retrieval, the results are still much better than using the original
global baselines. Further, when combining the global baseline and
our learned local metrics, we are able to obtain much better and
more stable performances. The reason behind it can be explained
by the idea of boosting [50]. Either the global baseline or the
local metric can be considered as a “weak” classifier for retrieval,
and their combination forms a “stronger” classifier with better and
more robust performance.

4 THEORETICAL ANALYSIS AND JUSTIFICATION

In this section, we first prove that the asymptotic error of VIR
by using the proposed OLMANS is bound to be lower than that
without. When the negative samples are truly hard negative ones,
the asymptotic error by using OLMANS can be very close to the
Bayesian error (Sec. 4.1). Besides this theoretically meaningful
result, we prove that this strong asymptotic error can actually
best approximated by using finite data, which is practically also
meaningful. More importantly, we prove that this approximation
is actually achieved by OLMANS (Sec. 4.2). We also present its
consistency and sample complexity analysis in Sec. 4.3.

4.1

The core of VIR is indeed a 2-class (w4 and w_) 1-Nearest
neighbor (NN) classification problem by using the gallery set D. If
there is infinite number of data, it is well-known that its asymptotic
error P(e|x) is bounded by 2 times the Bayesian error [51]:

P* < P(e|z) = 2P(wy|z)P(w—

Asymptotic Error is Reduced

|z) < 2P* (16)

where P* is the Bayesian error. In our work, we prove that by
adding the hard negative samples x, to D to form an augmented
dataset D, the asymptotic error P*(e|z) by using D* is always
smaller than P(e|z):

P(e|z) < P(e|x) 17

Theorem 5. For an input z, its NN is z’ in D%. Define the
probability that z’ is an augmented data z,, ie., ' ~ z,
as P(z' ~ x,) = g; otherwise, 2’ is not an augmented data
T, i€, &' xg, P(a'—x,) =1 — ¢, where 0 < ¢ < 1. The
asymptotic error P*(e|x) by using D is:

Pe(efz) = 2 DPER) gy (18)
2 — 2¢P(e|x)

The proof is provided in Appendix.A. Since q is the probability
of P(z' ~ x,), we have 0 < g < 1.If ¢ = 0 which indicates that
the augmented negative data are useless, then we have P%(e|x) =
P(e|z). Another extreme is when ¢ = 1 implying the negative
data are abundant and effective to constrain the classification, then

we have !

P(e]x)

21

Pel) = S By <

P(e|x) (19)

—

1. P(e|z) < = is always true.

2



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENGE

In this case, when P(e|z) is very small, we have

Plelz)
2

The asymptotic error of our negative-augmented approach can be
very close to the Bayesian error.

P?(e|z) ~ ~ P*(e) (20)

4.2 Finite Approximation to P“(e|x)

The asymptotic error P*(e|x) in Eqn. 18 is only meaningful when
the sample size is infinite, n — o0o. However, in practice, only
finite number of samples are available. To make it practically
meaningful, we prove that it can be best approximated by the
practical error rate P, (e|z) (n is finite) by finding a local metric
M,,. And this local metric turns out to be the one for the proposed
OLMANS.

Still consider the 2-class 1-NN rule scenario (on the negative
augmented data D?). To make the notation less cluttered, here we
use P(e|x) to indicate P*(e|x) without confusion. Given a sample
2 and its nearest neighbor x’ from the finite dataset containing n
samples. The probability of error for z is:

P, (elz) = P(ws o) Pw_e') + P(w_|e) Plwila’)
= Blele) + [P(ws|v) - Plo_[2)][P(wi]e) — P(wsla’)]

Our goal is to find a best local metric M, for x such that the
conditional MSE miny, E{[P,(e|x) —P(e|z)]?|x} is minimized.
Since [P(wy|x) — P(w—|z)] is constant for a given x, so the
minimization is equal to:

min E{[P(w |z) — P(w |z} 21)
Because P(w |z) ~ P(wy|z)+ VP(wy|z)T (2 —z), Eqn. 21
is approximately equivalent to:

min E{||VP(wy|a)" (' — 2)|?|2} (22)

The core here is to compute the gradient of posterior
VP(wy|x). Recall our proposed OLMANS approach, a local

linear classifier w where M, = ww’ is learned for a sample
z. So the posterior of  in a logistic sigmoid function form is:
1
P(w+‘x) = 1+ eCz(WTm+b)—“/’P(W7‘x) =1- P(OJ+|(E)
(23)
The gradient of P(w|x) can be easily computed:
VP(wi|r) = (P(wy|z)Plw_|z)w (24)
Substituting Eqn. 24 for V P(w |x) in Eqn. 22 gives us:
min E{]|¢; P(ws |2) P(w-|2)w” (2’ — 2)|*]a}
"t (25)
= rﬁm(x’ —z)Twwl (z/ — )

Recall our optimization objective Eqn. 5, for the positive
samples, we have 1 — (z/ — 2)TM, (2’ — 2) > 1 which
is equal to (z' — 2)TM, (2’ — 2) < 0. On the other hand,
(r — 2") "M, (x — 2’) > 0 is always true for a PSD M,, so
(2" — 2)TM, (2’ — 2) = 0 always holds. It is obvious Eqn. 25 is
always optimized by adopting the local metric M, learned by our
algorithm Eqn. 5.

4.3 Consistency and Sample Complexity Analysis

A set of samples {xg, 1, ..., } is identically drawn from a D-
dimensional space D € RP where [; is the label of z;, then a
paired sample set S7**" = {s;}*_ = {(wo, 2;)}_; of size k is
formed. For our proposed objective Eqn. 5, the true risk over the
whole distribution I and the empirical error based on S;**" are
defined as:

ETT}\(MM D) = EZE{,,IJ'NDQ/))\(MZE7 (xia x]))
k
; 1
by pairy __ A .
E’I"T (Mw7Sk; ) - E;:ld) (MJHSZ)

where ¢* (M, s;) is the hinge loss function:

O (M, 5:) = MG (@ — 20) Mo (s = 70)) = 7.+

where ¢; = —1if [; = Iy and 1 otherwise, [A]; = max(0, A)

is the hinge loss and 7, is the desired margin. The empirical

risk minimizing metric based on S;*" can be readily defined as

M = arg miny, Err*(M,, S7*"). Our goal is to compare the

generalization performance of M, over the unknown D.

Theorem 6. Let $*(M,,, s;) be a distance-based loss function that
is A-Lipschitz in the first argument. Then with probability at
least 1 — § over {si,..., S} from an unknown B-bounded-
support (each (z,1) ~ D, ||z|| < B) distribution D, we have:

sup
M, eM

<0 ()\BQ DIn(1/9) /k:)

[Em)‘ (M,, D) — Err*(M,, Sgaw)}
(26)

Theorem. 6 proves that to achieve an estimation error rate €, k =

Q ((AB?/€)>D1n(1/6)) samples are sufficient. The brief proof

is shown in Appendix.B.

Theorem 7. Let M, be any class of weighting metrics on the
feature space X = R”, and define d := supy, ¢ o [|[Ma |-
Following the same parameter setting in Theorem. 6, we have:

sup
M, eM

<0 ()\32 dIn(1/6) /k>

[Err (Mo, D) = Brr (M., 7))
@)

Let P be the probability measure induced by the random
variable (X; L), where X := (z,2), L := 1[Il = l']. Define
function class:

Fi={Xr|lz—2'|ln,}

Following the same steps in the proof of Theorem. 6, we can
conclude that the Rademacher complexity of F is bounded. In
particular,

sup M, ||2
Rk(ﬂng\/ e Ml

Finally, we note that ¢* is A-Lipschitz in the first argument, so
that we can readily apply Theorem.8 in [52].

From Theorem. 7, we observe that if the learned metric M,
has a low metric learning complexity d < D, it can help sharpen
the sample complexity result, yielding a dataset-dependent bound.
Recall our objective Eqn. 5, d := supy_ ¢ [|[Mz[|3 is already
optimized via our proposed learning objective. Therefore, the
bound is further tighter under the same number of samples.
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4.4 OLMANS vs Re-ranking

Both our proposed OLMANS algorithm and the widely-used
re-ranking technique can be readily combined with any offline
learned retrieval models in the online phase for further perfor-
mance improvement. But our OLMANS owns more unique merits
than re-ranking in both the efficiency and effectiveness facets
which has been both theoretically proved in Sec. 4 and empirically
verified by extensive experiments in Sec. 5.

Data Requirement: Most re-ranking methods require no
additional learning samples, but utilize the given query probe
and gallery samples to help refine the ranking. In contrast, our
OLMANS takes advantage of a set of easily-available negative
samples, based on which it finds online adaptation for the optimal
local metric.

Effectiveness: The effectiveness of re-ranking depends heavily
on the quality of the initial ranking list (if the true match is not
in the top-k ranks). It may hurt the initial rank result, because
the true match may have a lower rank after re-ranking if the
false matches are included in the top-k list. Thus re-ranking
may degrade the performance. The performance of our OLMANS
model relies on the quality of the set of negative data, as illustrated
by Theorem. 5, even if the quality of the given NDB is pretty bad
(no hard negatives are provided), OLMANS still won’t degrade
the original performance. Comparing to re-ranking, our OLMANS
has a unique and plausible advantage: it does not degrade the
performance of the original methods (the original global metric)
in theory. As indicated in the objective Eqn. 3, when the negative
samples are not good (i.e., they are already far away from the pos-
itive point in the original feature space), the learned local metric
M, will be the same as the original baseline, since the constraints
in Eqn. 3 have already been fulfilled. So OLMANS won’t give
a worse performance than the original method. As described in
Sec. 4, our theoretical analysis has shown that asymptotically our
negative-augmented approach always improves the identification
performance, and can be very close to the Bayesian error.

Efficiency: Another merit of our OLMANS compared with
re-ranking is its high efficiency. OLMANS is very efficient even
if there are a lot of negative samples available for local adapta-
tion. Because the learned local metric M, is only related to a
handful set of hard negatives, not all the negatives. In contrast,
other methods, such as re-ranking (depend on data number and
nearest neighbor number k), transfer learning, domain adaptation
techniques, are usually time-consuming because the affinity rela-
tionships among probes and gallery samples have to be computed.

5 EXPERIMENTS

In this section, to verify the efficiency and effectiveness of our
proposed OLMANS method, we evaluate our method on two
generic VIR tasks: person re-identification (P-RID) and image
retrieval (Img-R).

5.1
5.1.1 Experiment Settings

Experiment on Person Re-identification

Data. We perform thorough experiments and comparative stud-
ies to evaluate our method on most widely-used P-RID bench-
mark datasets: VIPeR [36], GRID [53], CUHKO3 [20], Mar-
ket1501 [54], DukeMTMC-reID [21] and MSMT17 [22]. The
statistic details of the above datasets are summarized in Table. 1.
For VIPeR and GRID datasets, all the identity pairs are randomly
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divided into half for training and the other half for testing so that
the average results of 10 random trials are reported. For CUHKO3,
the newly proposed protocol [46] (767 identities are used for
training as well as the left 700 identities are used for testing)
is adopted in our experiments. As for the other three benchmarks,
Market1501, DukeMTMC-relD and MSMT 17, the pre-determined
probe and gallery sets are directly utilized with no modification.

Evaluation. For a fair comparison, the training data of each
dataset are used as the negative training samples for itself, so no
more extra information is utilized in the experiment. For all the
experiments, the single-shot evaluation setting is adopted and re-
sults are shown in the form of Cumulated Matching Characteristic
(CMC) curves. Besides, the mean average precision (mAP) results
of the latter four benchmarks are also reported.

Feature. Both handcrafted features and learned deep features
are explored in our experiments. The high-dimensional hand-
crafted P-RID feature called LOMO [6] is adopted. Since it is
not practical to directly use such a high dimensional feature
(26960-dim for the original LOMO feature) in metric learning, we
employ principal component analysis (PCA) to reduce the feature
dimension to a reasonable scale (1000-dim after PCA). Besides,
our proposed algorithm is directly applied to various CNN features
presented below for evaluation.

Baseline. Since the global metric learning-based methods per-
form much better than deep learning-based ones on the small-scale
datasets VIPeR and GRID, due to the lack of sufficient training
data, we mainly focus on the state-of-the-art global metric learning
approaches [5], [6], [11] as our baseline models. As for the other
large-scale datasets with plenty of training samples, the state-of-
the-art CNN-based P-RID models are selected as our baselines to
implement our method on including CaffeNet [55], VGG16 [56],
ResNet50 [57], DenseNet121 [14] and HA-CNN [13]. Besides, the
other state-of-the-art P-RID methods [15], [16], [17], [18], [58],
[59], [60] are further compared for a complete evaluation. Finally,
a recently proposed state-of-the-art re-ranking approach [46] is
compared with our algorithm. Various ablation studies of our
proposed model are explored in Sec. 5.1.4.

5.1.2 Comparisons with State-of-the-art
Experiments on VIPeR: The small-size VIPeR dataset is a
widely-used benchmark for P-RID which contains 632 pedes-
trian image pairs taken from 2 different cameras in an outdoor
environment. We conduct the comparison experiment under the
same experiment setting and using the same LOMO feature, while
the global metric learner MLAPG [5] is selected as our baseline.
The results are reported in Table. 2. Our method achieves the
best performances on all the ranks. For the important Rank@ 1
evaluation, our performance 44.97% outperforms the second best
approach LSSCDL by 2.31% and the baseline model MLAPG by
4.24%. This promising performance indicates that the proposed
local metric adaptation method is consistently effective, several
representative examples are shown in Fig. 2. One interesting ob-
servation is our improvement performance at Rank @20 is a little
bit lower than its performance at Rank@ 1. This is expected as our
local metric becomes less effective when the true positive gallery
image is far from the probe in the feature space. Nevertheless, our
method still beats all the other approaches at Rank @20.
Experiments on GRID: The GRID dataset [53] contains 250
pedestrian image pairs taken from 8 disjoint camera views and 775
additional images that do not belong to the 250 persons. GRID is a
pretty tough dataset because of the large viewpoint variations, the
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TABLE 1
The statistics of different P-RID benchmarks.
Dataset VIPeR GRID CUHKO03 Market1501 DukeMTMC MSMT17
#Train-IDs 316 125 767 751 702 1040
#Probe-IDs 316 125 700 750 702 3060
#Gallery-IDs 316 775 700 751 1110 3060
##cam 2 8 2 6 8 15
F#images 1264 1025 28192 32668 36411 126441

TABLE 2
Comparison results with the global metric learning methods on VIPeR
using the same LOMO feature. RED is the best result and BLUE is the
second best one.

Method R@1 R@5 R@10 R@20
Ours(MLAPG) 4497 74.43 84.97 93.64
LSSCDL [27] 42.66 - 84.27 91.93
DNSL [11] 42.28 71.46 82.94 92.06
MLAPG [5] 40.73 69.94 82.34 92.37
XQDA [6] 40.00 68.13 80.51 91.08
TMA [61] 39.88 - 81.33 91.46
KISSME [62] 34.81 60.44 77.22 86.71
ITML [63] 24.64 49.78 63.04 78.39
LMNN [64] 29.43 59.78 73.51 84.91
kCCA [65] 30.16 62.69 76.04 86.80
MFA [66] 38.67 69.18 80.47 89.02
kLFDA [66] 38.58 69.15 80.44 89.15
TABLE 3

Comparison with the global metric learning methods on GRID using the
same LOMO feature.

Method R@1 R@5 R@10 R@20
Ours(MLAPG) 30.16 42.64 49.20 59.36
LSSCDL [27] 22.40 - 51.28 61.20
DNSL [11] 15.12 31.92 40.72 53.12
MLAPG [5] 17.60 33.52 43.36 56.08
XQDA [6] 12.96 26.80 34.56 43.52
EPKFM [67] 16.30 35.80 46.00 57.60
MtMCML [28] 14.08 34.64 45.84 59.84
PRDC [7] 9.68 22.00 32.96 44.32

low-resolution image quality and the quantitative distractors. The
average performance of 10 random trials is provided in Table. 3. It
can be clearly observed that our proposed algorithm outperforms
all the existing algorithms at Rank@1 by a very significant 7.8%
improvement on the identification rate. From the results we can
see that the GRID dataset is more challenging than VIPeR, but
our proposed algorithm can still handle it well by adapting the
local similarity structure of each probe.

Experiments on CUHKO03: The CUHKO3 is a large-scale
dataset which contains 13164 images of 1360 pedestrians. All
the images are captured by six surveillance cameras over months.
Each person is observed by two disjoint camera views with an
average of 4.8 images in each view. In our experiments, three
state-of-the-art CNNs including ResNet50, DenseNet121 and HA-
CNN are selected as our baselines to extract features of testing
data and our proposed OLMANS is directly applied to them. The
comparison results under the newly proposed splitting protocol is
shown in Table. 4. For all the three baselines, our method further
improves the Rank@1 and mAP performances by a large margin
(over 14% on Rank@1 and 11% on mAP) to a state-of-the-art

level. The results verify that our proposed OLMANS is not only
suitable to the handcrafted features, but also works well for the
state-of-the-art deep features.

Evaluation on Market1501: Market1501 is a large-scale P-
RID benchmark which contains 32668 bboxes of 1501 identities.
Each person is recorded by six cameras at most, and two at least.
Table. 4 shows the comparison results of our OLMANS on the
baselines and against the state-of-the-art results. Although the
most recent approaches have achieved a pretty high performance
(> 90%) on Market1501, the improvement of our method is over
4% and 6% on Rank@1 and mAP for all the three baselines by
handling the “hard” probe samples well.

Evaluation on DukeMTMC-relD: DukeMTMC-relD dataset
is a recent large-scale benchmark to date proposed for P-RID,
but the lasted methods have obtained promising performances. As
show in Table. 4, the recently published methods, SPreID [70],
PCB [18] and Part-aligned [60], boost the state-of-the-art to
85.9%(73.3%) on Rank@1(mAP). By implementing our OL-
MANS on HA-CNN, the Rank@ 1(mAP) result is boosted from
80.7%(64.4%) to 83.9%(69.0%), which approaches the state-of-
the-art performance.

Evaluation on MSMT17: MSMT17 [22] is the latest and
largest P-RID benchmark so far. The extreme large-scale iden-
tities and a large number of distractors make this dataset pretty
challenging. We evaluate the performance of the baselines on
MSMT17 dataset with(w/) and without(w/o) our algorithm in
Table. 5. Our method improves the Rank@ 1(mAP) performance
of DenseNetl121 from 66.0%(34.6%) to a state-of-the-art result
75.5%(43.1%). Such results demonstrate that our proposed OL-
MANS is scalable to the size of dataset, even a large number of
testing probes are given, the efficient optimization scheme and
theoretical analyses guarantee the performance of our proposed
OLMANS.

5.1.3 Comparison with Re-ranking

As we discussed in Sec. 4.4, both our proposed OLMANS and
the re-ranking technique can be applied to any offline learned
P-RID baselines for further online performance improvement. In
this part, we evaluate our proposed OLMANS and a state-of-the-
art re-ranking method (RR) [46] on the CUHKO03, Market1501
and DukeMTMC-reID datasets by selecting two CNN-based P-
RID models, HA-CNN [13] and Dense121 [14] as baselines. The
comparison results in Table. 6 show that our method can improve
the baseline performance significantly at both Rank@1 and mAP
evaluations. Compared with [46], our OLMANS works better on
improving Rank@1 performance and has comparative improve-
ment on the mAP evaluation since [46] considers the k-reciprocal
nearest neighbors of both probe and extra gallery data, it achieves
a large improvement on mAP but with limited improvement on
Rank@1 owing to the lack of instance-specific local adaptation.
However, our method only utilizes the given query probes and a
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TABLE 4
Comparison results on CUHK03, Market1501, and DukeMTMC-relD. All the results are the best performances reported in their literatures.

CUHKO03 Market1501 DukeMTMC-reID
Method R@1 mAP Method R@1 mAP Method R@1 mAP
Ours(ResNet50) 59.4 54.8 Ours(ResNet50) 91.1 76.8 Ours(ResNet50) 79.1 63.5
Ours(DenseNet121) 53.1 49.3 Ours(DenseNet121)  90.9 75.4 Ours(DenseNet121)  80.2 64.1
Ours(HA-CNN) 62.6 58.3 Ours(HA-CNN) 93.8 81.1 Ours(HA-CNN) 83.9 69.0
ResNet50 [57] 47.9 46.8 ResNet50 [57] 88.5 71.3 ResNet50 [57] 71.7 58.8
Densel21 [14] 41.0 40.1 Densel21 [14] 88.2 69.2 Densel21 [14] 78.6 58.5
HA-CNN [13] 48.0 47.6 HA-CNN [13] 90.6 75.3 HA-CNN [13] 80.7 64.4
PCB [18] 63.7 67.5 PCB [18] 83.3 69.2 PCB [18] 83.3 69.2
SVDNet [58] 41.5 37.3 SVDNet [58] 82.3 62.1 SVDNet [58] 76.7 56.8
DPFL [68] 40.7 37.0 DNSL [11] 61.0 35.6 DuATM [69] 81.8 64.6
Mancs [33] 69.0 63.9 Mancs [33] 93.1 82.3 SPrelD [70] 85.9 73.3
PAN [71] 36.3 34.0 Part-aligned [60] 91.7 79.6 Part-aligned [60] 84.4 69.3
MLEN [59] 52.8 47.8 PN-GAN [72] 77.1 63.6 PAN [71] 71.6 51.5
DaRe [73] 55.1 51.3 DeepCC [74] 89.5 75.7 GAN [21] 67.7 47.1
TABLE 5 TABLE 7

State-of-the-art comparison results on on MSMT17. All the results are
the best performances reported in their literatures.

The influence of baseline metric choice. +Ours means implementing
our OLMANS on the baselines. Red represents the better results.

Method MSMT17 Baselines GRID VIPeR

R@1 R@20 mAP R@1 R@20 R@1 R@20
Ours(ResNet50) 72.8 88.6 55.0 Euc 9.12 29.76 15.32 50.66
Ours(DenseNet121)  75.5 89.9 43.1 Euc+Ours 20.88 45.12 21.99 56.11
Ours(HA-CNN) 68.0 87.8 37.8 XQDA 12.96 43.52 38.99 91.94
SqueezeNet [15] 30.6 N/A 13.0 XQDA+Ours 29.20 50.96 43.54 92.15
MobileNetv2 [16] 449 N/A 21.1 MLAPG 17.60 56.08 40.28 93.39
SuffleNet [17] 39.6 N/A 17.8 MLAPG+Ours  30.16 59.36 4497 93.64
ResNet50 [57] 63.4 86.1 342 DNSL 15.12 53.12 40.19 93.54
DenseNet121 [14] 66.0 86.6 34.6 DNSL+Ours 28.96 56.96 43.67 93.61
HA-CNN [13] 61.8 85.8 34.6

TABLE 6 hard negative samples is able to capture the specific crux of one

Comparison with the state-of-the-art re-ranking method.
Rank@1(mAP) result is reported. Red represents the best result.

identity which is quite helpful for identification.
(2) Influence of Baseline Metric Choice: An interesting
question is whether our OLMANS can always work for any

baselines as promised. To verify it, we conduct the following

experiment that different kinds of global metric learners, Eu-
clidean distance, XQDA [6], MLAPG [5] and DNSL [11] are
adopted for the LOMO feature as the underlying baselines that

Method CUHKO03 Market1501 DukeMTMC
HA-CNN 48.0(47.6) 90.6(75.3) 80.7(64.4)
HA-CNN+RR 54.8(55.7) 91.4(79.0) 82.5(69.9)
HA-CNN+Ours  62.3(56.5) 92.7(79.0) 83.7(67.8)
Densel21 41.0(40.1) 88.2(69.2) 78.6(58.5)
Densel21+RR 48.1(51.5) 90.2(85.0) 83.7(76.9)
Densel21+Ours  53.1(49.3) 90.4(74.0) 84.2(67.1)

our OLMANS algorithm is readily applied on. The results on
VIPeR and GRID datasets are reported in Table. 7, as well as

set of negative samples to gain a large improvement of the baseline
performance.

5.1.4 Ablation Study

(1) Influence of Baseline Quality: Our proposed OLMANS
algorithm is applied on top of an offline-learned baseline, thus
its overall performance may depend on the learning quality of
adopted baseline. In order to verify whether our OLMANS can
always be helpful, baseline models obtained at various learning
stages of a global metric learner [5] are tested, as in general the
performance of the baseline learner improves with more training
(e.g., more training iterations). As shown in Fig. 5, even the
learned global metric does perform poorly (in its early training
stages), our online local metric adaptation is able to consistently
and significantly improve the performances by a large margin.
This is because the local discriminative information introduced by

the complete CMC curves in Fig. 6. We observe that for all the
learners, our proposed OLMANS algorithm is able to boost the
identification performance with a significantly improvement, even
double the Rank@1 performance (on GRID).

(3) Influence of Baseline Feature Choice: We evaluate
various feature descriptors for P-RID to verify that the perfor-
mance of our OLMANS is independent of the choice of feature.
Both the hand-crafted features, LOMO [6] and deep features,
CaffeNet [55], VGG16 [56] and ResNet50 [57] are examined.
The above pre-trained CNN models from which we have removed
the final fully-connected (FC) layer are further fine-tuned by the
large-scale Market1501 datasets 2, then they are directly used to
extract the features for VIPeR and GRID datasets. As can be seen
from Table. 8, the performance improvement by our OLMANS
method is independent of the used feature descriptors.

(4) Influence of the Weighting Parameter \: The parameter
A in Eqn. 14 is used to balance the underlying baseline and the

2. The Rank@ 1(mAP) performances are: CaffeNet = 44.31(24.0), VGG16
=63.93(42.5) and ResNet50 = 77.22(56.1)
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Fig. 6. The influence of baseline metric choice. (a) and (d) are the results on VIPeR and GRID directly using the Euclidean distance; (b) and (e) are
XQDA [6] results; (c) and (f) are MLAPG [5] results.

The influence of baseline feature choices on VIPeR and GRID under
different metrics (10-folds average Rank@1 performance is reported).

TABLE 8

learned local metric. Different A will have different influences to
the identification performance. We conducted an experiment on
VIPeR dataset to determine the value of A, the results of which

For each result, the former one is the baseline result without our . . .
OLMANS, and the latter is our OLMANS resuilt. are shown in Fig.7. We need to point out some special A values:

The A = 0 is the baseline result from [5] without our local metric
adaptation and A = max represents that A is set as Eqn. 15.

Dataset  Features Euclidean MLAPG XQDA DNSL So setting A = max 12 max 2
LOMO 15.32/21.00 40.28/44.97 38.99/43.54 40.19/43.67 g 1§j§m(le 93l )/1gjgm(HpZ 951ls,)
VIPeR CaffeNet 17.72/21.84 18.35/19.30 20.41/28.16 20.38/23.26 achieves the best result because it normalizes the norm scales of
VGGI6 20252627 2025/23.73 23.45/20.02 23.86/26.52 the baseline and locally adapted distances.
ResNet50  22.78/27.22 23.42/26.58 31.93/40.47 33.70/38.01
]éof?’lg g‘%ﬁggg é%g?{g%éé iggig?gg ;5225/21/(2)8726 (5) Influence of Negative Sample Database: For our OL-
affeNet . J. . B . . . . . . .
GRID  VGGl6 64071844 72071684 12722152 1024/17.36 MANS, a negative sample database (NDB) is used to provide
ResNet50  12.84/23.22 12.40/19.12 21.44/34.96 17.36/29.44 the negative training data. Because there are various strategies to
collect NDB, we conduct the following experiments to investigate
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Fig. 7. The influence of parameter A. The x-axis means the value of A
and the y-axis is the identification rate. The results at Rank@1, Rank@5
and Rank@10 on VIPeR are shown.

the influences of different NDB choices. The experiments are
conducted on VIPeR dataset. Moreover, the global metric learning
method MLAPG is adopted as the baseline model.

Using the training data from the same benchmark as the NDB:
Here the training samples in VIPeR which have different identities
from P(the training data for global metric learning) are used as
negative samples. It guarantees that the obtained NDB is clearly
meaningful. The P-RID result is given in Table.9 as Our-SAME.

Using different benchmark datasets as the NDB: Here we
utilize the other benchmark, the GRID dataset as the NDB in
our experiment, so that we can guarantee that the identities of all
the negative samples in the NDB are different from P. For each
probe p;, the k nearest negative samples are found in the NDB
(under the baseline feature) and used for our OLMANS. Different
values of k (50, 100, 500) are chosen for further comparisons.
The experiment results Our-D-50/100/500 are shown in Table.9.
Moreover, an additional experiment Our-D-RAM that uses 50
random negative samples from the NDB for OLMANS is com-
pared. This experiment validates the insight of our method that
the effective negative samples are those that are close to the probe
in the feature space (e.g., strong false positives).

From Table. 9, it can be observed that Qur-SAME performs
the best because the negative data from the same benchmark
dataset are most discriminative. Results on Our-D-50/100/500
also largely outperform the baseline by consistent improvements.
Our-D-RAM can not improve the baseline performance since
this randomly selected small-size NDB provides no useful hard
negatives for OLMANS.

(6) Learning Cost Analysis and Comparison: Although each
query probe (or probe set) needs to learn a local Mahalanobis
metric on the testing stage, the proposed optimization solution to
our OLMANS objective makes the learning efficient and largely
reduces the learning time. Table. 10 3 provides a thorough com-
parison of average learning time of various state-of-the-art metric

3. The total learning time of OLMANS includes the local metric adaptation
time and retrieval time for all probes.
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TABLE 9
The influence of different NDBs on VIPeR.

Method R@1 R@5 R@10 R@20
Baseline 40.73 69.94 82.34 92.37
Our-D-RAM  39.87 70.51 82.28 91.77
Our-SAME 44.97 74.43 84.97 93.64
Our-D-050 42.63 73.63 84.81 93.54
Our-D-100 43.04 73.86 84.30 93.42
Our-D-500 42.53 73.89 84.15 93.35
TABLE 10

Average Learning time (seconds) on VIPeR.
Method ITML MLAPG LADF
Ave Time  20.5 25.8 31.7
Method LMNN PRDC OLMANS
Ave Time  152.9 394.6 4.8

learning-based methods on VIPeR dataset. Besides, Table. 11
shows the learning time of different advanced global metric learn-
ers on a large-scale dataset, Market1501. All the experiments are
conducted on a remote server with an Intel 17-5930K @3.50GHz
CPU and 32G memory. The total average learning time of our
method on VIPeR is only 4.81 seconds for the adaptation of
all the 316 probes, much shorter than learning a single global
metric in 25.82 seconds. For the large-scale dataset Market1501,
the efficiency advantage of ours is much more pronounced. Our
local metric adaptation time is 10 ~ 100 times less than the other
global metric learners. So the extra time spent in our OLMANS is
indeed nominal compared with learning a global metric.

5.2 Experiment on Image Retrieval
5.2.1 Experiment Settings

Data. We evaluate our proposed OLMANS on four widely-used
image retrieval benchmarks: the original Oxford [1], Paris [2]
and their corresponding revisited datasets 7ROxford and RParis
from [3] by correcting annotation mistakes, adding new query
images and introducing new evaluation protocols. The Oxford and
Paris datasets contain 5063 and 6392 images collected from Flickr
associated with Oxford and Paris landmarks respectively. Each
dataset contains 55 queries coming from 11 landmarks. For the
revisited versions, ROxford and RPari, 15 queries from 5 out of
the original 11 landmarks are along with the original 55 queries
for evaluation.

Evaluation. The training dataset in [4] is used as the NDB. For
all the benchmarks, the mean average precision (mAP) results over
the query images are reported in our experiments. For /ROxford
and RPari, three new evaluation difficulties, Easy(E), Medium(M)
and Hard(H), are evaluated. Since the old setup of Oxford and

TABLE 11
Learning time (seconds) on Market1501.

Method XQDA MLAPG MFA
Train Time  3233.8 2732.8 437.8
Method kLFDA DNSL OLMANS
Train Time  995.2 3149.7 19.60
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TABLE 12
Comparison results on Oxford, Paris, ROxford and RParis. The mAP
results are reported.

Method Datasets
Oxford Paris 7ROxford RParis
M H M H

Ours(VGG16) 835 89 559 268 635 373
Ours(VGG16-Whiten) 88.1 879 60.7 326 69.7 445
Ours(Res101) 81.7 876 561 27.8 703 449
Ours(Res101-Whiten) 893 926 657 404 769 554
MAC [27] 564 723 378 146 592 359
SPoC [11] 68.1 782  38.0 114 59.8 324
CroW [5] 70.8 79.7 414 139 629 369
R-MAC [6] 669 83.0 425 120  66.2 409
NetVLAD [67] 67.6 749 37.1 13.8  59.8  35.0
GeM-VGG16 [4] 825 822 555 266 630 372
GeM-VGG16-Whiten [4] 87.2 87.8 605 324 693 443
GeM-Res101 [4] 81.0 877 555 275 700 447
GeM-Res101-Whiten [4] 88.2 925 653 400 766 552

Paris appears to be close to the new Easy setup, so we report only
the M and H results in our experiments.

Baseline. A CNN-based image retrieval model, GeM [4] is
adopted as baseline in our experiment to implement our proposed
OLMANS on. Two different CNN backbones, VGG16 [56] and
ResNet101 [57], are evaluated. Besides, the whitening is adopted
as a post-processing for GeM. Therefore, four different baselines,
GeM-VGG16, GeM-VGG16-Whiten, GeM-Res101 and GeM-
Res101-Whiten, are examined in our experiments. The pre-trained
model from a pytorch implementation # is utilized in our work.

5.2.2 Comparison with State-of-the-art

The comparison experiment results are shown in Table. 12. Com-
pared with the baseline models, GeM-VGG16, by implementing
our proposed OLMANS to them, the mAP performance of GeM-
VGG16 is improved from (82.5%, 82.2%, 55.5%, 26.6%, 63.0%,
37.2%) to (83.5%, 82.9%, 55.9%, 26.8%, 63.5%, 37.3%) on (Ox-
ford, Paris, ROxford-M, ROxford-H, RParis-M, RParis-H) re-
spectively. The similar improvement is also observed for the GeM-
VGG16-Whiten baseline. As for another more powerful baseline
with a different backbone network, GeM-Res101, our method
further boosts the mAP performance from (81.0%, 87.7%, 55.5%,
27.5%, 70.0%, 44.7%) to (81.7%, 87.6%, 56.1%, 27.8%, 70.3%,
44.9%) on (Oxford, Paris, ROxford-M, ROxford-H, RParis-M,
‘RParis-H) respectively. The improvement of OLMANS can be
further boosted by selecting NDB elaborately. While OLMANS
still shows promising performance on image retrieval task under
different baseline models, which verifies the generalization ability
of proposed method.

6 CONCLUSIONS

In this paper, we proposed a novel online local metric adaptation
algorithm to learn a dedicated Mahalanobis metric for each query
probe on the online testing stage of visual instance retrieval
(VIR). This new approach only uses negative samples for metric
adaptation, which is practical in real situation. It largely reduces
the demand for a large number of positive training data as in
existing offline learning-based VIR methods, and it only incurs

4. https://github.com/filipradenovic/cnnimageretrieval-pytorch
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minimum computational costs to perform online learning. In-
depth theoretical analyses well justify our algorithm and extensive
experiments on different tasks demonstrate that our new approach
consistently and significantly outperforms the state-of-the-arts. In
this work, our proposed method is considered as a general and
independent module for any offline metric learning or feature
extraction baselines for further online local adaptation. In the
future, it is interesting to extend our proposed approach into a
deep metric learning approach since it could be directly involved
in the model learning.
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