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Abstract—Existing visual instance retrieval (VIR) approaches attempt to learn a faithful global matching metric or discriminative feature

embedding offline to cover enormous visual appearance variations, so as to directly use it online on various unseen probes for retrieval.

However, their requirement for a huge set of positive training pairs is very demanding in practice and the performance is largely

constrained for the unseen testing samples due to the severe data shifting issue. In contrast, this paper advocates a different paradigm:

part of the learning can be performed online but with nominal costs, so as to achieve online metric adaptation for different query

probes. By exploiting easily-available negative samples, we propose a novel solution to achieve the optimal local metric adaptation

effectively and efficiently. The insight of our method is the local hard negative samples can actually provide tight constraints to fine tune

the metric locally. Our local metric adaptation method is generally applicable to be used on top of any offline-learned baselines. In

addition, this paper gives in-depth theoretical analyses of the proposed method to guarantee the reduction of the classification error

both asymptotically and practically. Extensive experiments on various VIR tasks have confirmed our effectiveness and superiority.

Index Terms—Visual Instance Retrieval, Online Metric Adaptation, Hard Negative Samples.

✦

1 INTRODUCTION

Visual Instance Retrieval (VIR) generally refers to retrieving

the same-instance images for the query instance image from a

large, unordered image collection, gallery set, based on the visual

similarities between the query probe and the gallery images.

The gallery images may be obtained from different cameras at

a different time against the query probe so that the difficulties of

VIR are mainly caused by the large and complex visual appearance

variations under various views, poses, illumination and occlusion

conditions. Owing to these challenges, VIR remains a critical yet

very challenging task in computer vision community which plays

an important role in various research topics, e.g., image retrieval

(Img-R) [1], [2], [3], [4], person re-identification (P-RID) [5], [6],

[7], and vehicle re-identification (V-RID) [8], [9] etc.

Most attempts to VIR focus on facilitating the retrieval by

learning a discriminative matching metric [5], [6], [10], [11], [12]

or feature embedding [3], [4], [8], [9], [13], [14], [15], [16], [17],

[18] to better capture the visual similarities. In this paper, we

use the same term metric to represent both the matching metric

and feature embedding for convenience since they are indeed

interchangeable. These offline metric learning methods typically

attempt to train a faithful global metric offline, hoping to cover

the enormous visual appearance variations so as to directly use

it online for all testing probes. The training data for such offline

learning are generally sample pairs: a positive pair refers to two

images of the same identity, and a negative pair otherwise. These

methods usually demand a huge set of positive/negative training

pairs to facilitate learning. In practice, although it is relatively easy

to collect negative pairs, it is in general difficult to obtain many
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positive pairs for a specific instance. Therefore, the metrics learned

from insufficient positive training data are likely to be biased. In

addition, most methods aim to learn a positive semi-definite (PSD)

Mahalanobis metric, but it is computationally intensive to learn

such a strictly PSD metric, while ignoring the PSD constraint

leads to unstable and noisy metrics [5].

In contrast to the aforementioned methods, this paper ad-

vocates a different paradigm: shifting part of the learning to

the online local metric adaptation. Specifically, for each online

probe at the testing time, our new approach learns a dedicated

local metric with a nominal computational cost. Combining a

global baseline with local metric adaptation achieves an adaptive

nonlinear metric. In our approach, its online learning is special,

because there are no positive training pairs available at all for the

testing probe, as its identity is unknown.

An attractive property of our proposed method is that it only

uses negative data from a negative sample database (NDB) for

adaptation learning. We call it OLMANS for short of Online Local

Metric Adaptation from Negative Samples. For a given testing

probe, a specific subset of samples from NDB are selected to

form informative negative pairs with this testing probe. These

utilized samples from NDB are visually similar to the probe,

but are guaranteed to have different identities from the probe

(at least with a very large probability). These negative samples

provide effective local discrimination for further constraining

the local metric tuning, by pushing away local false positives

(shown in Fig. 1). For each testing probe, our method learns

a strictly PSD local metric via solving a max-min optimization

problem efficiently. Comparing to offline learning schemes, the

computational cost of the proposed online adaptation is negligible.

Moreover, our method is generally applicable to be used on top of

any offline learned baselines without any modification to them.

Another significant property of our proposed OLMANS is that

it is justified and backed up with a theoretical guarantee to improve



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

Fig. 1. The overall idea of our proposed online local metric adaptation algorithm illustrated in the context of P-RID. Unlike existing offline learning-
based methods that learn a single global metric or feature embedding for all probe and gallery samples, we exploit negative samples to learn a
dedicated local metric for each online probe to adapt the offline learned global feature space to an instance-specific discriminative local feature
space (called OLMANS feature space). The hard negatives in NDB around the local hypersphere of the query probe are pushed far away so the
final retrieval result in OLMANS feature space is improved.

the performance of the underlying VIR baseline. This paper gives

in-depth theoretical analyses to well justify our proposed method.

We first prove that the novel OLMANS guarantees the reduction

of classification error asymptotically when there are an infinite

number of learning data. Then we pursue the best approximation

of the asymptotic case by using a finite number of learning data,

since we can prove that the learning objective of the proposed

local metric adaptation is equivalent to the optimal approximation

of the asymptotic case. In addition, we also provide consistency

and sample complexity analysis to guarantee the generalization

ability of our proposed OLMANS. These theoretical analyses

indicate that the learned local metric is bound to improve the

VIR performance. These properties have been confirmed to be

significantly effective and practical by our extensive experiments

and comparative studies on different VIR benchmarks: P-RID

(VIPeR, GRID, CUHK03, Market1501, DukeMTMC-reID and

MSMT17) and Img-R (Oxford, Paris, ROxford and RParis).

This paper is an extension of our previous conference pa-

per [19], while we have made a lot of extensions including: 1)

We extend our proposed OLMANS model to a more general

form to better fit the set-query scenario. The semantic and visual

similarity relationships of the given set-based queries from the

same instance are fully explored for a robust and discriminative

metric adaptation. 2) The theoretical analyses with a thorough

proof of our OLMANS are completely presented in Sec. 4, which

theoretically guarantee the correctness of our proposed method. 3)

We compare our method with the widely-used online re-ranking

technique since both our OLMANS and re-ranking methods are

applied to the offline learned VIR baselines on online stage for

further performance boosting, while our OLMANS outperforms

re-ranking in both the performance and efficiency. 4) We evaluate

our OLMANS on two generic VIR tasks: person re-identification

(P-RID) and image retrieval (Img-R). Compared with [19] which

only focuses on the specific P-RID problem, the evaluation on a

general image retrieval task verifies the generalization ability and

effectiveness of our method. 5) For the P-RID evaluation, more

ablation experiments are conducted in Sec. 5 to further investigate

our proposed method. In addition, unlike [19] that only uses the

handcrafted feature and small-scale P-RID datasets, we explore

more state-of-the-art deep learning-based models as our baselines

and evaluate three more challenging large-scale P-RID benchmark

datasets (CUHK03 [20] with new protocol, DukeMTMC-reID [21]

and MSMT17 [22]) to challenge various data conditions.

The rest of our paper is organized as follows: Section. 2

summarizes the previous works on VIR. We describe our proposed

OLMANS algorithm in Section. 3, and illustrate its performance

on many benchmark datasets in Section. 5. In Section. 4, we

theoretically analyze some important properties of our proposed

algorithm.

2 RELATED WORK

2.1 Person Re-identification

In this work, we focus more on the local metric learning-based P-

RID approaches and convolutional neural network (CNN)-based

deep feature embedding P-RID models.
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Local Metric Learning: [23] formulated the P-RID problem

as a local distance comparison problem to handle the multi-modal

distributions of the visual appearances. [24] proposed the Locally-

Adaptive Decision Functions (LADF) which integrates a tradi-

tional distance metric with a local decision rule. [25] employed

the Local Fisher Discriminant Analysis (LFDA) which combines

the Fisher Discriminant Analysis (FDA) and Local Preserving

Projections (LPP) to exploit the local geometrical information

of samples. [26] developed a regularized local metric learning

(RLML) method to combine global and local metrics, so as to

utilize the local data distribution to alleviate over-fitting. [27]

proposed LSSCDL to learn a specific SVM classifier for each

training sample, then the weight parameters of a new sample

can be inferred. A novel multi-task maximally collapsing metric

learning (MtMCML) model was proposed by [28]. In order to

relax the large-number labeled image pair requirement in P-RID,

a novel one-shot learning approach is proposed by [10] which

only requires a single image from each camera for training, thus

the learning result is specific to the only sample. In contrast to the

local metric learning methods, our proposed approach is mainly

focused on learning local metrics specifically adaptive to individ-

ual testing probes. Different from RLML that requires clustering

in advance to obtain the local data distributions, our new approach

does not need clustering but is rather instance-based learning, and

thus avoiding the risk of inaccurate clustering results. Also note

that MtMCML learning still follows the global manner although

it learns different metrics for different cameras. In contrast to

LADF that needs a large number of positive sample pairs to drive

the local decision function learning, our new approach only uses

negative sample pairs which are much easier to obtain. LSSCDL

also requires a lot of positive training pairs for offline learning, but

ours performs online learning per probe without the requirement of

positive pairs. Although [10] performs one-shot learning to each

sample, but it needs extra camera network information for one-

shot learning.

Deep Feature Embedding: The convolutional neural network

(CNN)-based P-RID approaches aim to integrate the feature ex-

traction and metric learning into one end-to-end framework, in

which a neural network is built to extract from each pedestrian

image a feature that satisfies a certain ranking criterion. [20]

firstly utilized deep learning method to extract more effective and

discriminative features to facilitate P-RID. [29] proposed a scal-

able deep feature learning model for P-RID via relative distance

comparison based on triplet loss. [30] proposed a novel moderate

positive mining method to embed a robust deep metric for P-

RID. [31] suggested a new loss for learning deep embeddings and

demonstrate competitive results of the new loss on a number of

P-RID datasets. CNN-based feature extraction has achieved the

state-of-the-art performance in P-RID owning to a better spatial

alignment of local image parts. A novel Harmonious Attention

CNN (HA-CNN) proposed by [13] tries to jointly learn attention

selection and feature representation in a CNN by maximizing the

complementary information of different levels of visual attention

(soft attention and hard attention). [32] proposed a network called

CAN which combines attention methods with LSTM to obtain

discriminative attention feature of the whole image. [33] proposed

a novel deeply supervised fully attentional block that can be

plugged into any CNNs to solve P-RID problem, and a novel deep

network called Mancs is designed to learn stable features for P-

RID. Besides the aforementioned methods, the utilization of hard

negatives attracts more and more attention in deep metric learn-

ing area. [34] proposed a framework of deep adversarial metric

learning (DAML) which can be generally applicable to various

supervised metric learning approaches. DAML aims to generate

synthetic hard negatives from the observed negative samples by

exploiting what to generate potential hard negatives adversarial to

the learned metric as complements. [35] proposed a novel appli-

cable framework named deep variational metric learning (DVML)

to disentangle intra-class variance via variational inference and

leverages the distribution to generate discriminative samples to

improve robustness. The generated negative samples could be

utilized to facilitate the learning and enhance the generalization

ability of the learned model. However, these well-trained networks

are directly applied to the testing data for deep feature extraction,

no local adaptation is in the loop. The data shifting between

training and testing samples definitely limits the performance

of the learned models. Therefore, our proposed OLMANS is

suitable for any CNNs for instance-specific local adaptation in

the inference stage, which can address the data shifting issue well

and gain further performance improvement.

2.2 Image Retrieval

A thorough survey of image retrieval researches is introduced in

[37]. In this work, we mainly focus on two main branches of image

retrieval, multiple local feature aggregation-based approaches and

deep learning-based models.

Local Descriptor Aggregation: Previous image retrieval

methods aim to aggregate a set of local feature descriptors into

a global one for robust retrieval. [38] designed a graph-based

ranking model to aggregate the retrieval results from multiple

features into one, then the retrieval scores are weighted to deter-

mine the final retrieval matching. [39] proposed a novel coupled

MultiIndex(c-MI) framework to fuse both color feature and SIFT

feature in a product manner at indexing level. [40] proposed a

semantic-aware co-indexing scheme to fuse the SIFT feature and

semantic attributes for image retrieval. In [41], multiple visual

features are fused in the similarity score level based on the

shapes of ranking scores. By considering these local descriptor

aggregation methods as offline baselines, our proposed OLMANS

can be readily implemented on the top of the fused feature for

further local similarity adaptation.

CNN Fine-tuning: [42] demonstrated that the pre-trained

models from ImageNet for object classification is suitable for im-

age retrieval by fine-tuning them on an external set of Landmarks

images. [43] also confirmed the importance of fine-tuning the pre-

trained models to improve image retrieval, but argued that a good

image representation and a ranking loss should be used in learning,

instead of the classification loss. [4] addressed the unsupervised

fine-tuning of CNNs for image retrieval on a large collection of

unordered images in a fully automated manner. By considering the

fine-tuned CNN as a global deep feature extractor to the probe and

gallery samples, our proposed OLMANS method can be readily

applied on top of it to further boost the performance.

2.3 Online Re-Ranking

The online re-ranking technique is widely adopted for further

performance improvement in VIR. [44] revised the ranking list

by considering the nearest neighbors of both the global and local

features. An unsupervised re-ranking model proposed by [45]

takes advantage of the content and context information in the

ranking list. [46] proposed a k-reciprocal encoding approach for
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Fig. 2. The improvement of ranking result by our OLMANS on VIPeR [36]. BLUE boxes: input probes, RED: gallery targets. For each case, the top
row is the result from the baseline [5], and the bottom row is our result. (Best view in color and enlarged)

re-ranking, which relies on a hypothesis that if a gallery image

is similar to the probe in the k-reciprocal nearest neighbors, it is

more likely to be a true-match. [47] focused on how to make a

consensus-based decision for retrieval by aggregating the ranking

results from multiple algorithms, only the matching scores are

needed. Both our proposed OLMANS and re-ranking share the

same appealing online manner, but our algorithm outperforms

re-ranking by several unique merits which will be discussed in

Sec. 4.4.

3 LEARNING FROM FAILURE: ONLINE LOCAL

METRIC ADAPTATION FROM NEGATIVE SAMPLES

3.1 Problem Settings

On the online testing stage of VIR, two disjoint datasets, a probe

set P and a gallery set G are given as:

P = {(pi, l
p
i )}

n

i=1 G = {(gi, l
g
i )}

m

i=1 (1)

that pi, gi ∈ R
d are the extracted feature representations from a

baseline model, either handcraft features or learned deep features.

lpi , l
g
i ∈ {1, 2, ..., c} are the labels from c instances which are

totally different from the training sample classes. The common-

used closed-set condition is adopted that both the P and G contain

samples from all the c instances respectively. VIR aims to rank

G for a query probe pi based on the pair-wise similarity distance

between a gallery image gj , D(pi, gj) = ‖pi, gj‖
2. Our goal

is to re-rank G for pi by refining D(pi, gj) to boost the rank

of true-matches for pi via utilizing an additional negative sample

database (NDB), denoted by Y = {yi}
k

i=1, the details about Y
will be discussed shortly in Sec. 3.2.

3.2 OLMANS for Single-Instance Query

The performance of VIR depends on the similarity matching

between one probe pi and one gallery image gj . Different methods

adopt different loss functions to learn the feature representations

pi and gj with the expectation that the similarity structure in

the learned feature space should be aligned, so as to pull the

samples from the same instance group closer and to make different

instances more discriminative. However, the offline learned feature

embedding from training samples does not aim to fit the local

Fig. 3. The local metric Mi for a single probe pi can push the closest
negative sample yj of pi away from its local hypersphere Ω(pi)

distributions for all the testing samples specifically, it may lead to

large biases and distortions in some places in the feature space.

As illustrated in Fig. 1, our proposed approach puts an instance-

specific local metric adaptation on top of the global baselines in

an online manner.

To enhance the local discriminant of query probes, in this

paper, we propose OLMANS, an online local metric adaptation

algorithm by exploring only negative samples, to adaptively adjust

the metric dedicated to a specific query probe with minimum

online learning burden. Specifically, for a probe image pi in

the probe set P , we aim to learn a local Mahalanobis distance

Mi only using the samples in a negative sample database Y
as learning data. This negative sample database provides rather

faithful negative samples to the probes with a large probability.

There are many ways to collect Y , e.g., data from a different

benchmark can be used, or false positive matches from images

that belong to different instance classes. The insight here is that all

such negative samples are “hard negatives” for the probes. In this

research, we have investigated how Y influences the performance

in Sec. 5.

We propose to pursue an optimal PSD Mahalanobis metric

Mi for the local adaptation of pi, by maximizing the distance to

the closest (or “hardest” conceptually) negative sample of pi, as
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shown in Fig. 3:

Mi = arg max
Mi�0

(

min
1≤j≤k

(pi − yj)
T

Mi (pi − yj)

)

(2)

To pursue a stable solution to Eqn. 2, we need to regularize Mi.

This can be done via minimizing the norm under a fixed margin

constraint, instead of maximizing the margin under a fixed norm

constraint [48], so the alternative objective is:

Mi = argmin
Mi

1

2
‖Mi‖

2

sub to : Mi � 0

(pi − yj)
T

Mi (pi − yj) ≥ 2, ∀1 ≤ j ≤ k

(3)

where the constant 2 is arbitrary only for manipulation conve-

nience. While this is a convex semi-definite programming prob-

lem, it can be very slow for high dimensional data, even for the

state-of-the-art PSD solvers.

In the proposed OLMANS approach, we relax the PSD con-

straint requiring Mi
L � 0, but we prove below that the relaxed

objective is equivalent to a kernel SVM problem with a quadratic

kernel. And thus the solution is still a PSD metric. In addition,

it can be readily solved with off-the-shelf SVM solvers such as

LIBSVM [49]. More importantly, we also prove that this learning

objective is equivalent to the best approximation to the asymptotic

classification error, which is proved to be lower than the global

baseline (details see Sec. 4).

Theorem 1. The solution to Eqn. 3 is equivalent to a kernel SVM

with k(x, y) = 〈x, y〉
2

on {ỹ0, ỹ1, ỹ2, ..., ỹk} where ỹj =
pi − yj (for j ≥ 1), and ỹ0 = pi − pi = 0.

Proof 1. Define auxiliary labels by:

ζj =

{

−1, j = 0
1, j 6= 0

(4)

so the objective Eqn. 3 can be rewritten as:

Mi = argmin
Mi

1

2
‖Mi‖

2

sub to : ζj
(

ỹTj Miỹj − 1
)

≥ 1, ∀ 0 ≤ j ≤ k
(5)

Eqn. 5 is exactly an SVM problem with quadratic kernel and

with bias fixed to one. Next we prove the solution to objective

Eqn. 5 is exactly the same as that to the original objective

Eqn. 3. Consider the dual of the SVM, the optimal solution

Mi has the form:

Mi =
k
∑

j=0

αjζj ỹj ỹ
T
j , αj ≥ 0 (6)

Since ỹj ỹ
T
j is PSD for j ≥ 1 ( ỹ0ỹ

T
0 = 0 ) and ζj = 1 for

j ≥ 1, so we have:

Mi =
k
∑

j=0

αjζj ỹj ỹ
T
j =

k
∑

j=1

αj ỹj ỹ
T
j � 0 (7)

It is obvious that the positive semi-definiteness of Mi is

guaranteed even if no PSD constraint is explicitly imposed in our

learning objective Eqn. 5.

Fig. 4. The local metric Mi for a set-based probe Pi can pull the
same-instance samples together meanwhile push the closest negative
samples yj away from the local hypersphere Ω(Pi)

3.3 OLMANS for Instance-Set Query

In Sec. 3.2, we demonstrate our proposed OLMANS algorithm

in the context of single-instance query scenario. However, in

visual instance retrieval, there will be multiple images of the same

instance as the query probe, which is known as the multi-shot

query. Following our OLMANS algorithm in Sec. 3.2, for each

individual image of the same instance, a local metric will be

learned which is linear to the query number n. However, such

an individual-based learning manner ignores the visual similarity

relationships among the given set-based query which is neither

effective nor efficient. Therefore, for such an instance-set query,

we generalize our OLMANS algorithm to learn a set-specific

local Mahalanobis metric in order to collapse the same-instance

samples together meanwhile push the negative samples in Y far

away, as shown in Fig. 4. For the i-th instance with query set

Pi = {pir}
ni

r=1, the designed objective for learning its specific

Mahalanobis metric Mi is:

Mi = argmin
Mi

1

2
‖Mi‖

2

sub to : Mi � 0
(

pir − yj
)T

Mi

(

pir − yj
)

≥ 2, ∀1 ≤ r ≤ ni, ∀1 ≤ j ≤ k
(

pir − pij
)T

Mi

(

pir − pij
)

= 0, ∀1 ≤ r ≤ ni, ∀1 ≤ j ≤ ni

(8)

Therefore the learned Mi from Eqn. 8 is shared by all the

same-instance samples in Pi. While there are total O(n2) con-

straints in Eqn. 8 which is difficult to deal with, so we aim to

reduce the constraint size in Eqn. 8 to facilitate optimization.

Theorem 2. Eqn. 8 has an exactly equivalent form by only keeping

the constraints related to one anchor sample pi in the query set

Pi, that pi can be any sample in Pi. Therefore the equivalent

form is Eqn. 9:

Mi = argmin
Mi

1

2
‖Mi‖

2

sub to : Mi � 0
(

pi − yj
)T

Mi

(

pi − yj
)

≥ 2, ∀1 ≤ j ≤ k
(

pi − pij
)T

Mi

(

pi − pij
)

= 0, ∀1 ≤ j ≤ ni

(9)

Proof 2. Revisit Eqn. 8, its equality constraints propose to collapse

all pir ∈ Pi together. Therefore keeping only the equality

constraints related to the anchor sample pi achieves the same

collapsing performance. So as to the inequality constraints
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in Eqn. 8. Finally, we can reduce the constraint size by

only keeping the constraints related to pi as in Eqn. 9.

The re-written objective Eqn. 9 has only linear-scale O(n)
constraints, compared to the original quadratic-scale O(n2)
constraints in Eqn. 8.

An important merit of Eqn. 9 is that it can be efficiently

optimized by solving a much easier version [48]:

Theorem 3. All the vectors pi − pij in Eqn. 9 form a spanning

space S = span(
∑

j λj(p
i − pij)). The Eqn. 9 is equivalent

to replace pi − yj by tj , the projection of pi − yj in S⊥, that

S⊥ is the orthogonal space of S.

Proof 3. Since Mi is positive semi-definite, the constraint (pi −
pij)

T Mi(p
i−pij) = 0 is equivalent to Mi(p

i−pij) = 0 which

means the Mis = 0 for all s ∈ S. Projecting pi − yj to S and

S⊥ generates two orthogonal bases sj and tj respectively, so

pi−yj = sj+ tj . Replace the inequality constraints in Eqn. 9

by sj + tj :

(

pi − yj
)T

Mi

(

pi − yj
)

= (sj + tj)
T

Mi (sj + tj)

= tj
T Mitj

(10)

Now Eqn. 9 has an equivalent form as:

Mi = argmin
Mi

1

2
‖Mi‖

2

sub to : Mi � 0

tj
T Mitj ≥ 2, ∀1 ≤ j ≤ k

Mis = 0, ∀s ∈ S

(11)

Finally, we prove that Eqn. 11 has the same solution to Eqn. 8

by eliminating its PSD and equality constraints.

Theorem 4. The solution to Eqn. 8 is exactly the same as solving

the Eqn. 11 by relaxing its equality and PSD constraints, since

they are indeed off-the-shelf.

Proof 4. If we get rid of the PSD and equality constraints in

Eqn. 11, the new form is:

Mi = argmin
Mi

1

2
‖Mi‖

2

sub to : tj
T Mitj ≥ 2, ∀1 ≤ j ≤ k

(12)

Eqn. 12 is exactly the same form of the objective in Eqn. 5

which can be efficiently solved via a kernel-SVM solver.

Thus the positive semi-definiteness of Mi is guaranteed by

Theorem. 1. For the equality constraints in Eqn. 11, given a

member s of S, we have:

Mis =
(

∑

αiti · t
T
i

)

s =
∑

αiti · (t
T
i s) = 0 (13)

which proves that the solution to Eqn. 12 satisfies the equality

constraints as well.

3.4 Visual Instance Retrieval via OLMANS

On the online testing stage, for a probe pi from P and one

gallery image gj from G, the similarity matching between pi and

gj is measured by combining the original baseline models (with

flexible choices) with our local metric adaptation Mi to achieve

an adaptive nonlinear metric:

DMi
(pi, gj)

= ‖pi − gj‖
2 + λ‖pi − gj‖

2
Mi

= (pi − gj)
T
(I + λMi) (pi − gj)

(14)

where Mi is the learned local metric specific for pi and λ is the

weighting parameter. In this paper, we set λ by Eqn. 15 in all the

experiments which can be explained in Sec. 5.

λ = max
1≤j≤m

(

‖pi − gj‖
2
)

/ max
1≤j≤m

(

‖pi − gj‖
2
Mi

)

(15)

We find that even simply using only the learned local metric

for retrieval, the results are still much better than using the original

global baselines. Further, when combining the global baseline and

our learned local metrics, we are able to obtain much better and

more stable performances. The reason behind it can be explained

by the idea of boosting [50]. Either the global baseline or the

local metric can be considered as a “weak” classifier for retrieval,

and their combination forms a “stronger” classifier with better and

more robust performance.

4 THEORETICAL ANALYSIS AND JUSTIFICATION

In this section, we first prove that the asymptotic error of VIR

by using the proposed OLMANS is bound to be lower than that

without. When the negative samples are truly hard negative ones,

the asymptotic error by using OLMANS can be very close to the

Bayesian error (Sec. 4.1). Besides this theoretically meaningful

result, we prove that this strong asymptotic error can actually

best approximated by using finite data, which is practically also

meaningful. More importantly, we prove that this approximation

is actually achieved by OLMANS (Sec. 4.2). We also present its

consistency and sample complexity analysis in Sec. 4.3.

4.1 Asymptotic Error is Reduced

The core of VIR is indeed a 2-class (ω+ and ω−) 1-Nearest

neighbor (NN) classification problem by using the gallery set D. If

there is infinite number of data, it is well-known that its asymptotic

error P(e|x) is bounded by 2 times the Bayesian error [51]:

P
∗ ≤ P(e|x) = 2P (ω+|x)P (ω−|x) ≤ 2P∗ (16)

where P
∗ is the Bayesian error. In our work, we prove that by

adding the hard negative samples xa to D to form an augmented

dataset Da, the asymptotic error Pa(e|x) by using Da is always

smaller than P(e|x):

P
a(e|x) ≤ P(e|x) (17)

Theorem 5. For an input x, its NN is x′ in Da. Define the

probability that x′ is an augmented data xa, i.e., x′ ∼ xa

as P (x′ ∼ xa) = q; otherwise, x′ is not an augmented data

xa, i.e., x′¬xa, P (x′¬xa) = 1 − q, where 0 ≤ q ≤ 1. The

asymptotic error Pa(e|x) by using Da is:

P
a(e|x) =

(2− q)P(e|x)

2− 2qP(e|x)
≤ P(e|x) (18)

The proof is provided in Appendix.A. Since q is the probability

of P (x′ ∼ xa), we have 0 ≤ q ≤ 1. If q = 0 which indicates that

the augmented negative data are useless, then we have P
a(e|x) =

P(e|x). Another extreme is when q = 1 implying the negative

data are abundant and effective to constrain the classification, then

we have 1

P
a(e|x) =

P(e|x)

2[1− P(e|x)]
≤ P(e|x) (19)

1. P(e|x) ≤
1

2
is always true.
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In this case, when P(e|x) is very small, we have

P
a(e|x) ≃

P(e|x)

2
≃ P

∗(e) (20)

The asymptotic error of our negative-augmented approach can be

very close to the Bayesian error.

4.2 Finite Approximation to P
a(e|x)

The asymptotic error Pa(e|x) in Eqn. 18 is only meaningful when

the sample size is infinite, n → ∞. However, in practice, only

finite number of samples are available. To make it practically

meaningful, we prove that it can be best approximated by the

practical error rate Pn(e|x) (n is finite) by finding a local metric

Mx. And this local metric turns out to be the one for the proposed

OLMANS.

Still consider the 2-class 1-NN rule scenario (on the negative

augmented data Da). To make the notation less cluttered, here we

use P(e|x) to indicate P
a(e|x) without confusion. Given a sample

x and its nearest neighbor x′ from the finite dataset containing n
samples. The probability of error for x is:

Pn(e|x) = P (ω+|x)P (ω−|x
′) + P (ω−|x)P (ω+|x

′)

= P(e|x) + [P (ω+|x)− P (ω−|x)][P (ω+|x)− P (ω+|x
′)]

Our goal is to find a best local metric Mx for x such that the

conditional MSE minMx
E{[Pn(e|x)−P(e|x)]2|x} is minimized.

Since [P (ω+|x) − P (ω−|x)] is constant for a given x, so the

minimization is equal to:

min
Mx

E{[P (ω+|x)− P (ω+|x
′)]2|x} (21)

Because P (ω+|x
′) ≃ P (ω+|x)+∇P (ω+|x)

T (x′−x), Eqn. 21

is approximately equivalent to:

min
Mx

E{‖∇P (ω+|x)
T (x′ − x)‖2|x} (22)

The core here is to compute the gradient of posterior

∇P (ω+|x). Recall our proposed OLMANS approach, a local

linear classifier w where Mx = wwT is learned for a sample

x. So the posterior of x in a logistic sigmoid function form is:

P (ω+|x) =
1

1 + eζx(wT x+b)−γ
, P (ω−|x) = 1− P (ω+|x)

(23)

The gradient of P (ω+|x) can be easily computed:

∇P (ω+|x) = ζxP (ω+|x)P (ω−|x)w (24)

Substituting Eqn. 24 for ∇P (ω+|x) in Eqn. 22 gives us:

min
Mx

E{‖ζxP (ω+|x)P (ω−|x)w
T (x′ − x)‖2|x}

= min
Mx

(x′ − x)T wwT (x′ − x)
(25)

Recall our optimization objective Eqn. 5, for the positive

samples, we have 1 − (x′ − x)T Mx(x
′ − x) ≥ 1 which

is equal to (x′ − x)T Mx(x
′ − x) ≤ 0. On the other hand,

(x − x′)T Mx(x − x′) ≥ 0 is always true for a PSD Mx, so

(x′ − x)T Mx(x
′ − x) ≡ 0 always holds. It is obvious Eqn. 25 is

always optimized by adopting the local metric Mx learned by our

algorithm Eqn. 5.

4.3 Consistency and Sample Complexity Analysis

A set of samples {x0, x1, ..., xk} is identically drawn from a D-

dimensional space D ∈ R
D where li is the label of xi, then a

paired sample set Spair
k = {si}

k
i=1 = {(x0, xi)}

k
i=1 of size k is

formed. For our proposed objective Eqn. 5, the true risk over the

whole distribution D and the empirical error based on Spair
k are

defined as:

Errλ(Mx,D) = Exi,xj∼Dφ
λ(Mx, (xi, xj))

Errλ(Mx, S
pair
k ) =

1

k

k
∑

i=1

φλ(Mx, si)

where φλ (Mx, si) is the hinge loss function:

φλ(Mx, si) = λ[ζi
(

(xi − x0)
T Mx(xi − x0)

)

− γζi ]+

where ζi = −1 if li = l0 and 1 otherwise, [A]+ = max(0, A)
is the hinge loss and γζi is the desired margin. The empirical

risk minimizing metric based on Spair
k can be readily defined as

M∗
x = argminMx

Errλ(Mx, S
pair
k ). Our goal is to compare the

generalization performance of M∗
x over the unknown D.

Theorem 6. Let φλ(Mx, si) be a distance-based loss function that

is λ-Lipschitz in the first argument. Then with probability at

least 1 − δ over {s1, ..., sk} from an unknown B-bounded-

support (each (x, l) ∼ D, ||x|| ≤ B) distribution D, we have:

sup
Mx∈M

[

Errλ(Mx,D)− Errλ(Mx, S
pair
k )

]

≤ O

(

λB2
√

D ln(1/δ)/k

) (26)

Theorem. 6 proves that to achieve an estimation error rate ǫ, k =
Ω
(

(λB2/ǫ)2D ln(1/δ)
)

samples are sufficient. The brief proof

is shown in Appendix.B.

Theorem 7. Let Mx be any class of weighting metrics on the

feature space X = R
D , and define d := supMx∈M ‖Mx‖

2
F .

Following the same parameter setting in Theorem. 6, we have:

sup
Mx∈M

[

Errλ(Mx,D)− Errλ(Mx, S
pair
k )

]

≤ O

(

λB2
√

d ln(1/δ)/k

) (27)

Let P be the probability measure induced by the random

variable (X;L), where X := (x, x′), L := 1[l = l′]. Define

function class:

F := {X 7→ ‖x− x′‖Mx
}

Following the same steps in the proof of Theorem. 6, we can

conclude that the Rademacher complexity of F is bounded. In

particular,

Rk(F) ≤ 4B2

√

supMx∈M ‖Mx‖2F
k

Finally, we note that φλ is λ-Lipschitz in the first argument, so

that we can readily apply Theorem.8 in [52].

From Theorem. 7, we observe that if the learned metric Mx

has a low metric learning complexity d ≪ D, it can help sharpen

the sample complexity result, yielding a dataset-dependent bound.

Recall our objective Eqn. 5, d := supMx∈M ‖Mx‖
2
F is already

optimized via our proposed learning objective. Therefore, the

bound is further tighter under the same number of samples.
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4.4 OLMANS vs Re-ranking

Both our proposed OLMANS algorithm and the widely-used

re-ranking technique can be readily combined with any offline

learned retrieval models in the online phase for further perfor-

mance improvement. But our OLMANS owns more unique merits

than re-ranking in both the efficiency and effectiveness facets

which has been both theoretically proved in Sec. 4 and empirically

verified by extensive experiments in Sec. 5.

Data Requirement: Most re-ranking methods require no

additional learning samples, but utilize the given query probe

and gallery samples to help refine the ranking. In contrast, our

OLMANS takes advantage of a set of easily-available negative

samples, based on which it finds online adaptation for the optimal

local metric.

Effectiveness: The effectiveness of re-ranking depends heavily

on the quality of the initial ranking list (if the true match is not

in the top-k ranks). It may hurt the initial rank result, because

the true match may have a lower rank after re-ranking if the

false matches are included in the top-k list. Thus re-ranking

may degrade the performance. The performance of our OLMANS

model relies on the quality of the set of negative data, as illustrated

by Theorem. 5, even if the quality of the given NDB is pretty bad

(no hard negatives are provided), OLMANS still won’t degrade

the original performance. Comparing to re-ranking, our OLMANS

has a unique and plausible advantage: it does not degrade the

performance of the original methods (the original global metric)

in theory. As indicated in the objective Eqn. 3, when the negative

samples are not good (i.e., they are already far away from the pos-

itive point in the original feature space), the learned local metric

Mx will be the same as the original baseline, since the constraints

in Eqn. 3 have already been fulfilled. So OLMANS won’t give

a worse performance than the original method. As described in

Sec. 4, our theoretical analysis has shown that asymptotically our

negative-augmented approach always improves the identification

performance, and can be very close to the Bayesian error.

Efficiency: Another merit of our OLMANS compared with

re-ranking is its high efficiency. OLMANS is very efficient even

if there are a lot of negative samples available for local adapta-

tion. Because the learned local metric Mx is only related to a

handful set of hard negatives, not all the negatives. In contrast,

other methods, such as re-ranking (depend on data number and

nearest neighbor number k), transfer learning, domain adaptation

techniques, are usually time-consuming because the affinity rela-

tionships among probes and gallery samples have to be computed.

5 EXPERIMENTS

In this section, to verify the efficiency and effectiveness of our

proposed OLMANS method, we evaluate our method on two

generic VIR tasks: person re-identification (P-RID) and image

retrieval (Img-R).

5.1 Experiment on Person Re-identification

5.1.1 Experiment Settings

Data. We perform thorough experiments and comparative stud-

ies to evaluate our method on most widely-used P-RID bench-

mark datasets: VIPeR [36], GRID [53], CUHK03 [20], Mar-

ket1501 [54], DukeMTMC-reID [21] and MSMT17 [22]. The

statistic details of the above datasets are summarized in Table. 1.

For VIPeR and GRID datasets, all the identity pairs are randomly

divided into half for training and the other half for testing so that

the average results of 10 random trials are reported. For CUHK03,

the newly proposed protocol [46] (767 identities are used for

training as well as the left 700 identities are used for testing)

is adopted in our experiments. As for the other three benchmarks,

Market1501, DukeMTMC-reID and MSMT17, the pre-determined

probe and gallery sets are directly utilized with no modification.

Evaluation. For a fair comparison, the training data of each

dataset are used as the negative training samples for itself, so no

more extra information is utilized in the experiment. For all the

experiments, the single-shot evaluation setting is adopted and re-

sults are shown in the form of Cumulated Matching Characteristic

(CMC) curves. Besides, the mean average precision (mAP) results

of the latter four benchmarks are also reported.

Feature. Both handcrafted features and learned deep features

are explored in our experiments. The high-dimensional hand-

crafted P-RID feature called LOMO [6] is adopted. Since it is

not practical to directly use such a high dimensional feature

(26960-dim for the original LOMO feature) in metric learning, we

employ principal component analysis (PCA) to reduce the feature

dimension to a reasonable scale (1000-dim after PCA). Besides,

our proposed algorithm is directly applied to various CNN features

presented below for evaluation.

Baseline. Since the global metric learning-based methods per-

form much better than deep learning-based ones on the small-scale

datasets VIPeR and GRID, due to the lack of sufficient training

data, we mainly focus on the state-of-the-art global metric learning

approaches [5], [6], [11] as our baseline models. As for the other

large-scale datasets with plenty of training samples, the state-of-

the-art CNN-based P-RID models are selected as our baselines to

implement our method on including CaffeNet [55], VGG16 [56],

ResNet50 [57], DenseNet121 [14] and HA-CNN [13]. Besides, the

other state-of-the-art P-RID methods [15], [16], [17], [18], [58],

[59], [60] are further compared for a complete evaluation. Finally,

a recently proposed state-of-the-art re-ranking approach [46] is

compared with our algorithm. Various ablation studies of our

proposed model are explored in Sec. 5.1.4.

5.1.2 Comparisons with State-of-the-art

Experiments on VIPeR: The small-size VIPeR dataset is a

widely-used benchmark for P-RID which contains 632 pedes-

trian image pairs taken from 2 different cameras in an outdoor

environment. We conduct the comparison experiment under the

same experiment setting and using the same LOMO feature, while

the global metric learner MLAPG [5] is selected as our baseline.

The results are reported in Table. 2. Our method achieves the

best performances on all the ranks. For the important Rank@1

evaluation, our performance 44.97% outperforms the second best

approach LSSCDL by 2.31% and the baseline model MLAPG by

4.24%. This promising performance indicates that the proposed

local metric adaptation method is consistently effective, several

representative examples are shown in Fig. 2. One interesting ob-

servation is our improvement performance at Rank@20 is a little

bit lower than its performance at Rank@1. This is expected as our

local metric becomes less effective when the true positive gallery

image is far from the probe in the feature space. Nevertheless, our

method still beats all the other approaches at Rank@20.

Experiments on GRID: The GRID dataset [53] contains 250

pedestrian image pairs taken from 8 disjoint camera views and 775

additional images that do not belong to the 250 persons. GRID is a

pretty tough dataset because of the large viewpoint variations, the
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TABLE 1
The statistics of different P-RID benchmarks.

Dataset VIPeR GRID CUHK03 Market1501 DukeMTMC MSMT17

#Train-IDs 316 125 767 751 702 1040
#Probe-IDs 316 125 700 750 702 3060
#Gallery-IDs 316 775 700 751 1110 3060
#cam 2 8 2 6 8 15
#images 1264 1025 28192 32668 36411 126441

TABLE 2
Comparison results with the global metric learning methods on VIPeR
using the same LOMO feature. RED is the best result and BLUE is the

second best one.

Method R@1 R@5 R@10 R@20

Ours(MLAPG) 44.97 74.43 84.97 93.64

LSSCDL [27] 42.66 - 84.27 91.93
DNSL [11] 42.28 71.46 82.94 92.06
MLAPG [5] 40.73 69.94 82.34 92.37
XQDA [6] 40.00 68.13 80.51 91.08
TMA [61] 39.88 - 81.33 91.46
KISSME [62] 34.81 60.44 77.22 86.71
ITML [63] 24.64 49.78 63.04 78.39
LMNN [64] 29.43 59.78 73.51 84.91
kCCA [65] 30.16 62.69 76.04 86.80
MFA [66] 38.67 69.18 80.47 89.02
kLFDA [66] 38.58 69.15 80.44 89.15

TABLE 3
Comparison with the global metric learning methods on GRID using the

same LOMO feature.

Method R@1 R@5 R@10 R@20

Ours(MLAPG) 30.16 42.64 49.20 59.36

LSSCDL [27] 22.40 - 51.28 61.20
DNSL [11] 15.12 31.92 40.72 53.12
MLAPG [5] 17.60 33.52 43.36 56.08
XQDA [6] 12.96 26.80 34.56 43.52
EPKFM [67] 16.30 35.80 46.00 57.60
MtMCML [28] 14.08 34.64 45.84 59.84
PRDC [7] 9.68 22.00 32.96 44.32

low-resolution image quality and the quantitative distractors. The

average performance of 10 random trials is provided in Table. 3. It

can be clearly observed that our proposed algorithm outperforms

all the existing algorithms at Rank@1 by a very significant 7.8%

improvement on the identification rate. From the results we can

see that the GRID dataset is more challenging than VIPeR, but

our proposed algorithm can still handle it well by adapting the

local similarity structure of each probe.

Experiments on CUHK03: The CUHK03 is a large-scale

dataset which contains 13164 images of 1360 pedestrians. All

the images are captured by six surveillance cameras over months.

Each person is observed by two disjoint camera views with an

average of 4.8 images in each view. In our experiments, three

state-of-the-art CNNs including ResNet50, DenseNet121 and HA-

CNN are selected as our baselines to extract features of testing

data and our proposed OLMANS is directly applied to them. The

comparison results under the newly proposed splitting protocol is

shown in Table. 4. For all the three baselines, our method further

improves the Rank@1 and mAP performances by a large margin

(over 14% on Rank@1 and 11% on mAP) to a state-of-the-art

level. The results verify that our proposed OLMANS is not only

suitable to the handcrafted features, but also works well for the

state-of-the-art deep features.

Evaluation on Market1501: Market1501 is a large-scale P-

RID benchmark which contains 32668 bboxes of 1501 identities.

Each person is recorded by six cameras at most, and two at least.

Table. 4 shows the comparison results of our OLMANS on the

baselines and against the state-of-the-art results. Although the

most recent approaches have achieved a pretty high performance

(≥ 90%) on Market1501, the improvement of our method is over

4% and 6% on Rank@1 and mAP for all the three baselines by

handling the “hard” probe samples well.

Evaluation on DukeMTMC-reID: DukeMTMC-reID dataset

is a recent large-scale benchmark to date proposed for P-RID,

but the lasted methods have obtained promising performances. As

show in Table. 4, the recently published methods, SPreID [70],

PCB [18] and Part-aligned [60], boost the state-of-the-art to

85.9%(73.3%) on Rank@1(mAP). By implementing our OL-

MANS on HA-CNN, the Rank@1(mAP) result is boosted from

80.7%(64.4%) to 83.9%(69.0%), which approaches the state-of-

the-art performance.

Evaluation on MSMT17: MSMT17 [22] is the latest and

largest P-RID benchmark so far. The extreme large-scale iden-

tities and a large number of distractors make this dataset pretty

challenging. We evaluate the performance of the baselines on

MSMT17 dataset with(w/) and without(w/o) our algorithm in

Table. 5. Our method improves the Rank@1(mAP) performance

of DenseNet121 from 66.0%(34.6%) to a state-of-the-art result

75.5%(43.1%). Such results demonstrate that our proposed OL-

MANS is scalable to the size of dataset, even a large number of

testing probes are given, the efficient optimization scheme and

theoretical analyses guarantee the performance of our proposed

OLMANS.

5.1.3 Comparison with Re-ranking

As we discussed in Sec. 4.4, both our proposed OLMANS and

the re-ranking technique can be applied to any offline learned

P-RID baselines for further online performance improvement. In

this part, we evaluate our proposed OLMANS and a state-of-the-

art re-ranking method (RR) [46] on the CUHK03, Market1501

and DukeMTMC-reID datasets by selecting two CNN-based P-

RID models, HA-CNN [13] and Dense121 [14] as baselines. The

comparison results in Table. 6 show that our method can improve

the baseline performance significantly at both Rank@1 and mAP

evaluations. Compared with [46], our OLMANS works better on

improving Rank@1 performance and has comparative improve-

ment on the mAP evaluation since [46] considers the k-reciprocal

nearest neighbors of both probe and extra gallery data, it achieves

a large improvement on mAP but with limited improvement on

Rank@1 owing to the lack of instance-specific local adaptation.

However, our method only utilizes the given query probes and a
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TABLE 4
Comparison results on CUHK03, Market1501, and DukeMTMC-reID. All the results are the best performances reported in their literatures.

CUHK03 Market1501 DukeMTMC-reID
Method R@1 mAP Method R@1 mAP Method R@1 mAP

Ours(ResNet50) 59.4 54.8 Ours(ResNet50) 91.1 76.8 Ours(ResNet50) 79.1 63.5
Ours(DenseNet121) 53.1 49.3 Ours(DenseNet121) 90.9 75.4 Ours(DenseNet121) 80.2 64.1
Ours(HA-CNN) 62.6 58.3 Ours(HA-CNN) 93.8 81.1 Ours(HA-CNN) 83.9 69.0

ResNet50 [57] 47.9 46.8 ResNet50 [57] 88.5 71.3 ResNet50 [57] 77.7 58.8
Dense121 [14] 41.0 40.1 Dense121 [14] 88.2 69.2 Dense121 [14] 78.6 58.5
HA-CNN [13] 48.0 47.6 HA-CNN [13] 90.6 75.3 HA-CNN [13] 80.7 64.4
PCB [18] 63.7 67.5 PCB [18] 83.3 69.2 PCB [18] 83.3 69.2
SVDNet [58] 41.5 37.3 SVDNet [58] 82.3 62.1 SVDNet [58] 76.7 56.8
DPFL [68] 40.7 37.0 DNSL [11] 61.0 35.6 DuATM [69] 81.8 64.6
Mancs [33] 69.0 63.9 Mancs [33] 93.1 82.3 SPreID [70] 85.9 73.3
PAN [71] 36.3 34.0 Part-aligned [60] 91.7 79.6 Part-aligned [60] 84.4 69.3
MLFN [59] 52.8 47.8 PN-GAN [72] 77.1 63.6 PAN [71] 71.6 51.5
DaRe [73] 55.1 51.3 DeepCC [74] 89.5 75.7 GAN [21] 67.7 47.1

TABLE 5
State-of-the-art comparison results on on MSMT17. All the results are

the best performances reported in their literatures.

Method MSMT17
R@1 R@20 mAP

Ours(ResNet50) 72.8 88.6 55.0
Ours(DenseNet121) 75.5 89.9 43.1
Ours(HA-CNN) 68.0 87.8 37.8

SqueezeNet [15] 30.6 N/A 13.0
MobileNetv2 [16] 44.9 N/A 21.1
SuffleNet [17] 39.6 N/A 17.8
ResNet50 [57] 63.4 86.1 34.2
DenseNet121 [14] 66.0 86.6 34.6
HA-CNN [13] 61.8 85.8 34.6

TABLE 6
Comparison with the state-of-the-art re-ranking method.

Rank@1(mAP) result is reported. Red represents the best result.

Method CUHK03 Market1501 DukeMTMC

HA-CNN 48.0(47.6) 90.6(75.3) 80.7(64.4)
HA-CNN+RR 54.8(55.7) 91.4(79.0) 82.5(69.9)
HA-CNN+Ours 62.3(56.5) 92.7(79.0) 83.7(67.8)

Dense121 41.0(40.1) 88.2(69.2) 78.6(58.5)
Dense121+RR 48.1(51.5) 90.2(85.0) 83.7(76.9)
Dense121+Ours 53.1(49.3) 90.4(74.0) 84.2(67.1)

set of negative samples to gain a large improvement of the baseline

performance.

5.1.4 Ablation Study

(1) Influence of Baseline Quality: Our proposed OLMANS

algorithm is applied on top of an offline-learned baseline, thus

its overall performance may depend on the learning quality of

adopted baseline. In order to verify whether our OLMANS can

always be helpful, baseline models obtained at various learning

stages of a global metric learner [5] are tested, as in general the

performance of the baseline learner improves with more training

(e.g., more training iterations). As shown in Fig. 5, even the

learned global metric does perform poorly (in its early training

stages), our online local metric adaptation is able to consistently

and significantly improve the performances by a large margin.

This is because the local discriminative information introduced by

TABLE 7
The influence of baseline metric choice. +Ours means implementing

our OLMANS on the baselines. Red represents the better results.

Baselines GRID VIPeR
R@1 R@20 R@1 R@20

Euc 9.12 29.76 15.32 50.66
Euc+Ours 20.88 45.12 21.99 56.11

XQDA 12.96 43.52 38.99 91.94
XQDA+Ours 29.20 50.96 43.54 92.15

MLAPG 17.60 56.08 40.28 93.39
MLAPG+Ours 30.16 59.36 44.97 93.64

DNSL 15.12 53.12 40.19 93.54
DNSL+Ours 28.96 56.96 43.67 93.61

hard negative samples is able to capture the specific crux of one

identity which is quite helpful for identification.

(2) Influence of Baseline Metric Choice: An interesting

question is whether our OLMANS can always work for any

baselines as promised. To verify it, we conduct the following

experiment that different kinds of global metric learners, Eu-

clidean distance, XQDA [6], MLAPG [5] and DNSL [11] are

adopted for the LOMO feature as the underlying baselines that

our OLMANS algorithm is readily applied on. The results on

VIPeR and GRID datasets are reported in Table. 7, as well as

the complete CMC curves in Fig. 6. We observe that for all the

learners, our proposed OLMANS algorithm is able to boost the

identification performance with a significantly improvement, even

double the Rank@1 performance (on GRID).

(3) Influence of Baseline Feature Choice: We evaluate

various feature descriptors for P-RID to verify that the perfor-

mance of our OLMANS is independent of the choice of feature.

Both the hand-crafted features, LOMO [6] and deep features,

CaffeNet [55], VGG16 [56] and ResNet50 [57] are examined.

The above pre-trained CNN models from which we have removed

the final fully-connected (FC) layer are further fine-tuned by the

large-scale Market1501 datasets 2, then they are directly used to

extract the features for VIPeR and GRID datasets. As can be seen

from Table. 8, the performance improvement by our OLMANS

method is independent of the used feature descriptors.

(4) Influence of the Weighting Parameter λ: The parameter

λ in Eqn. 14 is used to balance the underlying baseline and the

2. The Rank@1(mAP) performances are: CaffeNet = 44.31(24.0), VGG16
= 63.93(42.5) and ResNet50 = 77.22(56.1)



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

0 20 40 60 80 100 120 140 160 180
32

34

36

38

40

42

44

46

48

50

Rank−1 Recognition Rate on VIPER Dataset

Maximum Iteration

R
a

n
k
−

1
 R

e
c
o

g
n

it
io

n
 R

a
te

(%
)

 

 

Only Use Global Metric

Use Our Local Metric

0 20 40 60 80 100 120 140 160 180
58

60

62

64

66

68

70

72

74

76

Rank−5 Recognition Rate on VIPER Dataset

Maximum Iteration

R
a

n
k
−

5
 R

e
c
o

g
n

it
io

n
 R

a
te

(%
)

 

 

Only Use Global Metric

Use Our Local Metric

0 20 40 60 80 100 120 140 160 180
72

74

76

78

80

82

84

86

Rank−10 Recognition Rate on VIPER Dataset

Maximum Iteration

R
a

n
k
−

1
0

 R
e

c
o

g
n

it
io

n
 R

a
te

(%
)

 

 

Only Use Global Metric

Use Our Local Metric

Fig. 5. The influence of baseline quality. The x-axis means the maximum iteration time for offline learning and the y-axis is the identification rate
(Rank@1, Rank@5 and Rank@10 on VIPeR).
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Fig. 6. The influence of baseline metric choice. (a) and (d) are the results on VIPeR and GRID directly using the Euclidean distance; (b) and (e) are
XQDA [6] results; (c) and (f) are MLAPG [5] results.

TABLE 8
The influence of baseline feature choices on VIPeR and GRID under

different metrics (10-folds average Rank@1 performance is reported).
For each result, the former one is the baseline result without our

OLMANS, and the latter is our OLMANS result.

Dataset Features Euclidean MLAPG XQDA DNSL

VIPeR

LOMO 15.32/21.99 40.28/44.97 38.99/43.54 40.19/43.67
CaffeNet 17.72/21.84 18.35/19.30 20.41/28.16 20.38/23.26
VGG16 20.25/26.27 20.25/23.73 23.45/29.02 23.86/26.52
ResNet50 22.78/27.22 23.42/26.58 31.93/40.47 33.70/38.01

GRID

LOMO 9.12/20.88 17.60/30.16 12.96/29.20 15.12/28.96
CaffeNet 2.40/13.60 5.60/10.42 10.24/21.92 7.28/16.72
VGG16 6.40/18.44 7.20/16.84 12.72/21.52 10.24/17.36
ResNet50 12.84/23.22 12.40/19.12 21.44/34.96 17.36/29.44

learned local metric. Different λ will have different influences to

the identification performance. We conducted an experiment on

VIPeR dataset to determine the value of λ, the results of which

are shown in Fig.7. We need to point out some special λ values:

The λ = 0 is the baseline result from [5] without our local metric

adaptation and λ = max represents that λ is set as Eqn. 15.

So setting λ = max
1≤j≤m

(

‖pi − gj‖
2
)

/ max
1≤j≤m

(

‖pi − gj‖
2
Mi

)

achieves the best result because it normalizes the norm scales of

the baseline and locally adapted distances.

(5) Influence of Negative Sample Database: For our OL-

MANS, a negative sample database (NDB) is used to provide

the negative training data. Because there are various strategies to

collect NDB, we conduct the following experiments to investigate
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Fig. 7. The influence of parameter λ. The x-axis means the value of λ
and the y-axis is the identification rate. The results at Rank@1, Rank@5
and Rank@10 on VIPeR are shown.

the influences of different NDB choices. The experiments are

conducted on VIPeR dataset. Moreover, the global metric learning

method MLAPG is adopted as the baseline model.

Using the training data from the same benchmark as the NDB:

Here the training samples in VIPeR which have different identities

from P(the training data for global metric learning) are used as

negative samples. It guarantees that the obtained NDB is clearly

meaningful. The P-RID result is given in Table.9 as Our-SAME.

Using different benchmark datasets as the NDB: Here we

utilize the other benchmark, the GRID dataset as the NDB in

our experiment, so that we can guarantee that the identities of all

the negative samples in the NDB are different from P . For each

probe pi, the k nearest negative samples are found in the NDB

(under the baseline feature) and used for our OLMANS. Different

values of k (50, 100, 500) are chosen for further comparisons.

The experiment results Our-D-50/100/500 are shown in Table.9.

Moreover, an additional experiment Our-D-RAM that uses 50

random negative samples from the NDB for OLMANS is com-

pared. This experiment validates the insight of our method that

the effective negative samples are those that are close to the probe

in the feature space (e.g., strong false positives).

From Table. 9, it can be observed that Our-SAME performs

the best because the negative data from the same benchmark

dataset are most discriminative. Results on Our-D-50/100/500

also largely outperform the baseline by consistent improvements.

Our-D-RAM can not improve the baseline performance since

this randomly selected small-size NDB provides no useful hard

negatives for OLMANS.

(6) Learning Cost Analysis and Comparison: Although each

query probe (or probe set) needs to learn a local Mahalanobis

metric on the testing stage, the proposed optimization solution to

our OLMANS objective makes the learning efficient and largely

reduces the learning time. Table. 10 3 provides a thorough com-

parison of average learning time of various state-of-the-art metric

3. The total learning time of OLMANS includes the local metric adaptation
time and retrieval time for all probes.

TABLE 9
The influence of different NDBs on VIPeR.

Method R@1 R@5 R@10 R@20

Baseline 40.73 69.94 82.34 92.37
Our-D-RAM 39.87 70.51 82.28 91.77
Our-SAME 44.97 74.43 84.97 93.64
Our-D-050 42.63 73.63 84.81 93.54
Our-D-100 43.04 73.86 84.30 93.42
Our-D-500 42.53 73.89 84.15 93.35

TABLE 10
Average Learning time (seconds) on VIPeR.

Method ITML MLAPG LADF
Ave Time 20.5 25.8 31.7

Method LMNN PRDC OLMANS
Ave Time 152.9 394.6 4.8

learning-based methods on VIPeR dataset. Besides, Table. 11

shows the learning time of different advanced global metric learn-

ers on a large-scale dataset, Market1501. All the experiments are

conducted on a remote server with an Intel i7-5930K @3.50GHz

CPU and 32G memory. The total average learning time of our

method on VIPeR is only 4.81 seconds for the adaptation of

all the 316 probes, much shorter than learning a single global

metric in 25.82 seconds. For the large-scale dataset Market1501,

the efficiency advantage of ours is much more pronounced. Our

local metric adaptation time is 10 ∼ 100 times less than the other

global metric learners. So the extra time spent in our OLMANS is

indeed nominal compared with learning a global metric.

5.2 Experiment on Image Retrieval

5.2.1 Experiment Settings

Data. We evaluate our proposed OLMANS on four widely-used

image retrieval benchmarks: the original Oxford [1], Paris [2]

and their corresponding revisited datasets ROxford and RParis

from [3] by correcting annotation mistakes, adding new query

images and introducing new evaluation protocols. The Oxford and

Paris datasets contain 5063 and 6392 images collected from Flickr

associated with Oxford and Paris landmarks respectively. Each

dataset contains 55 queries coming from 11 landmarks. For the

revisited versions, ROxford and RPari, 15 queries from 5 out of

the original 11 landmarks are along with the original 55 queries

for evaluation.

Evaluation. The training dataset in [4] is used as the NDB. For

all the benchmarks, the mean average precision (mAP) results over

the query images are reported in our experiments. For ROxford

and RPari, three new evaluation difficulties, Easy(E), Medium(M)

and Hard(H), are evaluated. Since the old setup of Oxford and

TABLE 11
Learning time (seconds) on Market1501.

Method XQDA MLAPG MFA
Train Time 3233.8 2732.8 437.8

Method kLFDA DNSL OLMANS
Train Time 995.2 3149.7 19.60
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TABLE 12
Comparison results on Oxford, Paris, ROxford and RParis. The mAP

results are reported.

Method Datasets
Oxford Paris ROxford RParis

M H M H

Ours(VGG16) 83.5 82.9 55.9 26.8 63.5 37.3
Ours(VGG16-Whiten) 88.1 87.9 60.7 32.6 69.7 44.5
Ours(Res101) 81.7 87.6 56.1 27.8 70.3 44.9
Ours(Res101-Whiten) 89.3 92.6 65.7 40.4 76.9 55.4

MAC [27] 56.4 72.3 37.8 14.6 59.2 35.9
SPoC [11] 68.1 78.2 38.0 11.4 59.8 32.4
CroW [5] 70.8 79.7 41.4 13.9 62.9 36.9
R-MAC [6] 66.9 83.0 42.5 12.0 66.2 40.9
NetVLAD [67] 67.6 74.9 37.1 13.8 59.8 35.0
GeM-VGG16 [4] 82.5 82.2 55.5 26.6 63.0 37.2
GeM-VGG16-Whiten [4] 87.2 87.8 60.5 32.4 69.3 44.3
GeM-Res101 [4] 81.0 87.7 55.5 27.5 70.0 44.7
GeM-Res101-Whiten [4] 88.2 92.5 65.3 40.0 76.6 55.2

Paris appears to be close to the new Easy setup, so we report only

the M and H results in our experiments.

Baseline. A CNN-based image retrieval model, GeM [4] is

adopted as baseline in our experiment to implement our proposed

OLMANS on. Two different CNN backbones, VGG16 [56] and

ResNet101 [57], are evaluated. Besides, the whitening is adopted

as a post-processing for GeM. Therefore, four different baselines,

GeM-VGG16, GeM-VGG16-Whiten, GeM-Res101 and GeM-

Res101-Whiten, are examined in our experiments. The pre-trained

model from a pytorch implementation 4 is utilized in our work.

5.2.2 Comparison with State-of-the-art

The comparison experiment results are shown in Table. 12. Com-

pared with the baseline models, GeM-VGG16, by implementing

our proposed OLMANS to them, the mAP performance of GeM-

VGG16 is improved from (82.5%, 82.2%, 55.5%, 26.6%, 63.0%,

37.2%) to (83.5%, 82.9%, 55.9%, 26.8%, 63.5%, 37.3%) on (Ox-

ford, Paris, ROxford-M, ROxford-H, RParis-M, RParis-H) re-

spectively. The similar improvement is also observed for the GeM-

VGG16-Whiten baseline. As for another more powerful baseline

with a different backbone network, GeM-Res101, our method

further boosts the mAP performance from (81.0%, 87.7%, 55.5%,

27.5%, 70.0%, 44.7%) to (81.7%, 87.6%, 56.1%, 27.8%, 70.3%,

44.9%) on (Oxford, Paris, ROxford-M, ROxford-H, RParis-M,

RParis-H) respectively. The improvement of OLMANS can be

further boosted by selecting NDB elaborately. While OLMANS

still shows promising performance on image retrieval task under

different baseline models, which verifies the generalization ability

of proposed method.

6 CONCLUSIONS

In this paper, we proposed a novel online local metric adaptation

algorithm to learn a dedicated Mahalanobis metric for each query

probe on the online testing stage of visual instance retrieval

(VIR). This new approach only uses negative samples for metric

adaptation, which is practical in real situation. It largely reduces

the demand for a large number of positive training data as in

existing offline learning-based VIR methods, and it only incurs

4. https://github.com/filipradenovic/cnnimageretrieval-pytorch

minimum computational costs to perform online learning. In-

depth theoretical analyses well justify our algorithm and extensive

experiments on different tasks demonstrate that our new approach

consistently and significantly outperforms the state-of-the-arts. In

this work, our proposed method is considered as a general and

independent module for any offline metric learning or feature

extraction baselines for further online local adaptation. In the

future, it is interesting to extend our proposed approach into a

deep metric learning approach since it could be directly involved

in the model learning.
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