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Learning Low-Dimensional Temporal
Representations with Latent Alignments

Bing Su, and Ying Wu, Fellow, IEEE

Abstract—Low-dimensional discriminative representations enhance machine learning methods in both performance and complexity.

This has motivated supervised dimensionality reduction (DR), which transforms high-dimensional data into a discriminative subspace.

Most DR methods require data to be i.i.d. However, in some domains, data naturally appear in sequences, where the observations are

temporally correlated. We propose a DR method, namely, latent temporal linear discriminant analysis (LT-LDA), to learn

low-dimensional temporal representations. We construct the separability among sequence classes by lifting the holistic temporal

structures, which are established based on temporal alignments and may change in different subspaces. We jointly learn the subspace

and the associated latent alignments by optimizing an objective that favors easily separable temporal structures. We show that this

objective is connected to the inference of alignments and thus allows for an iterative solution. We provide both theoretical insight and

empirical evaluations on several real-world sequence datasets to show the applicability of our method.

Index Terms—Dimensionality reduction, latent alignment, temporal sequences, discriminant analysis.

✦

1 INTRODUCTION

MULTIVARIATE temporal sequences arise in a wide
range of applications, where the pattern of interest

is represented as a sequence of local feature vectors. The
features are generally extracted at local temporal frames
or spatial regions in an unsupervised way. They often lie
in a high-dimensional space and contain noises or useless
information for the overall sequence classification. Learning
a discriminative subspace for the features in sequences to
better reveal the global temporal structures of sequences
is desirable. In such a subspace, both the learning and
inference of the subsequent temporal modeling methods
would not only be faster and require much smaller memory
demand since the dimensionality of the features is reduced
but also be more accurate and robust because noises are
removed and fewer parameters are needed to be estimated.

Various supervised dimensionality reduction (DR) meth-
ods have been developed for vector data under the i.i.d.
assumption, but they cannot be directly applied to the tem-
poral features in sequences that are not independent. DR for
sequence data aims at learning a subspace by maximizing
the separability among sequence classes, where the separa-
bility is embodied in the differences in temporal structures.
The temporal structures reflect the common evolutions of
all sequences from the same class, and they depend on
temporal alignments to establish correspondences among
sequences with local temporal differences. The separability
and objective are more difficult to formulate and manipulate
inherently. For these reasons, DR for sequence data has
received limited attention.
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Existing methods such as linear sequence discriminant
analysis (LSDA) [1], [2] and max-min intersequence distance
analysis (MMSDA) [3] construct the separability based on
generative models. For each class, they train a left-to-right
hidden Markov model (HMM) [4] from the original sequences.
The mean of the features aligned to each hidden state
is calculated, and the means of all ordered states form a
mean sequence. The interclass distance is measured as the
dynamic time warping (DTW) [5] distance between the mean
sequences. Such separability depends on the alignments
between the sequences and the hidden states, which further
rely on the similarities of the features. When projecting the
features to a subspace, the local similarities among the trans-
formed features may change, and hence, the alignments
may change accordingly. An example is shown in Fig. 1,
where the alignments in the subspace change from those
in the original space. The alignments in an underlying sub-
space are called the latent alignments. The latent alignments
cannot be inferred before the subspace is determined.

On the other hand, the projection is determined by max-
imizing the separability, where the separability should be
constructed based on the alignments in the subspace. There-
fore, learning the projection and inferring the alignments
are entangled. To make the projection tractable, existing
methods simply fix the alignments in the underlying sub-
space to those in the original space. However, the resulting
separability cannot reflect the real confusion relationship
between classes in the subspace. In addition, HMM-based
separability requires a large number of sequences for train-
ing.

In this paper, we propose a supervised DR method
for sequence data called latent temporal linear discriminant
analysis (LT-LDA) . We learn an abstract template for each
class to discover the temporal structures by employing the
modified DTW barycenter [6], [7]. We then construct the sep-
arability among sequence classes based on the alignments
between the abstract templates and the training sequences.
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Fig. 1. (a) The alignment (the dashed line) of the sequence of 5 points
(blue) to the sequence of 3 points (red) in the three-dimensional space;
(b) If all points are projected onto the x-y plane, the alignment between
the two sequences changes in this two-dimensional subspace.

Although determining the alignments by learning the ab-
stract templates and learning the subspace by maximizing
the constructed separability still rely on each other, we show
that their objectives are connected, which allows us to jointly
learn the most discriminative subspace together with the
associated latent alignments, resulting in sequences of low-
dimensional discriminative temporal representations.

The main contributions are as follows. (1) Different from
the HMM-based separability, our new construction of sep-
arability does not require an excessive amount of training
data. It can be performed even when only one training
sequence per class is available. (2) Different from previous
methods where the subspace can only be learned through
prefixing the alignments, we propose to learn the subspace
and the latent alignments simultaneously and develop an
efficient iterative solution. The learned subspace is thereby
holistically optimal. (3) We establish a connection between
our objective formulation and the abstract template learn-
ing, which ensures the convergence of our solution. We
further provide theoretical insight on the subspace selection.
This paper is an extension of the conference paper [8].

2 RELATED WORK

In this section, we briefly review several related topics: tem-
poral segmentation, latent variable models for sequences,
discriminant analysis, discriminative clustering, dimension-
ality reduction for sequences, and deep learning for se-
quence data.

Temporal segmentation. Segmenting sequences into d-
ifferent stages is a common strategy for modeling temporal
structures. In [9], three approaches based on PCA, proba-
bilistic PCA, and Gaussian mixture model were proposed
to segment long motion sequences into distinct high-level
behaviors. In [10], kernelized temporal cut incorporated
Hilbert space embedding of distributions to change-point
detection for segmenting sequences into actions and cyclic
motions. In [11], a video sequence was divided into multiple
segments by temporal subspace clustering. In [12], a neigh-
borhood graph-based method was proposed to partition a
sequence into distinct activities and motion primitives by
utilizing self-similar structures in the sequence. In [7], [13],
an alignment-based temporal clustering method was pro-
posed to parse a sequence into different stable stages. These
methods are unsupervised and work on a single sequence.
Our method captures the common temporal structures in all
training sequences for each class. Some temporal clustering

methods such as [14], [15] partition a sequence into disjoint
segments with the constraint that each segment belongs to
one of a set of clusters. The orders of clusters that appear
in different sequences may be different. A single sequence
may not contain all clusters. In contrast, for each class, the
temporal clusters learned by our method appear in all the
training sequences in the same order.

Latent variable models for sequences. Many models
for sequence data involve latent variables. In [16], shape,
appearance, and motion states were modeled as latent vari-
ables within a Bayesian framework for tracking 3D human
figures. In [17], binary latent variables were modeled in
an undirected model for human motion data. In [18], the
Gaussian process dynamical model for motion modeling
was composed of a latent space with associated dynamics.
In [19], latent states that include body orientation, activity
category, and body pose were jointly estimated for tracking.
In [20], efficient optimization algorithms were developed for
learning the Gaussian process latent variable model to track
multiple activities. In [21], beta-process autoregressive HM-
M discovered a latent set of behaviors for motion capture
segmentation. In this paper, we model the alignments as
latent structures for discriminating different classes.

Discriminant analysis. Various supervised linear DR
methods have been proposed for numerical data. Linear
discriminant analysis (LDA) [22] optimizing the Fisher cri-
terion is perhaps the most widely used method for its
simplicity, effectiveness and well-established theory and
is attracting consistent interest [23], [24], [25] in machine
learning. Many other approaches are dedicated to solve the
problems of LDA in some particular cases or improve LDA.
Uncorrelated LDA (ULDA) [26] extracts features that are
statistically uncorrelated. Generalized ULDA [27] and or-
thogonal LDA [28] are proposed to solve the undersampled
problems when the scatter matrices are singular.

LDA assumes that every class obeys a Gaussian dis-
tribution with the same covariance matrix and, hence, is
incapable of tackling heteroscedastic data properly. Het-
eroscedastic LDA (HLDA) [29] optimizes the Chernoff crite-
rion that takes the differences of covariances into account
when calculating the between-class scatter. Subclass dis-
criminant analysis [30] clusters each class into a set of sub-
classes such that each subclass obeys a Gaussian distribu-
tion. Based on the graph embedding framework, marginal
Fisher analysis [31] constructs the between-class and within-
class scatters by a penalty graph that only connects marginal
points.

The Fisher criterion maximizes the average of all pair-
wise between-class distances. As a result, it tends to only p-
reserve the large pairwise distances, but nearby classes may
be overlapped after projection. To deal with this problem,
weighted pairwise Fisher criteria [32] gives larger weights to
close class pairs when calculating the between-class scatter.
Max-min distance analysis (MMDA) [33] directly maximizes
the minimum pairwise distance in the subspace. Worst-case
LDA [34] further redefines the within-class scatter as the
maximum average within-class distances among all classes.
Heteroscedastic MMDA [35], [36] employs the Chernoff
distance as the pairwise between-class distance.

These advances for numerical data cannot directly prop-
agate to structured sequence data because the feature vec-
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tors in sequences violate the basic i.i.d. assumption. Our
method performs DR for sequence data by lifting the inher-
ent temporal dependencies.

Discriminative clustering. Some methods such as [23],
[37], [38] combine LDA and k-means to adaptively learn a
discriminative subspace in which vector data can be better
clustered. The data have no class labels, and the purpose of
dimensionality reduction is to better group data into clus-
ters. There are no temporal relations among clusters. Differ-
ently, in our method, dimensionality reduction is applied to
temporally correlated vectors in sequences. Data are labeled
at the sequence level, and the goal is to better separate
different sequence classes. There are temporal constraints
when learning the temporal structures for each class.

Dimensionality reduction for sequences. In [39], [40],
[41], linear and nonlinear transformations were learned for
each sequence pair to perform multimodal alignment. The
transformations for different sequence pairs are different.
In our method, the projection is for discriminating differ-
ent classes and stays the same for all sequences from all
classes. In [42], a sufficient DR approach was proposed for
sequence labeling by building sequence kernels. The labels
are associated with the vectors in sequences rather than the
whole sequences, and the task is to predict a class label
for each vector in the sequences. In [43], the features were
transformed by unidimensional convolutions of all dimen-
sions for sequence labeling. Our method focuses on linear
projection, and the task is to predict a label for each entire
sequence. In [44], a Mahalanobis distance was learned, given
the ground truth alignments of training samples, to perform
multivariate sequence alignment, while in our method, the
alignments of both the training sequences and the test
sequences are unavailable. In [45], generalized rank pooling
(GRP) encoded a sequence into a subspace representation.
GRP is a pooling method, and the subspaces are different
for different sequences. Our method is a DR method that
learns a common subspace for all sequences.

LSDA [1], [2] and MMSDA [3] are targeted at the same
problem as this paper, where the projection was learned
by maximizing the separability defined on HMM-based
temporal structures. For each class, a left-to-right HMM was
trained, and the hidden states of the HMM were considered
temporal structures. The alignments of the sequences to
the hidden states in the original space and the underlying
subspace were assumed to be the same. LSDA optimized the
Fisher criterion and made approximations on the interclass
scatter to make the optimization tractable; MMSDA opti-
mized the max-min distance criterion, resulting in solving a
series of time-consuming semidefinite programming prob-
lems, and could not scale to high dimension. Differently, in
our method, the discovery of temporal structures is DTW-
based and only depends on deterministic operations, which
avoids the estimation of massive parameters of HMM. The
latent alignments in the subspace can be jointly learned with
the projection owing to our construction of separability.

Deep learning for sequence data. Recurrent neural net-
works (RNNs) [46] can also be used to perform supervised
dimensionality reduction for sequences. However, learning
a large number of parameters for RNNs such as long short-
term memories (LSTMs) [47] requires massive training se-
quences. Learning low-dimensional features directly from

raw frames is often infeasible when only limited training
sequences are available. In practice, RNNs are often used
as classifiers [46] or for matching [47] by taking handcraft-
ed or CNN-learned frame-wide features as input. For 3D
skeletal action sequences, a bidirectional LSTM was directly
applied to the sparse coding representations in Kendall’s
shape space in [48], and temporal sliding LSTM networks
were performed on the salient motion features in [49]. For
video action sequences, deep 3D CNN architectures such
as C3D [50], two-stream I3D [51], and extended versions of
ResNet [52] have been shown to be effective. Generally, clips
generated from a video were input to 3D CNN models, and
the class scores of the clips were averaged for classification.
The 3D CNN models can also be used to extract features
from the clips, and each video is represented by a sequence
of deep features using the sliding window manner. The
sequences can be projected first by our proposed method
and then input to RNNs or other sequence classifiers for
classification. In this way, the input sequences are more
discriminative, RNNs need to learn fewer parameters, and
the classification complexity is reduced.

3 LATENT TEMPORAL LINEAR DISCRIMINANT

ANALYSIS

3.1 Learning Abstract Templates

We learn an abstract template M consisting of ordered tem-
poral structures for each sequence class from all its training
sequence samples. Each sequence X = [x1,x2, · · · ,xT ] con-
sists of a series of ordered frame-wide feature vectors, where
xt is the feature vector extracted from the t-th frame, and T
is the length (i.e., the number of vectors) of the sequence. For
a specific sequence class, we denote its training sequence
sample set by {X1,X2, · · · ,XN}, where N is the number
of training sequences in the set, and Tn is the length of Xn.
Different sequence samples may have different lengths.

We define the abstract template as a sequence of the ab-
stracted temporal structures M = [m1,m2, · · · ,mL], where
the element mj captures the average frame-wide features of
a temporal structure or stage that each sequence must go
through. Hence, M can be considered an atomic sequence.
L is the length of M, which is generally shorter than any
sequence sample because the learned template only contains
the essential temporal structures, and each structure will last
several frames in a sequence.

An analogous interpretation of the abstract template is
as follows: the temporal structures represent the statistics of
frames corresponding to key stages to perform the sequence.
Taking action sequence as an example as shown in Fig. 2,
where each action video is represented by a sequence of
frame-wide features, the basic representative characteristic
of an action is the evolution of key poses, and the abstract
template is slightly similar to the sequence of key poses.
The difference is that the elements of the abstract template
are abstracted from the frame-wide features rather than
directly from the frames. Each element in M captures the
common characteristics within the corresponding stage in
all sequence samples from the same class, and hence, M
captures the shared common evolution of key stages and
can be viewed as the temporal template of the class.
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Fig. 2. An illustrative example of the abstract template M for the “jack”
action. The samples are from the WEIZMANN dataset [53]. The align-
ment between a sequence and M (at the bottom) actually parses the
sequence into different segments. The frames in the segments from
different sequences aligned to the same element of M are bounded in
the same color. The element is the mean of all these frames and can be
viewed as a temporal structure or a key pose. M contains the ordered
key poses and reflects the basic semantics of the action.

The abstract template M can be used to divide a se-
quence sample X into different temporal regions. This
is achieved by aligning X to M with a warping func-
tion, which maps the elements of X to the elements of
M. The warping map can be defined by a warping path
P = [p1,p2, · · · ,pL]. pt = [st, et]

T means that the
{st, st + 1, · · · , et}-th elements in X are aligned to the t-
th element of M.

Similar to DTW, several constraints are applied to P. (1)
The boundary condition s1 = 1, eL = T : P should cover
the whole sequence X; (2) The monotonicity constraint
et < st+1, ∀t = 1, · · · , L−1: if an element xi in X is aligned
to mj in M, then the elements in X after xi can only be
aligned to mj or elements after mj in M, and no elements
in X can be aligned to more than one element in M. As
a result, the sequence X is divided into L nonoverlapping
temporal regions. (3) The continuity constraint et ≥ st: for
any element in M, there must be at least one element in
X aligned to it; hence, no region divided from X is empty.
(4) The warping constraint lt ≤ aT

L : lt = et − st + 1 is the
number of elements in X that are aligned to the t-th element
in M. a ≥ 1 is a factor that controls the allowed degree of
warping, and T

L is the average number of elements in X

aligned to one element in M. This constraint means that
the number of elements in X aligned to any element in
M should not exceed a multiple of the average number.
It prevents extremely unbalanced partitioning. With such a
constraint, only salient temporal structures that are univer-
sal in all training sequences can be captured by the abstract
template.

We employ the modified dynamic time warping algo-
rithm [7], [13] to compute the optimal warping path. The
sum of all the pairwise Euclidean distances between the
matched elements along the warping path is used as the
cost score of the path. We denote the cost of a partial path of
aligning the first i elements in X to the first j elements in M

as c(i, j, l), where l means that the last l elements of the first
i elements in X are aligned to the j-th element in M in the

Algorithm 1 Abstract template learning

Input: {X1, · · · ,XN}; L; a;
Output: M; Pn, n = 1, · · · , N ;

1: Initialize the uniform alignment path Pn for the training
sequence Xn, for n = 1, · · · , N ;

2: Compute the initial abstract template M using Eq. (2);
3: while M has not converged do
4: Update the alignment paths Pn by aligning Xn to M,

n = 1, · · · , N using Eq. (1);
5: Update the abstract template M with the alignment

paths Pn, n = 1, · · · , N using Eq. (2);
6: end while

partial path. This partial cost can be determined recurrently:

c(i, j, l) =























d(i, j), l = 1, i = j = 1

d(i, j) +
aT/L

min
k=1

c(i− 1, j − 1, k), l = 1

d(i, j) + c(i− 1, j, l − 1), l ≤ aT
L

Inf, otherwise

(1)

where d(i, j) is the Euclidean distance between the i-th
element of X and the j-th element of M. The minimum
alignment cost can be found by this dynamic programming

and is achieved at the end of recursion as
aT/L

min
l=1

c(T, L, l). The

corresponding optimal warping path is obtained by back
tracking.

Based on the dynamic alignment Eq. (1), M can be
obtained by employing the DTW barycenter averaging (D-
BA) [6] as follows. We first use the uniform alignments to
initialize M. Specifically, in the n-th training sequence Xn,
lnj = Tn

L elements in Xn are aligned to the j-th element of
M, ∀j = 1, · · · , L. The initial j-th element mj of M can be
computed as follows:

mj =
1

N
∑

n=1

lnj

N
∑

n=1

enj
∑

k=sn
j

xn
k , (2)

where Pn = [pn
1 , · · · ,pn

L] is the alignment path that aligns
Xn to M, and pn

j = [snj , e
n
j ]

T records the start and end
indexes of elements in Xn that are aligned to mj . We then
align each training sequence Xn to the initial M using
Eq. (1) to update the alignment path Pn, for n = 1, · · · , N .
We finally recompute the elements in M using Eq. (2)
with the updated Pn again. This process can be repeated
until the difference of M in the current iteration and M in
the previous iteration is below a threshold or a maximum
number of iterations is reached. We summarize the abstract
template learning algorithm in Alg. 1.

Alg. 1 extends DBA to multidimensional sequences with
a uniform initialization and imposes stricter constraints on
the warping path. As a result, any vector in any sequence
can only be aligned to one element of M, which facilitates
the invariant property of the separability in Section 3.2.

Convergence. Alg. 1 actually minimizes the following
objective function:

min
Pn,n=1,··· ,N

L
∑

j=1

N
∑

n=1

enj
∑

k=sn
j

‖xn
k −mj‖22. (3)



0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2919303, IEEE

Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

The value of the objective function in Eq. (3) decreas-
es by both alternative procedures in Alg.1, i.e., updating
Pn, n = 1, · · · , N for given M using Eq. (1) and recalcu-
lating M for given Pn, n = 1, · · · , N using Eq. (2). The
objective function also has a lower bound 0. Thus, Alg.1
is guaranteed to converge to a local minimum.

3.2 Separability Construction

We measure the separability among sequence classes based
on their abstract templates in two aspects: the within-class
scatter and the interclass distance. We define the intraclass
scatter of a sequence class as the sum of variances of all
component temporal structures in the abstract template:

S =
L
∑

j=1

(
N
∑

n=1

lnj /
N
∑

n=1

Tn)Sj , (4)

where lnj is the number of features in the n-th sequence
aligned to the j-th temporal structure in the abstract tem-

plate, and
N
∑

n=1

Tn =
L
∑

j=1

N
∑

n=1

lnj is the number of all the

features in all the sequences from the class. Sj is the variance
of the j-th temporal structure, which can be estimated as
the variance matrix of all feature vectors in all training
sequences aligned to the j-th element of M, i.e.,

Sj =
1

N
∑

n=1

lnj

N
∑

n=1

enj
∑

k=sn
j

(xn
k −mj)(x

n
k −mj)

T
. (5)

For the i-th sequence class, we denote its intraclass
scatter by Si. Assuming there are C classes, we define the
within-class scatter as the sum of intraclass scatters of all
classes weighted by the prior probabilities pi, i = 1, · · · , C :

Sw =
C
∑

i=1

piSi, (6)

where pi is estimated as the number of sequences from the i-
th class divided by the number of sequences from all classes.

The learned abstract template M of a sequence class rep-
resents the temporal structures and their general evolution
of the class. The separability between two sequence classes
can be reflected by the differences among the elements of
the two corresponding abstract templates. We define the
interclass separability as follows:

Sb =
∑

1≤i,j≤C

∑

1≤u,v≤L

piup
j
v(m

i
u −mj

v)(m
i
u −mj

v)
T
. (7)

mi
u and mj

v denote the u-th element of Mi and the v-th
element of Mj , respectively. piu and pjv denote the prior
probabilities of mi

u and mj
v , respectively. piu is estimated

as the number of vectors in sequences from the i-th class
that are aligned to mi

u, divided by the number of all vectors
in all sequences from all classes.

Constructing the interclass scatter by Eq. (7) is equivalent
to viewing each temporal structure as a subclass. Since each
sequence class is abstracted by several ordered temporal
structures, if all temporal structures from all classes are
maximally separated, the separability of different sequence

classes increases accordingly. Therefore, Eq. (7) can indeed
reflect the separability between sequence classes.

Note that both Sw (6) and Sb (7) rely on the alignments of
sequence samples to the corresponding abstract templates:
P = {Pi

n, n = 1, 2, · · · , N i, i = 1, 2, · · · , C}. We denote
them by Sw(P) and Sb(P)1 to emphasize the dependencies
on alignments.

Compared with HMM-based separability [1], [2], our
separability construction has several advantages. (1). It does
not require a large amount of training data. Even when
each class has only one sequence sample, Alg. 1 can stil-
l be performed and meaningful scatters can thereby be
constructed. In this case, Alg. 1 degrades to the temporal
clustering algorithm [7]. (2). It does not need to estimate
any parameter, thus has better scalability. (3). Owing to the
constraints on the warping path, calculating Sw by Eq. (6)
is also equivalent to viewing all temporal structures in all
classes as subclasses. Therefore, Sb(P)+Sw(P) = St, where
St is the total scatter of all features in all sequences and is
independent of P. This invariant property ensures the joint
optimization in Section 3.3.

3.3 Joint Learning of the Transformation and the Latent

Alignments

Our goal is to learn a linear transformation W ∈ R
d×d

′

to project feature vectors in sequences from the origi-
nal d-dimensional space to the most discriminative d′-
dimensional subspace, in which the separability among
different sequence classes is maximized. The separability
depends on the alignments between the sequences and the
abstract templates, which are inferred based on the pairwise
distances between feature vectors in the space. When the
features are projected to a subspace, the distances among
the transformed features may change. The alignments may
change accordingly, which should be recalculated using
Alg. 1 in the subspace. The updates of the alignments, in
turn, affect the determination of the transformation. Existing
methods [1], [2] tackle such entanglement by fixing the
alignments obtained in the original space, which may lead
to suboptimal solutions.

We consider the joint learning of the transformation
and the abstract templates together with the corresponding
temporal alignments in the latent subspace simultaneously.
We optimize the Fisher criterion that maximizes the inter-
class separability and minimizes the within-class scatter.
Due to the invariant property, Sb(P) + Sw(P) = St, the
optimal projections of maximizing the ratio of Sb and Sw

and maximizing the ratio of Sb and St are the same [54].
Therefore, we formulate our objective function as follows:

max
W,P

tr((WTStW)−1WTSb(P)W). (8)

We solve Eq. (8) by alternatively updating W and P to
obtain a local optimal solution. We call this method LT-LDA,
which is summarized in Alg. 2.

The diagram of LT-LDA is illustrated in Fig. 3. In the
first stage, LT-LDA optimizes over P by fixing W. The
first inverse matrix item (WTStW)−1 in Eq. (8) does not

1. Strictly speaking, they also depend on M, but M and P are closely
associated, so we omit M for brevity.
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Algorithm 2 LT-LDA

Input: the training sequences of each class c = 1, · · · , C , the
length of the abstract template L, the control factor a;
Output: the projection W;

1: Initialize the abstract template Mc and the associated
alignments Pc in the original space using Alg. 1, for
c = 1, · · · , C ; calculate Sw (6) and Sb (7) according to
Pc and Mc;

2: Initialize W by solving Eq. (12)
3: while W has not converged do
4: Project the training sequences into a subspace by W;

update Mc and Pc in this subspace using Alg. 1, for
c = 1, · · · , C ;

5: Recalculate Sw and Sb with the updated alignments
P by Eq. (6) and Eq. (7), respectively;

6: Update W by solving Eq. (12);
7: end while

depend on P. We omit this item for the moment to derive
an intuitive solution and will explain its effect later. The
objective then becomes

max
P

tr(WTSb(P)W). (9)

Since Sb(P) = St − Sw(P), Eq. (9) is equivalent to the
following:

min
P

tr(WTSw(P)W). (10)

Substituting Eq. (6) into Eq. (10) and expanding, Eq. (10) is
transformed into the following:

C
∑

i=1

pi min
Pin,n=1,··· ,N

L
∑

j=1

Ni

∑

n=1

einj
∑

k=sin
j

∥

∥x̂in
k − m̂i

j

∥

∥

2

2
, (11)

where x̂in
k = WTxin

k and m̂i
j are the projected feature and

the element of the abstract template in the subspace, respec-
tively. The superscript i indicates that the variable belongs to
the i-th class. To ensure the convergence and compensate the
omitted item when deriving Eq. (9), which will be more clear
in Section 3.4, the features should first be centered before the
start of the iterations, and a whitening preprocessing should
be applied to all features in all sequences in this stage.

That is, the mean of all xin
k is zero, and x̂in

k =

WwW
Txin

k , where Ww = Γ
− 1

2

w is the whitening transfor-
mation and Γw is the total scatter of all projected features
in all sequences. In our experiments, we found that the two
procedures can be neglected, and LT-LDA still converges,
while the computational complexity is reduced.

Each of the C components of minimization in Eq. (11)
is exactly the same as those of Eq. (3) in the subspace
associated with W instead of the original space. These
minimizations are independent of each other, and hence,
we can learn the abstract template and the corresponding
alignments of training sequences for each of the C classes
using Alg. 1 individually. The learned alignments for all the
sequences in all the classes are used to update Sw and Sb

using Eq. (6) and Eq. (7), respectively.

Fig. 3. The diagram of LT-LDA. The upper half: given the alignments, the
features in sequences are divided into different subsets, and these sub-
sets are viewed as independent classes; LDA is then applied to update
the projection W. The lower half: given W, all features are projected into
a subspace; in this subspace, the abstract template learning algorithm
is applied to update the alignments. The two procedures are repeated
alternatively until convergence.

In the second stage, LT-LDA optimizes over W for given
P. In this case, both Sw and Sb are fixed, and the objective
function becomes a standard LDA problem:

max
W

tr((WTStW)−1WTSbW)

⇔ max
W

tr((WTSwW)−1WTSbW).
(12)

The columns of the updated W are given by the eigenvec-
tors of S−1

w Sb with respect to the d′ largest eigenvalues.

3.4 Theoretical Analysis

We theoretically provide more insights and show the in-
terest of our method by proving 1) that the abstract tem-
plate learning algorithm (Alg. 1) can be linked to a trace
maximization formulation; 2) that the LT-LDA algorithm
(Alg. 2) is guaranteed to converge; and 3) that it is possible
to simplify the joint optimization of Eq. (14) under certain
conditions.

Let Z be the matrix consisting of all frame-wide fea-
ture vectors in all training sequences. Let T be the align-
ment indicator matrix, which is defined as follows: T =
{πi,k}Nt×CL, where πi,k = 1 if the frame-wide feature
vector zi in the i-th column of Z is in the sequence
from the c =

⌈

(k − 1

2
)/L

⌉

-th class and is aligned to the
l = k − (c − 1)L-th stage of the c-th class, and πi,l = 0
otherwise. Nt is the total number of vectors in all the
training sequences from all the samples. Following [23], [55],
the weighted indicator matrix is defined as follows:

F = T(TTT)−
1

2 .

It can be shown that

Fi,k =

{

1/
√
nk, if zi ∈ (c, l)

0, otherwise
,

where nk is the number of 1 in the k-th column of F, i.e., the
number of vectors aligned to the l-th stage of the c-th class.

Lemma 1. Objective function (3) is equivalent to the trace
maximization problem

max
F

tr(FTZTZF). (13)

Proof. It turns out that the k-th column of ZFFT is exactly
the mean mj of the j-th stage of the c-th class, where the



0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2919303, IEEE

Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

k-th column zk of Z is aligned to this stage. Therefore, the
objective function (3) can also be written as

min
∥

∥Z− ZFFT
∥

∥

2

F
⇔ min tr(ZTZ)− tr(FTZTZF)
⇔ max tr(FTZTZF)

Lemma 2. Objective function (8) is equivalent to the trace
maximization problem

max
W,F

tr(FTZTW(WTZZTW)−1WTZF). (14)

Proof. If the data are zero-centered,
Nt
∑

i=1

zi/Nt = 0, (other-

wise, we can remove the overall mean of all the vectors in all
the training sequences), then St and Sb can be reformulated
as

St = ZZT ,

Sb =
C
∑

i=1

L
∑

u=1

pium
i
um

i
u

T
= ZFFTZ,

Through substituting these formulations, the objec-
tive (8) can then be reformulated as

tr((WTStW)−1WTSbW)
= tr((WTZZTW)−1WTZFFTZTW)
= tr(FTZTW(WTZZTW)−1WTZF)

Theorem 1. The LT-LDA algorithm (Alg. 2) is guaranteed to
converge.

Proof. In the first stage, LT-LDA optimizes over P by fix-
ing W using Alg. 1. According to Lemma 1, this actually
learns the abstract template from the whitened and pro-

jected feature sequences by optimizing max tr(FT ẐT ẐF).

Ẑ = Γ
− 1

2

w WTZ is the whitened and projected data matrix,
and Γw = WTZZTW is the total scatter of the projected
data matrix. Thus, we have

tr(FT ẐT ẐF) = tr(FTZTW(WTZZTW)−1WTZF)

which is exactly the objective (14).
In the second stage, LT-LDA optimizes over W for given

P. According to Lemma 2, this also optimizes Eq. (14).
Both the iterative stages decrease the objective value of

Eq. (14) monotonically. Since F is an orthogonal matrix, the
objective (14) is bounded from above. This guarantees the
convergence of Alg. 2.

Similar to [23], in some specific cases, the joint opti-
mization of Eq. (14) can be simplified by factoring out the
projection matrix W. The result is summarized as follows.

Theorem 2. Let G = ZTZ be the Gram matrix. When the di-
mensionality is reduced to a specific value d′ = min(CL, d,Nt),
and a regularization term δINt

is added to the total scatter St,
where INt

is the Nt-order identity matrix, if W∗ and F∗ are the
optimal solutions of the trace maximization problem (14):

max
W,F

tr(FTZTW(WT (ZZT + δINt
)W)−1WTZF) (15)

then, F∗ is also the optimal solution of the problem

max
F

tr(FT (INt
− (INt

+
1

δ
G)−1)F). (16)

Proof. We follow the proof in [23]. According to the repre-
senter theorem [56], the optimal projection matrix W has
the form W = ZA, where A is a coefficient matrix. The
objective (15) is transformed into

tr(FTZTZA(ATZT (ZZT + δINt
)ZA)−1ATZTZF)

= tr(FTGA(AT (GG+ δG)A)−1ATGF)
= tr(ATGFFTGA(AT (GG+ δG)A)−1)

(17)
By defining Γb = GFFTG and Γw = GG + δG, we

can find that Eq. (17) has a similar form to the generalized
LDA problem [28], which can be solved by constructing a
matrix Q that simultaneously diagonalizes Γb and Γw. Q is
constructed as follows.

G is symmetric and positive semidefinite. If the d-
dimensional features are not linearly dependent (otherwise,
we can remove the linearly correlated dimensions), the rank
is of G and is r = min(d,Nt). The SVD of G has the form

G = UΣUT = UrΣrU
T
r ,

where U is an orthogonal and square matrix, Σ =
diag(λ1, · · · , λr, 0, · · · , 0), Ur consist of the first r columns
of U, and Σr = diag(λ1, · · · , λr) contains only the nonzero
singular values.

Define V = (Σ2
r + δΣr)

− 1

2ΣrU
T
r F. The SVD of V is

denoted as V = MΣV N
T , where M and N are orthogonal

matrices, ΣV is a diagonal matrix of d′-th order, and d′ is
the rank of V. d′ = min(rank(Sb), r) = min(CL, d,Nt). By
constructing Q as

Q = Udiag((Σ2
r + δΣr)

− 1

2M, INt−r),

Γb and Γw are simultaneously diagonalized by Q.

QTΓbQ = diag(Σ2
V ,0Nt−r),

QTΓwQ = diag(Ir,0Nt−r).

From Theorem 3.1 in [28], the solution of maximizing the
objective (17) over A is given by A∗, consisting of the first d′

columns of Q, and the maximum of the objective (17) equals
tr((GG+ δG)†(GFFTG)). Therefore,

tr((AT (GG+ δG)A)−1ATGFFTGA)
≤ tr((GG+ δG)†(GFFTG))
= tr(FTG(GG+ δG)†GF)
= tr(FT (INt

− (INt
+ 1

δG)−1)F)

The equality holds when A = A∗, where the dimension-
ality is implicitly reduced to d′.

This theorem provides an upper bound of the objec-
tive for the stage of learning the partitions. The bound
provides additional insights on the subspace selection of
LT-LDA. From Lemma 1, in the original space, the objec-
tive function (13) of the abstract template learning actually
maximizes tr(FTZTZF) = tr(FTGF). While in the d′-
dimensional subspace, the objective (16) of LT-LDA actually
maximizes a kernel version of Eq. (13), where the kernel
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Gram matrix Gk = INt
− (INt

+ 1

δG)−1 is used instead
of the original Gram matrix G in Eq. (13). Gk → G/δ
when δ → ∞, and hence, objective (16) is equivalent to
the standard objective (13). Gk → UrU

T
r when δ → 0, and

Ur is the set of the largest r principal components of all the
features in all the sequences w.r.t. the nonzero eigenvalues
of G. Therefore, objective (16) is equivalent to learning the
abstract templates in the subspace determined by PCA.

Gk can be further expressed as

Gk = Udiag(λ1/(λ1 + δ), · · · , λNt
/(λNt

+ δ))UT .

This means that the iterative procedures of LT-LDA es-
sentially construct a kernel matrix for learning the latent
alignments w.r.t. the abstract templates. The construction is
achieved by performing a transformation to G, such that
each eigenvalue λ of G is transformed to λ/(λ + δ), while
the eigenvectors of G remain unchanged. The subspace
can be determined easily given the alignments, without
the need for the iterative procedures. The nature of the
subspace selection by LT-LDA indicates that it may be
possible to accelerate the LT-LDA algorithm by fixing the
partitions learned by optimizing objective (16) and, hence,
removing the time-consuming iterative procedures, without
significant degradation in performance.

3.5 Remarks

Initialization. Both the solutions of the LT-LDA algorithm
and the abstract learning algorithm are locally optimal and
rely on the initializations. We use the alignments Pc of
training sequences in classc (c = 1, · · · , C) to the corre-
sponding abstract template learned in the original space as
the initialization of LT-LDA. The uniform alignments are
used to initialize Alg. 1 in the original space. In the subspace,
the coarse local structures discovered in the original space
are generally preserved, and the alignments are refined
since noises are removed. When the original features are too
noisy or the global optimal alignments are too unbalanced,
the learned alignments with such uniform initiation might
be quite different from the optimal alignments. In this
case, we can adopt similar strategies addressing the local
optimality of k-means to improve Alg. 1. For example, we
can randomly initialize the alignments several times and
choose the best local optimal solution.

Computational complexity. Let N be the average num-
ber of training sequences per sequence class and T be the
average length per sequence sample. L is the length of the
abstract template per class, d is the original dimension, and
d′ is the reduced dimension. The complexity of aligning each
sequence to the corresponding abstract template using the
modified DTW is O(LTd). The complexity of updating the
alignments and abstract templates using Alg. 1 for all the C
classes is O(ICNLTd), where I is the number of iterations
in Alg. 1. The complexity of recalculating St, Sb, and W is
O(CNTd2+C2L2d2+d3). The complexity of projecting all
training sequences is O(CNTdd′), d′ < d. Thus, the overall
complexity of Alg. 2 is O(I ′(ICNLTd+CNTd2+C2L2d2+
d3)), where I ′ is the number of iterations in Alg. 2.

Classification with abstract templates. The learned ab-
stract templates directly induce a prototype-based sequence

classifier. A test sequence is matched to the abstract tem-
plates of all classes by the modified DTW algorithm (Eq. (1)).
The class label of the abstract template that has the smallest
modified DTW distance is predicted as the class of the test
sequence. Furthermore, this nearest abstract template classifier
can be viewed as a nearest mean classifier. The abstract
template of a sequence class can be viewed as the mean of
this class. Similarly, we can define the higher-order statistics
of a sequence class. For example, for each element in the
abstract template, the covariance or higher-order moment
of the features that are aligned to it can be obtained, and the
covariance or higher-order moment of a sequence class can
be defined as the sequence of the covariances w.r.t all the
ordered elements. Statistics-based statistical methods such
as quadratic discriminant function can then be extended to
analyze sequence data.

Selection of L. The optimal L highly depends on the
data and can be selected by cross-validation. Since the
abstract templates have clear physical interpretations, L can
also be set according to the prior knowledge of the data. For
instance, when the abstract template captures ordered key
poses for action data, intuitively, L = 8 key poses can well
reveal the evolution of an action and distinguish different
actions. We evaluate the influence of L in Section 4.3. The
optimal L may be class-specific. Some sequence patterns
may contain more complex temporal structures or more
fluctuating transitions, so their abstract templates require
a larger L than other classes. In Section 4.7, we evaluate a
simple adaptation method to set class-specific L. We can also
employ some heuristic methods to automatically determine
L. For example, for each class, we can learn the abstract
template with a large L and keep merging the neighbor-
ing elements with the smallest distance until all pairwise
distances exceed a threshold, or we can start from L = 1
and keep splitting the element with the highest variance.
The reduced dimension d′ is the same for all classes since
LT-LDA learns a single projection for all classes.

Nonlinear extensions. LT-LDA can be extended to learn
nonlinear transformations through the kernel trick and em-
ploying deep neural networks. Both the kernel extension
and the deep extension follow the alternative optimiza-
tion procedure. When the nonlinear mapping is fixed, the
updates of the abstract templates and the corresponding
alignments remain the same as Alg. 1. When the alignments
are fixed, the partition of subclasses is fixed. For the ker-
nel extension, the kernelized LDA can be directly applied
to obtain the implicit nonlinear mapping. For the deep
extension, since the gradient w.r.t. the parameters of the
network cannot be calculated analytically, we can employ
the subgradient-based method following [41] to learn the
network for nonlinear mapping.

4 EXPERIMENTAL RESULTS

In this section, we evaluate the proposed LT-LDA on several
real-world datasets. The codes are publicly available2.

4.1 Datasets

ChaLearn Gesture dataset [57], [58] contains Kinect videos
from 20 Italian gestures. The dataset has been split into

2. https://github.com/BingSu12/LT-LDA
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training, validation and test sets. Following [59], [60], we
perform experiments on the segmented sequences and re-
port results on the validation set. There are 6,850 training
sequences and 3,454 testing sequences. MSR Action3D
dataset [61] consists of depth sequences from 20 sports
actions. Each action is performed 2 or 3 times by 10 subjects.
We follow the same cross-subject setting as in [62], [63] to
split the dataset into the training and test set, where the
action samples of half of the subjects are used for training,
and the samples of the rest of the subjects are used for
testing. There are 284 training sequences and 273 testing
sequences. MSR Daily Activity3D dataset [62] consists
of daily activity sequences captured by a Kinect device
from 16 activity types. The activities are performed by 10
subjects in the living room, and most of the activities involve
the human-object interactions. Each subject performs each
activity twice. We follow the cross-subject setting as in [62],
[63] again to split the dataset into the training and test
set, where the activity samples of half of the subjects are
used for training, and the rest of the samples are used for
testing. There are 160 training sequences and 160 testing
sequences. “Spoken Arabic Digits (SAD)” dataset from
the UCI Machine Learning Repository [64] consists of 8,800
vector sequences from ten classes.

There are 880 sequences per digit class. The dataset has
already been split into training and test sets. The Olympic
Sports dataset [65] consists of 783 video sequences from 16
actions. The dataset has been split into training and test sets,
where 649 videos are used for training and 134 videos are
used for testing. The UCF101 dataset [66] consists of 13,320
video clips from 101 action classes. This dataset provides
three training/testing splits.

4.2 Experimental setup

Frame-wide features. For the SAD dataset, each spoken
digit has been represented by a sequence of 13-dimensional
MFCC features. These MFCC features were computed using
the Hamming window with the sampling rate of 11,025 Hz,
16 bits and the filter preemphasized of 1-0.97Z−1. For action
datasets, we extract a feature vector from each frame. There-
fore, every action video is represented by a sequence of
frame-wide features. For the ChaLearn dataset, we employ
the frame-wide features provided by the authors of [59],
which are the histograms of quantized relative locations of
body joints with a dimensionality of 100. For the Action3D
dataset, we employ the frame-wide features provided by the
authors of [63], which are the relative angles of the 3D joints
with a dimensionality of 192. For the Activity3D dataset,
we employ the frame-wide features provided by the authors
of [62], which are the relative positions of the 3D joints with
a dimensionality of 390.

For the Olympic Sports dataset, we employ the im-
proved dense trajectories [67] and bag-of-words based
frame-wide features. Specifically, for each video, the MBH
descriptors are first extracted from the tracked trajectories
w.r.t. a dense regular grid for all frames. All descriptors from
all the training videos are clustered by k-means to form a
codebook with 4, 000 visual words. The frame-wide feature
is the histogram of the quantized descriptors extracted from
each frame, which has a dimensionality of 4, 000.
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Fig. 4. Different performances by the rank pooling and the SVM classifier
as functions of (a) the length L of the abstract template and (b) the
control factor a on the ChaLearn Gesture dataset.
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Fig. 5. Different performances by the rank pooling and the SVM classifier
as functions of (a) the length L of the abstract template and (b) the
control factor a on the MSR Action3D dataset.

Classification in the subspace and evaluation mea-
sures. We adopt three classifiers to perform sequence classi-
fication in the learned low-dimensional subspace, including
the HMM classifier, the DTW classifier, and the SVM classi-
fier with rank pooling [59], [60]. For the HMM classifier, a
left-to-right HMM with 4 states and self-loops is trained for
each sequence class, and a test sequence is classified to the
class whose HMM has the highest probability to generate
this sequence. The training and decoding of HMMs are
performed by HTK [68]. For the DTW classifier, the training
sequence that has the smallest sum of DTW distances, with
all other sequences from the same class is selected as the
template of this class. A test sequence is classified to the
class whose template has the smallest DTW distance from
it. The above two classifiers directly take sequences as input,
and we use accuracy as the performance measure. For the
SVM classifier, we encode each sequence into a vector by
rank pooling [59], which learns a linear function that orders
the frame-wide features via a ranking machine and utilizes
the parameters of the function as the vector representation
of the sequence. Linear SVMs are trained on these encoded
vectors. The parameter C is selected by cross-validation. A
test sequence is encoded into a vector and then input to
the SVMs for classification. We use mean average precision
(MAP) as the evaluation measure for the SVM classifier.

4.3 Influence of hyperparameters

The proposed LT-LDA has two preset hyperparameters: the
length of each abstract template L and the factor a con-
trolling the allowed degree of warping. In this section, we
evaluate the influence of them on the ChaLearn dataset and
the MSR Action3D dataset. Different performance measures
including accuracy, MAP, multiclass precision, and recall by
the SVM classifier are evaluated by increasing L from 3 to
21 with an interval of 3 while fixing a to 2 and increasing a
from 1 to 5 with an interval of 0.5 while fixing L to 8. The
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results are shown in Fig. 4 and Fig. 5, where the reduced
dimensionality is fixed to 45 and 20, respectively.

The optimal parameters are generally the same for mul-
ticlass indicators, including accuracy, precision, and recall,
but are different for MAP. On the ChaLearn dataset, LT-LDA
is insensitive to L for multiclass indicators and achieves the
highest MAP when L = 12. ATs with more stages help
to discriminate the subtle differences among fine gesture
actions. LT-LDA is also not very sensitive to a on this
dataset. It seems that allowing for larger warping leads to
better results because the subtle differences can be captured
more easily by more flexible alignments.

LT-LDA achieves the best multiclass performances when
L = 9 on the MSR Action3D dataset. The larger the L is, the
longer the template is, and the finer the captured temporal
structures are, but the less accurate the estimated statistics
of structures are, and the more likely they are to cause over-
fitting. Therefore, the performances decrease if the length
L is too long or too short. Generally, setting L within the
range of 6 to 9 leads to satisfactory results. A too large
a easily leads to unbalanced alignments. If a is too small,
the flexibility of alignments may be restricted. Allowing for
appropriate warping leads to satisfactory results. We fix a
to 2 in the following experiments and fix L to 8 unless
otherwise specified.

4.4 Effects of the joint learning

In LT-LDA, the latent alignments are jointly learned with
the underlying subspace. If we instead use the alignments
in the original space calculated by Alg. 1 directly, LT-LDA
degenerates to the initialization of W in LT-LDA. We denote
this algorithm by ini-LT-LDA and compare it with LT-LDA
on the ChaLearn dataset, the SAD dataset, and the Olympic
Sports dataset. The comparison results by using different
classifiers and evaluation measures are shown in Fig. 6,
Fig. 7, and Fig. 8, respectively.

On the ChaLearn dataset, the optimal results of LT-LDA
among all dimensions are better than those of ini-LT-LDA,
but the improvements are quite small. The parameter C of
the SVMs is fixed to 100 here. Tuning C by cross-validation
can further improve the performances of LT-LDA as shown
in Fig 10(c). On the SAD dataset, the improvements of LT-
LDA over ini-LT-LDA are still limited on the accuracies by
the DTW classifier but are more significant on MAPs by the
SVM classifier. This is because LT-LDA optimizes the overall
separability between sequence classes, and hence, sequences
from different classes are better separated en bloc. However,
regarding a specific test sequence, it may be distributed on
the boundary of a nearby class and confuse the classifier.

On the large-scale Olympic Sports dataset, LT-LDA sig-
nificantly outperforms ini-LT-LDA by a much larger margin.
This is because the depth information and the locations of
human joints are available for the ChaLearn dataset; thus,
the alignments in the original space are accurate and should
be preserved in the optimal subspace. After the refinement
of LT-LDA, the alignments remain nearly unchanged and
the performance changes are small. On the Olympic dataset,
only the raw videos with complex backgrounds are avail-
able. The initial alignments are quite noisy. Refining them
by LT-LDA improves the performances significantly.
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Fig. 6. Comparisons of the proposed LT-LDA without and with the joint
learning of the latent alignments. (a) Accuracies by the DTW classifier
and (b) MAPs by the rank pooling and the SVM classifier as functions of
the dimensionality of the subspace on the ChaLearn Gesture dataset.
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Fig. 7. Comparisons of the proposed LT-LDA without and with the joint
learning of the latent alignments. (a) Accuracies by the DTW classifier
and (b) MAPs by the rank pooling and the SVM classifier as functions of
the dimensionality of the subspace on the SAD dataset.

In summary, in nearly all cases, the best results among
all these dimensions of LT-LDA outperform those of ini-LT-
LDA. By jointly learning the latent alignments associated
with the subspace, the classification performance in the sub-
space is improved. This is because the temporal structures
and the alignments may change from those in the original
space. In the learned subspace of ini-LT-LDA, although
different classes are better separated under the alignments
in the original space, additional confusions may be intro-
duced due to the changes of alignments. However, for LT-
LDA, since the separability is maximized in the subspace
under the corresponding alignments, the learned subspace
achieves joint optimality among all possible subspaces.

We can also observe that on some datasets with some
classifiers, the performances of LT-LDA are lower than
those of ini-LT-LDA in some dimensions. In addition to
overfitting on the training set, another possible reason is
that the aligned paths of each class are learned without
discriminating other classes, and the objective of LT-LDA is
not directly related to a classification performance measure.
For some dimensions, although our joint learning leads to
better separation of temporal structures, it may interfere
with the classifier, as the discrimination of the classifier
may not necessarily accord to such separation but rather to
other aspects of some local or global properties of sequences.
Therefore, updating the paths may cause some fluctuation-
s. However, it generally leads to a more discriminative
subspace because the entire sequences are more likely to
attain better separation if the temporal structures are better
separated.

4.5 Evaluation of the nearest AT classifier

We evaluate the performances of the nearest abstract tem-
plate (AT) classifier on the ChaLearn dataset and the MSR
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Fig. 8. Comparisons of the proposed LT-LDA without and with the joint
learning of the latent alignments. (a) Accuracies and (b) MAPs by the
rank pooling and the SVM classifier as functions of the dimensionality of
the subspace on the Olympic Sports dataset.
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Fig. 9. Comparisons of the DTW classifier and the nearest AT classifier
with the uniform AT, the initial AT, and the learned AT by LT-LDA on (a)
the ChaLearn dataset and (b) the Action3D dataset.

Action3D dataset. Since AT depends on the alignments,
different alignments lead to different AT. We use uniform
AT, initial AT and learned AT to denote the ATs with the
uniform alignments, the alignments in the original space,
and the latent alignments in the subspace learned by LT-
LDA, respectively. We compare the performances of the
nearest AT classifier by employing the uniform AT, the
initial AT, and the learned AT as the prototype, respectively,
in Fig. 9. Both the initial ATs generated by ini-LT-LDA and
learned ATs generated by LT-LDA outperform uniform ATs
significantly. This indicates that the proposed AT learning
method Alg. 1 is able to produce a more discriminative
prototype that better captures the common representative
temporal structures of a sequence class. We can also observe
that the superiorities of learned ATs over initial ATs show
similar trends to those of LT-LDA over ini-LT-LDA by using
other classifiers in Section 4.4. This verifies the effectiveness
of the joint learning of the subspace and the ATs again.

The accuracies of the DTW classifier are also shown
as baselines for comparison, where the sequences are pro-
jected by LT-LDA, and the transformed sequence that has
the smallest sum of DTW distances of all other training
sequences from the same class is selected as the prototype.
It can be observed that the accuracies are inferior to those of
the nearest AT classifiers. This may be because the AT with
any alignment encodes the averaged ordered characteristics
of a sequence class and acts as a sort of statistic. Therefore,
such a prototype is more robust than a single selected
training sequence. We can divide a sequence class that has
large intraclass variations into some subclasses and extract
an AT for every subclass to further improve the AT-induced
classifier.
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Fig. 14. (a) Accuracies and (b) MAPs by the rank pooling and the SVM
classifier as functions of the dimensionality of the subspace on the
Olympic Sports dataset.

4.6 Comparison with different DR methods

We compare the proposed LT-LDA with other Fisher
criterion-based dimensionality reduction methods. These
methods include LDA and kernel LDA (kLDA), by viewing
the features in sequences as independent samples with the
same label, and LSDA. The performances of the original fea-
ture sequences with the three classifiers are also presented
as baselines. We use the drtoolbox [69] to perform LDA and
kLDA. On most datasets, the length of a single sequence is
generally comparable to the number of training sequences
of a class. Therefore, for kLDA, it is impractical to use all the
features in all the training sequences because this will lead to
an enormous size of the kernel matrix and very large space
and computational overhead. Following [2], we sample 1 to
5 features randomly from each sequence for training. We use
the same parameters of LSDA as in [1], [2].

Fig. 10, Fig. 11, Fig. 12 and Fig. 13 depict the perfor-
mances as functions of the dimensionality of the learned
subspace on the ChaLearn dataset, the MSR Action3D
dataset, the MSR Activity3D dataset, and the SAD dataset,
respectively. We can observe that the proposed LT-LDA
achieves the best performances among all these dimension-
ality reduction methods, in regard to all three classifiers with
different evaluation measures on nearly all of the datasets.
On the ChaLearn dataset and the MSR Action3D dataset, the
accuracies of LT-LDA are consistently better than those of
other methods on all the reduced dimensions, especially in
regard to the DTW classifier, where LT-LDA outperforms the
second LSDA by a margin of more than 10%. With regard to
the HMM classifier and the DTW classifier, LT-LDA, which
uses less than 15 dimensions, achieves much better results
than the original features with hundreds of dimensions.

On the MSR Activity3D dataset, with the SVM classifier
implemented with the rank pooling, the best MAP and
recall of LT-LDA outperform those of the second LSDA by
a margin of more than 5%. On the SAD dataset, regarding
the HMM classifier and the SVM classifier, LSDA performs
comparatively with LT-LDA. This is because sufficient train-
ing samples are available on this dataset and the original di-
mension of the frame-wide features is low. Therefore, LSDA
can reliably train HMMs to obtain sequence statistics. On all
the datasets, the worse performances of LDA and kLDA are
caused by the dependency of features in sequences, which
violates the basic assumption of the two methods, while LT-
LDA well exploits such temporal dependencies by learning
the latent alignments.

For the Olympic Sports dataset, there are less than 35
training videos per class, but each video generally has hun-
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Fig. 10. (a) Accuracies by the HMM classifier, (b) accuracies by the DTW classifier, (c) MAPs by the SVM classifier and (d) multiclass average
recalls by the SVM classifier as functions of the dimensionality of the subspace on the ChaLearn dataset.
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Fig. 11. (a) Accuracies by the HMM classifier, (b) accuracies by the DTW classifier, (c) accuracies by the SVM classifier and (d) MAPs by the SVM
classifier as functions of the dimensionality of the subspace on the MSR Action3D dataset.
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Fig. 12. (a) Accuracies by the HMM classifier, (b) accuracies by the DTW classifier, (c) MAPs by the SVM classifier and (d) multiclass average
recalls by the SVM classifier as functions of the dimensionality of the subspace on the MSR Activity3D dataset.
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Fig. 13. (a) Accuracies by the HMM classifier, (b) accuracies by the DTW classifier, (c) MAPs by the SVM classifier and (d) multiclass average
recalls by the SVM classifier as functions of the dimensionality of the subspace on the SAD dataset.

dreds of frames, and the dimensionality of the feature for
each frame is 4, 000. Therefore, it is impractical to train an
HMM for each class, and hence, LSDA cannot be employed.
kLDA is also computationally prohibited. We compare LT-
LDA with PCA and LDA on this dataset. LDA can only pre-
serve C − 1 = 15 dimensions at most. We set L to 20 on this
dataset such that LT-LDA can preserve 20×C−1 = 319 di-
mensions at most. As shown in Fig. 14, LT-LDA consistently
outperforms PCA and further improves the performances
when more than 15 dimensions are preserved. With only
250 dimensions, LT-LDA achieves comparable accuracy and
MAP with the original BoW-based distributed features with
4, 000 dimensions. This implies that the BoW features can
be greatly compressed by LT-LDA, while the discriminative

information is maintained.

4.7 Empirical analysis

Comparisons of training times. On the ChaLearn dataset,
the training times of LDA, LSDA, and LT-LDA are 1087.6,
1113.3, and 12509 seconds, respectively, when reducing the
dimension to 45. On the SAD dataset, the training times of L-
DA, LSDA, and LT-LDA are 128.1, 860.4, and 3742.9 seconds,
respectively, when reducing the dimension to 12. LSDA and
LT-LDA take longer training times than LDA to tackle the
temporal alignments. Compared with LSDA, which fixes the
alignments in the original space, LT-LDA achieves the joint
learning of the projection and the alignments at the cost
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Fig. 15. Performances as functions of the number of training sequences
per class (a) for the SVM classifier on the ChaLearn dataset and (b) for
the DTW classifier on the SAD dataset.

of more training time. All these methods only require one
matrix multiplication to transform a test sequence.

Influence of the number of training sequences.
Fig. 15(a) and Fig. 15(b) plot the performances of LT-
LDA and the other methods as functions of the number
of training sequences per class on the ChaLearn dataset
and the SAD dataset, respectively. We randomly select dif-
ferent numbers of training sequences per class. We repeat
the random selection five times and report the average
performances and standard deviations. On the ChaLearn
dataset, the dimension is reduced to 45, and a is set to 4.
MAP and the multiclass F-score for the SVM classifier are
used as performance measures. On the SAD dataset, the
dimension is reduced to 5. For the DTW classifier, accuracy
is used as the performance measure. We can observe that the
proposed LT-LDA outperforms other methods significantly
when only a few training sequences are available and con-
sistently obtains superior performances with the increase in
the number of training sequences. LT-LDA obtains stable
performances with only 100 training sequences per class.
These results verify that LT-LDA does not require large
amounts of training data.

Influence of randomly dropping components. We first
use LT-LDA with L = 8 to learn the abstract templates
w.r.t. the alignments in the subspace. Then, we randomly
remove different numbers of components from the abstract
template for each class. We use the remaining components
to construct Sb (7) and obtain the projection. The number
of removed components per class increases from 0 to 6, and
we repeat the random removal five times for each number.
Fig. 16(a) shows the average MAP, multiclass precision,
recall, and F-score for the SVM classifier as functions of the
number of removed components on the ChaLearn dataset.
Fig. 16(b) shows the average accuracy for the DTW classifier
as a function of the number of removed components on
the SAD dataset. As expected, the performances decrease
as more components are removed. The learned abstract
template captures the essential temporal structures. Each
component is necessary and represents a key stage.

Impact of class-specific L. We perform a simple adap-
tation method to determine class-specific L. For the c-th
class, we set L to 0.1 times the average length of all training
sequences of this class. In this way, L is larger for classes
with longer average lengths because patterns with longer
durations are more likely to contain more temporal struc-
tures. The results of LT-LDA using this adaptation method
(denoted by LT-LDA-var) with the SVM classifier on the
ChaLearn dataset are shown in Table 1. a is set to 4, and the
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Fig. 16. Performances as functions of the number of randomly removed
components per class (a) for the SVM classifier on the ChaLearn
dataset and (b) for the DTW classifier on the SAD dataset.

TABLE 1
Comparison with other methods on the ChaLearn dataset.

Method Precision Recall F-score
Rank pooling [59] 0.753 0.751 0.752
GRP [45] 0.753 0.752 0.751
LSDA+rank pooling [2] 0.768 0.767 0.767
LT-LDA+rank pooling 0.784 (45) 0.783 (45) 0.783 (45)
LT-LDA-var+rank pooling 0.791 (45) 0.790 (45) 0.789 (45)

reduced dimension is 45. We can observe that this simple
class-specific adaptation method outperforms the uniform
assignment of L. This indicates that effective adaptation
techniques for automatically learning class-specific L benefit
the proposed LT-LDA method.

4.8 Comparison with state-of-the-art methods

On the ChaLearn dataset, we evaluate the multiclass preci-
sion, recall, and F-score for LT-LDA with fine-tuned a = 4
via the rank pooling and the SVM classifier. The compar-
isons with the gesture recognition methods using the same
frame-wide features are shown in Table 1. LT-LDA out-
performs other methods using only 45 dimensions. Setting
class-specific L further improves the performances of LT-
LDA.

LT-LDA can be used to transform arbitrary frame-wide
features. Any sequence classification method can be applied
to the resulting temporal representations. On the MSR Ac-
tion3D dataset, we combine LT-LDA with two generalized
temporal sliding LSTM (G-TS-LSTM) networks [49], name-
ly, G-TS-LSTM-AM and G-TS-LSTM-GM, where AM and
GM indicate that average mean and geometric mean are
used for the ensemble of multiterm TS-LSTM networks,
respectively. In [49], the frame-wide features are the 60-
dimensional motion features. We reduce the dimension to
30 for LT-LDA and use the projected sequences as input to
the LSTM networks. The results in comparison with state-
of-the-art methods are shown in Tab. 2. LT-LDA improves
the accuracies of the original LSTM networks by 1% using
only half the dimension.

On the MSR Activity3D dataset, the covariance-based
methods such as kernelized-COV [73] work well. The frame-
wide features used in [73] are the 120-dimensional velocity
and acceleration of joint positions [70], which are publicly
available. We employ LT-LDA to reduce the dimension
of the features to 80 and apply kernelized-COV [73] to
the transformed sequences. The accuracies in comparison
with state-of-the-art methods are shown in Tab. 3. LT-LDA
improves the accuracy of kernelized-COV by approximately
2% and outperforms other methods. These results indicate
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TABLE 2
Comparison with state-of-the-art methods on the MSR Action3D

dataset.

Method Accuracy
Actionlet Ensemble [62] 88.2%
Moving Pose [70] 91.7%
COV-JH-SVM [71] 80.4%
Ker-RP-POL [72] 96.2%
Ker-RP-RBF [72] 96.9%
Kernelized-COV [73] 96.2%
SCK+DCK [74] 91.45%
GRP [45] 81.68%
Qiao et al. [75] 95.9%
Ji et al. [76] 90.8%
FTP-SVM [48] 90.01%
Bi-LSTM [48] 86.18%
G-TS-LSTM-AM [49] 92.31%
G-TS-LSTM-GM [49] 91.21%
LT-LDA+G-TS-LSTM-AM 93.04%
LT-LDA+G-TS-LSTM-GM 92.67%

TABLE 3
Comparison with state-of-the-art methods on the MSR Activity3D

dataset.

Method Accuracy
Actionlet Ensemble [62] 85.8%
Moving Pose [70] 73.8%
COV-JH-SVM [71] 75.5%
Ker-RP-POL [72] 96.9%
Ker-RP-RBF [72] 96.3%
Kernelized-COV [73] 96.3%
LRTS [77] 80.6%
Qiao et al. [75] 75.0%
Baradel et al. [78] 90.0%
Luo et al. [79] 86.9%
GRP [45] 91.3%
Ji et al. [76] 81.3%
DSSCA SSLM [80] 97.5%
MDMTL [81] 93.8%
LT-LDA+Kernelized-COV 98.1%

that LT-LDA is able to produce more discriminative low-
dimensional temporal representations and therefore im-
proves various classification methods.

On the UCF101 dataset, we employ the ResNeXt-101
model [52] that is pretrained on the Kinetics dataset [82]
to extract frame-wide features. For each video, ResNeXt-101
is applied to every 16 frames successively, resulting in a
sequence of 2048-dimensional features. We use LT-LDA to
reduce the dimension to 500. We encode each transformed
sequence into a vector representation by mean pooling and
employ the linear-SVM for classification. The average accu-
racies over three splits in comparison with state-of-the-art
methods are shown in Tab. 4, where “ResNeXt-101+SVM”
indicates our reproduced result of classifying the original
ResNeXt-101 features by mean pooling and the SVM. C3D,
TSN, and I3D fuses multiple networks. LT-LDA is applied
to a single deep network taking only RGB data as input. LT-
LDA obtains comparable results with other state-of-the-art
single deep networks in addition to the fine-tuned ResNeXt-
101 with larger inputs (64 frames). Under the same con-
ditions, the temporal representations produced by LT-LDA
achieve better results than the original deep representations
but only use less than a quarter of the original dimension.

TABLE 4
Comparison with state-of-the-art methods on the UCF101 dataset.

Method Accuracy
Two-stream networks [83] 88.0%
C3D (3 nets) + IDT [50] 90.4%
TSN (3 modalities) [84] 94.2%
HDPE [13] 83.6%
GRP + IDT [45] 92.3%
Two-steam I3D [51] 98.0%
ResNeXt-101 [52] 90.7%
ResNeXt-101 (64f, fine-tuned) [52] 94.5%
ResNeXt-101+SVM 89.2%
LT-LDA+ResNeXt-101 90.3%

5 CONCLUSION

In this paper, we have presented a dimensionality re-
duction method for sequence data, called LT-LDA, which
learns the subspace and infers the latent alignments with-
in it simultaneously. LT-LDA transforms the sequences of
high-dimensional features into new sequences of lower-
dimensional features by projecting the features in sequences
onto a subspace, where the separability of different temporal
structures in all the sequence classes is maximized. The
temporal structures are discovered by learning an abstract
template and aligning the training sequences to it for each
class. The learned subspace is optimal in the sense that the
separability under the alignments in this subspace is larger
than that in any other subspace under the alignments in
that subspace. We show that the learning of the subspace,
the latent alignments, and the temporal structures can be
formulated into a joint objective function, which can be
solved by iteratively repeating the two alternative proce-
dures of applying LDA and learning the abstract templates.
The effectiveness of the proposed method is demonstrated
on several real-world datasets using various evaluation
measures and classifiers.
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V. Athitsos, and H. Escalante, “Multi-modal gesture recognition
challenge 2013: Dataset and results,” in Proceedings of the 15th ACM
on International conference on multimodal interaction. ACM, 2013,
pp. 445–452.
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