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Abstract

Human pose estimation (HPE) is inherently a homoge-
neous multi-task learning problem, with the localization of
each body part as a different task. Recent HPE approaches
universally learn a shared representation for all parts, from
which their locations are linearly regressed. However, our
statistical analysis indicates not all parts are related to each
other. As a result, such a sharing mechanism can lead to
negative transfer and deteriorate the performance. This po-
tential issue drives us to raise an interesting question. Can
we identify related parts and learn specific features for them
to improve pose estimation? Since unrelated tasks no longer
share a high-level representation, we expect to avoid the ad-
verse effect of negative transfer. In addition, more explicit
structural knowledge, e.g., ankles and knees are highly re-
lated, is incorporated into the model, which helps resolve
ambiguities in HPE. To answer this question, we first pro-
pose a data-driven approach to group related parts based
on how much information they share. Then a part-based
branching network (PBN) is introduced to learn represen-
tations specific to each part group. We further present a
multi-stage version of this network to repeatedly refine in-
termediate features and pose estimates. Ablation experi-
ments indicate learning specific features significantly im-
proves the localization of occluded parts and thus benefits
HPE. Our approach also outperforms all state-of-the-art
methods on two benchmark datasets, with an outstanding
advantage when occlusion occurs.

1. Introduction

Human pose estimation (HPE) aims to locate body parts
from input images'. It serves as a fundamental tool for sev-
eral practical applications such as human-computer inter-
action [27], person re-identification [34] and action recog-
nition [46]. Early work attempts to solve this problem via
handcrafted features and graphical models [10, 30, 32, 36,

'We focus on 2D single-person pose estimation from RGB images.
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Figure 1. Top: Previous approaches exploit CNNs to learn fully
shared features for all body parts, from which their locations, in
the form of spatial coordinates or heat maps, are linearly regressed.
Middle: Mutual information of each part’s location w.r.t. the right
ankle’s location. Bottom: Our statistical analysis (Sec. 3.1) in-
dicates not all parts are related to each other. Motivated by the
fact that sharing a representation for unrelated tasks can deterio-
rate their performances, this paper tries to identify related parts
and study whether learning specific features for them helps im-
prove pose estimation.

, 53]. However, they failed to perform well in case of se-
vere body deformation, occlusion, clutter backgrounds and
varying viewpoints.

To tackle these difficulties, recent and state-of-the-art
HPE systems [18, 38, 49, 50, 5, 6, 35, 3,28, 48, 51, 45] are
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universally built on convolutional neural networks (CNN )
[11, 21, 20] due to their ability to learn robust feature rep-
resentations for both images and spatial contexts directly
from data. Toshev and Szegedy [45] use a cascade of CNNs
to regress the spatial coordinates of body joints in a holis-
tic fashion. Wei et al. [48] design a multi-stage network
to recursively refine belief maps of part locations. Newell
et al. [28] consolidate features across all scales via a novel
hourglass network to capture various spatial relationships
associated with the body. Tang ef al. [38] exploit CNNs to
learn the compositionality [39] of human bodies to resolve
low-level ambiguities in high-level pose predictions.

One commonality of these approaches is that they learn
a shared representation to linearly regress all part locations
(in the form of spatial coordinates or heat maps), as shown
in the upper part of Fig. 1. This is more effective and ef-
ficient than learning different networks for different parts
because HPE is inherently a homogeneous multi-task learn-
ing (MTL) problem [33], with the localization of each part
as a different task. Sharing a representation among related
tasks can result in a more compact model and better gener-
alization ability [4, 33]. Specifically, the first a few layers
of CNNs learn low-level features such as Gabor filters and
color blobs, which are general to many datasets and tasks
[54]. Higher-level semantics, e.g., body parts, appears in
deeper layers [56, 54]. Hints of some parts, e.g., knees,
provide important information and constraints on locating
other related parts, e.g., ankles, which are difficult to learn
if the representations are not shared [4, 33].

However, due to the flexibility of an articulated body, not
all parts are related to each other. For example, clues of the
left or right wrist provide little information on the location
of the right ankle, as illustrated in the middle part of Fig. 1.
As studied in the literature of MTL [4, 33, 19, 17], sharing
features for those unrelated or weakly related tasks can dete-
riorate their performances — a phenomenon called negative
transfer [44]. While hints of related parts provide a reliable
guide on locating an ambiguous or occluded part, regression
from irrelevant features makes the model forcibly memo-
rize them and leads to overfitting [8]. This line of analysis
drives us to raise an interesting question. Can we identify re-
lated parts and learn specific features for them to improve
pose estimation? The idea is illustrated in the lower part of
Fig. 1. The representation learned in the shallower layers
of a convolutional network is general [54, 56] and thus can
be safely shared among all parts. Since unrelated tasks no
longer share high-level features, we expect to avoid the ad-
verse effect of negative transfer. In addition, more explicit
structural knowledge, e.g., ankles and knees are highly re-
lated, is exposed, which encourages the model to exploit
hints of related parts to resolve ambiguities in HPE.

The goal of this paper is to have a comprehensive study
on this question. We start with two strategies to identify re-

lated parts. The first one is handcrafted and based on the
human body structure [41, 38, 59]. Intuitively, parts con-
nected in nature are related. The second strategy is data-
driven and treats the location of each part as a random vari-
able. We estimate their probability distributions from a pub-
lic dataset [ 1] and group related parts based on their mutual
information. Then a part-based branching network (PBN)
is introduced. It consists of a trunk to learn a shared repre-
sentation that is general to all body parts and some subse-
quent branches to learn high-level features that are specific
to each group of related parts. Finally, we present a multi-
stage version of this network to repeatedly refine intermedi-
ate features and pose estimates.

Our ablation study demonstrates that (1) the data-driven
part grouping strategy generally works better than the hand-
crafted one and (2) learning those specific features sig-
nificantly improves the localization of occluded parts and
thus benefits HPE. Experimental results on two benchmarks
show the proposed approach outperforms all state-of-the-art
methods, with a clear advantage when occlusion occurs.

In sum, the contribution of this paper is as follows.

o All previous CNN-based HPE approaches take it for
granted that features should be fully shared for all body
parts. To the best of our knowledge, we are the first to
identify the problem of this practice and address it via
a simple and effective part-based branching network.

e This is the first attempt to exploit the probability distri-
butions of part locations and their mutual information
to group related parts. We show it is more effective
than an alternative approach based on the human body
structure.

e Our model has an outstanding advantage on locating
occluded parts, which is the greatest challenge for ex-
isting methods. We also report new state-of-the-art re-
sults on two well-known benchmark datasets.

2. Related Work

CNN-based HPE. Different from all previous CNN-
based HPE approaches [18, 38, 49, 50, 5, 6, 35, 3, 28, 48,

, 45], which learn a fully shared representation for all
body parts, this paper means to have a comprehensive study
on whether learning specific features for related parts helps
HPE. In addition, we propose different strategies to identify
related parts and test their effectiveness.

MTL. By learning tasks in parallel while using a shared
representation, MTL [4, 58, 13, 26] exploits the domain in-
formation contained in the training signals of related tasks
as an inductive bias to improve generalization. It expects
what is learned for each task can help other tasks be learned
better.
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Recently, MTL has been successfully applied to land-
mark detection. Zhang et al. [57] optimize facial landmark
detection together with heterogeneous but subtly correlated
tasks, i.e., head pose estimation and facial attribute infer-
ence. Ranjan et al. [31] design a unified deep MTL frame-
work for simultaneous face detection, landmark localiza-
tion, pose estimation and gender recognition. Li et al. [22]
simultaneously learn a pose-joint regressor and a sliding-
window body-part detector in a deep neural network. All
these approaches treat the localization of all landmarks like
a single task and introduce some auxiliary tasks for joint
training. By contrast, we focus on HPE alone and explicitly
treat the localization of each part as a different task. In ad-
dition, they share a representation for all landmarks while
we learn specific features for related parts.

Some earlier work [19, 17] tries to tackle the negative
transfer problem by imposing some structural prior, e.g.,
sparsity, on the model parameters. However, they focus on
linear models with predefined features. Recently, Yang et
al. [52] exploit tensor factorization to flexibly share knowl-
edge in fully connected and convolutional layers. Lu e al.
[24] propose a greedy and dynamic strategy to build MTL
networks. However, they focus on network construction and
limit their scope to classification tasks whose outputs are
not structured. By contrast, we are the first to identify the
problem of sharing a representation for all body parts in the
context of HPE. This is also the first study on whether learn-
ing specific features for related parts improves pose estima-
tion. In addition, we propose a novel and effective strategy
to identify related parts by measuring their mutual informa-
tion.

Related parts. Several lines of research have made
use of related parts to build hierarchical graphical models
[10, 16, 29, 30, 41, 47] or network architectures [38] for
HPE. Our approach differs with them in that: (1) they use
fully shared (handcrafted or learned) features for all body
parts while we learn specific features for related parts; (2)
they manually define related parts based on the body struc-
ture while we also consider a data-driven approach based on
mutual information.

3. Our Approach

We first introduce two strategies to identify related body
parts (Sec. 3.1). Then a part-based branching network is
proposed to learn specific features for them (Sec. 3.2). Fi-
nally, we present a multi-stage version of this network to re-
peatedly refine intermediate features and part localizations
(Sec. 3.3).

3.1. Related body parts

The most straightforward way to identify related parts
is to exploit the human body structure. Intuitively, parts
connected in nature are related. Following [38, 4 1], sixteen
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Figure 2. (a) Normalized mutual information between each pair of
body parts. (b) Five groups of related parts obtained by applying
spectral clustering to the matrix in (a).

body parts can be divided into six groups: (1) head top,
upper neck and thorax, (2) left wrist, left elbow and left
shoulder, (3) right wrist, right elbow and right shoulder, (4)
left knee and left ankle, (5) right knee and right ankle, (6)
left hip, right hip and pelvis.

The second strategy treats the location of each part as
a random variable I, € L,m € {1,...,M}, where L is
the spatial domain and M is the total number of interest-
ing body parts. A natural way to measure the relatedness
or mutual dependency between two random variables is to
calculate their mutual information [25]:

Hbnsbn) = D7 D7 pllms bn) log (M) (1)

Im€LIEL p(lm)p( n)

where p(-) and p(-,-) respectively represent marginal and
joint probability distributions. It quantifies the amount of
information obtained about one random variable through
observing the other random variable. A high value of
I(l,,,1,) indicates that features strongly relevant to part m
also provide informative clues of part n, and vice versa.
Thus, sharing a high-level representation for them should be
beneficial. Compared with the Pearson correlation, which
measures the strength of a linear association between two
random variables, the mutual information is a more suitable
metric here because it accounts for both linear and nonlinear
associations and is zero if and only if two random variables
are independent.

We estimate distributions of part locations from data in
a nonparametric fashion. The MPII human pose dataset [1]
is adopted here because (1) it has 25k training samples with
high-quality annotations, e.g., human poses, scales and cen-
ters and (2) it covers a wide range of everyday human ac-
tivities and a great variety of full-body poses. We scale the
poses and center them in a normalized spatial domain, i.e.,
a 16 x 16 lattice. A low resolution is necessary because
(1) it makes the statistical estimation robust to small pose
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perturbations and (2) the total number of samples is lim-
ited. Then we use histograms to estimate p(l,,, l,) where
m,n € {1,.... M }.

Fig. 2(a) visualizes the mutual information computed
between each pair of body parts. To focus on the related-
ness between different parts, we have removed the diagonal
elements and linearly normalized all the remaining entries
to be within [0, 1]. Obviously, some parts, e.g., right ankle
and left ankle, are more related than the others, e.g., right
ankle and left wrist.

Finally, we treat {I (I, ln)}m.nef1,...,ary as an affinity
matrix and use spectral clustering [9] to group related parts.
For example, setting the cluster number to five will result
in a part grouping shown in Fig. 2(b). We can see most
parts within the same group are connected in the body skele-
ton, which agrees to our intuition. The only exception is
the group of ankles and knees denoted by the purple dots.
This result is easy to understand from Fig. 2(a): all of them
share high values of mutual information between each other.
These four parts will still be in the same group even if the
cluster number is increased by one. Instead, the head and
neck will be detached from the shoulders and thorax.

3.2. Part-based branching network (PBN)

As illustrated in Fig. 3, a part-based branching net-
work (PBN) is a CNN architecture consisting of two se-
quential stages: a frunk to learn a shared representation
that is general to all body parts and some branches to learn
high-level features that are specific to each group of related
parts. Following the standard protocol of single-person pose
estimation [0, 18, 28, 38, 50], its input is a RGB image
cropped around a target person and scaled to a fixed size,
e.g., 256 x 256.

The network first uses convolutions and max-poolings
to produce feature maps with decreasing spatial dimensions
but increasing channel numbers, a practice adopted in recent
CNN architectures [14, 28, 38, 50]. Specifically, it starts
with three 3 X 3 convolutional layers (64 channels) and one
2 x 2 pooling layer (after the first convolution), followed
by a residual block”® (128 channels) and another round of
pooling to bring the resolution down from 256 x 256 to
64 x 64. After two subsequent residual blocks (128 and 256
channels), we get a 256-channel feature map of resolution
64 x 64, i.e., the first yellow rectangle in Fig. 3.

Next is an hourglass network [28] to strengthen the
shared representation. It uses residual blocks and max-
poolings to process input features down to a very low res-
olution, i.e., 4 X 4. At each max-pooling step, the network

2The bottleneck residual block [14] is used throughout our network. It
consists of three layers, i.e., 1 X 1,3 x 3, and 1 x 1 convolutions. The
1 x 1 layers are responsible for reducing and then increasing (restoring)
dimensions, leaving the 3 X 3 layer a bottleneck with smaller input/output
dimensions.
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Figure 3. Illustration of a part-based branching network (PBN) for
HPE. The gray and blue rectangles respectively denote an input
image and predicted heat maps. The yellow and green rectangles
respectively represent shared and specific features. The channel
number is included in each colored rectangle. An MSE loss is
applied to compare the predicted heat map to a ground truth one.
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branches off and applies one more residual block at the orig-
inal pre-pooled resolution. When reaching the lowest reso-
lution, it begins a top-down sequence of upsamplings and
elementwise additions to combine features across scales.
After a subsequent residual block at the output resolution,
the network outputs a feature map with the same size as its
input. All residual blocks here output 256-channel features.

The hourglass network is adopted here for two reasons.
First, by processing and consolidating features across multi-
ple scales, it captures various spatial relationships and con-
texts within the input feature maps. Second, the eight-stack
hourglass network and its recent variants [6, 50, 18, 38]
have achieved state-of-the-art results on standard bench-
marks. Thus, it serves as a suitable baseline to test whether
learning specific features for related parts can help improve
pose estimation.

Finally, the network uses a set of branches to learn spe-
cific features for related parts, as shown in Fig. 3. For each
part group, we first apply a 1 x 1 convolution to reduce the
feature dimension from 256 to W, e.g., W = 64. After D
subsequent residual blocks, e.g., D = 1, another 1 x 1 con-
volution is used to regress the heat map of each part in this
group. Each pixel of a heat map represents the probability
of a part’s presence at the corresponding coordinate. Here
W and D are two hyperparameters respectively controlling
the width and depth [14] of specific feature layers. We will
use ablation experiments to study how they affect the HPE
performance. In the training phase, a mean squared error
(MSE) loss is applied to compare the predicted heat map
to a ground truth one consisting of a 2D Gaussian (std=1
pixel) centered on the part location.

Since unrelated tasks are no longer learned using a fully
shared representation, a PBN can reduce the adverse ef-
fect of negative transfer. Compared with using different
branches for different parts or one branch for all parts, our
approach incorporates more explicit structural knowledge,
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Figure 4. Illustration of stacking multiple PBNs. The symbols
in Fig. 3 are reused here. Each PBN predicts a set of heat maps,
i.e., the blue rectangles. An MSE loss is applied to them using the
same ground truth (omitted in the figure). The orange and green
dashed lines denote two options to propagate shared or specific
features to the next PBN. In practice, we find the former works
better.

e.g., ankles and knees are highly related, into the network
and guides it to exploit hints of related parts to resolve am-
biguities in pose estimation.

3.3. Stacked PBNs

Recent study [28, 50, 6, 38] shows that sequentially
stacking multiple CNN modules end-to-end, feeding the
output of one as input into the next, can repeatedly refine
initial estimates and intermediate features across the whole
image. This motivates us to extend our network to a multi-
stage version as illustrated in Fig. 4. Following Newell ef
al. [28], three feature maps are fused via elementwise addi-
tions: (1) an identity mapping from the input of the current
hourglass, (2) heat map predictions remapped by a 1 x 1
convolution to match the channel number of the intermedi-
ate features and (3) shared features after the hourglass, de-
noted by the orange dashed line in Fig. 4. The fusion result
then serves directly as the input for the next PBN, which
generates another set of predictions. An MSE loss is ap-
plied to the predictions of all stacked PBNs using the same
ground truth.

We have also considered propagating specific features
instead of shared ones to the subsequent PBN, denoted by
the green dashed line in Fig. 4. However, we practically find
this will bring difficulty to the learning process, increasing
both training and validation losses, and degrade the HPE
performance.

4. Experiments

Our approach is evaluated on two HPE benchmark
datasets: MPII Human Pose [!] and Leeds Sports Pose
(LSP) [16]. The MPII dataset consists of around 25k im-
ages with 40k annotated samples (28k for training, 11k for
testing). Following [43, 28, 38], 3k samples are taken as a
validation set to tune hyperparameters and conduct ablation
study. The LSP dataset and its extended training set con-
tain 11k training images and 1k testing images from sports

Head Sho. Elb. Wri. Hip Knee Ank. Mean
Bulat, ECCV’16 [3] 97.9 95.1 89.9 853 89.4 85.7 81.7 89.7
Gkioxary, ECCV’16 [12] 96.2 93.1 86.7 82.1 852 81.4 74.1 86.1
Insafutdinov, ECCV’16 [15] 96.8 95.2 89.3 84.4 88.4 834 78.0 88.5
Lifshitz, ECCV’16 [23] 97.8 93.3 85.7 80.4 853 76.6 702 85.0

Newell, ECCV’16 [28] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9
Belagiannis, FG’17 [2] 97.7 95.0 88.2 83.0 87.9 82.6 784 88.1
Chu, CVPR’17 [6] 98.5 96.3 91.9 88.1 90.6 88.0 85.0 91.5
Chen, ICCV’17 [5] 98.1 96.5 92.5 88.5 90.2 89.6 86.0 91.9
Sun, ICCV’17 [37] 97.5 943 87.0 81.2 86.5 78.5 754 86.4
Sun, ICCV’17 [35] 98.1 96.2 91.2 87.2 89.8 87.4 84.1 91.0
Yang, ICCV’17 [50] 98.5 96.7 92.5 88.7 91.1 88.6 86.0 92.0
Ke, ECCV’18 [18] 98.5 96.8 92.7 88.4 90.6 89.4 86.3 92.1
Tang, ECCV’18 [38] 98.4 96.9 92.6 88.7 91.8 89.4 862 92.3
Ours 98.7 97.1 93.1 89.4 91.9 90.1 86.7 92.7

Table 1. Comparisons of PCKh@0.5 scores on the MPII testing
set.

Head Sho. Elb. Wri. Hip Knee Ank. Mean
Yang, ICCV’17 [50] 974 96.2 91.1 86.9 90.1 86.0 839 91.0
Tang, ECCV’18 [38] 97.4 96.2 91.0 86.9 90.6 86.8 84.5 91.2
Ours 97.5 96.5 91.7 87.7 91.1 87.7 852 91.8

Table 2. Comparisons of PCKh@0.5 scores on the MPII validation
set.

activities. As a common practice [48, 0, 38], we train the
network by including the MPII training samples.

Following previous work, we use the Percentage of Cor-
rect Keypoints (PCK) [!] as the evaluation metric. It cal-
culates the percentage of part localizations that fall within a
normalized distance of the ground truth. For LSP, the dis-
tance is normalized by the torso size, and for MPII, by a
fraction of the head size (referred to as PCKh).

4.1. Implementation details

Each input image is cropped around the target person ac-
cording to the annotated body position and scale. They are
then resized to 256 x 256 pixels before being fed into the
network. Training data are augmented by random scaling
(+/- 0.25), rotation (+/- 30 degrees), shearing (+/- 0.5), hor-
izontal flipping and color jittering. Our implementation is
based on Torch [7]. We optimize the network via RMSProp
[42] with a batch size 16 for 250 epochs. The learning rate
is initialized as 2.5 x 10~* and then dropped by a factor of
10 at the 170th and 220th epochs. The final prediction is the
maximum activating location of each heat map estimated by
the last PBN.

4.2. Benchmark results

We use an eight-stack PBN for benchmark evaluation.
One residual block with 64 input/output channels, i.e., D =
1 and W = 64, is used to learn specific features for each
part group shown in Fig. 2(b). Testing is conducted on six-
scale image pyramids with flipping [50, 38].

MPII. Tab. 1 compares the performances of our network
and the most recent HPE methods on the MPII testing set.
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Head Sho. Elb. Wri. Hip Knee Ank. Mean
Yang, ICCV’17[50] - 90.6 74.7 63.8 83.1 67.8 63.5 76.8
Tang, ECCV’18 [38] - 90.5 745 629 842 68.8 622 76.7
Ours - 92,0 76.2 64.6 86.1 70.3 632 78.2

Table 3. Comparisons of PCKh@0.5 scores on the invisible parts
in the MPII validation set.

Head Sho. Elb. Wri. Hip Knee Ank. Mean

Bulat, ECCV’16 [3] 97.2 92.1 88.1 852 922 914 88.7 90.7
Insafutdinov, ECCV’16 [15] 97.4 92.7 87.5 84.4 91.5 89.9 87.2 90.1
Lifshitz, ECCV’16 [23] 96.8 89.0 82.7 79.1 90.9 86.0 82.5 86.7
Yu, ECCV’16 [55] 87.2 88.2 824 763 914 858 787 843
Chu, CVPR’17 [6] 98.1 93.7 89.3 869 93.4 94.0 925 92.6
Chen, ICCV’17 [5] 98.5 94.0 89.8 87.5 939 94.1 93.0 93.1
Sun, ICCV’17 [35] 97.9 93.6 89.0 85.8 929 91.2 90.5 91.6
Yang, ICCV’17 [50] 98.3 94.5 92.2 889 944 95.0 93.7 93.9
Tang, ECCV’18 [40] 97.5 95.0 92.5 90.1 93.7 952 942 94.0
Ours 98.6 95.4 93.3 89.8 943 95.7 944 94.5

Table 4. Comparisons of PCK@0.2 scores on the LSP testing set.

Head Sho. Elb. Wri. Hip Knee Ank. Mean
Tang, ECCV’18 [38] 98.3 95.9 93.5 90.7 95.0 96.6 95.7 95.1
Ours 98.7 96.4 94.3 90.6 95.2 97.2 95.7 954

Table 5. Comparisons of PCK@0.2 scores on the corrected LSP
testing set.

Our approach achieves an overall PCKh@0.5 score 92.7%,
which is a new state-of-the-art result. It also outperforms
all previous methods on each individual body part.

Tab. 2 compares the performance of our model on the
MPII validation set with those of two state-of-the-art meth-
ods®. Our network achieves the highest scores on all parts.

The MPII dataset also provides visibility annotations for
each part (except for the head). This enables us to evaluate
different models on the subset of invisible parts and study
their robustness to occlusion. The results are shown in Tab.
3. Note none of these three networks has exploited the vis-
ibility labels for training. Comparing Tabs. 2 and 3, we
can observe occlusion significantly deteriorates the perfor-
mances of all approaches. It is still a great challenge for
high-accuracy pose estimation. Nevertheless, the specific
features learned for related parts provide informative hints
and constraints on the locations of occluded parts, which re-
sults in a much better performance than the state-of-the-art
methods. Specially, our model respectively achieves 1.5%,
1.7%, 1.7%, 1.9%, 1.5% and 1.0% improvements on shoul-
ders, elbows, wrists, hips, knees and ankles compared to the
top-performing method [38] on the MPII dataset.

LSP. Tab. 4 compares the performances of our model
and the most recent HPE methods on the LSP testing set.
Our approach achieves an overall PCK@0.2 score 94.5%
and outperforms all state-of-the-art methods. Tang et al.

31n Tabs. 2 and 3, the predictions of [
were released by their respective authors.

1 on the MPII validation set

[28] found a few annotations in the LSP dataset are on the
wrong side and manually corrected them. Tab. 5 compares
their approach with ours on the corrected testing set and
shows that our network has an overall better performance.

4.3. Ablation study

We conduct ablation experiments on the MPII valida-
tion set. Mean PCKh@0.5 over ten hard joints, i.e., ankles,
knees, hips, wrists and elbows, is used as the evaluation
metric. We use single-scale testing in all the experiments.

Depth and width of specific feature layers. Fig. 5(a)
compares the performances of using D = 1 and D = 2
residual blocks to learn specific features for each group of
related parts. We can see that using more residual blocks
generally worsens pose estimation regardless of the chan-
nel numbers. We have also tried D = 3 and got the same
observation. This is likely due to overfitting because in-
creasing D always results in a lower training loss. Thus, we
set D = 1 in the remaining ablation experiments.

Fig. 5(b) shows how the width of specific feature layers
affects the performance. Using more feature channels does
not always lead to a gain in performance. W = 64 turns out
to be a good balance between accuracy and complexity.

Do specific feature layers help? We try to have a rigor-
ous study on whether learning specific features for related
parts helps improve HPE. We first build a baseline by re-
moving the branches from our network and adding a linear
layer to predict the heat maps of all parts. Fig. 5(c) shows
that it performs much worse than our original model. In or-
der to rule out the advantage brought by a larger model ca-
pacity, we also consider a deep baseline (denoted as Deep
BS). It is constructed by replacing our branches with a 256-
channel residual block, followed by a linear layer for heat
map regression. Fig. 5(c) shows that our network, hav-
ing fewer parameters and a lower computational complex-
ity, clearly outperforms this deep baseline.

We further compare an eight-stack PBN, which has been
used for benchmark evaluation, with its deep baseline. Tab.
6 shows that our approach can achieve an overall better per-
formance with a smaller model capacity. Learning specific
features instead of a fully shared representation leads to an
overall 1.3% improvement on the occluded parts while re-
taining the high accuracy for visible parts. Tab. 7 shows that
our model respectively achieves 2.02%, 1.85% and 1.91%
improvements on occluded wrists, hips and ankles, which
are considered as the most challenging parts to be detected.

Part grouping strategy. We have considered two strate-
gies to identify related parts in Sec. 3.1. They are respec-
tively based on the human body structure (denoted as Body)
and statistical analysis (denoted as Stat), i.e., mutual infor-
mation among parts. Fig. 5(d) shows that the proposed
data-driven approach always outperforms the handcrafted
one regardless of the width of the specific feature layers.

1112



87.5

°

40.0

®
<
°
o

30.77]
20.11]
26.84 12726

PCKh@0.5
GFLOPS

®
&
o

200

Parameters (Million)

87.30)
87.15) 87.20)

(1,32) (2,32) (1,64) (2,64)

10.43|
10.0 10.23
ﬁ
9.0
(1,32) (2,32) (1,64) (2,64)

(a) Depth of specific feature layers

87.30
86.95
86.65

Baseline  Deep BS Ours.

86.0 100

(1,32) (2,32) (1,64)

30.75

Baseline  Deep BS

(2,64)

875 120

10.42
0.0 10.23

Baseline DeepBS  Ours

(c) Do specific feature layers help?
37.20|

573005727
87.11] EZs B
i 29.11
2 5 8 16 2 s 8

Figure 5. Ablation study using variants of three-stack PBNs.

40.0

29.11

GFLOPS

20.0

Parameters (Million)

86.0 10.0

Ours

87.5 12.0

11.22
10.50
100
20 i
2 5 8 16

(e) Group number

40.0

3
S
°

30.0

PCKh@0.5
GFLOPS

200

m
o
&

Parameters (Million)

6.0 10.0

87.5

I
o

40.0

87.15

1.0

26.84.

GFLOPS

100

87.30
87.17
11.08
10.23
0

(1,64)  (1,128) (1,32) (1,64)  (1,128)

(b) Width of specific feature layers

87.15 4 87.15)
86.86]

o
o s‘,‘\

87.30)
37.12[87.15)

‘\ 9
ﬁ‘\ﬂ ‘z(\ao g&o\ ‘\ﬂ\ 9 e
W9 1o W oo W e

(f) Overlapping groups

Parameters (Million)

36.08
2911

(1,64)  (1,128)

86.0 10.0

(1,32) (1,32)

29.84 129,11
27.13]

,5\\

29.11[29.11
26.85 1 26.84]

]
(\av
@
o“ e

87.5

IS
s

40.0

PCKh@0.5

<

o
_GFLoPs

8
A
Parameters (Mlllion)

100ll

'5 '5
\3 ’& ‘\
@,a*\ o s‘@.\\

86.0

S o \\"
\ 5\.‘&"\\ $°$* <

(d) Part grouping strategy

s
o

400

87.0

GFLOPS

0
S
)
=
<
g 865

Parameters (Million)

100 H ﬁ 10.23 4810.23

'5
'\«
(\a\’\ m

\
A°
o9 e

’&
e ‘\“‘\ @\3"\ (\W\
° o 09 10°

(D, W) denotes the depth and width of specific feature layers. Unless

otherwise stated, one residual block with 64 input/output channels, i.e., D = 1 and W = 64, is used to learn specific features for each of
the five part groups shown in Fig. 2(b). See Sec. 4.3 for detailed analysis.

Invisible parts Visible parts Overall Parameters
70.29 93.22 87.74  27.22M
71.59 93.31 88.14  26.69M

Deep BS (8 stacks)
Ours (8 stacks)

Table 6. Comparisons of an eight-stack PBN and its deep baseline
on the MPII validation set. Mean PCKh@0.5 scores on the ten
hard joints are reported.

Elb. Wri. Hip Knee Ank. Mean
Deep BS (8 stacks) 75.05 62.10 83.43 69.30 61.57 70.29
Ours (8 stacks) 75.14 64.12 8528 69.92 6348 71.59

Table 7. Comparisons of PCKh@0.5 scores obtained by an eight-
stack PBN and its deep baseline on the invisible parts in the MPIL
validation set. Results on the ten hard joints are reported.

Number of part groups. We study the affect of group
numbers on the HPE performance by setting the cluster
number in Sec. 3.1 to 2, 5, 8 or 16. The results are shown
in Fig. 5(e). While increasing the group number from 2
to 5 boosts the performance, using more than 5 groups can
hardly result in further improvement.

Overlapping groups. The part groups we identify in
Sec. 3.1 are disjoint sets, i.e., having no element in com-
mon. Having a close look at Fig. 2(a), we find there exist
parts which share significant mutual information but are not
in the same group, e.g., left (right) elbow and left (right)
shoulder. This motivates us to learn specific features for

overlapping part groups. For the related parts within each
group, we still use a residual block and a linear layer to
regress their heat maps. If multiple heat maps from differ-
ent branches correspond to a same part, we use their average
as the final prediction. Fig. 5(f) reports the results obtained
using overlapping groups. Here the left (right) shoulder be-
longs to two groups: its original group represented by the
yellow dots in Fig. 2(b) and the group of the left (right) el-
bow and the left (right) wrist. We can see using overlapping
groups does not improve the performance.

Feature fusion in stacked PBNs. We find propagat-
ing shared features along the trunk of the network, i.e.,
the orange dashed line in Fig. 4, generally works better
than fusing specific features with the shared ones, i.e., the
green dashed line in Fig. 4. For a three-stack network, the
PCKh@0.5 scores achieved by the former and the latter are
respectively 87.30% and 87.21%. Their training losses are
respectively 1.95 x 1072 and 1.99 x 10~2. The gap is more
significant for an eight-stack PBN: 88.14% versus 87.68%
for PCKh@0.5 scores and 4.99 x 1073 versus 5.11 x 1073
for training losses.

Negative transfer. We find removing ankles from the
tasks of an hourglass network generally improves the local-
ization of upper body parts (0.30%) but degrades the results
of lower body parts (0.45%). This indicates that (1) learn-
ing related body parts is beneficial and (2) sharing features
among unrelated parts can be harmful.
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Figure 7. Examples showing our approach can handle both self-
occlusion (top row) and other-occlusion (bottom row).

4.4. Qualitative results

Fig. 6 shows some pose estimation results obtained by
our approach on the MPII dataset and LSP dataset. Fig. 7
provides some examples showing our approach can handle
both self-occlusion and other-occlusion. Fig. 8 shows our
approach is able to correct some wrong part localizations
obtained by a state-of-the-art method [38] due to occlusion.

L) & 3 |

Figure 8. Examples showing our approach (bottom row) is able to
correct some wrong part localizations (highlighted by green cir-
cles) obtained by a state-of-the-art method [38] due to occlusion
(top row).

5. Conclusion

With substantial benchmark experiments and ablation
study, we conclude that learning specific features for
related body parts significantly improves the localization of
occluded parts and thus benefits human pose estimation.
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