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Abstract

Learning distances that operate directly on multi-

dimensional sequences is challenging because

such distances are structural by nature and the

vectors in sequences are not independent. Gen-

erally, distances for sequences heavily depend

on the ground metric between the vectors in se-

quences. We propose to learn the distance for se-

quences through learning a ground Mahalanobis

metric for the vectors in sequences. The learning

samples are sequences of vectors for which how

the ground metric between vectors induces the

overall distance is given, and the objective is that

the distance induced by the learned ground met-

ric produces large values for sequences from dif-

ferent classes and small values for those from the

same class. We formulate the metric as a parame-

ter of the distance, bring closer each sequence to

an associated virtual sequence w.r.t. the distance

to reduce the number of constraints, and develop

a general iterative solution for any ground-metric-

based sequence distance. Experiments on several

sequence datasets demonstrate the effectiveness

and efficiency of our method.

1. Introduction

In many domains, the data are naturally in the form of

multi-dimensional sequences. Pairwise distance measures

between sequences serve as a proxy to manipulate the struc-

tured sequences so that any metric-based machine learn-

ing methods can be directly applied. The performances

of metric-based algorithms such as the k-nearest neigh-

bor classifier (k-NN) heavily depend on the quality of the

distance measures. Therefore, learning distances for se-

quences from data is especially appealing.
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Although metric learning has achieved a considerable matu-

rity level both in practice and in theory (Bellet et al., 2013),

propagating these advances to sequence data is not trivial.

This is because most existing metric learning methods are

developed for static data which are in the form of “flat”

feature vectors. An acquiescent assumption is that these

vector data are independent and identically distributed, but

the elements in sequences exhibit temporal relationships.

Much less work has been devoted to metric learning for

sequence data, and most of them actually encode each se-

quence into a vector and simply build the metric upon the

vectors, which cannot capture the alignments or relation-

ships among the vectors in sequences explicitly and may

lose significant temporal information. Learning distances

that operate directly on sequences is challenging, because

such distances are naturally structural and combinatorial.

Specifically, the major difficulties lie in two aspects.

First, different sequences vary in length, evolution speed,

and local temporal duration. Different distance measures

for sequences such as (Sakoe & Chiba, 1978; Su & Hua,

2017) perform temporal alignments to eliminate the local

temporal discrepancies. Inferring the alignments depends

on the metric between elements in sequences. For a specif-

ic sequence pair, their alignments cannot be inferred before

the underlying metric is learned. Therefore, the objective

of learning distances for sequences generally involves la-

tent alignment structures when formulating the distances

as a function of the unknown metric, and hence is difficult

to manipulate and optimize.

Second, most metric learning methods employ the

must-link/cannot-link constraints over positive/negative

pairs (Xing et al., 2003; Davis et al., 2007) or the rela-

tive constraints over triplets (Schultz & Joachims, 2004;

Weinberger & Saul, 2009). The number of constraints is

quadratic or cubic in the number of training samples, which

easily becomes intractable when more training samples are

available. One heuristic is to mine only a subset of the

most informative constraints, but such mining is not trivial.

Because of the complexity of measuring distances for se-

quences, the cost of constructing these constraints is larger

and it can be computationally prohibitive to update the sub-

set of constraints with the update of the metric during the

optimization. Reducing the number of constraints is more

crucial for sequence data.
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In this paper, we propose a metric learning framework for

sequence data to tackle these issues. We unify a wide

range of distance measures for sequences into a formula-

tion as a function of the ground metric for elements in se-

quences. The final distances are meta-distances built upon

the ground metric by inferring the temporal alignments a-

mong the element pairs. Thanks to such parameterization,

we show that various distances for sequences are amenable

to learn via learning a Mahalanobis distance (Mahalanobis,

1936) as the ground metric. More specifically, we treat the

alignments as latent variables of the meta-distance function

that takes the ground metric as an argument, since inferring

them also depends on the ground metric. The formulation

of the objective for learning the ground metric incorporates

latent variables. We develop an iterative alternating descent

algorithm that achieves joint optimization of the metric and

the latent alignments, which can be instantiated with any

meta-distances using various alignment inference methods.

Another contribution of our work is the extension

of the regressive virtual metric learning (RVM-

L) (Perrot & Habrard, 2015) method for reducing the

number of constraints. RVML requires a linear number of

constraints by moving each sample to its corresponding

pre-defined virtual point. Our method extends RVML in

three ways: (1) it associates each training sequence with

a virtual sequence and provides two solutions to generate

virtual sequences; (2) it allows to minimize the distances

between the training sequences and the virtual sequences

w.r.t. various meta-distance measures; (3) it involves latent

alignment structures and requires to learn the ground

metric and the latent structures simultaneously.

2. Related Work

Differences with conventional metric learning. Most

classical metric learning methods for vector data em-

ploy either the pair-based or the triplet-based constraints.

The pair-based must-link/cannot-link side information

was introduced in the seminal work of (Xing et al.,

2003), and then widely used in a lot of method-

s such as information-theoretic metric learning (ITM-

L) (Davis et al., 2007), regularized distance metric learn-

ing (Jin et al., 2009), and sparse distance metric learn-

ing (Qi et al., 2009). Generally, the nearest neigh-

bors based methods, such as neighbourhood componen-

t analysis (Goldberger et al., 2005), maximally collapsing

metric learning (Globerson & Roweis, 2006), large mar-

gin nearest neighbors (LMNN) (Weinberger et al., 2006;

Weinberger & Saul, 2009), and sparse compositional met-

ric learning (SCML) (Shi et al., 2014), used the triple-

based constraints to force the distances of each instance

to its target neighbors relatively smaller than those to im-

postors. RVML (Perrot & Habrard, 2015) introduced the

virtual point based constraints. Propagating these advances

for vector representations to sequence data is not trivial.

Differences with edit distance learning and kernel

learning for sequences. In (Bellet et al., 2011; 2012;

Paaßen et al., 2018), the string edit distance was learned by

learning the cost matrix for edit operations. The elements

in sequences were symbols from a fixed finite alphabet

and the edit operations for each sequence pair were fixed.

In (Cortes et al., 2008), weighted finite-state transducers

based rational kernels (Cortes et al., 2004) were learned to

measure the similarities between sequences, where the ele-

ments were also restricted to a finite alphabet. It is difficult

to apply these methods to unconstrained sequences, where

the elements are continuous real vectors rather than discrete

symbols and the number of all possible elements is infinite.

In contrast, our method learns the Mahalanobis distance for

real vectors and the latent alignments jointly.

Differences with existing metric learning methods for

optimal transport (OT). In (Cuturi & Avis, 2014), the OT

distance for histograms was learned by learning the ground

metric based on side supervision on specific similarity coef-

ficients of all histogram pairs, where the supporting points

for all histograms were fixed. This method cannot be ap-

plied to unconstrained sequences because it directly learn a

ground matrix containing all pairwise distances for the sup-

porting points. In (Huang et al., 2016), the supervised word

mover’s distance (SWMD) learned OT distances for docu-

ments each consists of a set of unordered words by learning

the ground metric, where the words are in a fixed finite dic-

tionary and the weights for these fixed words were learned

together. It minimized the leave-one-out kNN error by a

gradient-based solution. In contrast, our method minimizes

the regression-based loss by non-gradient descent optimiza-

tion, and is applicable to unconstrained multidimensional

sequences where the elements lie in a continuous space.

Differences with existing metric learning methods for

sequences. In (Garreau et al., 2014), the ground-truth

alignments were used for learning the metric. In con-

trast, ground-truth alignments are not available and our

method learns the ground metric and the alignments jointly.

In (Zhao et al., 2016) and (Mei et al., 2016), Mahalanobis

distances were learned as ground metrics to enhance the

dynamic time warping (DTW) distance, where the DTW

alignments for all sequence pairs were fixed by using the

Euclidean metric. The solutions were sub-optimal since the

alignments may change with the learned matrices. In con-

trast, our method achieves joint optimization for the metric

and the latent alignments. In (Mei et al., 2014), LDMLT it-

eratively updated the ground Mahalanobis metric with the

triplets constraints and updated the alignments by DTW

to build dynamic triplets. However, the iterative solution

is not guaranteed to converge because updating the align-
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ments by DTW does not guarantee to decrease the objective

of the logDet divergence based metric learning. In contrast,

our method is guaranteed to converge, trains much faster,

and is applicable to different sequence distances.

Differences with recurrent neural network (RNN)

based deep metric learning. Deep metric learning meth-

ods (Yi et al., 2014; Song et al., 2016; Che et al., 2017)

were typically deep extensions of classical metric learning

methods and require large amounts of training sequences.

Some works (Bayer et al., 2012; Mokbela et al., 2015) ac-

tually encoded the sequences into fixed-length vectors and

build metrics upon vectors. In contrary, our method is ap-

plied to elements in sequences and the alignments can be

explicitly inferred, which are crucial in some applications.

Moreover, our method can be applied before sequences are

fed into those RNN-based methods.

3. A Unified Perspective on Distance

Measures for Sequences

In this section, we present a unified formulation of the dis-

tance measures for sequence data and establish the connec-

tions between the formulation and two distance measures.

Connections to some other distance measures are presented

in the supplementary file.

Let Ω be a space and d(M) : Ω × Ω → R be the met-

ric on this space, which is parameterized by M . Given

two sequences X = [x1, · · · ,xLX
] ∈ ΩLX and Y =

[y1, · · · ,yLY
] ∈ ΩLY with lengths LX and LY , respec-

tively, whose elements xi, i = 1, · · · , LX and yj , j =
1, · · · , LY are sampled in Ω, the distance between them

can be formulated as

gM (X,Y ) = 〈T ∗,D(M)〉 , (1)

where 〈T ,D〉 = tr(T TD) is the Frobenius dot product.

D(M) := [d(M ,xi,yj)]ij ∈ R
LX×LY (2)

is the cost matrix of all pairwise vector-wise distances be-

tween elements in X and Y , whose element D(M)ij =
d(M ,xi,yj) is the distance between xi and yj w.r.t. the

metric d(M). T ∗ is a matrix indicating the correspon-

dence relationship, where t∗i,j = T ∗(i, j) actually mea-

sures whether or how the pair xi and yj corresponds to

the same temporal position or structure. Ideally, only the

differences between those elements within the same tempo-

ral positions reflect the differences between the entire se-

quences. However, due to the different sampling rates, the

non-uniform evolution speeds of elements, local temporal

distortions, etc, different sequences have different lengths

and exhibit local temporal differences, so the i-th elemen-

t in X and the i-th element in Y may not correspond to

the same relative position. T ∗ is used to align the elements

corresponding to the same temporal structure or position.

Generally, the determination of T ∗ can be formulated as

T ∗ = argmin
T∈Φ

〈T ,D(M)〉+ R(T ), (3)

where Φ is the feasible set of T , which is a subset of

R
LX×LY with some constraints, and R(T ) is a regulariza-

tion term on T . Different distance measures for sequences

differ in the constraints imposed to the feasible set, the reg-

ularization term, and the optimization or inference method.

DTW (Sakoe & Chiba, 1978). DTW calculates an optimal

alignment between two sequences with three constraints:

boundary, continuity, and monotonicity. In the unified for-

mulation, DTW restricts T to be a binary matrix, in which

ti,j = 1 if xi and yj are aligned and tij = 0 otherwise.

DTW instantiates the formulation (3) by setting:

R(T ) = 0;

Φ = {T ∈ {0, 1}LX×LY |T1,1 = 1,TLX ,LY
= 1;

T1LY
> 0LX

,T T
1LX

> 0LY
;

if ti,j = 1, then ti−1,j+1 = 0, ti+1,j−1 = 0,
∀1 < i < LX , 1 < j < LY }

,

(4)

where 1b and 0b are the b-dimensional vectors with al-

l one and zero elements ,respectively, and “>” should be

understood as element-wise. DTW solves Eq. (3) with con-

straints (4) via dynamic programming.

Order-preserving Wasserstein Distance (OPW)

(Su & Hua, 2017; 2018). OPW casts sequence align-

ment as the OT problem. It imposes two regularization

terms to the original OT problem to preserve the global

temporal information. The first regularization favors T

with large inverse difference moment which is calculated

as

I(T ) =

LX∑

i=1

LY∑

j=1

tij

( i
LX

− j
LY

)
2
+ 1

, (5)

The second regularization encourages the distribution of T

to be similar to a prior distribution P :

pij := P (i, j) =
1

σ
√
2π

e−
ℓ2(i,j)

2σ2 , (6)

where ℓ(i, j) = |i/LX−j/LY |√
1/LX

2+1/LY
2

. Both regularization terms

encourage alignments between elements with similar rela-

tive temporal positions and restrict the matching between

elements that are far away temporally. OPW instantiates

the formulation (3) by setting:

R(T ) = λ1I(T )+λ2KL(T ||P );

Φ = {T ∈ R
LX×LY

+ |T1LY
= 1

LX
1LX

,

T T
1LX

= 1
LY

1LY
}

, (7)

where λ1 and λ2 are preset balancing coefficients, and

KL(T ||P ) is the Kullback-Leibler divergence. OPW
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solves Eq.(3) with constraints (7) by the Sinkhorn’s matrix

scaling algorithm. Each element t∗ij in the learned T ∗ can

be viewed as the probability of aligning xi to yj .

We observe that these distances actually share the com-

mon formulation and can be considered as meta-distances

built on d(M), although they have different motivation-

s. For these distances, the determination of T ∗ depends

on the metric d(M). In the literature (Rubner et al., 2000;

Cuturi & Avis, 2014), the metric is called the ground met-

ric. We follow this name to distinguish it with the meta-

distance for sequences.

4. Methodology

4.1. Problem

With the unified formulation (1) and (3), we view the meta-

distance as a function of the ground metric parameterized

by M . The goal of our method is to learn a ground metric

M resulting in a meta-distance gM (X,Y ) (1), such that

the meta-distances between sequences from different class-

es are large, and those between sequences from the same

class are small. We learn a squared Mahalanobis-like dis-

tance (Mahalanobis, 1936) as the ground metric, i.e.,

d(M ,xi,yj) = (xi − yj)
TM(xi − yj), (8)

where M is a positive semi-definite matrix and can be de-

composed as M = WW T , W ∈ R
b×b′ and b′ is greater

than or equal to the rank of M . This is equivalent to trans-

form all elements xi and yj with a linear projection W .

Specially, let {Xn, zn}Nn=1 be a set of N training se-

quences, where Xn = [x1, · · · ,xLn ] ∈ R
b×Ln

is the n-th

sequence with length Ln. Different sequences may have d-

ifferent lengths. xi, i = 1, · · · , Ln are sampled in R
b, and

zn is the class label of Xn. We are interested in learning

a meta-distance gM (Xn,Xn′

) with the form of Eq. (1) by

learning W from the training set, such that the resulting

gM (Xn,Xn′

) = gI(W
TXn,W TXn′

) captures the id-

iosyncrasy of sequence data and better separates sequences

from different classes, where gI means that M = I when

constructing Eq. (2): DI(W ) = [d(I,W Txi,W
Tyj)]ij .

The difficulty largely lies in the fact that in Eq. (1), T ∗ is

not fixed, but needs to be inferred by optimizing Eq.(3) for

each sequence pair. The inference of T ∗ also heavily de-

pends on W . Once W changes, T ∗ for each sequence

pair changes accordingly. Also, for any sequence pair,

the corresponding optimal alignment T ∗ needs to be in-

ferred individually. The cost of constructing a single must-

link/cannot-link or relative constraint for sequence distance

is much larger than for vector distance. Therefore, it can

be computationally prohibitive to learn W with such con-

straints whose number is quadratic or cubic with the num-

ber of training sequences.

4.2. Objective and Optimization

RVML (Perrot & Habrard, 2015) introduces a new kind of

constraints that moving each sample to its corresponding

pre-defined virtual point. Compared with must-link/cannot-

link and relative constraints, the number of such virtual

point-based constraints is greatly reduced since it is linear

with the number of samples. We extend RVML to sequence

data by associating a virtual sequence instead of a virtual

point for each sequence sample. Let V n = [v1, · · · ,vln ] ∈
R

b′×ln be the virtual sequence related with Xn. b′ and ln

are the dimensionality and the number of elements in V n,

respectively, which may not equal to those in Xn. V n is

a function of Xn and zn: V n = f(Xn, zn). We first as-

sume that the virtual sequences for all training sequences

have been obtained. The goal is to learn a transformation

W by minimizing the meta-distances between the training

sequences and their associated virtual sequences, i.e.,

min
W

1
N

N∑
n=1

gI(W
TXn,V n) + β‖W ‖2F

= 1
N

N∑
n=1

〈T n∗,Dn
I
(W )〉+ β‖W ‖2F

s.t. T n∗ = argmin
T∈Φ

〈T n,Dn
I
(W )〉+ R(T n)

(9)

where ‖·‖F is the Frobenius norm and β is a hyper-

parameter that balances the two items.

The underlying T n∗, n = 1,· · ·,N for all training-virtual

sequence pairs depend on the variable W . We treat them as

latent structures. In Eq.(9), if R(T ) does not depend on W ,

the inferences over T n∗, n=1,· · ·,N in the constraints are

actually minimizing the same objective as the optimization

over W . This allows us to jointly learn W and T n∗, n=
1,· · ·,N by optimizing the following objective:

min
W ,Tn

1

N

N∑

n=1

〈T n,Dn
I
(W )〉+ β‖W ‖2F +R(T n). (10)

The objective function Eq. (10) is not jointly convex on W

and T n, n = 1, · · · , N . We minimize it by alternatively

updating the metric and the latent alignments. We first fix

T n, n = 1, · · · , N and update W . In this case, the regular-

ization term R(T ) can be discarded and the objective can

be reformulated as

1
N

N∑
n=1

〈T n,Dn
I
(W )〉+ β‖W ‖2F

= 1
N

N∑
n=1

Ln∑
i=1

ln∑
j=1

tnij‖W Txn
i − vn

j ‖22 + β‖W ‖2F
. (11)

Minimizing Eq.(11) is a weighted regression problem,

which admits a closed form solution:

W ∗ = A−1(

N∑

n=1

Ln∑

i=1

ln∑

j=1

tnijx
n
i v

n
j
T ), (12)
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Algorithm 1 RVSML

1: Input: A set of training sequences {Xn}Nn=1 and the

associated virtual sequences {V n}Nn=1

2: Output: the transformation W

3: Initialize the alignment matrices T n, n = 1, · · · , N
for all training-virtual sequence pairs.

4: while W has not converged do

5: Update W by Eq. (11)

6: for n = 1, · · · , N do

7: Update T n by optimizing Eq. (14)

8: end for

9: end while

where

A =

N∑

n=1

Ln∑

i=1

ln∑

j=1

tnijx
n
i x

n
i
T + βNI. (13)

This solution can be simply derived by setting the deriva-

tive of Eq.(11) to 0.

We then update T n, n = 1, · · · , N by fixing W . In this

case, the matrix Dn
I
(W ) consisting of all pairwise squared

Euclidean distances between Wxn
i and vn

j is also fixed,

and the irrelevant regularization term ‖W ‖2F can be dis-

carded. We further observe that the optimizations of T n for

n = 1, · · · , N are independent. Therefore, we can solve

them separately by applying the inference Eq.(3) to each

training-virtual sequence pair:

T n∗ = argmin
Tn∈Φ

〈T n,Dn
I
(W )〉+ R(T n). (14)

The two updating procedures are repeated until conver-

gence or reaching a maximum number of iterations. We cal-

l this framework Regressive Virtual Sequence Metric Learn-

ing (RVSML) and summarize it in Alg. 1.

Convergence. Both updating procedures of Alg. 1 de-

crease the value of the objective (10). 0 is a trivial lower

bound of the objective (10). Therefore, Alg. 1 ensures the

convergence to a local solution.

Instantiation. Alg. 1 can be applied to learn any meta-

distance with the form Eq. (1) as discussed in Sec. 3. A spe-

cific meta-distance instantiates step.7 in Alg. 1, i.e., the in-

ference of T n. For instance, for DTW, step.7 is performed

by dynamic programming; for OPW, step.7 is performed by

Sinkhorn’s matrix scaling. As long as sufficient inference

or optimization method for an instantiation of Eq. (14) is

available, Alg. 1 can be efficiently performed.

Non-linear extensions. Alg. 1 can be easily kernelized by

kernelizing Eq. (11). It can also be extended to learn non-

linear representations by replacing the linear transforma-

tion with a non-linear deep network such as RNN in step.3.

We provide the kernelized version and the deep version in

the supplementary file.

4.3. Links with Other Methods

Connection with RVML (Perrot & Habrard, 2015). RVM-

L can be viewed as a special case of the proposed RVSML.

By regarding vector data as sequences with only one ele-

ment and setting the length of all virtual sequences to 1,

the alignment between any training-virtual sequence pair

by any meta-distance is unique. Therefore, RVSML degen-

erates into RVML.

Connection to must-link/cannot-link constraints. Most

classical metric learning methods employ pair-based or

triplet-based constraints so as to achieve a large margin be-

tween similar and dissimilar sample pairs, i.e., the distance

between the samples from the same class is below a thresh-

old θ1, and the distance between those from different class-

es is above another threshold θ−1.

gM (Xn,Xn′

) ≤ θ1, for zn = zn
′

gM (Xn,Xn′

) ≥ θ−1, for zn 6= zn
′ . (15)

When the meta-distance gW is a real metric, in the trans-

formed space induced by RVSML, the distances between

similar and dissimilar sequence pairs gain the following

margins:

θ1 = 2 max
(Xn,V n)

gI(W
TXn,V n)

θ−1 = min
V n,V n′ ,V n 6=V n′

gI(V
n,V n′

)− θ1
. (16)

Although some well-known meta-distances such as DTW

do not satisfy the triangle inequality, intuitively, dissimilar

sequences are still pushed relatively far away because they

are moved to different distant virtual sequences.

4.4. Virtual Sequences Generation

In this section, we develop an approach to generate the vir-

tual sequences. Another generation approach is present-

ed in the supplementary file. Intuitively, the evolution of

a sequence pattern can be segmented into several ordered

stages and each stage corresponds to a temporal structure,

e.g., an action can be identified by a series of ordered key

poses. If the learned W is able to project the elements cor-

responding to different temporal structures to different clus-

ters which are far away from each other, different sequence

classes would become easier to distinguish.

Following this intuition, we construct a virtual sequence

for each class, which consists of vectors w.r.t. the ordered

basic temporal structures shared by this class. Let m be

the number of temporal structures per class. There are Cm

temporal structures for all C classes. We define the vector
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Table 1. Comparison of the proposed RVSML variants instantiat-

ed by (a) DTW and (b) OPW with other metric learning methods

using the NN classifier with the (a) DTW and (b) OPW distance

on the MSR Action3D dataset.

(a) DTW

Method MAP Accuracy

Ori (Su & Hua, 2018) 58.95 81.32
ITML (Davis et al., 2007) 59.19 80.95
LMNN (Weinberger & Saul, 2009) 54.14 80.95
SCML (Shi et al., 2014) 42.79 63.00
RVML (Perrot & Habrard, 2015) 57.41 80.95
LDMLT (Mei et al., 2014) 64.29 84.98
SWMD (Huang et al., 2016) 59.65 80.95
RVSML 59.30 82.78

(b) OPW

Method MAP Accuracy

Ori (Su & Hua, 2018) 58.70 84.25
ITML (Davis et al., 2007) 59.48 83.52
LMNN (Weinberger & Saul, 2009) 32.73 82.42
SCML (Shi et al., 2014) 39.63 64.10
RVML (Perrot & Habrard, 2015) 44.58 73.63
LDMLT (Mei et al., 2014) 53.61 80.59
SWMD (Huang et al., 2016) 43.23 66.67
RVSML 47.54 76.56

for the u-th temporal structure as a unit vector eu ∈ R
Cm,

in which only the u-th attribute is 1 and all other attributes

are 0. Therefore, the virtual sequence for the c-th class is

V T
c = [0m×m, · · · ,0m×m, Im×m,0m×m, · · · ,0m×m] ∈

R
Cm×m, where only the c-th block square matrix

is the identity matrix and all other C − 1 block-

s are the null matrices, i.e., f(Xn, zn) = Vzn =
[e(zn−1)m+1, · · · , e(zn−1)m+m]. In this way, we generate

C virtual sequences each consists of m unit vectors. All

unit vectors in all virtual sequences are orthogonal and the

active attribute for each vector is attempted to be discrimi-

nant for one temporal structure.

5. Experimental Results

5.1. Experimental setup

Datasets. MSR Action3D dataset (Li et al., 2010) con-

tains 567 depth video sequences from 20 action classes. We

follow the splits in (Wang et al., 2012; Wang & Wu, 2013)

to divide the dataset into training and testing sets. MSR

Daily Activity3D dataset (Wang et al., 2012) consists of

320 Kinect daily activity sequences from 16 activity class-

es. We follow the splits in (Wang et al., 2012; Wang & Wu,

2013) to divide the dataset into training and test set-

s. ChaLearn Gesture dataset (Escalera et al., 2013b;a)

consists of Kinect video sequences from 20 gesture type-

s. The dataset is partitioned into training, validation and

test sets. “Spoken Arabic Digits (SAD)” dataset from

Table 2. Comparison of the proposed RVSML variants instantiat-

ed by (a) DTW and (b) OPW with other metric learning methods

using the NN classifier with the (a) DTW and (b) OPW distance

on the MSR Activity3D dataset.

(a) DTW

Method MAP Accuracy

Ori (Su & Hua, 2018) 33.79 58.75
ITML (Davis et al., 2007) 33.80 58.75
LMNN (Weinberger & Saul, 2009) 32.24 55.63
SCML (Shi et al., 2014) 29.42 45.62
RVML (Perrot & Habrard, 2015) 41.55 60.62
LDMLT (Mei et al., 2014) 36.56 55.00
SWMD (Huang et al., 2016) 37.81 61.25
RVSML 42.18 62.50

(b) OPW

Method MAP Accuracy

Ori (Su & Hua, 2018) 34.62 58.13
ITML (Davis et al., 2007) 33.69 58.13
LMNN (Weinberger & Saul, 2009) 32.06 58.13
SCML (Shi et al., 2014) 28.50 45.00
RVML (Perrot & Habrard, 2015) 38.73 56.87
LDMLT (Mei et al., 2014) 34.84 54.37
SWMD (Huang et al., 2016) 35.62 55.00
RVSML 36.64 57.50

the UCI Machine Learning Repository (Bache & Lichman,

2013) contains 8,800 vector sequences from ten digit class-

es with 880 sequences per class. The dataset is partitioned

into training and test sets. Sequences have different length-

s in all datasets, e.g., the length varies from 4 to 93 on the

SAD dataset. Results on an additional dataset are presented

in the supplementary material.

Sequence representations. For the video sequences, we

extract a feature vector from each frame, so as to rep-

resent each video as a sequence of frame-wide vectors.

Specifically, for the MSR Action3D dataset, we adopt

the 192-dimensional relative 3D joint angles based frame-

wide vectors as in (Wang & Wu, 2013). For the M-

SR Activity3D dataset, we employ the 390-dimensional

relative 3D joint positions based frame-wide features as

in (Wang et al., 2012). For the ChaLearn dataset, we adop-

t the 100-dimensional 3D joint based frame-wide vectors

as in (Fernando et al., 2015). For the SAD dataset, the se-

quences have already been represented as a series of 13-

dimensional mel-frequency cepstrum coefficients features.

Classification and evaluation measures. We evaluate the

performances of the proposed RVSML instantiated by the

DTW distance and the OPW distance, respectively. After

learning the ground metric, we employ the 1-nearest neigh-

bor (NN) classifier in combination with the DTW distance

and the OPW distance to perform sequence classification,

respectively. The parameters λ1, λ2, and σ of OPW are

fixed to 10, 0.1 and 12, respectively, on the MSR Activ-
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Table 3. Comparison of RVSML instantiated by (a) DTW and (b)

OPW with other methods using the NN classifier with the (a)

DTW and (b) OPW distance on the ChaLearn dataset.

(a) DTW

Method MAP Accuracy

Ori (Su & Hua, 2018) 11.75 61.12
ITML (Davis et al., 2007) 13.46 52.17
LMNN (Weinberger & Saul, 2009) 11.67 63.78
RVML (Perrot & Habrard, 2015) 31.21 83.79
LDMLT (Mei et al., 2014) 21.30 84.37
SWMD (Huang et al., 2016) 14.39 64.45
RVSML 33.83 87.38

(b) OPW

Method MAP Accuracy

Ori (Su & Hua, 2018) 12.21 59.38
ITML (Davis et al., 2007) 13.92 64.71
LMNN (Weinberger & Saul, 2009) 12.07 62.83
RVML (Perrot & Habrard, 2015) 30.19 80.66
LDMLT (Mei et al., 2014) 21.56 82.74
SWMD (Huang et al., 2016) 15.36 60.31
RVSML 33.07 83.82

ity3D dataset, and 50, 0.1 and 1, respectively, on other

datasets, as suggested in (Su & Hua, 2018). We report ac-

curacy as the performance measure. Following (Su & Hua,

2017; 2018), we also regard each test sequence as a query

to retrieval all training sequences and report the mean av-

erage precision (MAP). For RVSML, we select m in the

range of 2 to 8 with an interval of 2 and set β to a small

value via cross-validation. The influence of the two hyper-

parameters are evaluated in the supplementary material.

5.2. Comparison with metric learning methods

We compare the proposed RVSML with the baseline NN

classifier without metric learning (Ori) and several state-

of-the-art conventional metric learning methods: ITM-

L (Davis et al., 2007), LMNN (Weinberger & Saul, 2009),

SCML (Shi et al., 2014), and RVML (Perrot & Habrard,

2015). These methods are originally developed for vector

representations. We apply them to sequences by viewing all

elements in the sequence from a class as independent sam-

ples of this class. On the ChaLearn dataset, SCML learned

0 LDA base and hence we remove it for comparison. For

RVML, we employ the class-based virtual points.

We also compare with two metric learning methods for

sequence data, including LDMLT (Mei et al., 2014) and

SWMD (Huang et al., 2016). SWMD can not be directly

applied to unconstrained sequences because it requires that

the elements in sequences are from a finite set and learn-

s the weights for all possible elements in this set. The

weights determine the marginal constraints for the trans-

port matrix. We modify SWMD by removing the weight

Table 4. Comparison of RVSML instantiated by (a) DTW and (b)

OPW with other metric learning methods using the NN classifier

with the (a) DTW and (b) OPW distance on the SAD dataset.

(a) DTW

Method MAP Accuracy

Ori (Su & Hua, 2018) 56.58 96.36
ITML (Davis et al., 2007) 51.13 95.55
LMNN (Weinberger & Saul, 2009) 56.25 96.00
SCML (Shi et al., 2014) 47.98 93.27
RVML (Perrot & Habrard, 2015) 57.94 96.59
LDMLT (Mei et al., 2014) 59.54 96.50
SWMD (Huang et al., 2016) 52.44 93.95
RVSML 60.24 96.23

(b) OPW

Method MAP Accuracy

Ori (Su & Hua, 2018) 59.77 96.36
ITML (Davis et al., 2007) 54.51 96.36
LMNN (Weinberger & Saul, 2009) 59.33 96.27
SCML (Shi et al., 2014) 50.08 94.50
RVML (Perrot & Habrard, 2015) 60.71 95.77
LDMLT (Mei et al., 2014) 61.07 96.73
SWMD (Huang et al., 2016) 58.00 95.41
RVSML 65.63 97.09

Table 5. Comparison of the training times.

Dataset Action3D SAD ChaLearn

LDMLT 1905.24 67329.29 213921.7
SWMD 970.70 7756.72 11489.10
RVSML(DTW) 115.72 662.41 2477.76
RVSML(OPW) 124.48 208.67 836.67

learning procedures and setting the marginal constraints u-

niformly so that SWMD can be applied to unconstrained

sequences. For different metric learning methods, the NN

classifiers with DTW and OPW distances are used for clas-

sification by taking the learned metrics as ground metrics,

respectively. RVSML is instantiated by the distances used

by the corresponding NN classifiers, respectively.

The comparisons on the four datasets are presented in

Tab. 1, Tab. 2, Tab. 3, and Tab. 4, respectively. On the

ChaLearn and SAD datasets, RVSMLs instantiated by both

distances generally outperform the corresponding baseline

classifiers without metric learning and other metric learn-

ing methods, respectively. Especially, on the ChaLearn

dataset, RVSMLs outperform other methods by a margin

of 3% on accuracies. RVSML is able to learn a discrimi-

native ground metric that incorporates the holistic tempo-

ral dependencies of sequences and enhance different meta-

distances consistently. In some cases, several conventional

metric learning methods obtain worse results than the base-

line classifiers. This may indicate that temporal informa-

tion is inherent for sequence data and cannot be discarded.

On the Action3D dataset with the DTW distance, RVSML-
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s perform inferior to LDMLT, but generally outperforms

other metric learning methods. LDMLT is based on the

dynamic triplet constraints, cannot ensure the convergence,

and requires much more time for training. The training

times of different metric learning methods for sequences

on three datasets are shown in Tab. 5. We can observe that

RVSML trains much faster compared with these sequence

distance learning methods. Specifically, the training time of

LDMLT is more than ten times the training time of RVSM-

L instantiated by DTW on most datasets, the training of

SWMD is also at least 5 times slower than RVSML.

The performances of the proposed RVSML depend on the

choice of virtual sequences. Due to the different properties

and real distributions of the sequence data, different virtual

sequences can lead to different effects on the learned metric.

In the supplementary file, we show that with a different

virtual sequence generation method, RVSMLs instantiated

by both distances achieves better results on this dataset.

5.3. Combination with state-of-the-art methods

The proposed RVSML learns a transformation that projects

the sequences into another space. In the resulting space,

we can use other advanced classification methods instead

of the NN classifier. That is, we first apply the proposed

RVSML to the original sequences and then employ state-

of-the-art classification methods by taking the transformed

sequences as input. In this way, the proposed RVSML can

be combined with these methods.

We combine RVSML with kernelized-COV (Cavazza et al.,

2016), which extracts the kernelized covariance representa-

tion from each sequence and applies SVM for classification.

In (Cavazza et al., 2016), the 120-dimensional velocity and

acceleration of the raw joint positions based frame-wide

features (Zanfir et al., 2013) were employed. On the M-

SR Activity3D dataset, the pre-computed features are pro-

vided and hence we directly apply RVSML to them. On

the MSR Action3D dataset, we compute the features fol-

lowing (Zanfir et al., 2013), where the velocity and accel-

eration features are augmented by the raw joint positions.

We perform Kernelized-COV to the transformed sequences.

Tab. 6 and Tab. 7 show the results in comparison with

the state-of-the-art methods on the two datasets, respective-

ly. The combination of our method and Kernelized-COV

achieves comparable results with other competitors.

On the MSR Action3D dataset, we also combine RVSML

with the generalized temporal sliding LSTM (TS-LSTM)

Network (Lee et al., 2017) denoted by TS-LSTM-GM. We

apply RVSML to the 60-dimensional motion features used

in (Lee et al., 2017), perform L2 normalization to the trans-

formed features, and input the resulting sequences to TS-

LSTM-GM. The results are shown in Tab. 7. The proposed

RVSML instantiated by DTW improves the accuracy of

Table 6. Comparison with state-of-the-art methods on the MSR

Activity3D dataset.

Method Accuracy

Actionlet Ensemble (Wang et al., 2012) 85.8%
Moving Pose (Zanfir et al., 2013) 73.8%
COV-JH-SVM (Harandi et al., 2014) 75.5%
Ker-RP-POL (Wang et al., 2015) 96.9%
Ker-RP-RBF (Wang et al., 2015) 96.3%
Kernelized-COV (Cavazza et al., 2016) 96.3%
Luo et al. (Luo et al., 2017) 86.9%
Ji et al. (Ji et al., 2018) 81.3%
DSSCA SSLM (Shahroudy et al., 2018) 97.5%
RVSML-DTW+Kernelized-COV 96.9%
RVSML-OPW+Kernelized-COV 97.5%

Table 7. Comparison with state-of-the-art methods on the MSR

Action3D dataset.

Method Accuracy

Actionlet Ensemble (Wang et al., 2012) 88.2%
Moving Pose (Zanfir et al., 2013) 91.7%
COV-JH-SVM (Harandi et al., 2014) 80.4%
Ker-RP-POL (Wang et al., 2015) 96.2%
Ker-RP-RBF (Wang et al., 2015) 96.9%
Kernelized-COV (Cavazza et al., 2016) 96.2%
SCK+DCK (Koniusz et al., 2016) 91.45%
TS-LSTM-GM (Lee et al., 2017) 91.21%
FTP-SVM (Ben Tanfous et al., 2018) 90.01%
Bi-LSTM (Ben Tanfous et al., 2018) 86.18%
RVSML-DTW+Kernelized-COV 82.78%
RVSML-OPW+Kernelized-COV 96.34%
RVSML-DTW+TS-LSTM-GM 93.04%
RVSML-OPW+TS-LSTM-GM 90.48%

TS-LSTM-GM by 1.8%. RVSML instantiated by different

meta-distances fits for different classification methods.

6. Conclusion

We present a metric learning framework for sequence data,

which learns the meta-distance for sequences via learning

the ground metric. The objective is to minimize the meta-

distances between training sequences and their associated

a prior defined virtual sequences. Constructing the meta-

distance needs to infer the temporal alignments, but the in-

ference also depends on the ground metric. We propose an

efficient iterative solution to learn the ground metric and

the latent alignments jointly. We unify a family of meta-

distance measures for sequences into a common formula-

tion and show that any meta-distance with such form can

be employed to instantiate our framework. Additionally,

we propose an approach to generate discriminative virtual

sequences. We empirically show that our method is able to

enhance different types of meta-distances and state-of-the-

art sequence classification methods.
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