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Abstract. Multi-task learning has been widely adopted in many computer vision
tasks to improve overall computation efficiency or boost the performance of indi-
vidual tasks, under the assumption that those tasks are correlated and complemen-
tary to each other. However, the relationships between the tasks are complicated
in practice, especially when the number of involved tasks scales up. When two
tasks are of weak relevance, they may compete or even distract each other during
joint training of shared parameters, and as a consequence undermine the learning
of all the tasks. This will raise destructive interference which decreases learning
efficiency of shared parameters and lead to low quality loss local optimum w.r.t.
shared parameters. To address the this problem, we propose a general modulation
module, which can be inserted into any convolutional neural network architec-
ture, to encourage the coupling and feature sharing of relevant tasks while disen-
tangling the learning of irrelevant tasks with minor parameters addition. Equipped
with this module, gradient directions from different tasks can be enforced to be
consistent for those shared parameters, which benefits multi-task joint training.
The module is end-to-end learnable without ad-hoc design for specific tasks, and
can naturally handle many tasks at the same time. We apply our approach on
two retrieval tasks, face retrieval on the CelebA dataset [12] and product retrieval
on the UT-Zappos50K dataset [34, 35], and demonstrate its advantage over other
multi-task learning methods in both accuracy and storage efficiency.

1 Introduction

Multi-task learning aims to improve learning efficiency and boost the performance of
individual tasks by jointly learning multiple tasks at the same time. With the recent
prevalence of deep learning-based approaches in various computer vision tasks, multi-
task learning is often implemented as parameter sharing in certain intermediate layers
in a unified convolutional neural network architecture [33, 19]. However, such feature
sharing only works when the tasks are correlated and complementary to each other.
When two tasks are irrelevant, they may provide competing or even contradicting gra-
dient directions during feature learning. For example, learning to predict face attributes
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Fig. 1. Conflicting training signals in multi-task learning: when jointly learning discriminative
features for multiple face attributes, some samples may introduce conflicting training signals in
updating shared model parameters, such as “Smile” vs. “Young”.

of “Open Mouth” and “Young” can lead to discrepant gradient directions for the exam-
ples in Figure 1. Because the network is supervised to produce nearby embeddings in
one task but faraway embeddings in the other task, the shared parameters get conflict-
ing training signals. It is analogous to the destructive interference problem in Physics
where two waves of equal frequency and opposite phases cancel each other. It would
make the joint training much more difficult and negatively impact the performance of
all the tasks.

Although this problem is rarely identified in the literature, many of the existing
methods are in fact designed to mitigate destructive interference in multi-task learning.
For example, in the popular multi-branch neural network architecture and its variants,
the task-specific branches are designed carefully with the prior knowledge regarding the
relationships of certain tasks [18, 8,20]. By doing this, people expect less conflicting
training signals to the shared parameters. Nevertheless, it is difficult to generalize those
specific designs to other tasks where the relationships may vary, or to scale up to more
tasks such as classifying more than 20 facial attributes at the same time, where the task
relationships become more complicated and less well studied.

To overcome these limitations, we propose a novel modulation module, which can
be inserted into arbitrary network architecture and learned through end-to-end training.
It can encourage correlated tasks to share more features, and at the same time disentan-
gle the feature learning of irrelevant tasks. In back-propagation of the training signals,
it modulates the gradient directions from different tasks to be more consistent for those
shared parameters; in the feed-forward pass, it modulates the features towards task-
specific feature spaces. Since it does not require prior knowledge of the relationships of
the tasks, it can be applied to various multi-task learning problems, and handle many
tasks at the same time. One related work is [24] which try to increase model capacity
without a proportional increase in computation.

To validate the effectiveness of the proposed approach, we apply the modulation
module in a neural network to learn the feature embedding of multiple attributes, and
evaluate the learned feature representations on diverse retrieval tasks. In particular, we
first propose a joint training framework with several embedded modulation modules
for the learning of multiple face attributes, and evaluate the attribute-specific face re-
trieval results on the CelebA dataset. In addition, we provide thorough analysis on the
task relationships and the capability of the proposed module in promoting correlated
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tasks while decoupling unrelated tasks. Experimental results show that the advantage
of our approach is more significant with more tasks involved, showing its generalization
capability to larger-scale multi-task learning problems. Compared with existing multi-
task learning methods, the proposed module learns improved task-specific features and
supports a compact model for scalability. We further apply the proposed approach in
product retrieval on the UT-Zappos50K dataset, and demonstrate its superiority over
other state-of-the-art methods.
Overall, the contributions of this work are four-fold:

We address the destructive interference problem of unrelated tasks in multi-task
learning, which is rarely discussed in previous work.

We propose a novel modulation module that is general and end-to-end learnable, to
adaptively couple correlated tasks while decoupling unrelated ones during feature
learning.

With minor task-specific overhead, our method supports scalable multi-task learn-
ing without manually grouping of tasks.

We apply the module to the feature learning of multiple attributes, and demonstrate
its effectiveness on retrieval tasks, especially on large-scale problems (e.g., as many
as 20 attributes are jointly learned).

2 Related Work

2.1 Multi-task learning

It has been observed in many prior works that jointly learning of multiple correlated
tasks can help improve the performance of each of them, for example, learning face de-
tection with face alignment [19, 37], learning object detection with segmentation [4, 2],
and learning semantic segmentation with depth estimation [15,29]. While these works
mainly study what related tasks can be jointly learned in order to mutually benefit each
other, we instead investigate a proper joint training scheme given any tasks without
assumption on their relationships.

A number of research efforts have been devoted to exploiting the correlations among
related tasks for joint training. For example, Jou et al. [8] propose the Deep Cross Resid-
ual Learning to introduce the cross-residuals connections as a form of network regular-
ization for better network generalization. Misra et al. [14] propose the Cross-stitch Net-
works to combine the activations from multiple task-specific networks for better joint
training. Kokkinos et al. [9] propose UberNet to jointly learn low-, mid-, and high-level
vision tasks by branching out task-specific paths from different stages in a deep CNN.

Most multi-task learning frameworks, if not all, involve parameters shared across
tasks and task-specific parameters. In joint learning beyond similar tasks, it is desirable
to automatically discover what and how to share between tasks. Recent works along
this line include Lu et al. [13], who propose to automatically discover a neural network
design to group similar tasks together; Yang et al. [32], who model this problem as
tensor factorization to learn how to share knowledge across tasks; and Veit et al. [26],
who propose to share all neural network layers but masking the final image features
differently conditioned on the attributes/tasks.
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Compared to these existing works, in this paper, we explicitly identify the problem
of destructive interference and propose a metric to quantify it. Our observation further
confirms its correlation to the quality of learned features. Moreover, our proposed mod-
ule is end-to-end learnable and flexible to be inserted anywhere into an existing network
architecture. Hence, our method can further enhance the structure learned with the algo-
rithm from Lu et al. [13] to improve its suboptimal within-group branches. When com-
pared with the tensor factorization by Yang et al. [32], our module is lightweight, easy
to train, and with a small and accountable overhead to include additional tasks. Con-
dition similar networks [26] shares this desirable scalability feature with our method
in storage efficiency. However, as they do not account for the destructive interference
problem in layers other than the final feature layer, we empirically observe that their
method does not scale-up well in accuracy for many tasks (See Section 4.2).

2.2 Image Retrieval

In this work, we evaluate our method with applications on image retrieval. Image re-
trieval has been widely studied in computer vision [17,25,27,28,7,16]. We do not
study the efficiency problem in image retrieval as in many prior works [28, 11,7, 16].
Instead, we focus on learning discriminative task-specific image features for accurate
retrieval.

Essentially, our method is related to how discriminative image features can be ex-
tracted. In the era of deep learning, feature extraction is a very important and funda-
mental research direction. From the early pioneering AlexNet [10] to recent seminal
ResNet [5] and DenseNet [6], the effectiveness and efficiency of neural networks have
been largely improved. This line of research focuses on designing better neural net-
work architectures, which is independent of our method. By design, our algorithm can
potentially benefit from better backbone architectures.

Another important related research area is metric learning [31, 21, 30, 23], which
mostly focuses on designing an optimization objective to find a metric to maximize the
inter-class distance while minimizing the intra-class distance. They are often equivalent
to learning a discriminative subspace or feature embedding. Some of them have been
introduced into deep learning as the loss function for better feature learning [22, 3].
Our method is by design agnostic to the loss function, and we can potentially benefit
from more sophisticated loss functions to learn more discriminative image feature for
all tasks. In our experiment, we use triplet loss [22] due to its simplicity.

3 Our Method

In this section, we first identify the destructive interference problem in sharing features
for multi-task learning and then present the technical details of our modulation module
to resolve this problem.

3.1 Destructive interference

Despite that a multi-task neural network can have many variants which involve the
learning of different task combinations, the fundamental technique is to share intermedi-
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Fig. 2. A neural network fully modulated by our proposed modules: in testing, the network takes
inputs as the image and task label to extract discriminative image features for the specified task.

‘ ‘smile Acc. ‘open mouth Acc. |y0ung Acc. ‘ smile / young UCR|smile /open-mouth UCR‘

smile + young + open mouth(a) 84.71% 74.73 % 71.6% -

smile + young(b) 83.85% - 74.71% 22.1% -
smile + open mouth(c) 91.72% 92.65% - 43.71%
Three Independent Networks(d) 93.32% 94.40% 84.90% - -
With Proposed Modulation(e) 94.03% 95.31% 86.20% 50.63% 52.77%
With Proposed Modulation + Reg(f)| 94.94% 95.58% 87.75%

Table 1. Accuracy and UCR Comparison on three face attribute-based retrieval tasks (See Sec-
tion 4.1 for details): the comparison empirically support our analysis of the destructive inter-
ference problem and the assumption that reasonable task-specific modulation parameters can be
learned from data

ate network parameters for different tasks, and jointly train with all supervision signals
from different tasks by gradient descent methods. One issue raised from this common
scheme is that two irrelevant or weakly relevant tasks may drag gradients propagated
from different tasks in conflicting or even opposite directions. Thus, learning the shared
parameters can suffer from the well-known destructive interference problem.

Formally, we denote 0 as the parameters of a neural network F over different tasks,
I as its input, and f = F(I|0) as its output. The update of & follows its gradient:

 OLOf

vofwﬁ,

6]
where L is the loss function.

In multi-task learning, § will be updated by gradients from different tasks. Essen-
tially, g—? directs the learning of #. In common cases, a discriminative loss generally en-
courages f; and f; to be similar for images I; and /; from the same class. However, the
relationship of I; and I; can change in multi-task learning, even flip in different tasks.
When training all these tasks, the update directions of # may be conflicting, which is
the namely destructive interference problem.

More specifically, given a mini-batch of training samples from task ¢ and ¢/, V6 =
V0 + V0, where V0, /1 denotes gradients from samples of task 7 /t'. Gradients from
two tasks are negatively impacting the learning of each other, when

Appr = sign((VO, Vo)) = —1. @)

The destructive interference hinders the learning of the shared parameters and es-
sentially leads to low quality loss local optimum w.r.t. shared parameters.
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Empirical Evidence We validate our assumption through a toy experiment on jointly
learning of multiple attribute-based face retrieval tasks. More details on the experimen-
tal settings can be found in Section 4.1.

Intuitively, the attribute smile is related to attribute open mouth but irrelevant to at-
tribute young 3. As shown in Table 1, when we share all the parameters of the neural
network across different tasks, the results degrade when jointly training the tasks com-
pared with training three independent task-specific networks. The degradation when
jointly training smile and young is much more significant than the one when jointly
training smile and open mouth. That is because there are always some conflicting gradi-
ents from some training samples even if two tasks are correlated, and apparently when
the two tasks are with weak relevance, the conflicts become more frequent, making the
joint training ineffective.

To further understand how the learning leads to the above results, we follow Equa-
tion 2 to quantitatively estimate the compatibility of task pairs by looking at the ratio
of mini-batches with A; ;+ > 0 in one training epoch. So we define this ratio as Update
Compliance Ratio(UCR) which measures the consistence of two tasks. The larger the
UCR is, the more consistent the two tasks are in joint training. As shown in Table 1, in
joint learning of smile and open mouth we observe higher compatibility compared with
joint learning of smile and young, which explains the accuracy discrepancy from (b) to
(c) in Table 1. Comparing (e) with (b) and (c), the accuracy improvement is accompa-
nied with UCR improvement which explains how the proposed module improves the
overall performance. With our proposed method introduced as following, we observe
increased UCR for both task pairs.

3.2 A Modulation Module

Most multi-task learning frameworks involve task-specific parameters and shared pa-
rameters. Here we introduce a modulation module as a generic framework to add task-
specific parameters and link it to alleviation of destructive interference.

More specifically, we propose to modulate the feature maps with task-specific pro-
jection matrix W for task ¢. As illustrated in Figure 2, this module maintains the feature
map size to keep it compatible with layers downwards in the network architecture. Fol-
lowing we will discuss how this design affects the back-propagation and feed-forward
pass.

Back-propagation In back-propagation, destructive interference happens when gradi-
ents from two tasks ¢ and ¢’ over the shared parameters # have components in conflicting
directions, i.e., (V0;, V6) < 0. It can be simply derived that the proposed modula-
tion over feature maps is equivalent to modulating shared parameters with task-specific
masks M, ;.. With the proposed modulation, the update to 6 is now M;V0; +M; V.
Since the task-specific masks/projection matrices are learnable, we observe that the
training process will naturally mitigate the destructive interference by reducing the av-
erage across-task gradient angles (M;V60;, My V0, ), which is observed to result in
better local optimum of shared parameters.

5 Here the attribute refers to its estimation from a given face image.



A Modulation Module for Multi-task Learning with Applications in Image Retrieval 7

Feed-Forward Pass Given feature map = with size M x N x C and the modulation
projection matrix W, we have

x' = W, x z, 3)

which is the input to the next layer.

A full projection matrix would require W, of size M NC x M NC, which is infea-
sible in practice and the modulation would degenerate to completely separated branches
with a full project matrix. Therefore, we firstly simplify the W, to have shared elements
within each channel. Formally, W = {w; ;},{4,j} € {1,...,C}

mnl Z $an * wlv]’ (4)

where /., Tpyp; and w;; denote elements from input, output feature maps and W;
respectively. We ignore the subscription ¢ for simplicity. Here W is in fact a channel-
wise projection matrix.

We can further reduce the computation by simplifying the W; to be a channel-wise
scaling vector W, with size C' as illustrated in Figure 2.

Formally, W = {w.},c € {1,...,C}.
x;nnc = Tmnc * We, &)

where z, . and x,,,. denotes elements from input and output feature maps respec-
tively.

Compared with the channel-wise scaling vector design, we observe empirically the
overall improvement from the channel-wise projection matrix design is marginal, hence
we will mainly discuss and evaluate the simpler channel-wise scaling vector option.
This module can be easily implemented by adding task specific linear transformations

as shown in Figure 3.

o *“’,ﬂ /

Fig. 3. Structure of the proposed Modulation Module which adapts features via learned weights
with respect to each task. This module can be inserted between any layers and maintain the
network structure.
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3.3 Training

The modulation parameters W, are learned together with the neural network param-
eters through back-propagation. In this paper, we use triplet loss [22] as the objec-
tive for optimization. More specifically, given a set of triplets from different tasks
(Ig,Ip, I, t) € T,

L= [Ifa—fol* +a—lfa— fal>)]+ (6)
T
fapmn = F(Iapal0, W) )

, Where « is the expected distance margin between positive pair and negative pair, I, is
the anchor sample, I}, is the positive sample, I, is the negative sample and 7 is the task.

When training the Neural Network with a discriminative loss, we argue that by
introducing the Modulation module into the neural network, it will learn to leverage
the additional knobs to decouple unrelated tasks and couple related ones to minimize
the training loss. In the toy experiment shown in Table 1, we primarily show that our
method can surpass fully independent learning. The reduced ratios of conflicting mini-
batches in training as shown in Table 1 also validate our design.

The learned W, capture the relationship of tasks implicitly. We obtained W,, W
and W, for smile, young, open-mouth respectively. Then the element-wise difference
between W, and W,,VW, ,, and the difference between W, and W, VW, are
obtained to measure their relevancy. The mean and variance of VW, ,, is 0.18 and 0.03
while the mean and variance of VW, , is 0.24 and 0.047.

We further empirically validate this assumption by introducing an additional regu-
larization loss to encode human prior knowledge on the tasks’ relevancy. We assume the
learned W for smile would be more similar to the one for open mouth compared with
the one for young. We regularize the pairs of relevant tasks to have similar task-specific
W with

Lo = maz(0, [|W; — W,||2 + 8 — [|[W; — W,|J?) ®)

, where (3 is the expected margin, i, j, k denotes three tasks, and task pair (4, ) is con-
sidered more relevant compared to task pair (i, k). L, is weighted by a hyper-parameter
A and combined with the above triplet loss over samples in training.

As shown in Table 1, the accuracy of our method augmented with this regularization
loss is better but the gap is only marginal. This suggests that without encoding prior
knowledge through the loss, the learned W's may implicitly capture task relationships
in a similar way. On the other hand, it is impractical to manually define all pairwise
relationships when the number of tasks scales up, hence we ignore this regularization
loss in our large-scale experiments.

4 Experiments

In the experiments, we evaluate the performance of our approach on the face retrieval
and product retrieval tasks.
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’ Name ‘ Operation Output Size

convl 3 X 3 convolution  |[148 x 148 x 32

block2|Conv-Pool-ResnetBlock| 73 x 73 x 64

block3|Conv-Pool-ResnetBlock| 35 x 35 x 128

block4|Conv-Pool-ResnetBlock| 16 x 16 x 128

blockS5 |Conv-Pool-ResnetBlock| 7 x 7 x 128
fc Fully-Connected 256

Table 2. Our Basic Neural Network Architecture: Conv-Pool-ResnetBlock stands for a 3 x 3
conv-layer followed by a stride 2 pooling layer and a standard residual block consist of 2 3 x 3
conv-layers.

4.1 Setup

In both retrieval settings, we define a task as retrieval based on a certain attribute of
either face or product. Both datasets have the per-image annotation for each attribute.
To quantitatively evaluate the methods under the retrieval setting, we randomly sample
image triplets from their testing sets as our benchmarks. Each triplet consists of an
anchor sample I,, a positive sample I,,, and a negative sample I,,. Given a triplet, we
retrieve one sample from I, and I,, with I, and consider it a success if I}, is preferred. In
our method, we extract discriminative features with the proposed network and measure
image pair distance by their euclidean distance of features. The accuracy metric is the
ratio of successfully retrieved triplets.

Unless stated otherwise, we use the neural network architecture in Table 2 for
our method, our re-implementation of other state-of-the-art methods, and our baseline
methods.

We add the proposed Modulation modules to all layers from block4 to the final
layer and use ADAGRAD [1] for optimization in training with learning rate 0.01. We
uniformly initialize the parameters in all added modules to be 1. We use the batch size
of 180 for 20 tasks and 168 for 7 tasks joint training. In each mini-batch, we evenly
sample triplets for all tasks. Our method generally converges after 40 epochs.

4.2 Face Retrieval

Dataset We use Celeb-A dataset [12] for the face retrieval experiment. Celeb-A con-
sists of more than 200,000 face images with binary annotations on 40 face attributes
related to age, expression, decoration, etc. We select 20 attributes more related to face
appearance and ignore attributes around decoration such as eyeglasses and hat for our
experiments. We also report the results on 40 attributes to verify the effectiveness on 40
attributes.

We randomly sampled 30000 triplets for training and 10000 triplets for testing for
each task. Our basic network architecture is shown in Table 2. We augment it by insert-
ing our gradient modulation modules and train from scratch.
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Methods: | Ours | CSN [ ITN | FSN [IB-256] IB-25 [Only mask
ﬁc‘gfag; 84.86% |72.81%|84.61% | 69.4% |83.69%|75.47%| 76.32%
Number of
Baseline Parameters 3M 3M 3M 3M 3M 3M 3M
ad ditil:)l::lﬂi)zrr;rieters 10k 3k | 51M 0 | 1.3M | 128k 10k
smile 93.77%75.59%|93.32% | 78.83%92.76%|82.91%| 87.64%
shadow 94.67% |92.83%|92.25% |85.39%|92.83%|88.02%| 86.41%
bald 91.83%87.80%[90.70% |81.79%|89.47%|78.11%| 88.42%
are-eyebrows | 78.36% |63.94%]|79.60% |66.19%|76.84%|66.00%| 72.10%
chubby 90.2% |85.32%|87.29% |79.06% |88.66%|82.79%| 85.39%
double-chin 91.45% |85.61%|89.57% |81.15%|89.92%|83.08%| 87.19%
high-cheekbone | 88.53% |71.25%|88.93% |74.57%|87.25%|76.53%| 82.80%
goatee 94.47 % |90.66% | 94.06% |83.48%|94.17%|84.68%| 91.52%
mustache 93.41%89.21%|93.23% |82.40%|93.21%|87.52%| 89.89%
no-beard 93.84% |82.35% | 93.69% |80.52%|93.98%|86.51%| 85.69%
sideburns 95.27%|90.95% | 94.88% |86.20%|95.04%|88.81%| 91.85%
bangs 90.22% |71.91%|89.96% |69.96%|89.13%|78.75%| 80.34%
straight-hair 72.98% (63.31%|73.24% |61.70%|71.98%|62.33%| 65.47%
wavy-hair 76.59%59.34% | 76.10% |59.49%|75.62%|64.04%| 65.11%
receding-hairline |87.33% |75.63%)|86.93% |72.02%|86.24%(80.17%| 79.94%
bags-eyes 85.90% |76.39%|85.93% | 72.39% |84.64%|76.01%| 82.05%
bushy-eyebrows [88.73% |79.22%|88.32% |74.52%|88.44%|80.50%| 80.50%
young 84.87% |60.61%|84.90% |61.55%|83.48%|73.05%| 66.23%
oval-face 72.21% |64.33%|71.52% |63.54%|70.16%|62.10%| 65.10%
mouth-open 94.59%|87.32% | 94.40% |72.71%|92.22%|89.03%| 86.59%

Table 3. Accuracy comparison on the joint training of 20 face attributes
eters, our method achieves best mean accuracy over the 20 tasks compared with the competing

: with far fewer param-

methods.
smile ovalface shadow bald arc-eyebrows| big-lips big-nose
smile - 51.56/48.47|67.70/26.33|67.82/32.30| 52.32/45.40 |54.83/49.49|58.72/45.25
ovalface |51.56/48.47 - 67.36/26.94|64.99/35.29| 57.86/50.13 |57.74/49.32|54.98/46.64
shadow |67.70/26.33|67.36/26.94 - 91.67/30.54| 66.87/26.48 |72.51/28.25|69.90/29.99
bald 67.82/32.30|64.99/35.29|91.67/30.54 - 61.74/31.67 |67.60/36.22|72.66/41.04
arc-eyebrows|52.32/45.40|57.86/50.13|66.87/26.48|61.74/31.67 - 58.86/51.13|50.34/41.43
big-lips  |54.83/46.49(57.74/49.32|72.51/28.25|67.70/36.22| 58.86/51.13 - 55.20/46.84
big-nose [58.72/45.25|54.98/46.64|69.90/29.99|72.66/41.04| 50.34/41.43 |55.20/46.84 -

Table 4. Comparison of UCR between different tasks on joint training of seven face attributes
with our method (red) and the fully shared network baseline (black): we quantitatively demon-
strate the mitigation of destructive interference with our method.
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Results We report our evaluation of the following methods in Table 3:

11

Ours: we insert the proposed Modulation modules to the block4, block5, and fc

layers to the network in Table 2 and jointly train it with all training triplets from 20

tasks;

Conditional Similarity Network (CSN) from Veit et al. [26]: we follow the open-

sourced implementation from the authors to replace the network architecture with
ours and jointly train it with all training triplets from 20 tasks;

specific neural networks with training triplets from each task independently;

branch with feature size 256.
— Independent Branch 25(IB-25): based on shared parameters, we add task-specific
branch with feature size 25.
— Only-mask: our network is pretrained from the independent branch model, the
shared parameters are fixed and only the module parameters are learned.

Independent Task-specific Network(ITN): in this strong baseline we train 20 task-

Single Fully-shared Network(FSN): we train one network with all training triplets.
Independent Branch 256(IB-256): based on shared parameters, we add task-specific

(from block4)

Face Attributes: smile |ovalface|shadow | bald |arc-eyebrows|big-lips|big-nose Average
Accuracy
Single 78.39% | 64.39% [ 79.55% |77.62% |  69.17% |61.71% | 68.88% | 71.38%
Fully-shared Network IO BTN [F0970 | TEDET0 S R e i
Independent 93.32%|71.52% [92.25% [90.70% | 79.60%  |67.35% | 84.35% | 82.72%
Task-specific Networks
CSN 91.39% | 68.41% |92.51% |90.79% | 77.53% |65.79%| 82.03% | 81.20%
Ours (from blockS) |93.35% | 70.47% |90.44% |88.79% | 77.12% | 66.36% | 83.84% | 81.48%
Ours (from block4) |93.69% | 71.44% |92.06% |90.66% | 80.00% |67.15% | 84.26% | 82.75%
Ours (from block3) |93.83% | 71.04% |93.28% |90.66% | 79.76% |67.53% |84.76% | 82.98%
Ours (from block2) |94.11% | 71.94% | 92.5% |90.70% | 78.66% |66.36% | 84.10% | 82.62%
channel-wise projection|o ¢ 406 171 980, (92.69% [90.58%| 78.95% |66.78% | 84.48% | 82.79%

Table 5. Ablation Study of our method: with more layers modulated by the proposed method,
performance generally improves; channel-wise projection module is marginally better than the
default channel-wise scaling vector design.

Single Fully-shared network and CSN severely suffer from the destructive interference
as shown in Table 3. Note when jointly training only 7 tasks, CSN performs much better
than the fully-shared network and similarly to fully shared network with additional
parameters as shown in Table 5. However, it does not scale up to handle as many as 20
tasks. Since the majority of the parameters are naively shared across tasks until the last
layer, CSN still suffers from destructive interference.

We then compare our methods with Independent Branch methods. Independent
Branch methods naively add task specific branches above the shared parameters. The
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branching for IB-25 and IB256 begins at the end of the baseline model in Table 2, i.e.,
different attributes have different branches after the FC layer. As illustrated in Table 3,
our method clearly outperforms them with much fewer task-specific parameters. Re-
garding the number of additional parameters, we observe that to approximate accuracy
of our method, this baseline needs about 1.3M task-specific parameters, which is 100
times of ours. The comparison indicates that our module is more efficient in leveraging
additional parameters budget.

Tasks: ‘ class ‘closure‘ gender‘ heel ‘Average Accuracy
Single Fully-shared Network 78.95% |80.33% | 69.22% | 73.35% 75.46%
Independent Task-specific Networks|92.01% |89.12% | 79.10% | 85.97% 86.61%
CSN [26] 93.06% |89.37% | 78.09 |86.42% 86.73%
Ours 93.34%90.57 % | 79.50 % |89.27 % 88.17%

Table 6. Accuracy Comparison on joint training of 4 product retrieval tasks on UT-Zappos50k:
our method significantly outperforms others.

Compared with the independently trained task-specific networks, our method achieves
slightly better average accuracy with almost 20 times fewer parameters. Notably, our
method achieves obvious improvement for both face shape related attributes (chubby,
double chin) and all three beard related attributes (goatee, mustache, sideburns), which
demonstrates that the proposed method does not only decouple unrelated tasks but also
adaptively couples related tasks to improve their learning. We show some example re-
trieval results in Figure 4.

We reported the Update Compliance Ratio(UCR) comparison in Table 4. Our method
significantly improves the UCR in the joint training for all task pairs. This indicates that
the proposed module is effective in alleviating the destructive interference by leading
the gradients over shared parameters from different tasks to be more consistent.

To further validate that the source of improvement is from better shared parameters
instead of simply additional task specific parameters. We keep our shared parameters
fixed as the ones trained with the strong baseline IB-256 and only make the modulation
modules trainable. As reported in the last column in Table 3, the results are not as good
as our full pipeline, which suggests that the proposed modules improved the learning
of shared parameters. To validate the effectiveness of our method on 40 attributes, we
evaluate our method on 40 attributes and obtain average 85.75% which is significant
better than 78.22% of our baseline IB-25 which has same network complexity but with
independent branches.

Ablation Study In Table 5, we evaluate how the performance evolves when we insert
more Modulation modules into the network. By adding proposed modules to all lay-
ers after block N, N = 5,4, 3,2, we observe that the performance generally increases
with more layers modulated. This is well-aligned with our intuition that with gradients
modulated in more layers, the destructive inference problem gets solved better. Because
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early layers in the neural networks generally learn primitive filters [36] shared across
a broad spectrum of tasks, shared parameters may not suffer from conflicting updates.
Hence the performance improvement saturates eventually.

We also experiment with channel-wise projection matrix instead of channel-wise
scaling vector in the proposed modules as introduced in Section 3.2. We observe marginal
improvement with the more complicated module, as shown in the last row of Table 5.
This suggests that potentially with more parameters being modulated, the overall per-
formance improves at the cost of additional task-specific parameters. It also shows that
the proposed channel-wise scaling vector design is a cost-effective choice.

4.3 Product Retrieval

Dataset We use UT-Zappos50K dataset [34, 35] for the product retrieval experiment.
UT-Zappos5S0K is a large shoe dataset consisting of more than 50,000 catalog images
collected from the web. The datasets are richly annotated and we can retrieve shoes
based on their type, suggested gender, height of their heel, and the closing mechanism.
We jointly learn these 4 tasks in our experiment. We follow the same training, valida-
tion, and testing set splits as Veit et al. [26] to sample triplets.

Results As shown in Table 6, our method is significantly better than all other competing
methods. Because CSN manually initializes the 1-dimensional mask for each attribute
to be non-overlapping, their method does not exploit their correlation well when two
tasks are correlated. We argue that naively sharing features for all tasks may hinder the
further improvement of CSN due to gradient discrepancy among different tasks. In our
method, proposed modules are inserted in the network and the correlation of different
tasks are effectively exploited. Especially for heel task, our method obtains a nearly 3
point gain over CSN. Note that because our network architecture is much simpler than
the one used by Veit et al. [26] and does not pre-train on ImageNet. The numbers are
generally not compatible to those reported in their paper.

5 Discussion

5.1 General applicability

In this paper, we mainly discuss multi-task learning with application in image retrieval
in which each task has similar network structure and loss functions. By design the
proposed module is not limited to a specific loss and should be applicable to handle
different tasks and different loss functions.

In general multi-task learning, each task may have its specifically designed network
architecture and own loss, such as face detection and face alignment [19, 37], learning
object detection and segmentation [4, 2], learning semantic segmentation and depth es-
timation [15, 29]. The signals from different tasks could be explicitly conflicting as well
and lead to severe destructive interference especially when the number of jointly learned
tasks scale up. When such severe destructive interference happens, the proposed mod-
ule could be added to modulate the update directions as well as task-specific features.
We leave it as our future work to validate this assumption through experiments.
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Query Face Faces ranked by distances to query in ascending order

Ours

Ours

5 B3

(b) Sideburns

Fig. 4. Example face retrieval results in two tasks: using models jointly trained for 20 face at-
tributes with CSN and our method respectively. Some incorrectly ranked faces are highlighted in
red.

5.2 Speed and Memory size Trade-off

Similar to a multi-branch architecture and arguably most multi-task learning frame-
works, our method shares the problem of runtime speed and memory size trade-off in
inference. One can either choose to keep all task-specific feature maps in memory to
finish all the predictions in a single pass or iteratively feed-forward through the network
from the shared feature maps to keep a tight memory foot-print. However, we should
highlight that our method can achieve better accuracy with a more compact model in
storage. Either a single pass inference or iterative inference could be feasible with our
method. Since most computations happen in the early stage in inference, with the pro-
posed modules, our method only added 15% overhead in feed-forward time. The feature
maps after block4 are much smaller than the ones in the early stages, so the increased
memory footprint would be sustainable for 20 tasks too.

6 Conclusion

In this paper, we propose a Modulation module for multi-task learning. We identify
the destructive interference problem in joint learning of unrelated tasks and propose to
quantify it with Update Compliance Ratio. The proposed modules alleviate this prob-
lem by modulating the directions of gradients in back-propagation and help extract bet-
ter task-specific features by exploiting related tasks. Extensive experiments on CelebA
dataset and UT-Zappos50K dataset verify the effectiveness and advantage of our ap-
proach over other multi-task learning methods.
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