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A Spectral Analysis of Feedback Regulation near
and beyond Nyquist Frequency

Dan Wang, Xu Chen†

Abstract—A fundamental challenge in sampled-data control
arises when a continuous-time plant is subject to disturbances
that possess significant frequency components beyond the Nyquist
frequency of the feedback sensor. Such intrinsic difficulties create
formidable barriers for fast high-performance controls in modern
and emerging technologies such as additive manufacturing and
vision servo, where the update speed of sensors is low compared to
the dynamics of the plant. This paper analyzes spectral properties
of closed-loop signals under such scenarios, with a focus on
mechatronic systems. We propose a spectral analysis method that
provides new understanding of the time- and frequency-domain
sampled-data performance. Along the course of uncovering
spectral details in such beyond-Nyquist controls, we also report
a fundamental understanding on the infeasibility of single-rate
high-gain feedback to reject disturbances not only beyond but
also below the Nyquist frequency. New metrics and tools are then
proposed to systematically quantify the limit of performance.
Validation and practical implications of the limitations are
provided with experimental case studies performed on a precision
mirror galvanometer platform for laser scanning.

Index Terms—Nyquist frequency, feedback regulation, high-
gain control, sampled-data control

I. INTRODUCTION

MANY modern manufacturing systems are increasingly
subjected to the challenge of limited sensing in the

design of control systems. For instance, in hard disk drive
systems, the sampling speed of the closed loop is limited
by the amount of physical servo sectors [1], [2]. In selective
laser sintering additive manufacturing, infrared thermography
cameras are expected to feedback more than 100,000 frames
of data every second, which is currently unattainable in a
real-time control framework [3], [4]. Similar scenarios also
appear in many other systems, such as vision-guided high-
speed controls [5], [6] and chemical processes. This paper
studies performance of the control system in this important
problem space.

The focused feedback system here is a sampled-data one
with its fast continuous dynamics controlled by a slow-
sampled data feedback. To better motivate the research, we
briefly review the existing metrics of sampled-data perfor-
mance. Let a plant Pc(s) be controlled by a digital controller
C(z) under a sampling time Ts (in seconds). It is a standard re-
sult from digital control theory that single-rate high-gain con-
trol (|C(e jΩoTs)| = ∞) can asymptotically reject disturbances
at frequency Ωo in the sampled output. However, for the
actual continuous-time output, the situation is more involved.
Based on sampled-data control [7]–[11], periodic sampling
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at Ts partitions the continuous-time frequency into infinite
regions of [2kπ/Ts,2(k + 1)π/Ts) where k = 0,±1,±2, . . . ,
and a continuous-time disturbance yields a fundamental mode
plus an infinite number of shifted replicas in the partitioned
regions. Due to the sampled-data architecture, the conventional
concept of frequency responses does not apply to evaluate
the full system performance here [7]–[12]. Three variations
are introduced: (i) the fundamental transfer function (FTF)
[11], (ii) the performance frequency gain (PFG) [13], [14],
and (iii) the robust frequency gain (RFG) [7]. FTF reveals
partial information of the full intersample behavior because
it focuses only on the fundamental mode. PFG studies the
overall sampled-data behavior within certain frequency regions
by employing an input-to-output power gain function [15].
RFG forms a metric for robustness by maximizing the input-
to-output power ratio over all possible combinations of the
magnitudes and phases of the input [16].

Although a sizable literature has studied the generalized
frequency responses in sampled-data control, analyses and
evaluations for the case with beyond-Nyquist disturbances
have not been sufficiently developed. For instance, under a
beyond-Nyquist disturbance, PFG and RFG only provide a
scalar value as an indicator of the regulation performance.
The distribution and closed-loop impact of each sampling-
induced alias mode remain not well understood. This can
be problematic for control practitioners since it is hard to
distinguish whether a spectral peak in the observed output
comes from below- or beyond-Nyquist disturbance sources.
As will be shown, the spectral effects of high-gain control on
beyond-Nyquist disturbances differ greatly from those below
π/Ts. This research uncovers the spectral details and, by doing
so, reveals the infeasibility of sub-Nyquist high-gain servo
design to reject beyond-Nyquist disturbances in mechatronic
systems that have low-pass type of dynamics. In particular, we
present and validate the existence of an upper frequency bound
for rejecting disturbances even below the Nyquist frequency.
This bound implies a fundamental limitation for high-gain
feedback control of sampled-data systems. We provide tools
to analyze the limitation and guidance to implement the tools
in practical problems. Theoretical analyses in this paper are
verified by both simulation and experimentation on a laser
scanning platform in additive manufacturing.

The main contributions of the paper are:
• building a full spectral analysis method to evaluate the

intersample behavior for beyond-Nyquist disturbances in
sampled-data control;

• applying the proposed method to analyze single-rate high-
gain control and discovering the existence of a principal
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sampled-data bandwidth Bp below the Nyquist frequency;
• verifying numerically and experimentally the theoretical

results in additive manufacturing.
A preliminary version of the findings was presented in [17]. In
this paper, we substantially expand the research with new theo-
retical results and experimental verifications. In the remainder
of the paper, Section II reviews several basics of sampled-
data control; the main spectral analysis method is provided
in Section III; Sections IV and V provide the numerical and
experimental verifications of the algorithm, respectively, after
which Section VI concludes the paper.

Notations: x [n] and xc (t) denote, respectively, a discrete
sequence and a continuous-time signal. X(e jω) denotes the
discrete-time Fourier transform (DTFT) of x [n]. Xc( jΩ) is the
Fourier transform of xc (t). ω = ΩTs, and Ω is in rad/s.

ℜ(c) denotes the real part of a complex number c ∈C. For
a sampled-data system with measurements collected every Ts
sec, single-rate control refers to digital control implemented
at the same sampling time of Ts.

II. PRELIMINARIES

Consider the sampled-data control system in Fig. 1,
where the solid and the dashed lines represent, respectively,
continuous- and discrete-time signal flows. The main elements
in the block diagram include the continuous-time plant Pc (s),
the analog-to-digital converter (ADC) that samples the con-
tinuous output at Ts, the discrete-time controller C (z), and
the signal holder H . In this paper, we focus on the case
where H is a zero-order hold (ZOH). The developed tools
and analytic framework can be applied to generalized sample
hold functions.

dc

+��// H
uc // Pc (s)

yc0

+
//◦ yc

// ADC

− ��

yd //

C (z)
ud ◦eoo

Fig. 1: Block diagram of a sampled-data control system.

Some basic properties and assumptions of sampled-data
control are reviewed first for setting up the problem.

It is assumed that 1) Pc(s) = P0(s)e−sτ where τ ≥ 0; P0(s)
and C(z) both are LTI, proper, and rational; 2) the coefficients
of all transfer functions are real; 3) the closed loop satisfies
the non-pathological sampling condition [18].

Under assumption 3), the closed-loop sampled-data system
is stable if and only if the discrete-time closed loop, consisting
of C(z) and the ZOH equivalent of Pc(s), is stable [19], [20].

Lemma 1. [21] If Xc( jΩ) exists, the sampling process
converting xc(t) to x[n] = xc(nTs) gives

X
(
e jω)= 1

Ts

∞

∑
k=−∞

Xc( j(
ω

Ts
− 2π

Ts
k)). (1)

Following conventions, we refer to Xc( jω/Ts) (k = 0) as
the fundamental mode and the other terms (k 6= 0) in the right
side of (1) as the shifted replicas.

Because of (1), after dc passes the ADC and enters the
feedback loop, yc(t) contains a fundamental mode plus an
infinite number of aliases:
Lemma 2. [22] If dc (t) = e jΩot and the sampling time is Ts
in Fig. 1, then the Fourier transform of the continuous-time
plant output yc(t) is

Yc ( jΩ) = 2π

[
1− 1

Ts
Pc ( jΩ)H ( jΩ)Sd(e jΩTs )C(e jΩTs )

]
δ(Ω−Ωo)

− 2π

Ts
Pc( jΩ)H( jΩ)Sd(e jΩTs )C(e jΩTs )

∞

∑
k =−∞, k 6= 0

δ(Ω−Ωo−
2π

Ts
k), (2)

where δ(Ω−Ωo) denotes a shifted Dirac delta impulse,
H( jΩ) = (1− e− jΩTs)/( jΩ) is the Fourier transform of the
ZOH, and Sd(e jΩoTs) is the frequency response of the discrete-
time sensitivity function Sd(z) = 1/(1 + Pd(z)C(z)), where
Pd(z), the ZOH equivalent of Pc(s), has the DTFT

Pd(e jΩoTs)=
1
Ts

∞

∑
k=−∞

Pc( j(Ωo+
2π

Ts
k))H( j(Ωo+

2π

Ts
k)). (3)

In practice, the pure analog output yc(t) is infeasible to
collect and store on digital computers. As an alternative, a fast
signal sampled at T

′
s is used to approximate the continuous-

time output with T
′

s = Ts/F (F > 1 and F ∈ Z). The problem
then reduces to a multirate (MR) sampled-data control one, as
shown in Fig. 2, where the dotted and dashed lines represent
the fast and slow signals sampled by T

′
s and Ts, respectively.

To reveal the performance of the fast-sampled output ydh, we
adopt the PFG metric [13], which considers the power ratio
between the input disturbance d[k] = d(kT

′
s ) and the output

ydh[k] = ydh(kT
′

s ):

Definition 1. Let d[k] ∈
{

d[k] : d[k] = ce jΩkT
′
s ,‖c‖2 < ∞

}
be

applied to an MR system in Fig. 2. The PFG P (e jΩT
′
s ) is

defined as

P (e jΩT
′
s ), sup

d 6=0

‖ydh[k]‖p

‖d[k]‖p
, (4)

where ‖·‖p represents the discrete-time signal power

‖d[k]‖p ,

√√√√ lim
N→∞

1
2N +1

N

∑
k=−N

‖d[k]‖2, (5)

and ‖·‖ denotes the Euclidean vector norm.
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Fig. 2: Block diagram of multirate sampled-data analysis.

III. SPECTRAL ANALYSIS OF BEYOND-NYQUIST
REGULATION PROBLEMS

To better motivate the analysis, consider two fast-sampled
outputs ydh in Figs. 3 and 4 collected from experimentation
on the mirror galvanometer system in Section V. The outputs
are fast sampled at T

′
s = Ts/F with F = 4. The Nyquist

frequency is ΩN = 5kHz. The disturbance frequencies are
below ΩN at 3kHz and beyond ΩN at 7kHz, respectively.
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Under a classic PID control design, the two single-harmonic
excitations generate aliased modes at multiple frequencies
(bottom plots of Figs. 3 and 4). When classic single-rate
high-gain control [23] is applied to the feedback system,
distinct differences show in the output spectra (top plots of
Figs. 3 and 4). Furthermore, all the spectral spikes are not
fully attenuated despite the zero steady-state Ts-sampled output
(Figs. 7a and 8a). How do the results happen? What is the
governing mechanics of the beyond-Nyquist compensation?
How would the spectral distribution change with respect to
the excitation frequency?
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Fig. 3: Fast Fourier transform of ydh(t) with input disturbance
frequency at 1.4ΩN .
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Fig. 4: Fast Fourier transform of ydh(t) with input disturbance
frequency at 0.6ΩN .

To decipher the characteristics of the individual frequency
spikes, we propose a spectral analysis method integrating the
principles of loop shaping, the limiting conditions of high-gain
control, and the PFG. For a generalized sampled-data control
system in Fig. 1, to determine the magnitudes of the individual
spectral spikes, we define the characteristic feedback loop gain

Γk(Ωo),
Pc( j(Ωo +

2π

Ts
k))H( j(Ωo +

2π

Ts
k))

TsPd(e jΩoTs)
Td(e jΩoTs), (6)

where

Td(e jΩoTs ),
Pd(e jΩoTs )C(e jΩoTs )

1+Pd(e jΩoTs )C(e jΩoTs )
= Pd(e jΩoTs )C(e jΩoTs )Sd(e jΩoTs ). (7)

After substituting (6) into (2) and recalling that F
{

e jΩ0t
}
=

2πδ(Ω−Ω0), the steady-state continuous-time output is sim-
plified to

yc (t) = [1−Γ0(Ω0)]e jΩ0t −
∞

∑
k =−∞, k 6= 0

Γk(Ω0)e
j(Ω0+

2π
Ts k)t . (8)

Fact 1. Based on (3) and (6), it is immediate that
∞

∑
k=−∞

Γk(Ωo) = Td(e jΩoTs). (9)

For the case of real-valued disturbances in practice, let
dc(t) = cos(Ωot + φ). Recall cos(Ω0t + φ) = ℜ(e j(Ω0t+φ)),

F {ℜ(x(t))} = [X(− jΩ) + X( jΩ)]/2, and δ(−Ω − Ωo) =
δ(Ω+Ωo). Laplace transform to the real part of (8) gives

Yc( jΩ) = πe jφ(1−Γ0(Ωo))δ(Ω−Ωo)

+πe− jφ(1−Γ0(−Ωo))δ(Ω+Ωo)

−πe jφ
∞

∑
k=−∞, k 6=0

Γk(Ω0)δ(Ω−Ωo−
2π

Ts
k)

−πe− jφ
∞

∑
k=−∞, k 6=0

Γ−k(−Ω0)δ(Ω+Ωo +
2π

Ts
k). (10)

By the definition in (6), Γk(Ωo) is conjugate
symmetric, namely, Γ−k(−Ω0) = Γk(Ω0). Thus in (10),
the gains for two fundamental modes, |1−Γ0(Ω0)| and
|1−Γ0(−Ω0)|

(
=
∣∣∣1−Γ0(Ω0)

∣∣∣), are equal, and the gains for
their related aliased harmonics, |Γk(Ω0)| and |Γ−k(−Ω0)|,
are also equal. The collective effect of these modes governs
the dynamics of the output.

It is noteworthy that simultaneously rejecting all modes
of Yc( jΩ) in (10) is unattainable. Similar to the feedback
limitation on simultaneously rejecting disturbances and sensor
noises, the gains for the fundamental modes and the aliases
cannot be reduced at the same time. For example, letting
C(e jΩoTs) = 0 in (7) yields Γk(Ωo) = 0 for any k, namely,
a zero gain for each harmonic |Γk(Ω0)| and a unit gain for
the fundamental mode |1−Γ0(Ω0)| in (10). Thus, perfect
“rejection” of the aliased harmonics yields no attenuation of
the fundamental disturbance.

To understand the differences in the top plots of Figs. 3
and 4, we explore the shape of the mode gain Γk(Ωo) under
high-gain control.

Definition 2. Under ideal single-rate high-gain control, the
new characteristic feedback loop gain is

Γ
∗
k(Ωo), lim

|C(e jΩoTs )|→∞

Γk(Ωo) =
Pc( j(Ωo +

2π

Ts
k))H( j(Ωo +

2π

Ts
k))

TsPd(e jΩoTs )
. (11)

Fact 2. From the definition of Pd(e jΩoTs) in (3), it is immediate
that the summation of Γ∗k(Ωo) over k is

∞

∑
k=−∞

Γ
∗
k(Ω0) = 1, ∀Ω0. (12)

(12) will be revisited in Section III-B. Similar to
Γk(Ωo), Γ∗k(Ωo) is also conjugate symmetric:

∣∣1−Γ∗0(Ωo)
∣∣=∣∣1−Γ∗0(−Ωo)

∣∣; ∣∣Γ∗k(Ωo)
∣∣= ∣∣Γ∗−k(−Ω0)

∣∣.
A. Characteristic feedback loop gains Γk(Ωo) and Γ∗k(Ωo)

In this subsection, the properties of the characteristic feed-
back loop gains are discussed. From (6) and (11), we obtain
that Γk(Ωo) = Γ∗k(Ωo)Td(e jΩoTs). Since Td(z) is typically a
low-pass filter whose bandwidth BT is commonly 10%-20% of
the Nyquist frequency [22], we have |Γ∗k(Ωo)|> |Γk(Ωo)| for
most frequencies. Furthermore, we can obtain the following
characteristics:

1) If Ωo +2kπ/Ts ∈ [0, BT ), then the low-pass H( j(Ωo +
2kπ/Ts))/Ts ≈ 1 in (11). For mechatronic systems
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where the plant usually has high gains at low fre-
quencies, Pc( j(Ωo + 2kπ/Ts))H( j(Ωo + 2kπ/Ts))/Ts ≈
Pd(e j(Ωo+2kπ/Ts)Ts) = Pd(e jΩoTs), and |Td(e jΩoTs)| ≈ 1,
yielding both Γk(Ωo) and Γ∗k(Ωo) to be approximately
1. Thus, |1−Γk(Ωo)| and |1−Γ∗k(Ωo)| are both small.
In particular, since Pd(1) = Pc(0) [24] and H(0)/Ts = 1,
we have 1−Γ∗0(0) = 0.

2) If Ωo +2kπ/Ts ∈ [BT , π/Ts), then |Td(e jΩoTs)| < 1, and
thus |Γ∗k(Ωo)| > |Γk(Ωo)|. For most frequencies in this
region, |Γ∗k(Ωo)| ≈ 1, and |1−Γ∗k(Ωo)| � 1.

3) If Ωo +2kπ/Ts ∈ [π/Ts, 2π/Ts), the low-pass ZOH
|H( j(Ω + 2kπ/Ts))| reduces quickly outside its ap-
proximate bandwidth π/Ts. Although high-gain control
still makes |Γ∗k(Ωo)| > |Γk(Ωo)|, the overall magni-
tudes |Γ∗k(Ωo)| and |Γk(Ωo)| are very small. Thereby,∣∣1−Γ∗k(Ωo)

∣∣ and |1−Γk(Ωo)| both approximate 1.
Interestingly, Γ∗k(Ωo) has high gains at the Nyquist frequency
and its odd multiplications. To see this point, we analyze the
property of |Pd(e

j π
Ts Ts)| = |Pd(−1)| in (11). It is well known

that all continuous-time systems with relative degree larger
than or equal to two have limiting nonminimum-phase zeros
in their ZOH equivalent [24]. In particular, real unstable zeros
appear in Pd at high frequencies for small values of Ts. As a
result, |Pd(−1)| in (11) is small or even zero, yielding a large∣∣∣Γ∗k( π

Ts
)
∣∣∣. More specifically, we have the following result:

Lemma 3. If Pc(s) = 1/sn and n is a positive even integer,
then Γ∗k(

π

Ts
) = ∞.

Proof: See the Appendix.
Lemma 3 illustrates a danger of designing single-rate high-

gain controllers near the Nyquist frequency. With the limiting
case of Γ∗k(

π

Ts
) and 1−Γ∗k(

π

Ts
) both being infinity, a continuity

analysis gives that Γ∗k(Ω) and 1−Γ∗k(Ω) have very high gains
near the Nyquist frequency. Correspondingly, from (10), the
continuous-time output is significantly amplified. It is also
worth pointing out that the special case of Pc(s) = 1/s2

is common in precision motion control (e.g., in hard disk
drives [25] and in wafer scanners used in semiconductor
manufacturing).

Fig. 5 illustrates the magnitudes of Γ
(∗)
k and 1−Γ

(∗)
k in a

motion-control example in Section IV. The Nyquist frequency
is indicated by the vertical line at π/Ts. The shapes of the
curves match well with the above analysis. As an analysis tool,
Fig. 5 reveals several fundamental performance limitations of
single-rate high-gain control:
• First, based on the top plot in Fig. 5, unless at very

low frequencies (below BT ) where Γk(Ω) ≈ Γ∗k(Ω), the
aliased harmonics are all amplified by single-rate high-
gain control.

• Second, high-gain control in C(z) only provides enhanced
rejection of the fundamental disturbance mode below the
intersection frequency of |1−Γ∗0(Ω)| and |1−Γ0(Ω)| (Bc
in Fig. 5). In addition, the achievable maximum attenua-
tion—indicated by the magnitude |1−Γ∗0(Ω)|—decreases
with increasing frequency. For common servo design with
low-pass type of complementary sensitivity functions Td ,
the first two points suggest that single-rate high-gain

control cannot reject continuous-time disturbances near
and above Nyquist frequency.

• Third, for Ωo ∈ (π/Ts,2π/Ts), |Γ∗k(Ωo)| > |Γk(Ωo)|, and
|1−Γ∗0(Ωo)| & |1−Γ0(Ωo)| ≈ 1. In this interval, under
single-rate high-gain control, Ωo being closer to π/Ts
causes larger servo degradation, which is different from
classic servo control where disturbances at lower frequen-
cies are commonly easier to be attenuated.

BT π/Ts 2π/Ts

Bc

Fig. 5: Magnitude responses of Γk(Ω), Γ∗k(Ω), 1− Γk(Ω)
and 1−Γ∗k(Ω) as a function of Ω+ 2πk/Ts, where Γ∗k(Ωo)
and Γk(Ωo) denote the characteristic feedback loop gain with
and without high-gain control respectively. The first three
vertical lines indicate, respectively, the Nyquist frequency, the
sampling frequency and 3/2Ts.

Remark 1. For implementation, it is noteworthy that with
the low-pass dynamics in ZOH, the first few frequency modes
in (10) are usually dominant in magnitude. In Fig. 5, after
3 · 2π

Ts
, the magnitudes of Γk(Ω) and Γ∗k(Ω) are relatively

insignificant, and
∣∣∣1−Γ

(∗)
k (Ω)

∣∣∣ is practically equal to 1.

B. Typical spectrum of yc(t) in sampled-data control

In this subsection, we extend the analysis and study the full
beyond-Nyquist spectra of the output signals.

Let Ωo ∈ (π/Ts, 2π/Ts) and Ω′o = 2π/Ts−Ωo ∈ (0, π/Ts).
Consider two different disturbances dc(t) , cos(Ωot) and
d̃c(t), cos(Ω′ot), respectively, at above and below the Nyquist
frequency. The Fourier transforms of the continuous-time
disturbances are

Dc( jΩ) = πδ(Ω−Ωo)+πδ(Ω+Ωo),

D̃c( jΩ) = πδ(Ω−Ωo−
2π

Ts
)+πδ(Ω+Ωo−

2π

Ts
).

From (1), the sampled disturbance spectra and hence yd [k]
are the same. However, the spectra of yc(t) are fundamentally
different for the two types of disturbances, as illustrated in
Figs. 6a and 6c. One important difference is the location
of the fundamental mode (Ωo for dc and 2π−Ωo for d

′
c).

For Ωo being above Nyquist frequency, the magnitude of the
fundamental mode |1−Γ0(Ωo)| is close to 1 (cf. Fig. 5). The
dominant aliased mode Γ1(−Ωo) occurs at 2π/Ts−Ωo below
the Nyquist frequency (see Fig. 6a). With single-rate high-gain
control at Ωo, the magnitude of Γk(Ωo) increases towards the
limiting case Γ∗k(Ωo). In particular, Γ1(−Ωo) increases towards
Γ∗1(−Ωo) ≈ 1 (Fig. 6b). Meanwhile, |1−Γk(Ωo)| stays close
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to 1 or is even increased. Collectively, dc(t) is amplified by
single-rate high-gain control.

On the other hand, for Ω′o below the Nyquist frequency,
the fundamental mode 1−Γ0(Ω

′
o) can be effectively reduced

(from the dashed line to the solid line in the bottom plot of
Fig. 5). The aliased modes Γk(Ω

′
o) still increase to Γ∗k(Ω

′
o).

However, |Γ∗k(Ω
′
o)| remains small in the top plot of Fig. 5

since the lowest frequency of the alias is already beyond the
Nyquist frequency (at 2π/Ts−Ω

′
o). Thus, d̃c(t) can be reduced

by single-rate high-gain control.
The graphical tool is justified by the experimental results in

Figs. 3 and 4. In Fig. 3, the fundamental mode occurs at 7000
Hz, and the amplified mode at 3000 Hz corresponds to the alias
mode below the Nyquist frequency. In Fig. 4, the frequencies
of the two modes are switched. We can now distinguish that
Fig. 3 describes the trend of the case in Figs. 6a and 6b while
Fig. 4 matches the results in Figs. 6c and 6d.

Ω

Yc
πe± jφ

| ||| | |||
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Γ2(−Ωo)Γ−2(Ωo) ......

π

Ts
2π
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− π

Ts− 2π

Ts
3π

Ts
4π
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− 3π
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− 4π

Ts

(a) dc(t) = cos(Ωot) with the baseline control
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Fig. 6: Illustration of the spectrum of yc(t) in sampled-data
control when π/Ts < Ωo < 2π/Ts. Dashed spikes: δ(Ω+Ω0)
and its aliases; solid spikes: δ(Ω−Ω0) and its aliases.

Next we show how to connect the frequency-domain results
with the time-domain observations. With sub-Nyquist high-
gain control, the Ts-sampled disturbances dc(t) and d̃c(t) can
be perfectly rejected from the sampled output, as shown in the
corresponding time-domain responses of Figs. 7a and 8a. The
disturbance rejection may conventionally suggest null gains in
the spectrum below the Nyquist frequency, which is, however,
neither the case for dc(t) or d̃c(t). In fact, Fig. 6b contains
significant components at 2π/Ts−Ωo. And Fig. 7b shows the

hidden amplification of the disturbances. To connect the spec-
tral distribution with the zero steady-state Ts-sampled output,
an important piece is the effect of the sampling operation in
the frequency domain. Take the case of dc(t) as example. After
yc(t) is sampled at Ts, each solid spike in Fig. 6b creates an
alias at Ωo (cf. Lemma 1). Based on (10), the magnitude of the
discrete-time spectral peak at Ω0 is a normalized version of
[1−Γ∗o(Ωo)]−Γ∗−1(Ωo)−Γ∗1(Ωo)−Γ∗−2(Ωo)−Γ∗2(Ωo)− . . . ,
which equals 0 from (12). For the case where the disturbance
is beyond Nyquist frequency in Fig. 6b, because there is little
control over 1−Γ0(Ωo), and Γ±k(Ωo) (k 6= 0) is amplified,
the aliasing effect cancels the fundamental component after
sampling. Fig. 6d, on the other hand, achieves zero Ts-sampled
output by reducing the magnitude of 1−Γ0(Ω

′
o).
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Fig. 7: Plant output with the input disturbance at 1.4ΩN (The
solid and dashed lines represent the cases with single-rate
high-gain control on and off, respectively.)
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Fig. 8: Plant output with the input disturbance at 0.6ΩN (The
solid and dashed lines represent the cases with single-rate
high-gain control on and off, respectively.)
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C. Performance frequency gain and the fundamental mode

With the understanding of individual mode shapes, we
can better relate the spectral responses to the time-domain
data in sampled-data control and explain the beyond-Nyquist
disturbance rejection. This section connects the analysis of
the individual modes with the PFG metric. An important
observation is that under single-rate high-gain control, PFG
also has a high gain near the Nyquist frequency.

Recall the transformation of a sampled-data system into an
MR one by fast sampling in Fig. 2. The fast and slow signals
are sampled by T

′
s and Ts = FT

′
s , respectively. Let D(e jΩT

′
s )

denote the DTFT of d[k]. Analogous to the derivation of (2),
the DTFT of the fast-sampled output ydh[k] [15] is

Ydh(e jΩT
′
s ) =

[
1− 1

F
Pdh(e jΩT

′
s )H(e jΩT

′
s )Td(e jΩTs )/Pd(e jΩTs )

]
D(e jΩT

′
s )

+
1
F

Pdh(e jΩT
′
s )H(e jΩT

′
s )Td(e jΩTs )/Pd(e jΩTs )

F−1

∑
k=1

D(e j(ΩT
′
s − 2πk

F )), (13)

where Pd and Pdh represent the ZOH plant models under the
sampling time of Ts and T

′
s , respectively, and the transfer

function of the ZOH interpolator is

H(z) =
F−1

∑
k=0

z−k =

{
F z = 1
1−z−F

1−z−1 z 6= 1
. (14)

Based on (13), the MR characteristic feedback loop gain is
defined as

Γk(Ωo) =
Pdh(e j(ΩoT

′
s +

2πk
F ))H(e j(ΩoT

′
s +

2πk
F ))Td(e jΩ0Ts )

FPd(e jΩ0Ts )
, (15)

and the limiting case with single-rate high-gain control is

Γ
∗
k(Ωo) =

Pdh(e j(ΩoT
′
s +

2πk
F ))H(e j(ΩoT

′
s +

2πk
F ))

FPd(e jΩ0Ts )
. (16)

Lemma 4. For the MR system in Fig. 2, the modified PFG
under single-rate high-gain control at Ω0 is

Ph(e jΩ0T
′
s ) =

√√√√∥∥1−Γ∗0(Ωo)
∥∥2

+
F−1

∑
k=1

∥∥Γ∗k(Ωo)
∥∥2
. (17)

The derivation is similar to the one introduced in [15] and is
omitted here. Lemma 4 connects the input-output power ratio
with the gains of the individual signal modes. PFG evaluates
the overall effect of the intersample behavior and how a
sampled-data control system attenuates or amplifies input
disturbances in certain frequencies, whereas the characteristic
feedback loop gains look into each individual mode in the
spectra of the continuous-time (and fast-sampled) outputs.

Note that independent of the baseline controller, the mod-
ified PFG is a property of the plant itself since Γ∗k(Ωo)
depends on Pdh, H, F , and Pd alone. In addition, the modified
PFG is a pointwise quantity that focuses on the limiting
case where ideal high-gain control is applied at one value of
Ω0, that is, Td(e jΩoTs) = 1. This pointwise high-gain control
can be achieved with tools such as special Youla-Kucera
parameterizations, disturbance observers, and peak filters [23],
[26], [27]. To introduce Td(e jΩoTs) = 1 at different values of
Ω0, the high-gain controller would need to be retuned or be
adaptive. When the customized high-gain control is turned

off, the high-gain controller is replaced by a regular servo
algorithm (e.g. PID and lead-lag compensation), and therefore
Γ∗0(Ωo) and Γ∗k(Ωo) are replaced by Γ0(Ωo) and Γk(Ωo) in
(15). The modified PFG then describes the performance of a
baseline LTI controller.

For a typical plant dynamic in Section V, Ph(e jΩT
′
s ) is

calculated and plotted in Fig. 9.

 

Fig. 9: Performance frequency gain under high-gain control.

Definition 3. The intersection frequency between the curve
expressed by (17) and the line of Ph(e jΩT

′
s ) = 0 dB is called

the principal sampled-data bandwidth Bp.

Lemma 5. For general mechatronic systems, Bp is smaller
than the Nyquist frequency.

Proof: See the Appendix.
Implications: Similar to the analyses of the discrete-time

sensitivity function in digital control, the proposed PFG analy-
sis gives an important threshold frequency Bp in sampled-data
control. For disturbance frequencies below Bp, the power of
the fast-sampled output signal is smaller than that of the input
disturbance. In other words, sub-Nyquist high-gain control is
efficient for rejecting disturbances with frequencies below Bp.
However, for beyond-Bp disturbances with Ph > 0dB, single-
rate high-gain control exacerbates the servo performance.
Remark 2. In practice, disturbances can also enter from the
input of the plant in Fig. 2. In this case, the input disturbance di

is related to d in Fig. 2 by D(e jΩT
′
s ) = Di(e jΩT

′
s )Pdh(e jΩT

′
s ).

We can analogously define and compute the modified input
PFGs

P ′b(e jΩ0T
′
s ) = sup

di 6=0

‖ydh‖p

‖di‖p
=

∣∣∣∣Pdh(e jΩ0T
′
s )

∣∣∣∣
√
‖1−Γ0(Ωo)‖2 +

F−1

∑
k=1
‖Γk(Ωo)‖2, (18)

and

P ′h(e jΩ0T
′
s ) = lim

Td (e
jΩ0T

′
s )→1

P ′b(e jΩ0T
′
s ) = |Pdh|

√
‖1−Γ∗0(Ωo)‖2 +

F−1

∑
k=1

∥∥Γ∗k(Ωo)
∥∥2
. (19)

The modified input PFG can be verified by the time-domain
definition in (18), that is, dividing output signal power by input
signal power. Dividing the modified input PFG P ′h(e jΩ0T

′
s )

by
∣∣∣Pdh(e jΩ0T

′
s )
∣∣∣, we can then generate the modified PFG

Ph(e jΩ0T
′
s ).

Before presenting the numerical and experimental results,
we briefly summarize the application steps of the proposed
spectral analysis method:

1) Determine Γk(Ωo), the characteristic feedback loop
gains, by (6) and (15). In addition, determine Γ∗k(Ωo),
the limiting cases with single-rate high-gain control, by
(11) and (16).
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2) Plot the magnitude responses of Γk(Ω), Γ∗k(Ω), 1−
Γk(Ω), and 1− Γ∗k(Ω) to look into individual spec-
tral spikes. Note that these are hybrid functions of
continuous- and discrete-time frequency responses.

3) Calculate and plot the modified PFG based on (17).
4) Identify the principal sampled-data bandwidth Bp, as

shown in Fig. 9.
5) Run simulation and experimentation to get the time-

and frequency-domain results with below- and beyond-
Bp disturbance input. Numerically compute the modified
PFG from the input-to-output power ratio in Definition
1. The results should verify the location of Bp and the
trend of the individual spectral spikes.

IV. NUMERICAL VERIFICATION

Consider a plant Pc(s) = 3.74488 × 109/(s2 + 565.5s +
319775.2) with an input delay of 10 µs. Let the sampling time
be Ts = 1/2640 sec. The baseline controller is a PID controller
C(z) = kp + ki/(z− 1) + kd(z− 1)/z with kp = 7.51× 10−5,
ki = 3.00×10−5, and kd = 3.60×10−4. Such a design provides
a bandwidth at 92 Hz that complies with the rule-of-thumb of
around 10% of the Nyquist frequency. yc(t) is fast-sampled
at T

′
s = Ts/20 to approximate the continuous-time output

in Fig. 1. Single-frequency vibrations below and above the
Nyquist frequency are introduced to the plant. The narrow-
band disturbance observer (DOB) [23] is applied on top of the
PID controller. Such a design provides perfect compensation
of above- and below-Nyquist sinusoidal signals in the sampled
output yd [k].

Figs. 10 and 11 present the time- and frequency-domain
computation results, which verify the limitation of single-rate
high-gain control for beyond-Nyquist disturbance rejection.
The results match with the prediction in Fig. 6 that single-
rate high-gain control amplifies beyond-Nyquist disturbances.
When the disturbance occurs at 2376 Hz (1.8ΩN), the inter-
sample signal is significantly amplified in Fig. 10b, although
high-gain control yields zero sampled-output at steady state
(Fig. 10a). The amplification is also evident in the frequency
domain (Fig. 11). Single-rate high-gain control barely changes
the fundamental component at 2376 Hz but greatly amplifies
the aliased component at 264 Hz.

Fig. 12 verifies the case with regular below-Nyquist distur-
bances. The Ts-sampled output also reaches zero at steady state
and is omitted here. With the fundamental mode at 924 Hz
(below the Nyquist frequency), single-rate high-gain control
can attenuate this spectral spike. As theoretically predicted
by Fig. 6d, the aliased harmonics are, however, all amplified.
Therefore, the actual continuous-time output contains inter-
sample ripples.

V. EXPERIMENTAL VERIFICATION

Experiments are conducted on a galvo scanner platform
(Fig. 13), a key component in laser-based additive manufac-
turing. Typically, a galvo scanner is composed of mirrors,
galvanometers, and control systems. The mirrors are actuated
to reflect the input laser beam to generate a scanning trajectory
at high speed with high precision. The angular rotation of the
mirrors are measured by encoders.
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(b) yc(t) sampled at Ts/20.

Fig. 10: Plant output with the input disturbance at 1.8ΩN (The
solid and dashed lines represent the cases with single-rate
high-gain control on and off, respectively.)
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Fig. 11: Fast Fourier transform of yc(t) sampled at Ts/20.

To form a baseline servo system, a built-in PID-type con-
troller C0(z) is embedded in the motor driver. C0(z) and the
actual plant P0(z) are treated as the new plant Pdh(z) in this
study. Fig. 14 shows the frequency response of the measured
and identified Pdh(z). The DOB [23] with C(z)= 1 in Fig. 15 is
implemented on a dSPACE DS1104 processor board to enable
high-gain control at selective frequencies. Transfer functions
inside the DOB block are all implemented at a sampling
time of Ts = 0.1ms. Thus the Nyquist frequency ΩN equals
5 kHz. The fundamental sampling time used to measure ydh
is T

′
s = 0.025ms. That is, the fast sampling is conducted at

T
′

s = T/F with F = 4 for diagnosis of the beyond-Nyquist
performance. A single-harmonic disturbance with magnitude
0.1V and frequency ωo = 2πΩoT

′
s (Ωo in Hz) is introduced to

the system. In addition, the system is subjected to broadband
random disturbances at a magnitude of about 20 mV.

Fig. 16 illustrates the theoretically computed input PFGs
using (18) for the baseline controller and (19) for the cus-
tomized high-gain controller. Experimental data of P ′h(e jΩ0T

′
s )

is obtained by following the time-domain definition in (18) for
each value of Ωo. From Fig. 16, the three experimental PFGs
of P ′h(e jΩ0T

′
s ) at 3 kHz (0.6ΩN), 4 kHz (0.8Ω), and 7 kHz

(1.4ΩN) match the theoretical computations very well.
As stated in Remark 2, Ph(e jΩ0T

′
s ) is obtained by means

of dividing P ′h(e jΩ0T
′
s ) by

∣∣∣Pdh(e jΩ0T
′
s )
∣∣∣. Three groups of

validations for Ph(e jΩ0T
′
s ) are shown in Table I and Fig. 17.

The results show that the mismatch between the experimental
and theoretical values is very small, and thus the modified PFG
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(a) yc(t) sampled at Ts/20. (The solid and dashed lines represent the
cases with single-rate high-gain control on and off, respectively.)
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(b) Fast Fourier transform of yc(t) sampled at Ts/20.

Fig. 12: Plant output with the input disturbance at 0.7ΩN

Laser source
Galvo scanner

Power supply

Monitor

PC server with
dSPACE and

Matlab
White screen

Servo driver

Fig. 13: Schematic of the hardware platform.
is an efficient tool for evaluating the intersample behavior. One
principal reason for the mismatch is that in Definition 1, PFG
is evaluated according to N→ ∞, while only a finite duration
of the signal can be reached in experiments.

Disturbance Group Experimental Average Theoretical
frequency PFGs (dB) PFGs

3 kHz
G1 -1.189

-1.033 dB -2.847 dBG2 -0.961
G3 -0.949

4 kHz
G1 5.481

5.913 dB 4.135 dBG2 5.999
G3 6.258

7 kHz
G1 6.023

6.242 dB 6.374 dBG2 6.357
G3 6.345

TABLE I: Experimental results of the modified PFG.
We have already seen the different cases of time-domain

responses in Figs. 7 and 8. Additionally, Fig. 19 verifies
the performance limitation for disturbances even below the
Nyquist frequency. From the slow-sampled data in Figs. 7a, 8a,
and 19a, the single-rate DOB is successful in “compensating”
the sampled output. However, similar as the case in the
previous numerical study, the hidden performance loss for the
case with beyond- and near-Nyquist disturbances is obvious
from Figs. 7b and 19b.

Fortunately, these performance differences can be predicted
by the modified PFG in Fig. 17 and the characteristic feedback
loop gains in Fig. 18. The PFG plots predict that high-gain
control results in decreased output power for the disturbance
at 3kHz and increased output energy for the disturbances
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Fig. 14: Bode plot of Pdh(z) sampled at T
′

s .
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Fig. 15: Block diagram with a disturbance observer (DOB).

at 4kHz and 7 kHz. Fig. 18 additionally reveals that both
the fundamental and aliased mode gains are increased when
disturbances occur at 4kHz and 7 kHz.

The experimental result in Fig. 3 verifies that for the
input disturbance with Ωo = 1.4ΩN = 7 kHz, the fundamental
component at 7 kHz and the aliased harmonic at 3 kHz
are amplified when customized single-rate high-gain control
is turned on. For the case with Ωo = 0.8ΩN = 4 kHz, the
magnitude of the fundamental mode at 4 kHz barely changes,
but the aliased harmonic at 6 kHz is amplified by sub-
Nyquist high-gain control, resulting in the overall amplifica-
tion. For Ωo = 0.6ΩN = 3 kHz,

∣∣1−Γ∗0(Ωo)
∣∣ < |1−Γ0(Ωo)|,

and |Γ∗1(−Ωo)| > |Γ1(−Ωo)|; although the aliased mode at 7
kHz is slightly amplified, the attenuation of the fundamental
mode at 3 kHz is significant (Fig. 4), resulting in the overall
attenuation.

In summary, we experimentally verified that the character-
istic feedback loop gains, along with the modified PFG, are
reliable tools for analyzing servo performance in sampled-data
control. Single-rate high-gain control is observed to amplify all
beyond-Nyquist and even some below-Nyquist disturbances.

VI. CONCLUSION AND DISCUSSIONS

In this paper, the problem of sampled-data regulation control
against structured disturbances around and beyond the Nyquist
frequency is analyzed. It is shown that the conventional sub-
Nyquist single-rate high-gain control is infeasible to attenuate
disturbances near and beyond the Nyquist frequency. We
discover an intersection frequency defined as the principal
sampled-data bandwidth Bp. Only for below-Bp disturbances
can single-rate high-gain control be effective in disturbance
rejection. A spectral analysis is further proposed to look into
individual spectral modes. The proposed characteristic feed-
back loop gains are combined with the performance frequency
gain to evaluate the overall sampled-data performance. The
results imply that the rejection of beyond-Nyquist vibration
disturbances must rely on tools that can facilitate the inter-
sample attenuation, such as customized multirate control [28],
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Fig. 16: Input performance frequency gains (PFGs) with high-
gain control on and off.

𝐵𝑝 

Fig. 17: Theoretical and experimental PFGs.

sampled-data internal model principle [29], sampled-data LQG
[30], sampled-data all-stabilizing control [31], and sampled-
data H∞ theory (see [32] and the references therein). For
potential future work, the proposed study may have synergy
with the analysis and design of nonlinear systems in the
frequency domain (e.g., [33]–[35]).

VII. APPENDIX: PROOFS

Proof of Lemma 3
Proof: Recall L−1 {Pc(s)/s} = tn/(n!) by the inverse

Laplace transform. Thus, the ZOH equivalent of Pc(s) is

Pd(z) = (1− z−1)Z
{
(kTs)

n

n!

}
=

T n
s (1− z−1)

n!

∞

∑
k=0

knz−k. (20)

We adopt two fundamental functions in number theory to eval-
uate Pd(z) at z =−1. Notice that ∑

∞
k=0 kn(−1)−k =−η(−n) =

−(1− 21+n)ζ(−n), where η(n) is the Dirichlet Eta Function
and ζ(n) is the Riemann Zeta Function [36] defined by

ζ(n),

{
∑

∞
k=1

1
kn , ℜ{n}> 1

(1−21−n)−1
∑

∞
k=1

(−1)k−1

kn , ℜ{n}> 0
.

ζ(n) is furthermore extended to the whole complex plane by
analytic continuation and satisfies the functional equation [37],
[38, Chapter 2]

ζ(−n) = 2−n
π
−n−1 sin

(
−πn

2

)
Γ(1+n)ζ(1+n), (21)

where Γ(n) is the Gamma function and n∈C. From the factor
sin
(
−πn

2

)
, ζ(−n) has zeros at all positive even integers of n

(called the "trivial zeros"). Hence after substitution into (20),
Pd(−1) = 0 when n is a positive even integer. By definition,

Pc( j(Ωo +
2π

Ts
k))H( j(Ωo +

2π

Ts
k)) =

1− e− j(Ωo+
2π
Ts k)Ts

jn+1(Ωo +
2π

Ts
k)n+1

,

which is finite when Ωo = π/Ts. Hence Lemma 3 holds.

Remark 3. A numerical evaluation of the zeta function is
available at [39]. The ZOH equivalents of 1/sn for n up to
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lines indicate, respectively, the Nyquist frequency (5 kHz), the
sampling frequency and 3/2Ts.
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(c) Fast Fourier transform of ydh(t).

Fig. 19: Plant output with the input disturbance at 0.8ΩN (For
(a) and (b), the solid and dashed lines represent the cases with
single-rate high-gain control on and off, respectively.)

8 are numerically evaluated in [24]. There, a zero at −1 is
evident for n = 2,4,6,8.

Proof of Lemma 5
Proof: Take an inertia system Pc(s) = 1/s2 in mo-

tion control as example.1 We show that Ph(e j·0·T ′s ) < 1 and
Ph(e jΩN T

′
s ) > 1. If PFG is a continuous function of Ωo for

Ωo ∈ (0,ΩN), Ph(e jΩ0T
′
s ) then must cross over the 0dB line at

least once below the Nyquist frequency ΩN . In other words,
under the metric of PFG, it is inevitable that some band-limited

1Without loss of generality, the gain of Pc(s) is normalized to unity. Non-
unity gains are canceled in the computation of Γk(Ωo) and Γ∗k(Ωo) in (16).
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disturbances below the Nyquist frequency are amplified by
single-rate high-gain control.

With Pc(s) = 1/s2, we have Pd(z) = T 2
s (z+ 1)/

[
2(z−1)2

]
and Pdh(z) = T

′2
s (z + 1)/

[
2(z−1)2

]
. When Ω0 = 0, (17)

yields Ph(e j·0·T ′s ) =
√∥∥1−Γ∗0(0)

∥∥2
+∑

F−1
k=1

∥∥Γ∗k(0)
∥∥2. Based

on the definition in (16) as well as the expressions of Pd(z)
and Pdh(z), we get Γ∗k(0) = 1 when k = 0 (by applying
L’Hospital’s Rule twice), and Γ∗k(0)= 0 when k 6= 0. Therefore,
Ph(e j·0·T ′s ) = 0(< 1).

Next consider the case of Ωo = ΩN = π/Ts. Evaluating the
frequency responses of Pd(z), Pdh(z), and H(z) in (14) yields

Γ
∗
0(ΩN) =

8e jπ/F(e jπ/F +1)
F3[e jπ/F −1]3(e jπ +1)

. (22)

For F > 2, Γ∗0(ΩN)→ ∞ since e jπ +1 = 0. Hence, in (17),
Ph(e jΩN T

′
s )→ ∞ > 1.

With Ph(e j·0·T ′s )< 1 and Ph(e jΩN T
′
s )> 1, we thus have Bp <

ΩN based on a continuity analysis.
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