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ABSTRACT: Computation of nonlinear optical response functions allows for an in-depth connection between theory and
experiment. Experimentally recorded spectra provide a high density of information, but to objectively disentangle overlapping
signals and to reach a detailed and reliable understanding of the system dynamics, measurements must be integrated with
theoretical approaches. Here, we present a new, highly accurate and efficient trajectory-based semiclassical path integral method
for computing higher order nonlinear optical response functions for non-Markovian open quantum systems. The approach is, in
principle, applicable to general Hamiltonians and does not require any restrictions on the form of the intrasystem or system—
bath couplings. This method is systematically improvable and is shown to be valid in parameter regimes where perturbation
theory-based methods qualitatively breakdown. As a test of the methodology presented here, we study a system—bath model for
a coupled dimer for which we compare against numerically exact results and standard approximate perturbation theory-based
calculations. Additionally, we study a monomer with discrete vibronic states that serves as the starting point for future
investigation of vibronic signatures in nonlinear electronic spectroscopy.

B INTRODUCTION

Experimental nonlinear spectroscopic techniques such as time-
resolved 1-dimensional pump probe (1DPP) methods and 2-
dimensional electronic spectroscopy (2DES) contain enormous
amounts of detailed information about relaxation processes that
ensue after photoexcitation. These techniques, for example, can
now be applied to large arrays of chromophores such as the
pigment—protein light harvesting complexes that initiate
photosynthesis,’ or to new nanostructured materials where
processes like multiple exciton generation can potentially
enhance solar cell function.” These powerful nonlinear
spectroscopies can thus provide detailed information on the
ultrafast excitation energy transfer (EET) and charge transfer
(CT) and separation processes in light harvesting. Beating
features are ubiquitous in these signals and have highlighted the
existence of long-lived vibronic coherence that may play a role
in enhancing the light harvesting function of these structures.’
This has motivated reconsideration of the role that intra- and
intermolecular vibrational dynamics plays during EET and CT
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processes in biological light harvesting complexes (LHCs), for
example."**

Though these experimental results can, in principle, provide
important details about these processes, the complexity of these
spectra makes a thorough understanding of the origin of
particular signals a very difficult task. Overlapping signals that
arise from different energetic pathways make the interpretation
of experimentally recorded spectral features nontrivial. Because
of this, theoretical methods that are able to reliably reproduce
spectroscopic experiments are a necessity. The ability to
selectively suppress individual degrees of freedom (DOFs) in
computational models of these complex systems allows for the
previously hopeless assignment of many of the features of
nonlinear spectra.’

Existing methods for the computation of nonlinear electronic
spectra have shown great utility as tools for aiding the
interpretation of experimental results. These methods such as
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those based on extensions to Redfield theory,” quantum master
equation approaches,” """ wave packet-based techniques," etc.
are often perturbative in nature; e.g, they assume that
couplings of the sites to their environments are small compared
to other terms. In addition, the more standard methods for
computing the nonlinear response may make dynamical
approximations about time scales of different processes (e.g.,
the Markovian and Secular approximations). Recent simu-
lations that attempt to compute the parameters in the model
Hamiltonians describing these types of systems from first-
principles'” suggest that they can fluctuate considerably as the
system samples its configuration space, so using model
parameters fit to averaged experimental results may not in
general reliably capture the influence of these fluctuations.
Further, the magnitude of the parameter fluctuations can, in
principle, push the system between regimes where different
perturbative approximations make sense while others become
nonphysical. Such fluctuations and variations in time scales can
invalidate the different perturbation theories or dynamical
assumptions on which these approaches are based, limiting
their usefulness as predictive methods.

To address these issues, nonperturbative methods that avoid
different dynamical approximations have been developed such
as the density matrix-based hierarchical equations of motion
(HEOM) approach'*™' or the wave function-based multi-
configuration time-dependent Hartree (MCTDH) scheme.'”"®
These numerically exact techniques have been extended to
compute nonlinear optical responses in recent benchmark
studies providing critical tests for more approximate methods.
Implementing these exact techniques to compute the nonlinear
optical response for larger more realistic models, however, can
quickly become prohibitively expensive. Recently, schemes that
use these types of exact methods to compute the rapidly
decaying memory kernel in master equation approaches based
on the Liouville—von Neuman equation, which can then be
integrated to longer times'””’ have appeared and may offer
efficient ways to compute the nonlinear optical response. A
mixed quantum-classical Liouville approach to nonlinear
spectroscopy has been presented and applied to compute
nonlinear infrared spectroscopy.”' ~>* This approach employs a
Wigner approximation that involved propagating classical
trajectories from a quantum initial distribution to describe the
vibrational dynamics underlying the nonlinear infrared
response. The approach we develop here, however, takes a
different, but related semiclassical tack.

We present a nonperturbative, non-Markovian semiclassical
path integral method for the computation of nonlinear optical
response functions in open quantum systems that explicitly
treats all DOFs.”*** This method makes no assumptions about
the nature of intrasystem couplings or the form of the spectral
density that defines the frequency-dependent couplings
between the system and its environmental DOFs, providing a
way of accurately treating the coupled electronic, vibrational
and vibronic dynamics at the heart of the nonlinear optical
response. Moreover, the method is based on propagating
classical-like trajectories that include effects such as quantum
transitions and the decay of an initially prepared coherent
superposition of system quantum states in the presence of
coupling to the environment. The independent trajectory
nature of the approach makes for a highly eflicient
implementation for computing nonlinear responses and results
in a flexible approach with good scaling to larger numbers of
quantum states and explicit bath degrees of freedom.
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The outline of the paper is as follows: First the general
theory of nonlinear optical response functions is summarized.
Next we present an approach for propagating dynamical
operators based on the mapping Hamiltonian formulation for
systems with discrete quantum states coupled to a bath
described by continuous coordinates. This approach is based on
the partial linearized density matrix (PLDM) dynamics
method,”*** only now applied for arbitrary operators. The
partial linearized operator dynamics expressions for computing
optical response functions are then presented and an algorithm
for their efficient implementation is outlined. Results for 2DES
for several simple model Hamiltonians involving quantum
subsystems including electronic and vibrational states coupled
to different baths are presented along with comparisons to exact
HEOM results and results obtained from other approximate
theoretical approaches. Finally some concluding observations
are summarized.

B THEORY

Optical Response Functions. To describe the time
evolution of a system in the presence of an external
electromagnetic field, the field—matter Hamiltonian is parti-
tioned as

H,(t) =H+H(t) (1)

where H is the molecular Hamiltonian that describes the time
evolution of the full system in the absence of the electro-

magnetic field and H'(t) = —i-E(F p) represents the inter-
action of the system with a classical external electromagnetlc
field, E(7t). For clarity, in what follows we will omit the 7
dependence of the electric field as well as the vectorial nature of

both the field and molecular dipole operator, ﬁ' A
Perturbation theory in the field—matter interaction gives that

the signal that is order n in the field strength can be obtained

from the nth-order macroscopic polarization, which reads

P = Te[p™] )

where 7 is the number of times the sample has interacted with
the external electromagnetic field, pm [ p"V] is the nth-
order perturbed density operator, and p(© is the ground state
density matrix prior to any field interaction. In third-order
experiments, the sample interacts with three laser pulses having
wave vectors (+k;, +k, +k;). After the initial interaction, the
system (prepared by the first pulse in a coherence between the
ground and first excited state manifolds) is allowed to evolve
for a time t, before the second pulse arrives. We similarly define
t, as the time interval between the second and third pulses.
During this t, interval the excited system interacts with its
environment causing relaxation, potentially involving excitation
energy transfer to other excited states and decoherence arising
from entanglement of the evolving system state and its
surroundings. Monitoring nonlinear spectroscopic signals as
functions of t, can thus provide detailed information about
these excited state processes. At a time delay t; after interacting
with the third pulse, a response is emitted from the sample in a
direction that is the sum of the incoming wave vectors of the
different laser pulses, as depicted in Figure 1.%”

The directionality of these responses allows for the
independent detection of signals that correspond to different
sample-field interaction schemes. The most frequently reported
results for third-order experiments contain information from
the rephasing and nonrephasing signals (k, = =(—k; + k, + k3)
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Figure 1. Pictorial representation of a third-order nonlinear spectros-
copy experiment. The signal is emitted in the direction of the sum of
incoming wave vectors.

and k,, = +(k, — k, + ky), respectively) although the method
presented here is capable of describing all possible nonlinear
responses. The signals can be further partitioned into ground
state bleaching (GSB), stimulated emlssmn (SE), and excited
state absorption (ESA) contributions.”” These reflect different
sequences of transitions that can occur as a consequence of the
field—matter interactions. These interactions are conveniently
summarized by double-sided Feynman diagrams, and in Figure
2, we show an example of these diagrams for the nonrephasing
signal.
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Figure 2. (a) Double-sided Feynman diagrams that represent
nonrephasing interaction schemes. For conciseness, only diagrams
that survive the rotating wave approximation are shown. Red arrows
indicate an interaction with the external field. The vertical lines
represent time evolution, with dashed lines indicating time periods
where the corresponding wave function can mix into a linear
combination of eigenstates. Note that, in our methodology, mixing
is allowed also when the system is in a coherence, not just when it is in
a population. (b) Pictorial representation of the excitation manifolds
involved in the Feynman diagrams depicted in (a).

Partial Linearized Operator Dynamics. The propagation
scheme we develop here to evolve the operators that appear in
expressions for the nonlinear optical responses is a straightfor-
ward generalization of the partial linearized density matrix
(PLDM) dynamics approach™* and will henceforth be referred
to as PLDM (although it is not restricted to the propagation of
density matrices”***). Here we outline the principle ingredients
of this approach and generalize it to evolving arbitrary
operators.

The time evolution of the expectation value of a general
operator (O)(t) = (PleOe MIW¥), where H is a general
system—bath Hamiltonian and the system and bath are
prepared in some initial state I'¥), can be accurately described
using a semiclassical path 1ntegral formalism for the forward
(e™) and backward (e™) propagators.”® Employing the
Meyer—Miller mapping model to a general system—bath
Hamiltonian in the diabatic representation, the discrete
quantum states of the system are exactly mapped onto a set
of fictitious harmonic oscillator raising and lowering operators
(la) — ﬁ;r =& —ip)/ \2) and the Hamiltonian takes the

29,30
form>*?
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where (& p) and (P, R) represent the complete sets of system
and bath phase-space operators, respectively, and we take 7 = 1.

To arrive at the partial linearized operator dynamics
algorithm, the Herman-— Kluk®** (or coherent state) seml—
classical propagator is employed for the system DOFs.” The
bath part of the full propagator is written in phase space path
integral form, and a (forward) propagator matrix element takes
the form

—ifA
(n,, Ryle ' Ry)

N-1

_ [H /dR dpk)/dN iS,(0)

- k [n[,no]
1 2r 2

where Sy(t) = ezk 1[Pkil) %4] is the bath kinetic

I,
4)

action with time step ¢ and Tj, ,; is the system transition

amplitude, given by

1 . ]
T = f b0 5 o+ 1, )5, = 1,

80, (1/2) Z, (e, -

% e Sadtiy )= (1/2) ey 48, 0)

(8)
Here, S,(t) is the bath-dependent system action, which reads

Sl(t) = [;t dr [Z paxa - H(R:x;P)]

where

AR xp) = 12 H,
+ X H

a;&/i

(6)

{R) (52 4 p2)
Hoy(R) (e + 1,1,)

Next, the forward and backward propagator matrix elements
are combined and the bath phase space DOFs are transformed
to mean and difference variables, defined as R = (R + R’)/2 and
Z = R — R/, respectively, with similar definitions for the
corresponding momenta, P and Y. The approximation made in
the partial linearization scheme comes through a truncation of
the functional Taylor series expansion about the mean bath
phase space path, (R(¢), P(t)), to linear order in the difference
path variables, Z(¢) and Y(t). This approximation is based on
the assumption that forward and backward bath paths will
remain close to each other for short times. Moreover, we use
the approximation

> pi, — HRxp) ~ ) pt, — HRx,p)

a a

1d
= X
2 dr (z b a]
to cancel the complex boundary terms in eq S (as well as those

assoc1ated with the backward propagator) by using the result in
eq 6. This approximation states that the classical (mean) bath
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drives nonadiabatic transitions in the quantum subsystem.
Upon integration of this partial linearized approximate result
over bath difference path variables (e.g., Z, ..., Zy_1), the final

Zy

N1O(t) n/, Ry

<nt, Ry

expression for the evolution of a matrix element of operator O

is obtained as**

_7> Zde d, dp, dy dp GoGy

X %(xm + ipnt)(xnn —ip, ) (x,, — ip, )(xnO +ip, )[H de]

dﬁ B N-1
x /_Noc&no(ﬁo,ﬁl)eleZNH
2r =1

This equation should be interpreted in the following way:
initial nuclear DOFs are sampled from the quasi-probability
distribution (the so-called partial Weyl symbol)

L _ ZAl -z -
019" (R,,B) = / dz, <n0, R, + 7" Oln}, Ry — 7°>e_LP‘Z"

, labeled by initial system states n, and nj; and mapping
variables (system DOFs) are sampled from the Gaussian

functions G, = exp[—%za (240" + paoz)] and G{. The system

mapping DOFs are evaluated along classical-like trajectories
(satisfying Hamilton’s equations for the Hamiltonian, H,
defined under eq 6) and the nuclear trajectories (as prescribed
by the products of §-functions) are determined by an effective

force F, = —lV— (I:I(E x,p) + HR,x',p’)) resulting from
different forward (x, p), and backward, (x/, p’), system
DOFs.”* The trajectories propagated from such initial

conditions provide a dynamical ensemble over which quantities
can be averaged, thus performing the following integrals

DI / dR, dx, dp, dx, dp,, yielding the desired time evolved

operator matrix elements.

This framework offers a robust and systematically improvable
means of computing the time evolution of quantum mechanical
operators. Indeed, the measure of quantum mechanical
accuracy can be controlled by a simple repartitioning of the
system—bath Hamiltonian. However, the necessity of averaging
the (often oscillatory) complex phase factors associated with
the product of polynomial terms in the mapping variables in eq
7 can be problematic, resulting in considerable noise in
computed averages at longer times requiring larger ensembles
of trajectories to obtain desired convergence. Alternatively,
treating this algorithm as a short-time propagator where the
linearization approximation is valid introduces quantum
interference effects in the bath and, in the limit of infinite
time slices, converges to exact quantum mechanical results.”

PLDM Computation of Optical Response Functions.
Theoretical analysis of the response of a system to an external
electric field allows for the direct comparison of theory and
experiment. The linear response function is responsible for the
connection between linear polarization and the electric field,”

PO = [ dg R E(t-1) ©
0

where the first-order response function, RY(t) = iTr-
[Aa(t,) 1(0) p(0)], gives the response of the system to a single

Rt
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k=
P N — — —
R - R _ p
k=1 M (7)
interaction with the electric field. Here, fi(t) = e* ﬂe it is the

dipole operator in the interaction representation and f*(t)e =
[4i(t),e] is the time-dependent dipole commutation super-
operator.

Though the linear response of a system contains useful
information about the relative energy gaps between ground and
excited electronic states and the strength of coupling between
electronic and nuclear DOFs, to study the excited state
dynamics of the system, one must go beyond linear response.
For this purpose, we consider the third-order nonlinear
response. Because the third-order polarization is the source of
the emitted signal, the signal corresponding to any third-order
nonlinear spectroscopy experiment can be extracted from the
time-convolution of the nonlinear response function,
RO (tytyt,), with the appropriate external tlme dependent
electric field according to the following result:*’

PO(r) = fo dt, fo dt, /O dt, R¥(t,,t,t)

X E(t—t;) E(t—t;—t,) E(t—t,—t,—t,) 9)

In typical third-order experiments the field is defined by
three time-ordered light pulses that are shorter than the
separations between them, but long compared to the oscillation
period of the laser electric field. In the semi-impulsive limit,
where the pulses are approximated by J-functions at times 7,

75, and 7; multiplied by factors of the form e , the
integrand is only finite when t; =t — 73, t, =73 — 75, and t, = 7,
- Tl so the 51gna1 is directly obtained as the response function
RO (tytt,),® which can be written in terms of the multipoint
dipole correlation function as

+i(k 7 Fwt)

*(t) A7(0))

(1) 77(0) p(0)]

(10)
The third-order signals are often presented as functions of
frequencies Q, and Q; for different t, delay tlmes by Fourier
transformation of the third-order response, RG (t3,t2,t1) -
R( )(Qytzzg )

The PLDM framework has been shown to be capable of
accurately reproducing quantum autocorrelation functions,**®
and we employ it here to compute the multipoint dipole
autocorrelation function needed for third-order optical spec-
troscopy according to the following expression:

Rty ty,t) = ()P Galtytty+t) 75 (h + 1) A
= (i)3Tr[ﬁ (t3+tz+t1) ﬁx(tz + t1) i
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Figure 3. Pictorial representation of the effect of the subsequent dipole interactions on the evolving operator, represented as a matrix in which filled
gray sectors correspond to nonzero elements of selected subspaces of the global Hilbert space. The arrows indicate time propagation.
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Equations 10 and 7 have been used to obtain this result
including a trace over all DOFs, as outlined in the Supporting

(1))

Information. Here (fip . are the matrix elements of the
/

product of the transition dlpole operator and the evolved
density operator after the jth field interaction; i.e., from eq 7,
these matrix elements of the jth-order perturbed propagated
density operator are computed from the time evolved mapping
variables as

5 () (n m "t:,l)

1 . .
pk " = E(‘xkt’ + IPkf})(xntH - 1[7%71)

1 ’ . ! ! s !
X 5(9%] - lplr,)(x"t}-l + IP,,;jil)
and

1
Gt] = expl_z Z (xatz +p, 2)}
J tj

(with a similar definition for G;) is the initial distribution of
]

mapping variables for the (j + 1)th time interval. Finally, in eq
11, Ny, N, and N; are the number of bath steps in each of the
time intervals ¢, t,, and £, respectlvely

Due to the state-collapsing nature of the dipole operator,
each time it is applied it projects the evolving operator onto a
different subspace of the global Hilbert space (Figure 3).
Therefore, after a dipole interaction, each matrix element can
potentially give rise to a large number of new matrix elements
that need to be propagated. From eq 11 the sums over the
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] f dR, dx, dp, dx) dp G, G,

pk) X (0)\ngny 5}
— W p™)i" (Ro,R)
M H 041 (11)

starting state indices at each of the interaction times have the
potential to dramatically increase the number of terms that
must be evolved, and each in principle requires propagating
many independently sampled trajectories. This suggests that
the complete treatment of realistic systems will be very
computationally demanding with a brute-force implementation.

To mitigate this problem, a Monte Carlo importance
sampling procedure is employed to treat the intermediate
state sums for the interactions at ¢, and t, by selecting the “most
important” matrix element as the sole initially occupied state for
subsequent propagation. Also, the intermediate mapping
variable integrals are evaluated using a steepest descent
approximation. This method, termed “focusing” (the basic
1ngred1ents of which have already been presented in the
literature®”), drastically reduces the computational effort
needed to compute multipoint correlation functions in the
PLDM framework.”

This algorithm can be summarized for a general n-state
system as follows:

1. At t =0, the dipole commutator prepares the system in a
coherence between the ground and single exciton
manifold (e.g, le){gl) and initial system mapping
variables are sampled from Gaussian distributions as
indicated in eq 11. Assuming the bath DOFs are
unaffected by the electronic dipole operator (the
Condon approximation), these variables are sampled
from their equilibrium distribution on the ground
electronic state. An ensemble of trajectories, originating
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from these system and bath initial conditions is then
initiated.

2. The system DOFs are propagated for a time #; using
classical trajectories that satisfy Hamilton’s equations
obtained from the mapping Hamiltonian in eq 3. The
bath DOFs are propagated simultaneously according to
the effective forces, F; defined under eq 7, which depend
on (both forward and backward) system mapping
variables, as outlined in eq 11.

3. At t = t;, the dipole commutator is applied again and the
system is projected into a new set of states, whereas the
bath DOFs remain continuous through the operation of
the dipole. For each state of the projected subspace,
mapping variables are resampled from Gaussian dis-
tributions.

oIf “focusing” is applied then the “most important”
matrix element is selected as the new initial condition for
subsequent propagation, according to the following
steps:
(a) The elements of the dipole operated density
matrix are written, in polar coordinates, as

(1)) i(

e~ Oni)
”t”t V e My

(up (12)

and a normalized probability density function,

m, ., is constructed according to
0ty

Z ”tl ”tl

Ylt‘flt‘

v, r.:
My My

N,

m, =
ntlntl

N =
(13)

(b) A uniform random number & € (0, 1] is extracted,
and the probability density m is uniformly

n; ﬂl
sampled (see the Supporting Information for
details), selecting the “most important” matrix
element (1, n/°) as the new (occupied) initial
system density matrix element for the next time
interval propagation

(c) A trajectory-dependent weight Q= /thei(e"f‘k_g"t’f)
is saved.

(d) The “steepest descent” approximation is used to
evaluate the integrals over the mapping variables,
resulting in the following:

(ny n0) = (8, ey By o) (14)

4. For each given t), steps 2 and 3 are repeated for a desired

number of t, values (i.e., replacing t, by t, in these steps).

S. For each combination of t), t,, the system and bath are

propagated for a time delay t;, after which the
expectation value of the third-order polarization is
computed by averaging over all trajectories.

oIf “focusing” is used, the appropriate Monte Carlo
weights are accumulated and applied when the
contribution of each trajectory to the final response is
computed.

B RESULTS

Although this formalism is applicable to any form of nonlinear
spectroscopy, for “proof-of-concept” purposes, here we present
2DES results for several benchmark problems to explore the
reliability of the approach in various parameter regimes. The
focusing approximation has been employed for all of the

861

models studied. As mentioned above, these calculations were
performed in the impulsive limit and they ignore the vectorial
nature of the radiation—matter interactions; however, general
pulse shapes and relative orientations of laser field polarization
and molecular dipoles can be readily incorporated. It should be
noted that our calculation based on eq 11 includes all
contributions to the third-order response. The rotating wave
approximation was applied for the analysis of the computed
response functions, and the various contributions (GSB, SE,
ESA) disentangled. We note, however, that this approximation
can also easily be relaxed, and nonresonant contributions can
be included. Additionally, for the results presented here, the
integrals over initial mapping variables were evaluated using the
“steepest descent” approximation. It was found that fully
sampling the initial mapping distribution did not significantly
affect the results.

The Frenkel-exciton system—bath Hamiltonian has found
great utility as a model to represent the energetics of molecular
aggregates. As such, we have employed this model to describe
the time evolution of the full system in the absence of an
electromagnetic field. Assumln that the system and bath are
initially in a product state, P9 = pOH0 with the bath in
thermal equilibrium, the M initial harmonic bath DOFs are
sampled from the Wigner transform of the bath Boltzmann

operator.
2p 2
+ M
2

M anh p?

GO =[] exp[——u (ﬂwm/Z)(%
m=1

(15)

,

m

The system is assumed to be initially in its ground state.

Coupled Dimer. In our first test of the methodology, the
2DES of a coupled dimer was computed. In this model we
assume a pair of coupled sites, each of which has two levels; i.e.,
each site has a significant gap between its first and all the other
excited states. The manifold of coupled dimer states probed
during a third-order nonlinear spectroscopy experiment is
completely described by the site basis states, lij), so that a
general time-dependent state has the form

1
w(®) = 2 G

i,j=0 (16)
where i and j represent the electronic state of each site. The
Hamiltonian in this representation becomes

1
H= D el + X, A lii)i

i,j=0 ij€01,10

+ Z Z ¢ mR i) Gl + 2 —(P + w, )

j€01,10,11 m=1
(17)

where c is the strength of the linear system—bath coupling, with
cy1 = € + €y, and €7 = € + €;;. The spectral density that
determines the bath mode frequencies and the frequency-
dependent system—bath coupling constants is of the Ohmic—

form, J(w) = 2/1& =

model i@/ o))

Lorentz

—Z —5(&) — ,). In the calculations carried out here, each

m @,
site was coupled to its own independent identical set of M =
100 bath oscillators sampled from this distribution.*®
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Figure 4. Comparison of HEOM, PLDM, and SPECTRON 2DES at different t, times for a coupled dimer at 300 K with €, — €o; = 100 cm™, A, 1
=100 ecm™", and pig001/Hoo 10 = —0.2. The bath has a cutoff frequency of @, = 18 cm™" and a reorganization energy of 1 = S0 cm™'. The PLDM
calculation presented here is averaged over only 60 000 trajectories initialized from each element of (*p(®) with nonzero amplitude. Note: The
color range has been scaled to highlight the midrange features as detailed in the Supporting Information.
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Figure 5. 2DES for a coupled dimer at 300 K with €,9 — €g; = 200 cm™, Agy 1o = 200 cm™, and pigg,01/Ho0,10 = 24 The spectral density parameters
employed were 4 = 50 cm™, @, = 200 cm™". Panel a shows the spectra for varying #, waiting time. Panel b shows the amplitude of the energy
transfer-related cross-peak at (Q;, Q) ~ (1325, 875) cm™". The amplitude evolves with coherent oscillations resonant with the energy difference
between exciton states.

First, to demonstrate the applicability of the PLDM 2DES

As a test of the validity of the method presented here, two approach in parameter regimes where perturbation theory-
different coupled dimer models were considered. based methods can become inaccurate, we considered a dimer
862 DOI: 10.1021/acs.jctc.7b01063
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Figure 6. Summary of vibronic monomer study at 300 K. The electronic system—bath coupling model spectral density is identical to that used in the
coupled dimer study reported in Figure 5. The additional discrete mode in the vibronic monomer model studied here has a frequency of ;= 500
cm™! and Huang—Rhys factor S = 0.45. The Ig,) to le,) energy gap is 5000 cm™. In this study the initial system density operator is a population on
the total ground state |g;). Panel a shows the linear absorption spectrum as well as the corresponding 2DES spectra for various values of t,. Panel b
presents a pictorial representation of the model system Hamiltonian used in this study. Panel ¢ shows the evolution of the off-diagonal peak located

at (Q,, Q,) = (5000, 5500) cm™ as a function of the t, delay time.

system coupled to a bath with a slow relaxation time (w.™" =
300 fs). In the limit of slow bath relaxation, the Markovian
approximation can become unphysical. In Figure 4 the 2DES
results computed with the PLDM approach are seen to
reproduce those obtained from numerically exact hierarchical
equations of motion (HEOM) calculations with surprising
accuracy, even when the results are averaged over a limited
number of trajectories. The “SPEC” results reported in Figure 4
were computed using the SPECTRON software package,’
employing line-shape functions obtained from the spectral
density to account for all dephasing mechanisms in the absence
of transport, and then using secular Redfield theory to describe
transport. It is well-known that Redfield theory can provide
inaccurate transport dynamics in certain model parameter
regimes, and we also notice that the use of the secular
approximation not only decouples populations from coherences
but also prohibits the mixing between coherences. This means
that a density matrix element initiated in le){gl will evolve
according to its own equation of motion, without coupling with
any other le')(gl term. These approximations lead to
qualitatively inaccurate results, even for t, = 0 fs, where this
approach predicts inverted relative intensities of features
corresponding to the two exciton states. In recent work it
was demonstrated that this coupled dimer model also exhibits
the complete breakdown of the second-order time-convolution-
less master equation for this range of parameters.w

Results for the second coupled dimer model considered are
presented in Figure 5. This model displays a coherent energy
transfer mechanism, which is revealed by oscillations of the
energy transfer-related cross-peak. The majority of the increase
in positivity of the energy transfer-related cross-peak (below the
diagonal) can be attributed to the quenching of negative ESA
signal of the higher exciton state, concurrent with the energy
migration process. Independent 2DES corresponding to
isolated ESA or GSB and SE signals are presented in the
Supporting Information.
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Vibronic Monomer. In many systems-of-interest, there can
be higher frequency nuclear vibrational modes that are strongly
coupled to the electronic transitions.'> In this case, the nuclear
vibration becomes inherently quantum mechanical, and cannot
be accurately treated using the approximate dynamical model
that may still be reliable for other more weakly coupled bath
modes. To track the dynamics of particular vibronic states, a
repartitioning of the system—bath Hamiltonian is required. For
illustrative purposes, we consider a simple vibronic monomer
including one discrete harmonic vibrational mode and a single
electronically excited state interacting with a continuum of M,
more weakly coupled bath modes described by a Hamiltonian
of the following form:

A= Z eé"")lgnu)(gnul + egns)lens)(ensl

n,=0 n=0
co M, M, 1
A A2 A 2 A
+ Z R le, )e, | + Z —(B,” + w,’R,)1
n.=0 m=1 m=1 2

s

(18)
where lg ) is the electronic ground state dressed with the state

of the discrete vibrational mode with frequency €4 and in
energy level n, centered in coordinate space about the ground
electronic state’s unshifted (“u”) equilibrium position, le, ) is
the electronically excited state dressed with the discrete
vibrational mode in energy level n, centered in coordinate

space about the excited electronic state’s shifted (“s”)
Tiby e (ne) — 1

equilibrium position, and € =€+ (n, + 3 Q, are the

energies of the electronic ground state manifold. In a similar

. 1 . .
fashion, eg's) =€ — Ag+ (ns + ;)Qd is the excitation energy
at the Franck—Condon point minus the reorganization energy,

2
Ay = %dz, dressed with the discrete mode (Figure 6).
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In the vibronic basis, elements of the electronic dipole matrix
are modulated by the overlap of shifted vibrational wave
functions. The magnitude of the overlap is dictated by Huang—
Rhys factor, S = Ay/€y which indicates the relative shift
between ground and excited state PESs.

(enslﬁlgrnu) = ,ueg(nslmu)

- _ 2

= ,ueg/dx (nlx — ¢/ Q4" )xlm) (19)
In the calculation presented here, only vibrational energy

levels 0 and 1 of the strongly coupled discrete mode were

included due to the rapid falloff of vibrational overlap for

transitions between lg,) — Iens).39

Figure 6 presents 2DES results for the vibronic system at
various values of t,. The evolution of the diagonal peaks and
cross-peaks is modulated with a period of 66.7 fs,
corresponding to the 500 cm™' frequency of the discrete
mode. These signal modulations can be easily misinterpreted in
experiments as a signature of electronic coherence between
different sites. For example, in Figure 6 it is shown that off-
diagonal features associated with pure vibrational coherence can
exhibit oscillatory modulation reminiscent of peaks associated
with electronic coherence. The accuracy of the dynamics
method presented in this work allows us to reproduce and
correctly interpret all kinds of signal oscillations. Indeed, we
want to apply this machinery to realistic coupled systems in
which vibronic signatures are present to test recent
experimental results that suggest the influence of vibronic
coherence on long-lived coherent energy transfer.”

Finally, we also note that the possibility of explicitly including
vibronic states allows for a proper description of realistic pulse
shapes: experimental pulses are in fact bandwidth limited, i.e.,
able to excite just some of the many possible available vibronic
states. Accounting for this bandwidth effect using postprocess-
ing is not as accurate as actually including only the relevant set
of vibronic states. This aspect, which has not been developed in
the present work, will be the subject of a future study.

B CONCLUSIONS

We have presented a semiclassical path integral method for
computing nonlinear optical response functions in non-
Markovian open quantum systems. It combines a detailed
description of the nonequilibrium dynamics responsible for
energy transfer after photoexcitation in molecular aggregates
(through the PLDM methodology) with response function
theory of field—matter interactions, allowing for the direct
connection between theory and experiment.

We have demonstrated that the method presented here is
capable of producing accurate results in parameter regimes
where ]gerturbation theory-based methods breakdown signifi-
cantly.”’ If perturbation theory-based methodologies remain
the only feasible way of treating system with a very large
number of interacting chromophores, while paying the price of
using approximations that limit their validity to certain
parameters regimes, the methodology introduced here avoids
this drawback by making no assumption about the form or
strength of intrasystem or system—bath couplings, even if it is
generally more expensive. This method is not restricted to
harmonic baths, although its accuracy in computing nonlinear
spectra for anharmonic systems has yet to be studied. We also
note that our approach is trajectory-based and, as such, scales
linearly in a parallel computation environment.
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Our semiclassical path integral method offers an exciting
starting point from which to explore the development of
accurate, yet computationally economical, methods for
computing nonlinear electronic spectroscopy. Future work
will apply the present methodology to study, e.g., systems of
coupled vibronic sites (to clarify the influence of coherent
phenomena in energy transfer) and to describe the influence of
finite bandwidth pulse shapes. We are also working on the
further development of the PLDM 2DES approach to decrease
the computational cost and extend its applicability to larger
systems, for example, by employing more efficient representa-
tions of the environmental variables.*’~*
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B ADDITIONAL NOTES

“The expressions given here can be generalized in a
straightforward way to incorporate this relative field and
molecular dipole orientational information by recognizing that
each laser pulse in a typical experiment has its electric field
polarized in a specific direction, perpendicular to the direction
of propagation of the pulse, so the orientation dependence of
the light—matter interaction for each pulse in the above
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expression is influenced by the dot product of the molecular
transition dipole and the field polarization vector associated
with the particular pulse.

bAlthough results are independent of the specific choice of the

coherent state width parameter, y, choosing it as y = % has the

useful consequence that the coherent state version of the
semiclassical van Vleck determinant exactly cancels the

troublesome —%Z,,H(Z,I(R) term in eq 3% This mitigates the

issue of the bath DOFs propagating on an inverted potential
energy surface (PES) when the mapping variables sample
regions of phase space in which &> + p,” < L.

“It should be pointed out that, although the Herman—Kluk
propagator is semiclassical, the Meyer—Miller Hamiltonian is at
most quadratic in the system mapping variables. Therefore, this
semiclassical propagator provides an exact quantum mechanical
treatment of the system dynamics for fixed bath variables.
“The k indices labeling the terms in the products in eq ' apply
only to the quantities immediately to the right of the product.
“When linear response functions are evaluated, this focusing
procedure is unnecessary because there is only a single time
interval.
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